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Polynomial Hulls in C2 and Quasicircles

ZBIGNIEW SLODKOWSKI

0. - Introduction

Ever since H. Rossi has proved the celebrated local maximum modulus
principle, efforts were made to elucidate it further by finding analytic varieties,
preferably analytic discs, in the set XBX, where X is the polynomial hull of
a compact set X c C 1. As it is well known, the general problem has negative
answer, and several counterexamples were given, the most refined being that
of J. Wermer [15]. Various positive results were obtained when X is a smooth
manifold satisfying additional special assumptions; see Alexander [ 1 ], Bedford
and Gaveau [3], Bishop [5], Forstneric [8], and the references listed in these
papers.

In this paper we will study another special situation when X is a subset of
C~ 2 which projects ontb a circle and has connected and simply connected fibers.
We recall now the first general result in this direction, which was obtained
independently by Alexander and Wermer in [2], and by the author in [14].

THEOREM 0.1. [2], [14]. Let X c a D x C be a compact set, where D =

Izl  1}. Assume that for the fiber (w E C : ( ~, w ) E X ~
is geometrically convex. Then the set X BX (if nonempty) is equal to the union
of graphs of bounded analytic functions with boundary values in X (~), ~ E aD.

(The result is true also when X c a D x C~’~ but the case n &#x3E; 1 is not

directly related to the context of this paper).
The convexity assumption of the last theorem was eliminated by F.

Forstneric [8] at the price, however, of adding the assumption that the hull
in question already contains an analytic disc. We summarize next some of the
Forstneric’s results.
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Assume further that : M - a D is a submersion, where w) = z. Then
the hull M is covered by the graphs of continuous analytic functions in D.

Furthermore, there is a C(k-2)-smooth D x aD -+ D x C, where

~) _ (z, f~ (z)), z E D, ~ E aD, such that

(i) f ~ (.) are analytic functions;
(ii) is a imbedding;

(iii) x a D ) is equal to the relative boundary of M in D x C, and is a
submanifold bordered by x aD).

The purpose of this paper is to provide a simultaneous generalization of
the above two results. No a priori existence of analytic discs will be assumed.
In fact, our main effort will be directed toward showing that 2Bx contains an
analytic disc, if X c a D x C has connected and simply connected fibers (and

X). To achieve this, we use, among other tools, some techniques from
quasiconformal geometry, which seems to be a novelty in this context.

The detailed formulation of our main results is given in Section 1.
The problem studied in this paper have some affinity with the subject of

nonlinear H°° -optimization developed by J.W. Helton and his coworkers. We
refer the reader to Bence et al. [4], for a concise introduction and for further
references.

1. - Results

It is convenient to formulate first the most general of the theorems proved
here.

THEOREM 1.1. Let X c a D x C~ be a compact set such that for every
~ E a D the fiber X(~) = I w E C : (~, wl E X) is a simply connected continuum.
Assume that X BX is nonempty. Then X BX is equal to the union of the graphs
of all HOO (D) functions whose cluster values at ~ E aD belong to X(~). (Below,
an analytic disc will always denote such a graph). Furthermore,

(a) the relative boundary of X n D x C, denoted by S, is covered by analytic
discs, and every two distinct analytic discs contained in S are disjoint;

(b) if V denotes the relative interior of X in D x C, then VBX is covered by
analytic discs, and every analytic disc contained in X and intersecting S
must be fully contained in S;

(c) for every z E D the fiber Y(z) _ ~ w E C : (z, w) E X ~, of X , is a simply
connected continuum and its topological boundary (in C) is equal to the
fiber of S, i.e. S(z) = (w (z, w) E 8}.
We introduce the following terminology.

DEFINITION 1.2. Let X be as in Theorem 1.1. We say that its polynomial
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hull X is nondegenerate if X BX is nonempty and is not equal to a single
analytic disc.

The meaning of this notion is further explained by the next corollary,
which will follow directly from Theorem 1.1.

COROLLARY 1.3. Under assumptions and in the notation of Theorem 1.1,
the following conditions are equivalent:

(i) there is zo E D such that Y(zo) is not reduced to a single point;
(ii) for every z E D the fiber Y (z) contains more than one point;
(iii) equal to a single analytic disc.

In this paper we will study almost exclusively nondegenerate polynomial
hulls. Note that a degenerate hull contains an analytic disc by definition (if

0), while establishing the same for nondegenerate hulls will require
considerable work.

For the most part we will be working with sets X slightly less general
than those of Theorem 1.1, namely such that fibers X ( ~ ) are Jordan domains for
~ E a D and {(~, w) : ~ E a D, w E a X ( ~ ) ~ is a topological torus. In connection
with this situation, we specify now some assumptions and notations which will
be upheld throughout the paper.

ASSUMPTIONS AND NOTATIONS 1.4. M will denote a compact subset of
a D x C such that for every ~ x a D the fiber M(~) = E C : (~, w) E M) is a
Jordan curve with given orientation preserving parametrization K;==6(~6~), 0 
s  Assume that the map

is a homeomorphism onto. (Other varying regularity assumptions will be

frequently added). Once M is given, X is defined as

and then 8À.. V, Y have the same meaning as in Theorem 1.1, namely

fibers of Y, S, V over z E D). Consistently with Definition 1.2, we say that
M is nondegenerate if the corresponding X is nondegenerate, i.e. x C~ ~
is not equal to a single analytic disc.

The most complete description of the hull is obtained when is at least
C(2) -smooth.

THEOREM 1.5. Let M satisfy Assumptions and Notations 1.4. If, in addition,
parametrization ( 1.1 ) is with k &#x3E; 2, a b ~ ~, e~ 9 ) =,~ 0 on M, and M
is nondegenerate, then
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and there exists a continuous analytic function g : D - C such that

Furthermore, there is a C ( k - 2 ) -regular homeomorphism Q : D x a D -; o
,S U M, which is a immersion on D x a D. (Properties (a)-(c) of
Theorem 1.1 hold as well).

Of course, once the existence of selection g satisfying (1.3) is established,
the remaining properties hold by Forstneric result. In fact, the existence of Q
is simply taken over from Theorem 0.2. As for the relations (1.2) however, we
have to prove them first, before we will be able to deduce the existence of g.

