On perturbed wave equations with time-dependent coefficients
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 11 (1984) no. 4, pp. 541-558.
@article{ASNSP_1984_4_11_4_541_0,
     author = {Perla Menzala, Gustavo},
     title = {On perturbed wave equations with time-dependent coefficients},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {541--558},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 11},
     number = {4},
     year = {1984},
     mrnumber = {808423},
     zbl = {0592.35079},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_1984_4_11_4_541_0/}
}
TY  - JOUR
AU  - Perla Menzala, Gustavo
TI  - On perturbed wave equations with time-dependent coefficients
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 1984
SP  - 541
EP  - 558
VL  - 11
IS  - 4
PB  - Scuola normale superiore
UR  - http://www.numdam.org/item/ASNSP_1984_4_11_4_541_0/
LA  - en
ID  - ASNSP_1984_4_11_4_541_0
ER  - 
%0 Journal Article
%A Perla Menzala, Gustavo
%T On perturbed wave equations with time-dependent coefficients
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1984
%P 541-558
%V 11
%N 4
%I Scuola normale superiore
%U http://www.numdam.org/item/ASNSP_1984_4_11_4_541_0/
%G en
%F ASNSP_1984_4_11_4_541_0
Perla Menzala, Gustavo. On perturbed wave equations with time-dependent coefficients. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 11 (1984) no. 4, pp. 541-558. http://www.numdam.org/item/ASNSP_1984_4_11_4_541_0/

[1] C.O. Bloom - N.D. Kazarinoff, Energy decays locally even if total energy grows algebraically with time, J. Differential Equations, 16 (1974), pp. 352-372. | MR | Zbl

[2] J. Cooper - W.A. Strauss, Energy boundedness and decay of waves reflecting off a moving obstacle, Indiana Univ. Math. J., 25 (1976), pp. 671-690. | MR | Zbl

[3] R. Courant - D. Hilbert, Methods of Mathematical Physics, Vol. II, Interscience, New York (1962). | MR | Zbl

[4] O.A. Ladyzhenskaya, On the principle of limiting amplitude, Uspekhi Mat. Nauk (N.S.), 12 (1957), 3 (75), pp. 161-164. | MR | Zbl

[5] P.D. Lax - R. Phillips, Scattering Theory, Academic Press, New York (1967). | MR | Zbl

[6] R.B. Melrose, Singularities and energy decay in acoustical scattering, Duke Mathematical J., 46 (1) (1979), pp. 43-59. | MR | Zbl

[7] C. Morawetz, Exponential decay of solutions of the wave equation, Comm. Pure Appl. Math., 19 (1966), pp. 439-444. | MR | Zbl

[8] C. Morawetz - J.V. Ralston - W.A. Strauss, Decay of sotutions of the wave equation outside nontrapping obstacles, Comm. Pure Appl. Math., 30 (1977), pp. 447-508. | MR | Zbl

[9] G. Perla Menzala - T. Schonbek, Does Huygens' principle hold for small perturbations of the wave equation?, J. Diff. Equations 54 (2), (1984) pp. 283-294. | MR | Zbl

[10] G. Perla Menzala, Classical solutions of perturbed wave equations in odd space dimensions do not necessarily propagate on spherical shells, Proc. Roy. Soc. Edynburgh Sect. 96A (1984) pp. 337-344. | MR | Zbl

[11] W. Strauss, Dispersal of waves vanishing on the boundary of an exterior domain, Comm. Pure Appl. Math., 28 (1975), pp. 265-278. | MR | Zbl

[12] H. Tamura, On the decay of local energy for wave equations with time-dependent potential, J. Math. Soc. Japan, 33 (4) (1981), pp. 605-618. | MR | Zbl

[13] D. Thoe, On the exponential decay of solutions of the wave equation, J. Math, Anal. Appl., 16 (1966), pp. 333-346. | MR | Zbl

[14] E.C. Zachmanoglou, The decay of solutions of the initial boundary value problem for hyperbolic equations, J. Math. Anal. Appl., 13:(3) (1966), pp. 504-515. | MR | Zbl