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Levi Flat Hypersurfaces in C2
with Prescribed Boundary: Stability (*).

ERIC BEDFORD

1. - Introduction.

Let (z, w) == (x + iy, u + iv) be coordinates on C2, and let Dee C X R =

~v = 0} be a domain such that D X iR is strongly pseudoconvex. Given a

function on aD, we set

and given 0 on D, we set

We are interested in the following problem:

(3) Given a compact 2-manifold Tc C2, 7 find a Levi-flat hypersurface
such that 81~ = T.

For technical reasons we consider the following nonparametric form of (3):

(4) Given q e C2(8D), find a such = rp and

is Levi flat.

A surface of class C2 is said to be Levi flat if its Levi form vanishes

identically. As is well known, a Levi flat surface in C2 of class C2 may be
foliated by complex manifolds. We will use this characterization of Levi-

(*) Research supported in part by the National Science Foundation and a Sloan
Fellowship.

Pervenuto alla Redazione 1’8 Settembre 1981.
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flatness, and we will construct the surface F(Ø) in certain cases by finding
complex analytic disks with boundaries in r(gg). Because of global difficulties
involving the disk construction, we cannot show that the surface constructed
is everywhere of class C2. Thus by « Levi flat » in (4) we will mean that F(Ø)
is pseudoconvex from both sides.

This problem may also be considered as a complex Plateau problem.
This is because the Levi form of a hypersurf ace ~S in C2, suitably normalized

(cf. [~]), is given at p by the curvature form of S, averaged on the unique
complex line in TS~ . Since this does not involve the full mean curvature,
the resulting expression, equation (16), y is degenerate elliptic and does not
seem to fall within the scope of standard P.D.E. techniques. (See the discus-
sion of this problem by Debiard and Gaveau [8].)

Let L1 = (Q e  1} denote the unit disk in C. Our main result

is the following

THEOREM 1. Suppose that solves (4), and let us 

If F(99,,) contains no parabolic points and if all the complex manifolds in 
are disks and closed, then (4) is solvable for all 99 and aD sufficiently close
in C2 to qo and The solution 0 has the following properties:

(i) ø E Lip (D) ; J
(ii) for each there exists a unique holomorphic mapping

F = (z, w) : which is continuous on d and such that

and

(iii) if V is an open subset of a complex variety lying in then V

must lie in one of the disks of ( ii) ;

(iv) i f q; E C°° ( aD) , then 0 is Coo in a neighborhood of each point
(z,, u1) E D such that: (Zl, u1) is not an elliptic point of aD, and if (Zl’ u1) E 
tor one of the in ( ii ) , then I’’( ad ) does not contain a hyperbolic point.
’ 

We remark that if aD is a 2-sphere, then by Theorem 3.1 of [4], the
complex manifolds contained in are disks and are closed, and so this

hypothesis of Theorem 1 is automatically satisfied.
Of course, we would ¡like to solve (4) for all 99 E C2(aD), in which case

it would suffice to show that the set of cp for which (4) can be solved is both

open and closed. By Section 4, this set is closed. The difficulty for us,
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then, is to show that this set is also open, and Theorem 1 may be seen as
a step in that direction.

One motivation for solving (4) is that (4) is related to the construction
of certain envelopes of holomorphy, i.e., the «tin cans &#x3E;&#x3E; with tops cut, O(l
in (4) in [4]. The surface P(O) sometimes also gives a polynomial hull.

THEOREM 2. Let D cc C X R be smoothly bounded, let D X iR be strongly
pseudoconvex, and let aD be homeomorphic to S2. If Po E Lip (Do),

EC2(oDo), is a stable solution of (4) with property (ii), (i.e., if (4)
is solvable for small C2-perturbations of and aDo, and the solution (P satis-
fies ( ii ) ), then the polynomial hult of 

Since the solution given in Theorem 1 is stable in this sense, it satisfies
the hypotheses of Theorem 2. Thus Theorems 1 and 2 give a family of
examples of polynomial hulls, obtained by solving a generalized Dirichlet
problem. They also give the hull regularity and complex structure.

The condition that a 2-manifold be of the form (1) is rather restrictive,
but if this condition is dropped, several things can go wrong (cf. Section 2
of [4]). The imbedding of the torus T2 = 3J X 84 c C2 is in some sense

« opposite » to the 2-manifolds satisfying ( 1 ) . Yet if r is close to this
standard )&#x3E; T2, y a global disk construction is still possible (see [1] and [2]).

The points where a 2-manifold is not totally real are generically
« elliptic )}, « parabolic », or « hyperbolic» (see Section 3). Bishop [7] gave
a method of constructing disks near an elliptic point such that the boundaries
of the disks lie in .h. In [4], the hypothesis that 1’(g?) have no hyperbolic
points was adopted. In this case is necessarily a 2-sphere with two
elliptic points, and it was shown in [4] that a disk construction can be pushed
all the way from one elliptic point to the other.