Theorem 1.1. and Corollary 1.3 will be derived (in Section 5) from
Theorem 1.5. The latter is proved in Sections 2 through 5. In the general
outline, we consider a continuous family of smooth tori. Mt, 1  ~  R, with
M 1 = M, such that the Jordan curve Mt ( ~ ) encloses M(~), for ~ E a D and t &#x3E; 1

and Mt satisfies assumptions of Theorem 0.2 for t close to R. If we denote by
I the largest interval consisting of t for which M~ admits a continuous analytic
function with property (1.3), we have to show that T E I (see Notation 2.1),
which implies that T = 1 as well. Elementary properties of MT are obtained
in Section 2. A crucial step is to show that M~’ has nonempty interior. To this
end we prove in Section 3 that the fibers {iu : (z, w) E t &#x3E; T,
are quasicircles with a universal constant, which implies that their limit yT (z)
is a Jordan region. The next essential step (Section 4) consists in showing that
the relative interior VT of M~ in D x C is not too small near a D, specifically
that E a D . The proof of Theorem 1.5 is completed
in Section 5.

In the remaining part of the paper (Sections 6-8) we study the hull M
under weaker than C ~ 2 ~ regularity assumptions of M. The picture we obtain is
not as complete as in the C ~ 2 ~ case, but it is still considerably more precise
than that of Theorem 1.1.

We show that if the Jordan curves M(~), ~ E a D, are quasicircles (with
a uniform constant), then so are the fibres Y (z) , z E D, and the hull M has
nonempty interior (Theorem 7.1 ).

To obtain stronger results we assume, essentially, that curves M ( ~ ) ,
~ E aD, are locally graphs of Lipschitz functions. We call the specific technical
assumption (cf. Definition 6.1) the continuous cone condition and prove (cf.
Theorem 6.3) that under it the Jordan regions M(~), ~ E a D, admit a continuous
family of holomorphic inward pointing vector fields, i.e. have the property of

uniform transversal holomorphic contractibility. This property (cf. Definition

4.1.) was introduced by Helton and Howe [9] and Theorem 6.3 generalizes an
earlier result of Helton et al. [10, Theorem 2.2].

Assuming that M satisfies the continuous cone condition, we prove in
Section 7 that the boundary of M in C~ 2 is a topological manifold equal to
X u ( S’ u M) ; in particular ,S u M is closed.
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The closest approximation to Theorem 1.5. is obtained when the

parametrization (1.1) of M is a &#x3E; 0. Then, in addition to

properties described above, S u M is covered by graphs of analytic functions
that belong to C1+6 (D), and the interior V of M contains the graph of a
continuous analytic function in D (Theorem 8.1).

2. - The approximation scheme

Let M be as in Theorem 1.5. As observed by Forstneric [8], there is a
smooth family of tori Mt, t e ~1, R] , satisfying the assumptions of Theorem 1.5
and such that

Specifically, if ( a D ) 2 --· a D x C~ denotes the parametrization ( 1.1 ),
then there is a family of C (2) -smooth immersions pt : ((9D)2 --+ a D x C, such
that

is a C t (2) -regular map;
is an embedding of the form

and the ranges which we denote by Mt,
satisfy (2.1 ) and (2.2).

Then, (2.4) implies relation (2.3).
(To construct (pt, one can proceed as follows. If w) is the outward unit

normal vector to at w, and a E is such that a(S) E 
~ E a D, then the vector field has a winding
number zero. Extending the function to a nonvanishing one on
a D x C, multiplying the extension by w - a ( ~ )~, ~ and then approximating the
product by some x E C°° ( a D x C), we can achieve that

(i) is a transversal, outward-pointing vector, at z,u E M(~),

Let g8, s E R, be the one-parameter smooth diffeomorphism group on
a D x C uniquely determined by the vector and let pt = gt-l 0 
1  t  R. Clearly, if .1 and R are large enough, properties (2.1)-(2.4) hold).

NOTATION 2.1. Similarly as in Assumptions and Notations 1.4 and in
Theorem 1.1, we let for t e 1, :
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Vt = {the relative interior of Yt I in D x C~ };
S’t = {the relative boundary of Yt n ( D x C) in D x C}.
Whenever Z c C 2, we denote

Note that Finally, let

T be the greatest lower bound of t E [1, R] for which there is g E A(D)

(=the class of analytic functions on D with continuous extensions to D)
such that

By (2.1) and (2.4), T  R. For t E (T, R] the hulls Y’ have the following
properties established by Forstneric [8].

PROPOSITION 2.2. If T  t  R, then

(a) yt BXt is covered by the graphs of functions in H°° (D);
(b) S’ is covered by disjoint graphs of functions in H°° (D);
(c) yt C vr, provided t  r  R.

Properties (a) and (b) correspond to parts (iv) and (v) of Theorem 3 in
[8]; (c) was established in [8, Section 5].

The strategy of the proof of Theorem 1.5 is to show that also MT satisfies
condition (2.5) (with some g E A(D)), provided M is nondegenerate. We first
collect some properties of yT which follow from Proposition 2.2 by simple
limit arguments.

PROPOSITION 2.3. Let M satisfy all the assumptions of Theorem 1.5 with
possible exception for nondegeneracy. Let T be as in Notation 2.1. Then,

(ii) 8T is covered by disjoint graphs of bounded analytic functions in D;
(iii) ST(z) = for z E D;
(iv) is covered by graphs of functions in H°° (D);
(v) is nonempty if and only if is nonempty for every z E D;
(vi) as t BB, T, the sets st (z) converge to ,ST (z), z E D, relative to the

Hausdorff-distance topology;
(vii) z E D, are simply-connected continua.

PROOF. (i) If s E (T, t), then XT c X8 by (2.2), and so YT = XT C X~ -
Y8, by the definition of the polynomial hull. By Proposition 2.2(c), Y8 c Vt.
Hence, c for t &#x3E; T.
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(ii) Since by the definition of the polynomial hull, we get

Let (a, b) E By Proposition 2.2(a), for every t E (T, R] there is

It ~ such that It(a) = b, and (=the graph of It) is contained in
Yt . By the normal family argument, there is a subsequence t(n) ’B. T,
convergent uniformly on compact subsets of D to some f c Clearly,
f (a) = b. Thus

(2.7) is covered by the graphs of functions f E Hoo (D).

We claim now

and such g is unique.
By (2.6), there is a sequence (an, bn) --+ (a, b) such that (an, bn) E 

where r(n) ’B. T. By Proposition 2.2(b), there are hn E H°° (D), n = 1,2..., ,
such that h n ( a n ) = b n and gr ( h n ) c By the normal family argument, the
sequence ( hn ) contains a subsequence converging to some h E uniformly
on compact subsets of D. Without loss of generality, we assume that ( hn ) is

already convergent. Clearly, h(a) = b. By part (i), = 1, 2, ~ ~ ~ , ,
and so (hn - g) (z) 54 0 in D. Since hn - g --+ h - 9 uniformly on compacts, and
since (h - g) (a) = 0, Hurwitz theorem implies that h &#x3E; g in D. This proves
(2.8).

