@article{ASNSP_1986_4_13_4_559_0, author = {Schild, Bernhard}, title = {On the coincidence set in biharmonic variational inequalities with thin obstacles}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {559--616}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 13}, number = {4}, year = {1986}, mrnumber = {880399}, zbl = {0704.35055}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1986_4_13_4_559_0/} }
TY - JOUR AU - Schild, Bernhard TI - On the coincidence set in biharmonic variational inequalities with thin obstacles JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1986 SP - 559 EP - 616 VL - 13 IS - 4 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1986_4_13_4_559_0/ LA - en ID - ASNSP_1986_4_13_4_559_0 ER -
%0 Journal Article %A Schild, Bernhard %T On the coincidence set in biharmonic variational inequalities with thin obstacles %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1986 %P 559-616 %V 13 %N 4 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1986_4_13_4_559_0/ %G en %F ASNSP_1986_4_13_4_559_0
Schild, Bernhard. On the coincidence set in biharmonic variational inequalities with thin obstacles. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 13 (1986) no. 4, pp. 559-616. http://www.numdam.org/item/ASNSP_1986_4_13_4_559_0/
[1] Stability of the coincidence set for the Signorini problem,. Indiana Univ. Math. J., 30 (1981), pp. 235-247. | MR | Zbl
,[2] Variational principtes and free-boundary problems, New York,. Wiley (1982). | MR | Zbl
,[3] Elliptic partial differential equations of second order, Springer, Berlin-Heidelberg -New York (1977). | MR | Zbl
- ,[4] Foundations of modern potential theory, Springer, Berlin-Heidelberg-New York (1972). | MR | Zbl
,[5] On the coincidence set in variational inequalities, J. Differential Geom., 6 (1972), pp. 497-501. | MR | Zbl
,[6] A regularity result for polyharmonic variational inequalities with thin obstacles, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., 9 (1984), pp. 87-122. | Numdam | MR | Zbl
,[7] Über die Regularität der Lösungen polyharmonischer Variationsungleichungen mit ein- und zweiseitigen dünnen Hindernissen, Bonner Math. Schriften Nr. 154, Bonn (1984). | MR | Zbl
,[8] Methoden der Potentialtheorie für elliptische Differentialgleichungen beliebiger Ordnung, Birkhäuser, Basel-Stuttgart (1977). | MR | Zbl
and ,[9] Introduction to Fourier analysis on Euclidean spaces, Princeton University Press (1971). | MR | Zbl
- ,