For more general T(p), the method of [4] permits us to continue the
construction of a 1-parameter family of complex disks until the boundary
of one of the disks arrives at a complex tangency. Figure 1 shows the kind
of degeneracy that we hope to have in the more general case: An elliptic
point E corresponds to a « vanishing » disk, and a hyperbolic point H cor-
responds to a «bifurcation». The present paper, therefore, studies the

bifurcation at a hyperbolic point in some detail.
In order to illustrate the technical point that we will be working with,

let us consider the case where F(99) is a 2-sphere with three elliptic points
and one hyperbolic point. Let 0 be a solution of (4) with boundaries of
disks filling as in Figure 1. To discuss the stability of the problem (4),
we consider perturbations F(99’) of For instance, suppose that y’ is

any smooth function which coincides with T in a neighborhood of y and such
that the only singularities of away from H are elliptic. Then following
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Fig, I

the recipe of [4] we may start with the curves in a neighborhood of y and
construct disks to fill 1~(q~’), thus ending up at the perturbed elliptic points
..~r’1 ~ .~’2 , and E’ 3-

The possibility which is not covered in [4] is that we could have a per-
turbation y’ of q which differs from in a neighborhood of a point A E y.
In this case, we may construct disks starting at the elliptic points. The

disks will be the same as in Figure 1 until they touch the region of the per-
turbation (the shaded region containing A in Figure 2). Once they touch
this region, it is ac priori possible that they degenerate in the manner depicted
in Figure 2. In this case we would not be able to construct disks in the region
between the curves yi, y2, and 

Fig. 2

In Figure 2 the disks below y = y,, are unchanged. This illustrates the

« shadow» effect and gives a possible explanation why the solution is in

general not smooth at a hyperbolic point: The disks in Figure 1 that are
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below the curve y, do not « see » the perturbation at A, whereas the disks
above Y3 are affected by the perturbation.

We will show that under the hypotheses of Theorem 1 the curves Y2
and y’ 3 fit together nicely, and as a consequence y’ 1 coincides with y’ 2 U y’ 37
so we are essentially back to Figure 1. The crux of the matter is to study
a free boundary problem which is equivalent to showing that the curve y
in Figure 1 is piecewise smooth. This problem is different from those con-
sidered, for instance, in [13] and [15] because the nondegeneracy condition
fails at the hyperbolic point.

This paper is organized as follows. Section 2 is devoted to the problem
of the stability of a single disk with boundary in a totally real 2-manifold
in C2. Stability is determined by a « topological » index. In Section 3, the

elementary properties of hyperbolic points are presented. In Section 4, some
basic results from the use of barrier functions are assembled. These are

used with more precision in Section 5 to control how a disk may asympto-
tically approach a hyperbolic point. With this asymptotic control, we are
able in Section 6 to adapt the reflection argument of Lewy [15] for plane
free boundary problems to our degenerate case. This gives the needed regu-
larity of y, and y3. Section 7 discusses two forms of « almost » holomorphic
flattening T(cp) globally, along the curve y, V y3. Section 8 is mainly technical
and combines the results of the previous sections to prove Theorem 1.

Theorem 2 is proved in Section 9.

An appendix discusses the relation between problem (3) and a question
of holomorphic flattening. An example is included to show that the « true »
regularity of 0 lies somewhere between Lip (D) and C3(D) . In Sections 3

and 6 it was shown that the angle 0 == an of the opening of y at H is deter-
mined by the second derivatives of F(99) at H. In the appendix it is shown
that if a is irrational then y is never piecewise real analytic at H, except in
the trivial case.

2. - Stability of disks.

Given a complex disk with boundary in a totally real, orientable mani-
fold .I’ in C2, the question arises whether, for any small perturbation r,
of 7~, there is again a complex disk near the original one with its boundary
in ~’’ . We show in this section that stability in this sense is determined by
a geometric index of ,h about the disk.

Let Tc C2 be a smooth, totally real 2-manifold, and let f : C2,
f E Cl ( d ) , f ’ =7~ 0 on j, be a holomorphic mapping with f(84 ) We note

(cf. [12] or Theorem 4.5 of [4]) that it follows automatically that f is as smooth
as 7B Let us choose a smooth holomorphic mapping g = ( g1, g2 ) : d --~ C2
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such that

Then -P = f -f- wg gives an imbedding of 3 X (2013 ~ e) into C2. For an arbi-
trary smooth extension pi of F to a neighborhood of ! X (2013 ~ ê), we consider
f = 