Combining (2.7) and (2.8), we obtain (ii).

(iii) If a, b, hn are the same as in the previous part, then b
and which implies c The reverse inclusion is

obvious, because is open in C.

(iv) Let (a, b) E By (2.7), there is f E Hoo (D) such that f (a) = b
and gr( f ) c Since gr( f ) cannot intersect by (2.8). Hence,
gr( f ) c VT, which proves (iv).

(v) is obvious by (iv).
(vi) Since Yt (z), t &#x3E; T, form a monotone nonincreasing family of compact

sets, = for t &#x3E; T and z E D, by (iii), the conclusion follows
by (2.6).

(vii) By the Forstneric’s result (cf. Theorem 0.2), Y’ (z), t &#x3E; T, are Jordan
regions, hence is connected and simply connected by (2.6). Q.E.D.

PROPOSITION 2.4. The conditions (i)-(iii) of Corollary 1.3 are equivalent
when 

PROOF. The implications (ii) ~ (i) ==&#x3E; (iii) are obvious.
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(iii) » (ii). We consider two cases. Case (1). VT i- 0. Then 
for every z E D by Proposition 2.3(v), and then is uncountable for every
z E D. Case (2). If V~’ _ 0, then = ST. By Proposition 2.3(ii), ST
is covered by mutually disjoint analytic discs, at least two, if (iii) holds, thus
each YT (z) has more than one point. Q.E.D.

Since 9T D M, the next observation is now obvious.

COROLLARY 2.5. If M is nondegenerate (cf. Definition 1.2, Assumptions
and Notations 1.4), then diam yT (z) &#x3E; 0 for every z E D.

3. - Application of quasicircles

In this section we show that surfaces S’~ , t &#x3E; T, do not collapse in the
limit, as t --~ T. More specifically, we prove that t &#x3E; T, z E D, are

quasicircles. For the convenience of the reader we recall the definition and

necessary characterizations.
A Jordan curve in the extended plane is said to be a K- quasicircle,

K E ~ [1, +cxJ) , if it is the image of a circle under a K- quasiconformal mapping
of the extended plane onto itself. See Lehto [11, 1. § 6] for further background.
We will not work with the definition; instead, we will rely on the following
two characterizations.

CHARACTERIZATION 3.1. (BY ARC CONDITION). A Jordan curve C in the
finite plane is a .K- quasicircle with some K e 1, +aa) if and only if there is
a constant h &#x3E; 0, such that for every two distinct points w 1, w2 E C,

where C1, C2 are the two arcs into which points w1, w2 divide curve C. (See
Lehto [11, 1. 6.5 ]).

CHARACTERIZATION 3.2. (BY CROSS RATIO). A Jordan curve C is a K-

quasicircle for some K, if there is a constant A &#x3E; 0, such that for every four

distinct, cyclically ordered points ~1,~2,1~3,~4 E C,

where

9.4].

See Pommerenke [12, Lemma

REMARK 3.3. Each of the constants K, h, A has a uniform upper bound
in terms of any of the remaining constants.

We do not have a reference for the following fact, although it is

undoubtedly well known.
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PROPOSITION 3.4. Let be a sequence of K- quasicircles. Assume
that they converge, relative to the Hausdorff distance, to a compact set Z. Then
Z is either a point or a K* - quasicircle, where K* is a constant depending
only on K.

PROOF (SKETCH). Assume that Z is not a point. Then inf diam Cn &#x3E; 0. We
show first that Z is a Jordan curve. As, it is well known, this holds if for every
two points a, b E Z, with a # b, there are two connected compact sets Z’ and
Z", such that Z’ U Z" = Z, Z’ n Z" = {a, 6}. By the convergence assumption,
there are points a n , b n E Cn such that an - a and b n 2013~ b. Let C~, Cj§
denote the two closed arcs of Cn with endpoints an, bn. By the compactness of
Hausdorff topology on the space of compact subset of C contained in a common
closed circle, one can select convergent subsequences of C~, To simplify
the notation, we assume (without loss of generality) that C§/ --~ Z’, ZII,
where Z’, Z" are some compact sets. Clearly, Z’ u Z" = Z and a, b E Z’ n Z".

It remains to show that Z’ n Z" = { a, 6}. Suppose there is p
Z’ nZ"B{a,6}. Then, there are sequences (p~), (p~), such that p~ e C~, p~ E

p£ - p, p and an ~ bn , an , bn ~ for large n. The points
p~,p~ divide Cn into two arcs An, Bn, where an e An, bn E Bn. By the arc
condition (Characterization 3.1 ), min(diam An, diam Bn )  where
h is a common arc condition constant for all Cn, cf. Remark 3.3. This leads to a
contradiction, because 0, while lim diam An &#x3E; lim la-pi
and, likewise, lim diam pl. Hence, p = a or b and Z is a Jordan
curve.

Finally, Z satisfies the arc condition with the same constants h as Cn
do. Indeed, if a, b, Z’, Z" are as above, then, clearly, Z’, Z" are arcs and

min(diam Z’ , diam Z") = lim min ( diam Cn, diam Cn )  limhlan - b n ( =
n 

- 

n

hla - bl. By Remark 3.3, the proof is complete. Q.E.D.

We can now show that V~ is nonempty.

LEMMA 3.5. Let M, Mt, M~ be as in Notation 2.1. Assume that M is
nondegenerate. Then, there is a constant K depending only on M, such that the
sets E D, t E [T, R], are K- quasicircles. In particular, 
are Jordan curves.

PROOF. Assertion 1. There is a constant K’ such that all the curves

Mt ( ~ ) , ~ E a D, 1  « R, are K’ - quasicircles.
This is a well-know fact (and a simple exercise) which follows from

the assumptions about the existence of C2-smooth parametrization satisfying
condition (2.4). It is also a special case of more general Lemma 6.4 below.

