Limit semigroups of Bernstein-Schnabl operators associated with positive projections
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 16 (1989) no. 2, pp. 259-279.
@article{ASNSP_1989_4_16_2_259_0,
     author = {Altomare, Francesco},
     title = {Limit semigroups of {Bernstein-Schnabl} operators associated with positive projections},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {259--279},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 16},
     number = {2},
     year = {1989},
     mrnumber = {1041898},
     zbl = {0706.47022},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_1989_4_16_2_259_0/}
}
TY  - JOUR
AU  - Altomare, Francesco
TI  - Limit semigroups of Bernstein-Schnabl operators associated with positive projections
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 1989
SP  - 259
EP  - 279
VL  - 16
IS  - 2
PB  - Scuola normale superiore
UR  - http://www.numdam.org/item/ASNSP_1989_4_16_2_259_0/
LA  - en
ID  - ASNSP_1989_4_16_2_259_0
ER  - 
%0 Journal Article
%A Altomare, Francesco
%T Limit semigroups of Bernstein-Schnabl operators associated with positive projections
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1989
%P 259-279
%V 16
%N 2
%I Scuola normale superiore
%U http://www.numdam.org/item/ASNSP_1989_4_16_2_259_0/
%G en
%F ASNSP_1989_4_16_2_259_0
Altomare, Francesco. Limit semigroups of Bernstein-Schnabl operators associated with positive projections. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 16 (1989) no. 2, pp. 259-279. http://www.numdam.org/item/ASNSP_1989_4_16_2_259_0/

[1] F. Altomare, Proiettori positivi, famiglie risolventi e problema di Dirichlet, Ricerche Mat., Vol. XXVI (1977), 1, 63-78. | MR | Zbl

[2] F. Altomare, Operatori di Lion sul prodotto di spazi compatti, semigruppi di operatori positivi e problemi di Dirichlet, Ricerche Mat., Vol. XXVIII (1978), 1, 33-58. | MR | Zbl

[3] F. Altomare, Teoremi di approssimazione di tipo Korovkin in spazi di funzioni, Rend. Mat., (6), 13 (1980), no. 3, 409-429. | MR | Zbl

[4] D.H. Armitage, A linear function from a space of polynomials onto a space of harmonic polynomials, J. London Math. Soc. (2), 5 (1972), 529-538. | MR | Zbl

[5] H. Bauer, Theorems of Korovkin type for adapted spaces, Ann. Inst. Fourier (Grenoble) 23 (1973), 245-260. | EuDML | Numdam | MR | Zbl

[6] H. Berens - G.G. Lorentz, Geometric theory of Korovkin sets, J. Approx. Theory 15 (1975), 161-189. | MR | Zbl

[7] M. Brelot - G. Choquet, Polynômes harmoniques et polyharmoniques, Second Colloque sur les équations aux dérivées partielles (Bruxelles, 1954). | MR | Zbl

[8] M.R. Da Silva, Nonnegative order iterates of Bernstein polynomials and their limiting semigroups, Portugal Math. 42 (1983-84), no. 3, 225-248 (1985). | EuDML | MR | Zbl

[9] G. Felbecker - W. Schempp, A generalization of Bohman-Korovkin's theorem, Math. Z. 122 (1971) 63-70. | EuDML | MR | Zbl

[10] J.A. Goldstein, Semigroups of linear operators and applications, Oxford University Press, New York, 1985. | MR | Zbl

[11] M.W. Grossman, Note on a generalized Bohman-Korovkin theorem, J. Math. Anal. Appl. 45 (1974), 43-46. | MR | Zbl

[12] S. Karlin - Z. Ziegler, Iteration of positive approximation operators, J. Approx. Theory 3 (1970), 310-339. | MR | Zbl

[13] R.P. Keliski - T.J. Rivlin, Iterates of Bernstein polynomials, Pacific J. Math. 21 (1967), no. 3, 511-520. | MR | Zbl

[14] C.A. Micchelli, The saturation class and iterates of the Bernstein polynomials, J. Approx. Theory, 8 (1973), 1-18. | MR | Zbl

[15] J. Nagel, Asymptotic properties of powers of Bernstein operators, J. Approx. Theory, 29 (1980) 323-335. | MR | Zbl

[16] R. Nageled., One-parameter semigroups of positive operators, Lecture Notes in Mathematics, n. 1184, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1986. | MR | Zbl

[17] T. Nishishiraho, A generalization of the Bernstein polynomials and limit of its iterations, Sci. Rep. Kanazawa Univ., 19 (1974), no. 1, 1-7. | MR | Zbl

[18] T. Nishishiraho, Saturation of positive linear operators, Tôhoku Math. J. 28 (1976), 239-243. | MR | Zbl

[19] T. Nishishiraho, The degree of convergence of positive linear operators, Tôhoku Math. J. 29 (1977), 81-89. | MR | Zbl

[20] T. Nishishiraho, Saturation of bounded linear operators, Tôhoku Math. J. 30 (1978), 69-81. | MR | Zbl

[21] T. Nishishiraho, Convergence of positive linear approximation processes, Tôhoku Math. J. (2) 35 (1983) n. 3, 441-458. | MR | Zbl

[22] T. Nishishiraho, The convergence and saturation of iterations of positive linear operators, Math. Z. 194, 397-404 (1987). | MR | Zbl

[23] W. Schempp, A note on Korovkin test families, Arch. Math. 23 (1972) 521-524. | MR | Zbl

[24] R. Schnabl, Eine Verallgemeinerung der Bernsteinpolynome, Math. Ann. 179 (1968), 74-82. | MR | Zbl

[25] R. Schnabl, Zum Saturationsproblem der Verallgemeinerten Bernsteinoperatoren, Proc. Conf. on "Abstract spaces and approximation" held at Oberwolfach, July 18-27, 1968, edited by P.L. Butzer and B.Sz.-Nagy, Birkhäuser Basel, 1969, 281-289. | MR | Zbl

[26] R. Schnabl, Über Gleichmäßige Approximation durch Positive Lineare Operatoren, Constructive theory of functions (Proc. Internat. Conf. Vama, 1970) 287-296, Izdat. Bolgar. Akad. Nauk Sofia, 1972. | MR | Zbl

[27] P.C. Sikkema, Über Potenzen von Verallgemeinerten Bernstein Operatoren, Mathematica (Cluj) 8-31, 1 (1966), 173-180. | MR | Zbl

[28] H.F. Trotter, Approximation of semi-groups of operators, Pacific J. Math. 8 (1958), 887-919. | MR | Zbl