We will identify the complex vector (ai + ibi, a2 + ib2) E C2 with the
real vector (al , b1, a2 , b~ ) E R4. be the tangent
to 84 X Then there is a vector field Y = (a, #) such that .X and Y
span the tangent space to f along 84 X f 01. Since f’ is totally 0,
so we find a real function 2 &#x3E; 0 and an invertible holomorphic function h(z)
such that = A(z)zPh(z). As in [4], we will say that p is the index of r
about the disk f (d ) . If we make the biholomorphic change of coordinates
z* = z, w* = h(z)w, then we may assume that #(z) = A(z)zP. Thus X = a/a~
and Y = Re (a( a/az) + span the tangent space to at ad 
It follows that we may find a real p # 0 such that

are orthogonal to f along ad X {01.
We will consider perturbations of f of the form

where and T: - denotes the harmonic

conjugate operator on 3z). (That is, if a E then there is a holo-

morphic function A + iA * on LJ with boundary values a + iTa, and

A *(0) = 0.) We note that along M = I(f’ is tangen-
tial to 7~ and == CI’. Thus a gives the deformation normal to .I~
and in the direction of the disk. The term involving g will account for the
other direction orthogonal to T. Using equation (5), we may identify our
space of perturbations of f with the space

We will write our perturbations of 1-’ similarly. We may choose defining
functions Q2 for /’ in a neighborhood of aJ x fOl such that

holds on Mapping forward via F wTe have defining functions

r; = @(/fi-I ) , j = 1 , 2 , for T.
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The space of deformations of 1~’ may now be written as

ivhere 6 &#x3E; 0 will be chosen to be small, and U is a small neighborhood of tl.
A function or E ~ is identified with the surface

For 6 sufficiently small, is a small, smooth perturbation of .T = T(011
in a neighborhood of f(84).

Now we consider the mapping

given by

This mapping is of class C’ (cf. Lemma 5.1 of [11]). We want to find a con-
tinuous mapping a --+ (a(a), b(a)) taking A into Ð, with the property that

For this we consider the differential dS of S : ~a~ X ~ -~ C’~~x( ad )~, i. e. ,
the differential of S in terms of ac and b, with a fixed. By (5), we see that
the differential at (ac, b) = 0, ~ = 0 is

where  , ~ indicates the pairing between 1-forms and vectors. Since-

&#x3E; = i~ f ’, we have, for instance, y

Thus,
by (6).

Similarly, we have
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Thus

Repeating this argument, we have

By these computations, (8) may be written in matrix form as

is smooth of class it follows that dS: - 

is invertible.

Thus, we may apply the usual Implicit Function Theorem to the map-
ping ~S to deduce that if 6 &#x3E; 0 is chosen sufficiently small, y then for each

there exists a pair solving (7). We now summarize our
discussion by stating a theorem.

THEOREM 2.1. Let .fc C2 be a totally real, orientable, 2-dimensional mani-
fold which is smooth of class Cm+2..If f : j ----&#x3E;. C2 is a holomorphic mapping
with f E C"’~~‘(d ), 0  «  1, f ’ 0 orc 3, f ( ad ) c rand has nonnegative
index about f (d ), then f is stable ; i.e., i f l~’ is a small Cm+2 perturbation of .1~,
then there exists f close to f in n c~ ( d ) with f ( ad ) c P.

EXAMPLE. Let us show that if the index is negative, then disks are not
.stable. We let r(- p) be given as the image of 84 X (- e, E) under the map-
ping (z, w) -~ (z, With this representation it is clear that the index

of 1~’(- p) about the disk d is - p. We may also write .h(- p) _
with

Now let us replace T by T -E-- 3, and let us suppose that there exists a disk
Fa(~) == (~, 0) -~- g,,(~), where g,,(~) == g2(~) ) is uniformly small, and

c I~’a(- p) - (1 -f-- ð = 0 = If this is the case, then

holds for 1’1 =1, which implies that
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for J. In particular, ~ + ~ 0 on J. But if C 1, then this
contradicts Rouché’s Theorem, so we conclude that the disk 4 X {01 is not
stable in T(- p).

.3. - Hyperbolic points.

If M c C2 is a smooth real submanifold of dimension 2, then .M has a

complex tangent at p E M if and only if there is a linear holomorphic change
of coordinates in a neighborhood of p such that p = 0, and M is given by

in a neighborhood of p, where

Now we consider a complex tangency of a 2-manifold F(qJ) given by (1).
We take a point p E and we set p = 0. Further, we assume that we
may write 3D near 0 in the form

i.e., D = fr(z, u)  01, where

Further, y at 0 we may write rp E 02(oD) as

with It is easily seen that the 2-plane

is totally real, i.e., not a complex line, if and only if

Thus lix, + = - if311 I measures the « distance » of the tangent space
of r(cp) at p = 0 to CP’ inside Gr(2, 4).