Assertion 2. Let M’ be a C(2)-manifold satisfying the assumptions of
Theorem 0.2. Assume further that the curves M’ ( ~ ) , ~ E a D, are quasicircles
with a common constant A of Characterization 3.2. Then, all the curves ,S’ (z)
(=the boundary of { w e C : ( z, w ) e i#)) are quasicircles with the same
constant A in (3.2).
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(Of course, in this proof M’ = &#x3E; T).
Fix zo E D and let w3 , W4 be any four cyclically ordered points

on the Jordan curve S’(zo) . If ~ ( z, ~) - ( z, f ~ ( z ) ) is the parametrization with
properties described in Theorem 0.2, let ~ (i ) , 1  i  4, be the unique points
of aD, such that f~ (i) (zo) = wi. Denote f~ (i) = fi. Clearly, ~(1), ~(2), ~(3), ~(4)
are cyclically ordered on a D and, since 4) is a homeomorphism, for every
~ E a D, the points 11 (~), f 2 ( S ) , f3 (~), f4 (~) are cyclically ordered on M’ ( ~ ) . Let
h(~‘) = ( f2 (~), f1 ~S‘), f3 (~), f4 (g)) (=the cross ratio (3.2)). By (3.2), ~h(~) ~  A
for ~ E aD. Since h E A(D), and h(zo) = (W2, WI, W3, W4), by the maximum
principle the condition (3.2) holds for S’(zo). This proves Assertion 2.

By Assertion 1 and Assertion 2, applied to M’ = Mt, t E (T, R], we obtain
now that all the curves t E (T, R~, are K- quasicircles with some
uniform constant K (cf. Remark 3.3). By Proposition 3.4, also 
are quasicircles, with uniform, but possibly larger, constant K*. Q.E.D.

4. - Application of uniform holomorphic contractibility

As we already know, is covered by graphs of bounded analytic
functions in D. We have to show that they have continuous (or better) boundary
values. It suffices to prove (by a result of Cirka [6]), that their cluster values
are contained in M~’ . To this end we will establish in this section (Lemma
4.4) that = MT, which we do with the help of the notion of uniform
transversal holomorphic contractibility introduced by Helton and Howe [9].

DEFINITION 4.1. [9], [10]. A family of compact (plane) sets W(~), ~ E a D,
is said to be uniformly transversally holomorphically contractible (shortly:
UTHC) if there is a domain W D U s W ( ~ ) , a continuous function v : 
C, and constants 1, a &#x3E; 0, such that for every ~ E a D the function w - v ( ~, w)
is holomorphic and

for every ~ E a ~ and for every 0  t  a.

REMARK 4.2. If UTHC holds, then we can assume that there exists a
bounded holomorphic function v : { r1  lzl  r2} X W - C, where ri  1  r2,

such that (4.1) still holds (for ~ E a D), with possibly smaller a, 7, W.

It is this seemingly stronger version of UTHC that we well apply. (To
prove Remark 4.2, note that any function V’(e, w), such that I v - on

a D x W , also satisfies condition (4.1 ) with constants i - e, a. By applying Runge
theorem in w and smooth partition of unity on )g) = 1, we find first ~’ I equal
to a finite sum of products of rational functions in w multiplied by smooth
functions of ~. Approximating those smooth coefficients by rational functions
of z, we get Remark 4.2).
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REMARK 4.3. It is a special case of Theorem 2.2 of Helton et al. [10], that
if M is like in Theorem 1.5, then the family of Jordan (and
in the same way for 1  t  ~ ) has the UTHC property. (The
result of Helton et al. [10] is actually more general in that the parametrization
b ( ~, ~ ) is only assumed to be continuous in ~, and a 9 ~ ( ~, e~ 9 ) E LOO n 
A still more general theorem giving a sufficient and necessary condition for
UTHC is obtained below, cf. Theorem 6.3).

With later application in mind, we prove the next lemma in greater
generality than needed in Secion 5.

LEMMA 4.4. In the Notation 2.1, if M is nondegenerate, then

More generally, let X* (~), ~ E a D, be a family of compact Jordan domain
satisfying UTHC. Denote X* - ~(~, _w) : I ~ I = 1, w E X* (~) 1, Y* - X*, and
V* = the relative interior of Y* in D x C~ * . Assume that X* is compact and

~ ( ~, zu ) : ~ ~ ~ = 1, w E Int X * ( ~ ) ~ is an open subset of a D x C. Assume further
that V* (z) = Y* (z) for z E D, and there is hE H°° (D), such that gr(h) c V*.
Then

For the proof, we need an auxiliary fact.

NOTATION 4.5. For a bounded open domain G in C, let A(G) denote the
uniform closure on G of rational functions with poles outside G. Denote by
A(G x C) the closure, with respect to the topology of uniform convergence on
compact subsets of G x C, of the sums

LEMMA 4.6. Let G be as in Notation 4.5. Let H be a bounded, relatively
open subset of a G x C~ , such that all its fibers ~ ( ~ ) , ~ E a G, are connected
and simply connected. Assume that each point ~ E aG is a peak point for the
algebra A (G), and that there is a function f o E A (G), such that

Let F be the hull of H relative to the algebra A (G x C). Then,
H c U : = Int F.

The proof is delayed to the Appendix A.

PROOF OF LEMMA 4.4. Observe first that the special case (4.2) follows
from the general case.
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Indeed, if we let X* : = then Y * = V* = V~, and then UTHC
holds by Remark 4.3. By Lemma 3.5, z E D, are Jordan curves and so,
by Proposition 2.3(iii), = This implies also that is

nonempty, and so, by Proposition 2.3(iv), there is h E H°° (D) with gr(h) c VT.
The remaining assumptions follow from the set-up of Notation 2.1. Then, (4.3)
implies that Since ST n 0, also sT n V~’ _ 0, and so

c M~, which confirms (4.2).
We will consider now the general case. Let v : W  r2 ~ --&#x3E; C~ be

a holomorphic function satisfying all conditions of Definition 4.1 and Remark
4.2, in particular (4.1 ), with W (g) = X* (~).

Fix r E (rl, 1). Choose a positive number d, such that

are bounded holomorphic functions. Denote by I = 1, the set

of all cluster values of h at ~, i.e. if there is a sequence

(zn ) , ri   1, zn - g, such that h ~zn ) --&#x3E; w. An elementary compactness
argument yields for every t:

Let C = sup I v 1. Then, by (4.5),

and

Combining cluster formula (4.6) with property (4.1 ), we get, for every
0  t  a, the inclusion:

Since the latter set is open in a D x C (by assumption), and the former is
compact, there is po  1 (depending on t), such that

If we fix t E then we can choose, in view of (4.7), a

number p e such that ( z, ht ( pz ) ) e V*, whenever |z| - r. Letting
fo (z) = ht ( pz), we can summarize the above argument as follows.