Now we assume that b1 = - icx1, i.e., r(cp) has a complex tangent at (0, 0).
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We note that if aD cannot be written in the form (9), Le., if the tangent
to aD at (0, 0) is {(x, y, u) E C XR: Re az = 01, then JT is necessarily totally
real at (0, 0). Thus a complex tangency of F(99) always has the form (9)
and (11). For the rest of this section it will be convenient to drop the 
terms. Now T(q?) has the form

If we make the change of coordinates

then has the form

Now we choose z real with such that

With coordinates z* == e-iT/2 z, we have

where

It is sometimes convenient to replace o by w** = w* + -1 (Z*)2 so that
has the form

We use the terminology of Bishop [7] and say that p is hyperbolic if
Â &#x3E; 1, p is elliptic if }~  1, and p is parabolic if 1 = 1. now suppose
that Z &#x3E; 1 and consider families of disks in the (z*, w**)-coordinates, whose
boundaries lie in an obvious family of these is given in terms of a real
parameter Q as tw** = or}. The disk = 01, which passes through the
hyperbolic point, intersects F(T) in the two lines
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where 93 and 0, are the two solutions of

with  0  3n/4. If A = 1, these two solutions coincide, but we note
that for A &#x3E; 1 but A very close to 1, the solutions are given by

Now we consider smooth solutions of (4). If is Levi flat, then the
-Levi determinant vanishes (see equation (10) of [8]), i. e. ,

The condition of being Levi flat is holomorphically invariant, so we can
apply it to a solution in the coordinates (15). If we suppress the ** from

the coordinates, y we see that D is given by

the surface is given by 99 = 0. The solution 0 is not unique near
(z, u) = (0, 0) if A &#x3E; 1, so we cannot conclude that 0 =: 0.

If we write

0, then we may evaluate condition (16). It is easy to check

that (16) yields øaex = 0 at (z, u ) = (0, 0), and thus yi(0) = 0. We
conclude, then, that the gradient of a solution to (4) is determined at a

hyperbolic point of Returning to the original coordinates (15), y we
see that the condition dv**fdu** = 0 yields

4. - Regularity of the solution.

In this section we assume that the solution 0 of (4) is continuous, and
we derive an a priori estimate on the modulus of continuity of 0.
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With this we may see that the set of cp E C(8D) for which (4) is solvable

is closed.

Given a function f on a set K, we define the modulus of continuity as.

where h^ means the smallest concave function &#x3E; h; i.e., we assume our
modulus of continuity is concave. Given functions If2 E C(D), we w-rite,

Now we recall an observation from [4]. We suppose that q E 
has barriers W+, T-, i.e., Vl+ = ~- - g~ on aD, and T+) is pseudo-
convex. Now let M c P+) be a complex manifold with smooth

boundary 3M c If at each point (zo, wo) E M, we may write .M locally
as a graph w = w ( z) , then it follows that

(This is seen because the analytic function dw/dz takes its maximum modulus
at all. There it is bounded by because Me If~). )

We will consider solutions 0 of (4) such that

(19) for each (zo, E there is a nonconstant holomorphic map.
f : 4 - C2 such that 

It follows that if (o c is any open subset and if F is holomorphic in
a neighborhood of Co, then

(Otherwise, for some 6 &#x3E; 0, -- z2 takes an interior maximum at some
point (zo, wo) E w, which contradicts the maximum principle on f(4 ). )

The assumption (19) also gives the following maximum principle:

(20) If solve (4) and (19) on D, and if on aD, then 
on D.

(Otherwise, for some 6 &#x3E; 0, 02 + 3 ]z]2 - Oi has an interior maximum at
some (zo, uo). But this contradicts the maximum principle on a disk

where Ø1 is harmonic. )
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LEMMA 4.1. Let Pl, P2 E C(D) be given with PlieD = P21eD = 9 and"

assume that T2) is pseudoconvex. If ø E C(Z?) is a solution of (4) satis--
fying (19), then

PROOF. First we note that by (19) we have

This is because each point of lies in a variety with

8 V c T(gJ). Since {(z, w) E D x iR : v  is pseudoconvex, V must lie,

in this set, and so ~  Similarly, 0.

Let us fix a E C X R. It follows that

for all p E aD such that p + a E D. Thus for p E D

is continuous on D, and the set v &#x3E; is pseudoconvex..
It follows as above that 0. Thus for p, p + a e D

Replacing oc by - a, we have (21).

LEMMA 4.2. Let 99 E C2(aD) be given, and let ø E C(D) be a solution of (4)
satisfying (19). Then there is a constant C (depending only on D) so that

PROOF. Since D x iR is strongly pseudoconvex, there exists a function
r = r(z, u) E C2(D) which is strongly plurisubharmonic. Since 99 E C2(oD),.
there exists ép E C2(D) with = cpo We may choose C &#x3E; 0 so that 

is plurisubharmonic on D. Thus 0 E + g~, - Cr + and so (23)
follows from (21).

LEMMA 4.3. Let 0 E C(D) be a solution of (4) satisfying (19), and let

q? If D is convex with nonvanishing principal curvatures, then there,
is a constant C, depending only on D, such that 



542

PROOF. By Lemma 4.1, it suffices to show that we can find barriers

-PI, P2 above and below such that

It is easily seen that it will suffice to show that there is a lower barrier Tll
for the function on aD, for any fixed p E aD. For

general q, we take a supremum of functions 
By is convex, so we will take to be the

convex minorant of - c.~( ~z - p ~ ) . Now by the special convexity assump-
tion on aD, there exists a linear supporting function L(z, u) for aD at p
,such that

holds for (z, u ) E aD, and /VLI&#x3E; k &#x3E; 0 where k depends only on aD. It

follows that

,since the right-hand side is a convex function.