Assertion 1. There is r E (0, 1) and a function fo E A(G), where

I such that

and
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We will apply now Lemma 4.6 with G and f o as in Assertion 1, and with

The assumptions of Lemma 4.6 are fulfilled by Assertion 1 and so, if
F = { the hull of H relative to x C)) and U = Int F, relative to G x C,
then U D H, in particular,

Observe now some further properties of the hull F. By the Rossi’s local
maximum modulus principle, the set FBH has the local maximum property.
(In general, a locally closed set Y c C n is said to have the local maximum

property, if for every compact set .F~ in C n, such that K n Y is compact, and
for every polynomial p(z), max lpl  max lpl). Recall that, by assumptions,___ ~ ~ ~ ~ ~ KnY ’__
V* (z) = Y * ( z ) for Izl = r; in particular, Y * ( z ) = H (z) is polynomially convex.
This and the definition of the A ( G x C~ ) -hull imply, in the standard fashion, that

(See [14, Proof of Lemma 5(i)] for a practically identical argument).
Let now

By (4.11), Z is closed in D x C and

Assertion 2. The set Z has a local maximum property with respect to
polynomials.

By the already mentioned Rossi’s principle, the set Y*BX* = X*BX*
has a local maximum property. Now, by (4.12), Z is the union of two sets

with a local maximum property and is locally closed (i.e. relatively open in its
closure). According to [13, Proposition 3.5(b)], Z must have a local maximum
property as well.

By Assertion 2 and (4.13), Z c Y*. Consequently, Y* :) U, and so
V* D U. Then, by (4.10), V* D Int X* (relative to a D x C), i.e. (4.3) holds.

Q.E.D.

REMARK 4.7. There is a smooth function a : D --~ C, such that

a(z) E for every z E D. This is a direct consequence of the last proof.
Clearly, if 6 &#x3E; 0 is small enough, then r - 6 &#x3E; ri , r + 6  1, and the segment
joining ht (pz), h(z) is contained in VT(z) for r - 8 ~ ~ r + 8. Let VI, V2
be smooth functions on D, such that 0, 1, and Sp 1 ( z ) - 0 for

has the required properties.
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5. - Proofs of main results

PROOF OF THEOREM 1.5. Pick, by Proposition 2.3(ii), a function f E
that gr( f ) c Since c MT by Lemma 4.4, we obtain

that gr(/)Bgr(/) c M~ . Since M~ is a totally real Ct2~ - smooth manifold in
C~ 2, we are in the situation of Theorem 33 in Cirka [6], which implies that
f E for every a  1. Let n ( ~ , w ) denote the inward unit normal
vector at w for the C(2)- smooth Jordan curve MT ( ~ ) . Then, n : .M~’ --&#x3E; C~ is
C~1~- smooth. Let = f (~)). Then, h : 8D - C)(0) is smooth.

Assertion 1. The winding number of h is zero.
We sketch an argument for this intuitively obvious statement. Choose

a constant f3 &#x3E; 0 such that, if we let : = + E a D,
then fo (g) e VT(~) = XT(~)BMT(~) for ~ E aD. Let a E C°° (D) be the
function from Remark 4.7. We claim that there is a continuous homotopy

such that Ft E C(aD), for 0  t  1, ~ E aD, and
Fo = fo, W = alaD. · (One way to see this is by using the well-known fact that
the open set { ( ~, w ) : ~ ~ ~ - 1, w E ~~(~)} c a D x C is homeomorphic with

homeomorphism which preserves fibers over ~ E a D . This
follows, for example, from the Riemann mapping theorem, as in Proposition
7.4). Since Ft - f do not vanish on aD, 0  t  1, functions f3h = and

Fl - have the same winding number. The latter function has continuous
non-vanishing extensions to D, namely a - f, which proves Assertion 1.

The next, well-known, observation was used by Forstneric in a similar
context [7, Proposition 3.1].

Assertion 2. If h : aB -+ C)(0) belongs to the Hölder class CP for
some p &#x3E; 0 and has a winding number zero, then there is a positive function
r : a D --&#x3E; ( 0, ~ oo ) , such that the function r ( ~ ) h ( ~ ) has a continuous analytic
and non-vanishing extension h 1 : D ---&#x3E; C.

Since is an inward normal vector to at f (~), there is a

positive constant e &#x3E; 0, such that f(g) + E for ~ E aD. Thus,
the function g = which belongs to A(D), satisfies condition (2.5) with
t = T.

This contradicts the definition of T (cf. Notation 2.1) unless T = 1. Hence,
g(~) E E a D, which proves (1.3). The remaining statements of
Theorem 1.5 follow from Lemma 4.4, Proposition 2.3, and the Forstneric’s
result (Theorem 0.2). Q.E.D.

PROOF OF THEOREM 1.1 (SKETCH). We leave without a proof the following
claim, intuitively obvious: there exist manifolds Mn, n - 1, 2, ~ ~ ~ , as in

Assumptions and Notations 1.4 and Theorem 1.5, such that
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With the meaning of the symbols
is in accordance with Assumptions and Notations 1.4. The following

relation follows from the definition of the polynomial hull:

It is now fairly clear that the properties of Y, V, S required in Theorem 1.1
follow from those of Y Vn, Sn (which hold by Theorem 1.5), in practically
the same way as those of Y~’, S’T were obtained from properties of
Yt , V t , St , t &#x3E; T, in the proof of Proposition 2.3. The difference is that
now the family Mn is not continuous (in n), but (5.3) replaces it sufficiently.
Furthermore, 8X (relative to 8D x C) is not a manifold as in Proposition 2.3,
but this property was not used in the proof of Proposition 2.3 at all. The only
relation which might require explanation is

which replaces (c) of Proposition 2.2. To see this, apply observation (2.8) with
Set = Sn. is covered by analytic discs with boundaries in Xn+l c Van,
and so, by (2.8), these discs are disjoint with Q.E.D.

PROOF OF COROLLARY 1.3. The Corollary 1.3 follows from Theorem 1.1
in the same way as did Proposition 2.4 from Proposition 2.3. Q.E.D.

6. - Holomorphic contractibility for families of Lipschitz domains 
’

We will return to properties of polynomial hulls in Sections 7 and 8.
As a preparation, we generalize now, to families of Jordan domains whose
boundaries are locally graphs of Lipschitz functions (in some uniform fashion),
the theorem of Helton et al. [10], referred to in Remark 4.3.

DEFINITION 6.1. We say that the compact Jordan regions w a D,
satisfy the continuous cone condition (shortly: CCC), if there are numbers

a E ( 0, 2 ) and ,Q &#x3E; 0, and a continuous function x(~, w), ~ E a D, w E ~~(~),
such that x ( ~, w ) ~ = Q and

where

To avoid cumbersome arguments, we assume also that

is compact;
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REMARK 6.2. One can show (by the arguments akin to those of the proof
of Lemma 6.4) that CCC is equivalent to a suitable uniform Lipschitz property
of the curves cW(~), ~ E a D . As we do not need the result, we omit further
details.

An example of CCC is provided by Proposition 8.2 below.

THEOREM 6.3. If a family of Jordan domains W(~), kl = 1, satisfies
the continuous cone condition (cf. Definition 6.1), then it has the property of
uniform transversal holomorphic contractibility (cf. Definition 4.1).

Actually, the CCC is not only sufficient for UTHC but it is also necessary,
as it is clear from looking at (4.1 ). The proof of the theorem is based on the
next lemma.

LEMMA 6.4. If Jordan domains = 1 satisfy CCC, then there is
K  -~ oo, such that all the Jordan curves a = 1, are K- quasicircles.

PROOF. If we in (6.2) by its (close enough) uniform
approximation X’ (~, w) and replace a, ,Q by sufficiently smaller positive numbers,
the new C’(~, w) defined in terms of x’, a’, ,Q’ will satisfy (6.1 ). Thus, the
following holds.

Assertion 1. Without loss of generality, one can assume that function
in Definition 6.1 has smooth extension to a D x C, in particular, that

there is L  +00, such that

We will work for a while with a single curve a W (~), but our estimates will
be uniform. Denote C ( w ) : = C ( ~, ~), 2:(~) : = x ( ~, w). Fix points a, b E a W ( ~ )
and note the following simple geometric relations.

(6.6) If ~p denotes the absolute angle between vectors x (a) then

(6.7) The straight-line sides of C(a), C(b) intersect, provided

In case (6.7) holds, denote the bounded component of the complement of
the union C(a) U C(6) U [a, b~ ] by 0. Then

Choose now 60 &#x3E; 0, so that and

Then, if la - b;  60, these relations force
of C(a), C(6) to intersect.

and the sides
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The points a, b split 8W (S) into two closed arcs. If one of them intersects
the open segment (a, b), call this arc 1. If both of them are disjoint from this
straight-line segment, call 7 the one with the property that 0 is contained in
the unbounded open component of CC B (1 U [ a,, b 1).

Consider now a point c traversing the open arc 7~{a, b}. Then either
but still C(c), by (6.1 ). In the first case,

by (6.8). In the second case, a similar geometric argument
shows that

We conclude that:

(6.9) there is 60 &#x3E; 0 and , such that every arc

with diam 7  so, satisfies arc condition

with b between a and c.

whenever a, b, c C 7,

As the curves a W ( ~ ) , )g) = 1, have jointly bounded diameter, condition
(6.9) implies the usual arc condition (Characterization 3.1). Q.E.D.

PROOF OF THEOREM 6.3. We need the following fact, presumably well-
known.

Assertion 1. Let W be a compact Jordan domain and w - x ( w ) : 
C )(0) be a continuous function, such that w + x ( w ) E Int W for every w G 8W .
Then, x(.) has a winding number one.

Let Vt : W --~ C, 0  t  1, be a continuous family of embedings such
that Idw, D. (We take for granted the existence of such a
family). For every t E [0,1], u - Wt (w + x(w)) - ’lit (w) maps aW into C B {O},
and so all these maps have the same winding number. Since D is convex, it is
clear that + is homotopic, via maps C~ B { 0 }
with the map w --&#x3E;. where is the (inward) unit normal

I I

vector to aD at that is This map has a winding under one,
and so the same holds for :

Assertion 2. For a given ~ E a D, there is a polynomial p(w), such that

Let 9 : D ~ W ( ~ ) be a homeomorphism which is conformal in D. Since
8W (g) is a quasicircle (by Lemma 6.4), g has a quasiconformal extension to C,
cf. [12, Theorem 9.14(ii)], and so is Holder-continuous, cf. [12, Eq. 9.12(10),
p. 288]. By Assertion 1, Proof of Lemma 6.4, assume that x ( w ) = x(~, W) is

smooth in w (and is defined in C). Then, the composition ~o(~) = ~(~(~))
is Holder-continuous and ho : 9D 2013&#x3E; C B { 0 } . Seeing that g is orientation-

preserving, ho has a winding number one by Assertion 1. Then, the function
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has a winding number zero and is Holder-
continuous. By the already applied Assertion 2 in Section 5, Proof of Theorem
1.5, there is a positive continuous function r or aD, such that the product
r(~)h(~) has a non-vanishing extension hi E A(D). By all this,

Since is positive and continuous, we can choose e &#x3E; 0, so that,
The function

is continuous on and is analytic in Int W(~). By
Mergelyan theorem, it can be approximated uniformly on W (~) by polynomials;
if p(~) is an approximation close enough, then (6.10) holds.

We will construct now the function w) required by Definition 4.1. For
every ~, let pS(w) denote a polynomial satisfying Assertion 2. Since 
is a continuous function (on 8D x C), by the compactness of ((~, w) : ~ E
8D, w E 8W (S) }, we can cover aD by finite number of open arcs 71, ~ ~ ~ , in
with so that

Let jp 1, - - - , be a partition of unity, with V 1, - - - , pn &#x3E; 0, subordinated

to the covering By the convexity

Clearly, w -+ v ( ~, w ) is a polynomial in w for each ~. By (6.13), w + v (~, w) t
maps 8W (g) into Int W ( ~ ) , cf. (6.1 ), and so maps W ( ~ ) into Int W ( ~ ) by the
open range theorem. Finally, (4.1 ) follows easily from (6.13). Q.E.D.

7. - Topological boundary of the polynomial hull

The next two theorems provide, among other observations, sufficient
conditions for the interior of the hull to be non-empty.

THEOREM 7.1. Let M (and X, Y, S, V ) be as in Assumptions and Notations
1.4. Assume, further, that M is nondegenerate and that all curves 

kl = 1, are K- quasicircles with a common K  -f-oo. Then, V is nonempty,
S(z), z E D, are K*- quasicircles with a common K*  -f-oo, and S is a

topological surface in D x C, homeomorphic with D x {I ç I = 1) by a mapping
preserving fibers over z E D.

.- 
THEOREM 7.2. Let M be as in Assumptions and Notations 1.4_. Assume that

is nondegenerate. If, in addition, the family of Jordan regions ~), kl = 1,
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satisfies the continuous cone condition (Definition 6.1), then

and the topological boundary of Y is equal to X U ( M U ,5 ) , is a topological
surface, and there exists a fiber-preserving homeomorphism of D x {I ç I = 1 ~
onto S’ U M.