REMARIK. An estimate of this sort was given for solutions of the complex
Monge-Ampère equation by Gaveau [10]. Using the argument above, one
~can modify the proof of Theorem 6.2 of [6] to yield a nonprobabilistic proof
~of Gaveau’s result.

THEOREM 4.4. Let D be convex with strictly positive normal curvature.
that ~~ E C(D) solve (4) and satisfy (19). Suppose further that

(piled = CPi converges uniformly to 99 E C(D), and there is a common modulus
 o f continuity a ( ) for the family CP2’ ... . Then the limit 0 = lim 

_ 

-is taken uniformly, 0 has modulus of continuity Co)(CA/6), and 0 solves (4).

PROOF. By Lemma 4.3, the functions øj all have a common modulus
&#x3E;of continuity Further, since converges uniformly, we may
assume that it is monotone increasing. By (20), the øj are also monotone
increasing. Since there is a common modulus of continuity, the conver-
gence is uniform. It is now clear that the uniform limit 0 solves (4).

THEOREDZ 4.5. Suppose that oj E C2(D) solves (4), and let us set
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then there is a subsequence f 0,,l c such that 0 = lim exists andI

belongs to Lip’ (D). Further, 0 solves (4) and satis f ies (19) and has pro-
perty (iii) of Theorem 1.

PROOF. By Lemma 4.2 and the proof of Theorem 4.4, P E Lip’ (D)
exists and solves (4). Now let us consider a complex manifold lying in the
graph ~(~;). If we write it locally as w = w(z) , then by (18) we have the
estimate

where k depends only on D. Let us fix a point (zo, Then there

is a = Ae such that the manifold ~; passing through
(zo, may be written as z.a = f;(z), where f;(z) is single-valued and analytic
on Further, E &#x3E; 0 is independent of j. Since is uniformly bounded,
and it follows converges uniformly to 

Thus ~~z, f(z)): is a complex disk in I~(~), containing (zo, zvo), and
so F(tP) satisfies (19).

The property (iii) of Theorem 1 is a consequence of the following lemma,
since we may move to a regular point of V.

LEMMA 4.6. Let 0 be an arbitrary Viy V2 are varie-

ties in C2 at (zo, VI nonsingular and V~1 u V2 c .I’(~), then VI = Vi.
PROOF. We let a be the intersection of the (z, u)-projections of T~1

and V2. Let us write the projection of as {u = ~(’s)}. is

a harmonic function vanishing at (zo, Thus a == ul is a 1-dimen-
sional real analytic curve. Since VI U V2 c 1’((/», it follows that

lies in both V1 and V 2. Since VI U V2 contains a 1-dimensional set, Yl and Y2
must have a component in common. Thus Yl = Y~ .

5. - Barrier estimate.

Now we look at the estimate (22) in a neighborhood of a hyperbolic
point. Let us assume that for a fixed solution 0,, we have upper and lower
barriers P- E C1(D) . That is, P+laD = = cpo, and the domain

A(W-, P+) is pseudoconvex. We note that the quantity

will be taken to be small.
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Let U = f~ E C: 1m ,&#x3E; 01, and let us consider a holomorphic mapping
f : U - C2 such that

Let us write f (R) = y and y± = f (R±). We write z = s + it and set

= (z(C), w(~) ). If r has the form in (12), then for z sufficiently small,

It follows that, taking the partial derivative with respect to s, we have

Near aD, (17) gives us

Thus the barrier estimate (22) is equivalent to

for (z, u) sufficiently close to 0. If we differentiate (27) with respect to t
we obtain

By the Cauchy-Riemann equations, izs = z, and iws = wi. Thus
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where the last line is obtained by substituting vs from (25). Similarly, we

see from (25) that

Let us consider the vector field

which is defined for Z E C and has a singular point at z = 0. Since

i.e., 0 is a hyperbolic point, Z has index1 at z 
= 0. Thus we have

where (., .) denotes the usual Euclidean inner product in the plane

Similarly,

Thus the estimate (28) becomes

Geometrically, y this means that

Now let us such that tan k = - b, and let us set

Then (30) is equivalent to
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where E = E(x) is a small number depending on x. We depict (31) geo-
metrically in Figure 3. The vector field .X is depicted on the unit circle
Izl - 1, and the angle about X corresponding to (31) is indicated.

Fig. 3

Let us note that we may write

since tanu - b. Now the point z; witch argument 8~ satisfies

Thus

which yields

Thus, as expected, the solutions obtained here agree with the solutions ob-
tained in Section 3 (for the *-coordinates). In particular, we conclude that
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Let us use the notation

Let ~i, 52&#x3E; 0 be the angles indicated in Figure 3. We may choose x &#x3E; 0

(and sufficiently small that

Now we consider the possibility of a simple curve approaching z = 0 while
under the constraint of Figure 3. It is clear that a simple curve y = f (R)
can reach the origin only if it remains within -A (622013~Ss-j-~g) or

+ ~ - ~Z , 82 + x + 52) when If I is very small. Similarly, it can only
exit through A(01- ~1, 61-E- ~1) or A(01 + n- ~51, 01 + n + 61) -

In the proof of Theorem 1, the disk satisfying (24) will arise as a limit
of a 1-parameter family of disks, all of which are subject to (31). 0

let us write

By the Lipschitz estimate (18), the disk is given as a graph over 

LEMMA 5.1..F’or q &#x3E; 0 sufficiently the disk f U11) is given, near
the hyperbolic point (0, 0), as a graph I(z, w(z)): z E where the f unction w
is holomorphic and w’ is continuous on lJ11.

PROOF. The fact that f ( Un) is a graph over follows from the discus-

sion above. Further, w’ E by (18). By the arguments of [4], w is
smooth at all points of For z near 0, we use (25) to see that for
z E 

Thus it follows that

and thus

Now we make our essential observation concerning Figure 3.

LEMMA 5.2. If y- approaches 0 inside the angle A(82 -- ~2, O’~’ -~- c~2),
then y+ exits through the angle A (0, - ~1, 81 -I- and the region S~~ lies

on the side of y containing the angle A(01 + O2- ~~ ~ .
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PROOF. By the preceding discussion, it is sufficient to show that there
is a contradiction if we assume y exits through the angle about 81 + ~.
Since f preserves orientation, y the region contains the angle running
from ()2 - 6, to 81 --~- ~ + 6, and containing the origin. Since we have potted
that 0  62 - 81  it follows that this angle is greater than ~c, and thus
we can find points Lx cQn such that

Since = u(C) ED for it follows that

Thus it follows that

for z in the circle (32), and where h(z) is the harmonic function with boundary
values zz on the boundary of the circle (32). Now h reaches its minimum
at z = 0, so h x ~ 0 there. Thus by Lemma 5.1, we may compute

On the other hand, we have

since u +0( IZ12 ) holds on y.
This proves the first assertion; the second statement follows because f

preserves orientation.

We conclude that the region is either located as in Figure 4 or is

the mirror image of it below the x-agis.

Fig. 4
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6. - Reflection principle.

As in the previous Section, we consider a complex disk f : U - C2
satisfying (24). Let us assume that F(92) has exactly the form (12) (without
any 0(lzI2) terms). Let be the region as in Lemma 5.1, and let us simply
write S~ = S2,n. Let us also write y± = y~ and U = Thus we may
assume that y approaches z = 0 through the angle A(02 - ~2, 82 -f- ~2)
and y+ leaves z = 0 through the angle A ( 81- ~ 1, 6~ -E- ~ 1 ) . Finally, let us
choose x &#x3E; 0 sufficiently small that

for some 3 &#x3E; 0. This is possible since 00220130iyr/2.
Now let us use the coordinates of (15). Suppressing the *’s, we have

the surface given by

By Lemma 5.1, is given as a graph of a function g : Q - C, and

Thus

is analytic, and g(z(I) ) is real for ~ E R. By the Schwarz reflection principle,
g(z(C)) is analytic in a neighborhood of ~ = 0, and

since g(O) = 0.
We will use the following result on Lipschitz regularity for conformal

mappings.

LEMMA 6.1. Let star-shaped regions of the form

where

kj is smooth, and
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If F: (VI - W2 is a conformal equivalence, then _F’ E Lip’~ (~.~1), where

PROOF. At each point zo E 8mj we may construct comparison domains.
After translating and rotating coordinates, y we may assume that zo = 0

and there exists ij&#x3E; 0 (independent of zo) such that

If H~(z) is a function on a), with H; C 0, Hj == 0 on and 0,
L1HjE then using the comparison domains above, we have

for 0  y  ~. By a similar comparison, we can bound the growth of then
Carath6odory metric:

In this estimate, y is approximately proportional to dist (y, 
Since C1(z; ~) = 02(f(z); f’($) ) , it follows that

Thus we have

If Hj is a function as above, then by (36), H,(z) is estimable by a certain
power of the distance to the boundary. Since ~s(/) is again a function of
the form we have

"There r = (1- 2arctan e)/(1 + 2 arctan e). It follows now that f E Lip" (&#x26;1) 
which is the desired result.