We prove first a generalization of Lemma 3.5.

LEMMA 7.3. Under assumptions of Theorem 7.1, sets S(z), z E D, are
K- quasicircles with a uniform constant.

PROOF. Assertion. There is a sequence of C ~ 2 ~ -regular manifolds Mn,
n = 1,2, ..., satisfying assumptions of Theorem 1.5, such that

and the Jordan curves E aD, n = 1, 2, ~ ~ ~ , , are K- quasicircles with
a uniform constant K..

We take the assertion for granted in the rest of this proof. (An elementary
argument can be given along the following lines. Consider a fixed division
of C into the net of squares of size e. A covering of M ( ~) by such squares
produces a quasicircle X~ (~) with a good constant. By selecting points ~1, ~ ~ ~ , ~n
in 8D E£ 10, 21r) closely enough, we can now construct a polyhedron X,
in a D x C, without vertical faces, with = X~ ( ~z ) , and intermediate
sections e (~i, ~i + 1) obtained by suitable interpolation. Smoothing
the polyhedron X, slightly at the edges and vertices, we obtain the required
approximation Mg. The details are tedious and are omitted. For a reader who
is not satisfied by this argument, we sketch another proof of Lemma 7.3 in

Appendix B).
We apply now Assertion 2 of the Proof of Lemma 3.5 to M’ = Mn,

where Man are as in the assertion above. We conclude that all the curves

,Sn ( z ) , z E D, n = 1, 2, ~ ~ ~ , are quasicircles with a uniform constant independent
of z, n. Recall that, as usual, Sn ( z ) = where Yn = Mn. As noted earlier,
cf. (5.3), Y = M = n Yn and, in the same way as in Proportion 2.3(vi), Sn(z)

n 
~-~

converge to S ( z ) = as n - oo, for z E D . Since M is nondegenerate
(by assumption), diam S(z) &#x3E; 0 by Corollary 1.3, and so, by Proposition 3.4,
all are quasicircles with a common constant K. Q.E.D.

In the next proposition we summarize classical results, of Caratheodory
and others, on the Riemann mapping, in a form convenient for our applications.

PROPOSITION 7.4. Let H be a locally compact metric space. Let E(h), h E
H, be a family of compact Jordan regions, such that for every compact subset
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Ho c H

Assume that the sets E(h), h E Ho, are uniformly locally connected,
whenever Ho is compact. Denote A = {u E Clul &#x3E; 1}. --~ 

be the unique Riemann mapping normalized by the conditions: gh(oo) = 00,
with b &#x3E; 0, Then, the map

can be extended to a homeomorphism

EXPLANATION. First observe that the map (7.4) is continuous, i.e. if

h(n) --+ h in H, then locally uniformly in 0 . According to

the Caratheodory kernel theorem, cf. [12, Theorem 1.8], gh t n) -~ gh, if the

sequence of domains = C B E (h (n)) = : Fn converges to its kernel, and
this kernel is CBE(A) = : F. By Exercise 3 in [12, Section 1.4, p.
31L ( Fn ) converges to F, if (i) every compact subset of F is contained in Fn
for large n, and (ii) for every w E a F, there exist points wn E such that

wn - w. Now, (i) follows from (7.3), while (ii) holds because of (7.3) and the
fact that a Fn are (closed) Jordan curves. 

_ _

Of course, gh has an extension to a homeomorphism g*h : 0 --&#x3E; CBInt E(h).
Finally, the content of [12, Theorem 9.11] ] is that - 9h uniformly on 0,
provided the sequence (E(h(n))) is uniformly locally connected, which we have
assumed.

Recall that the sets are uniformly locally connected, cf. [12,
Section 9.3.1 ], if for every e &#x3E; 0 there exists 6 &#x3E; 0, such that for every h E Ho
and for every a, b E E(h), such that la - 61  6, there are connected compact
sets with a, b E Ah c E(h) and diam Ah  e.

REMARK 7.5. By the characterization of quasicircles in terms of linear
local connectivity, cf. [ 11, Section 6.4], if aE(h), h E H, are K- quasicircles,
then the sets E(h), h E H, are uniformly locally connected.

PROOF OF THEOREM 7.1. By Lemma 7.3, S {z), z E D, are quasicircles,
and so V is nonempty. By Remark 7.5, sets V (z) US (z) = Y (z) form a uniformly
locally connected family of sets, if z E D(0,r), r  1. Condition (7.3) holds
for sets S ( z ) , as ,S is closed in D x C and bounded. Thus, the last statement
of Proposition 7.4 implies that ,S and D x ( ) £) = 1 ~ are homeomorphic.

Q.E.D.
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PROOF OF THEOREM 7.2. By the continuous cone condition and Lemma
6.4, curves M(~), ~ E r3.D, are K- quasicircles, with a uniform K. By Theorem
7.1, ,5 ( z ) , 2: e D, are ~ * - quasicircles, i.e. if we let in Proposition 7.4:
H = D, E(z) = M(z) for z = 1 and E(z) = V(z) U S’ (z) for )z )  1, by Remark
7.5, form a uniformly locally connected family.

Since domains M(~), l~l = 1, have UTHC (by Theorem 6.3), and since
we know that V (z) - Y ( z ) , Lemma 4.4 yields in turn that M (~) = V (~) u M (~)
and 9BS c M. The latter condition implies that (7.3) is fulfilled by our family
E (z ) . By the last statement of Proposition 7.4, 8 u M is a topological manifold
with boundary M, homeomorphic with fiber-preserving
homeomorphism. Q.E.D.

Very likely, the surface X U (M u S) has much stronger properties related
to quasiconformal geometry. Is it a quasi-sphere?

8. - The hull in the C1+a-regular case

As an example of application of the technical results of the last two

sections, we prove now, under weaker assumptions, an analogue of Theorem
1.5.

THEOREM 8.1. Let M (as well as Y, X, V, 8) be as in Assumptions and
Notations 1.4. In addition, let M be a E (0, 1), that is para-
metrization b(., .) in (1.1) is and jL’(~, eie) :~4 0 on M. Assume,

further, that M is nondegenerate. Then, V 1= 0, S ~S’ = M, M = Y = V =
Vu(Xu8uM), the boundary of M, XU(8uM) is a topological surface. All
fibers S (z), z E D, are quasicircles. The interior V of M in D x C contains
the graph of a continuous analytic function on D. The surface S U M is the
union of graphs of functions of the class n Cl+,8(D) n A(D).

~a

We conjecture that the surface S is actually Cl+,8 regular for 0  p  a,

but the argument below does not yield this. It can be shown however, which
we will do elsewhere, that just assuming C 1-regularity of M will not suffice
for C 1-regularity of S U M.

We need the following elementary observation.

PROPOSITION 8.2. Assume that the regions W(~) are bounded by Jordan
curves 9~V(~), kl = 1, parametrized by w = b(~, e’o), so that

(i) continuous on a D x a D and, for each ~, one-to-one;

continuous in (~, e’o) and vanishes nowhere.

Then, the regions W (~), k = 1, satisfy the continuous cone condition.

PROOF (SKETCH). Let be the unit inward normal vector to 
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at w. By condition (ii), we can choose 6 &#x3E; 0 and a E (0, with the following
property: if, for ~ E a D and

where

The set is an open’ arc of ’8W()) containing w; let 1;.w be

the complementing closed arc. The fact that ( ~, eie ) - ( ~, b ( ~, eio)) is a

homeomorphism implies, by the simple compactness argument, that

If let now x ( ~, w ) = 2 ,Q n ( ~ , w ) , and define C ( ~ , w ) by (6.2), then the two
relations established above immediately yield (6.1 ). Q.E.D.

---- 
PROOF OF THEOREM 8.1. By the last proposition, the Jordan domains

M(~), ~ E a D, satisfy CCC and so the quasicircle property of ,S ( z ) , z E D,
together with all the topological properties of the surface S u M, follows from
Theorem 7.2.

By Theorem 1.1, for every (a, b) E S, there is f E H°° (D) such that

f ( a ) = b and gr( f) c S. Since c M, the cluster set of gr( f) is contained
in M, which is a totally real manifold. By a result of Cirka [6, Theorem 33],
f E for every ,Q  a. From this moment we continue like in the Proof
of Theorem 1.5 in Section 5, and obtain eventually a function g E A(D) with
the property

(The only difference is that now the gradient field n ( ~, w) - if we continue to
use the notation of the Proof of Lemma 1.5 - is only Holder-continuous, but
this still suffices for the Holder continuity of h, which is enough for the proof
to work). Q.E.D.

Appendix A

PROOF OF LEMMA 4.6. Assertion 1. Let a E a G and V be a neighbourhood
of a. For every e &#x3E; 0 and 6 &#x3E; 0 there is a function p E A(G) (cf. Notation 4.5)
such that

To construct p, choose first h E A(G) such that
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lh(z)l :5 -1 on G, V . As in [7, Proof of Lemma 2.1, Case 2], one can find a
continuous conformal map x of ~ u ~  1 ~ onto a subset of ~ ~ : 0  Re ~, ~ ~ ~ 
1, such that x(1) = 1 and for lul  2 . Then, the

function p = x o h belongs to A (G) and satisfies (A.1 )-(A.4).

Assertion 2. Let f E A(G) and a E a G, b E H(a). Assume that

c H, gr(/) c U, and that the line segment [/(a),6] joining f ( a )
and b is contained in H(a). Then, there is g E A ( G ) such that g(a) = b and
gr(g) c U.

To see this, choose r with 0  r  minimum distance of [/(a),6] and
Choose 6 &#x3E; 0 and V, neighbourhood of a in G small enough, so

that whenever Iw - bl I  r, z E V, and lçl 1  1, 8, Re ~ &#x3E; 0, then

f (z) + £(W - H(z). Choose e &#x3E; 0 with e  

~ c a G ~ . Let p be a function satisfying Assertion 1 with 6, e, V. Let
now gu (z) - f (z) + p (z) (u - f (a) ), for lu - bl I  r. It is clear, by the

preceding construction, that gu(~) E a G, and so gr(gu) c F (see
Notation 4.5), for lu - b) I  r. Furthermore, since p ( z ) ~ 0 in G, the set

{ (z, G, lu - b ~  r} is relatively open in G x C, and so, gr(gu ) c U.
Hence, the function g := gb satisfies all the requirements of Assertion 2.

We conclude now the proof of the lemma. Denote fo (a) = bo, and consider
an arbitrary b E H(a). Since H(a) is connected, there is polygonal line contained
in H (a) and joining b o and b, with vertices b. Applying
inductively Assertion 2 to consecutive segments [bi, i = 0, 1, ~ ~ ~ , n - 1,
we obtain functions fi, i = 1, ~ ~ ~ , n, such that gr( fi) c U, gr(/i aG) c H, and
f2 (a) = b1. Thus, b E U(a), for every b E H(a). Q.E.D.

Appendix B

We will sketch another proof of Lemma 7.3, based on the following steps.

Assertion 1. Under assumptions of Lemma 7.3 (i.e. Theorem 7.1 ), there
is a sequence of topological manifolds n = 1, 2, ~ ~ ~ , such that
(7.1), (7.2) hold and all fibers E a D, n = 1, 2, ~ ~ ~ , are K- quasicircles
with a uniform K.

(Note that we do not require any smoothness properties from Mn).
We consider a new quantity whose finiteness characterizes quasicircles.

In the notation of Characterization denote, for a Jordan curve C,
where Wl, W2 are all pairs of distinct

point of C. 
’ ,

Assertion 2. Let C(z), z E D, be Jordan curves, such that gr(C) = {(z, w) :
z E D, w E C(z)} is a compact set. Assume that S’ = gr(C) n (D x C) is
covered by disjoint graphs of analytic functions and that all C(~), ~ E 9D,
are quasicircles with /~(C’(~))   +oo. Then, J.t( C(z)) is a log-subharmonic
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function in D and is bounded by In particular, C (z) are quasicircles.
The proof of Assertion 2 is similar in spirit to that of Assertion 2 in the

Proof of Lemma 3.5, but longer.
As for the Assertion 1, we can obtain it from Proposition 7.4, applied

to H = aD and E(h) = M(h). Then, the maps gh have K- quasiconformal
extensions to the whole plane and so, for every r &#x3E; 1, the curve = r}
is a K- quasicircles. We define as such curve with h = ~, r = 

Now, if Sn : := we can prove that c Mn. (Namely,
as M (~) are encircled by and M contains gr(h), h E Hoo, we get
that, for some 8  1, the function f o ( z ) = D, has the property

Int M,,(~). By Lemma 4.6, we conclude that c Mn). Applying
Assertion 2 with C(~) = E aD and C(z) = for z c D,
one obtains that ,Sn ( z ) are quasicircles with a uniform constant. The proof is
completed in the similar way as was the Proof of Lemma 7.3 in Section 7. We
omit further details.
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