LEMMA 6.2. Let be the conf ormat rnapping satisfying (24). Then

z f x ~ 0 is small enoitgh, 2ve have

f or some
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PROOF. Let us consider the conformal mapping

given by H(z) ---- It follows that H(y+) lies in the sector

flarg zl  26,,n/(O, -- 0,)I. Furthermore, since .H preserves angles, Figure 3.
gives

for 0  ~  ~. We have a similar estimate for - q  ~  0. Since z(~) is.

smooth for ’* 0, we may shrink U so that the domain m = 

satisfies the hypotheses of Lemma 6.1. Thus we have H(z(~) ) E 
where we may take ë’ arbitrarily small by choosing x &#x3E; 0 small. It follows
then, that

Thus we have

where v2 = ( 1 /c ) ( 6 - 81 ) ( 1- ’ )  2 by (33). Now we have the other ine-
quality by applying Lemma 6.1 to the inverse mapping f(z) = H -J(z(C)).
This gives the reverse inequality with ~i==(l/~)(0s20130~)(12013~)"B which
completes the proof.

Let = X(O) be the function homogeneous of degree zero such that

In the *-coordinates of (15), which we are using this Section, the lines

larg z = 6J, j = 1, 2, in Figure 3 correspond to the lines {arg z = nj2 + 
as in Figure 4. These lines are also the set where X = 0.

It follows from (35) and Lemma 6.2 that for - r~ ~: ~ c r~

Thus for some 6 &#x3E; 0 we have

and thus
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: Since ~’(6) ~= 0 for 0 = nj2 + a, it follows that the curve y- is asymptotic
to (argz = ()2} (in the old coordinates) and

for - ~ ~ s C 0. The corresponding statement also holds for y+.

LEMMA 6.3. We have the estimate )g(z) ) C f or all z E Q and some

~~&#x3E;0.

PROOF. Since g(z) is bounded on ,~, it is given by the Poisson integral
formula of its boundary values vanish at z = 0 as in (37).
By using comparison domains, as in the proof of Lemma 6.1, we may show
that the harmonic function h(z) on S~ with boundary values ~z~2+a is estimated
by 0 C h(z) C c ~z ~ 2 + a’ for some ~’ &#x3E; 0. This gives the desired estimate.

Now we use a reflection argument motivated by arguments given in [13]
and [15]. Since

holds for we consider the complexified equation:

,Solving (40), we have two solutions

and we define

Clearly .R~ is an anti-conformal mapping. Geometrically, y Bi reflects Q
about y± as indicated in Figure 4. If then Ri(z) = z, and if z E y,
1~2(z) = z. In fact

and thus Ri(y-) as asymptotic to the ray farg z = ~c/2 - Similarly
is asymptotic to the ray + 
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LEMMA 6.4. For some 6 &#x3E; 07

for z In particular ,

PROOF. Let us choose

Then we may define g on

by setting

Since is asymptotic to the ray farg z = n/2 - 3,u~, it follows that

the winding number of Rl ( aSZ ) about zl E c~ is - 1. Thus by the argu-
ment principle, applied to the anticonformal Ri, there is a unique z c- S2

with = Since the corresponding statement for 1~2 is also true, it

follows that g is well-defined.
It follows now that g is an analytic function on c~, and by (42), we see

that

for 2:ea). We may choose a &#x3E; 0 such that for each

By the familiar Cauchy estimate, we have, for

which gives the desired estimate for g since
A similar argument gives

for z E S2, and thus we have

7. - .Almost holomorphic flattening.

In this Section we discuss « almost » flattenings from two points of view.
First we show (Lemma 7.4) that flattening is possible with a mapping that
is almost holomorphic. This allows us in Lemma 7.5 to construct barriers p-x
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so that we may apply the arguments of Sections 5 and 6. Then it is shown
that a chain may be flattened with a holomorphic mapping if we first allow
a small C2 perturbation.

Throughout this Section we assume that cpo, ~o , and D satisfy the hypo-
theses of Theorem 1, and is C2 and solves (4) in a neighborhood of D.

Let H.(99) denote the hyperbolic points of ]’(,T). Then Hj(gg)
varies continuously under small C2 -perturbations of 99 and aD. Let 
denote the Levi foliation, i.e. the foliation of by complex manifolds.
Thus ~.(1~(~0)) induces a singular foliation of (See [4] for
a more detailed discussion of the relation between C and ~. ) We note that
we may apply the arguments of Section 5 to F(po) with x ---- 0 because

4Yo G C2. Thus a complex disk satisfying (24) may approach a hyperbolic
point only if it is asymptotic to either of the approach regions A(01, 8~ )
or -A(0i+~~+~).

Let us define a chain C to be a union of simple, closed curves )’1’ c

c T(q) with the following properties;

( a) for 1 ~ j ~ q there is a mapping f , : d n 

such that = y;:

(b) y; is smooth at the totally real points of 

(c) C is connected;

(d) if is a hyperbolic point, then C approaches H through each
of the asymptotic approach regions exactly once.

Given a chain C we will denote by 0, the of complex
disks whose boundaries are given by C.

LEMMA 7.1. If is a of (1(0) ), then .M can approach a hyper-
bolzc point H E r( CPo) only once.

PROOF. Since the Levi foliation ~.(..T~(~o)) extends to be a foliation of
a neighborhood of D, a leaf can approach H through each asymptotic approach
region only once. We need to show that the leaf 3f cannot fill both approach
regions to H.

If y is the boundary of M, and if y approaches H through both appxoach
regions, then M U (H) is not simply connected. Let ifc be the leaf of

passing through the point HE obtained by taking the inward normal
to a distance E &#x3E; 0 from H. Then the saddle point at H connects
these two regions in ife. Thus ME is not simply connected, which contra-
dicts the hypotheses of Theorem 1.
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REMABK, Without the assumption that 0,, is a C2 solution in a neigh-
borhood of 15 we are not able to rule out the possibility that more than one
leaf approaches H from the same angle.

From Lemma 7.1 it is clear that We can piece leaves of together
to form chains.

LEMMA 7.2. Every hyperbolic point contained in a chain.

We recall that a Riemann domain ( ~, ~ ) over C is a complex mani-
fold Ð with a locally biholomorphic With the fol-

lowing Lemma, y we may assume that the complex manifolds of are

globally graphs (cf. Lemma 5.1).

LEMMA 7.3. chain, then there is a Riemann domain (9), n) and
a 8ubdomain with g E r1 O(Q) such that C given by
G(q) = (n(q), g(q)) is a homeomorphism.

PROOF. Clearly, no components of C can intersect, and two curves
of C can intersect only at a hyperbolic point. Let H E e by a hyperbolic
point. Then by Lemmas 7.1 and 5.1, a neighborhood of H in C can be
written as a graph over a domain in C. Similarly for any point ( zo , 
we may :find - &#x3E; 0 such that if W e write

then there is a continuous function g : D(z,,, E) ~ C such that

Now w e may covers with a finite number of these E -neighborhoods. Wre

let ff) be the disjoint union of disks 

with the appropriate identification; that is, d (z’, w’, E) = d (z", ~v", E) if

.Q(z’, w’, ~) E) ~ 0 and the functions 9 agree on the overlap.
The mapping is just the z-projection.

By Lemma 7.3, we may canonically identify a chain IP, with a graph
over a Riemann domain = g(q): q E 52~. We say that d is
regular if g E C2(Q). The next result is that r(ro) is almost flat in a neigh-
borhood of a regular chain.

LEMMA 7.4. Let C be a regular chain in 1-’(cpo), and let i: ë --~ J‘~ be the
associated domain. Then there is a neighborhood C z c 91 c C2 and
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a C2 mapping Ð X C such that

PROOF. Using the mapping 2, we may identify ‘l~ with a neighborhood cQ,
of SZ X {0} = i(e) X {0} c D X C. Without loss of generality, we may assume
that g = 0, Also 9(Wo) n U is naturally identified with
a surface, which we again call in U.

In a neighborhood of e, we may choose a smooth parameter t for the
leaves of Locally, we may choose a parameter, and the orienta-
tion may be determined globally by requiring 1/8u) &#x3E; 0. By Lem-
ma 7.1, and since the leaves are closed disks, we may do this globally.
The mapping

may be defined by

where (q, w) is in the leaf with parameter t in T(O,,). Defined this way"
F satisfies (a) and (b). Further, F is easily seen to be a C2, CR map. Thus.

we may extend F to a neighborhood of ‘Lh r1 9(Wo) to satisfy (c).
REMARK. By the Appendix it is not possible to find a mapping ~’ which

is actually holomorphic. For our purposes, however, it will suffice to flatten
a small C2-perturbation of F(cpo), which we do in Lemma 7.6.

Now we construct barriers.

LEMMA 7.5. Let C be a chain in For x &#x3E; 0, there is an open set
e e ’tL C C2 and 6 &#x3E; 0 with the following property : If -  ð, then
there exist P+, P- E C2(‘Lh n D) such TJ-1- &#x3E; v~ is strongly pseudo-
convex, p+ = W- = cp on 9..L and

PROOF. We consider the map F given by Lemma 7.4, and we let

7~== denote the image inside D X R. Since the only complex tan--

gencies near SZ X {01 are hyperbolic points, and since aD is strongly pseudo-
convex, we may find a defining function r for in a neigh-
borhood of such that r is C2 and 0. Now by (16) we see that
for x &#x3E; 0 sufficiently small, xr form upper and lower barriers for

T in a neighborhood of fl X 
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It follows, y then, that we may take

for x &#x3E; 0 small, which completes the proof.
Let us continue to develop the idea of the proof of Lemma 7.4. We

consider a regular chain C in F(99), and we let 0, ,5~, and g give 0- as in
Lemma 7.3. Let denote an 8-neighborhood of D in D. We may choose

such that 1B0 - is arbitrarily small.
Thus we may make a small C2 perturbation F of such that r is Coo,

and the chain ip== is contained in We will use the notation

9 = F(), although this is a little imprecise; is in fact a graph over a,

small perturbation aD of aD.
Via the mapping w * = w + g(q), q * = q, we may identify a neigh-

borhood 6f li with a neighborhood X fol in 9) X C. We will now find
a neighborhood U of l7 X {01 in 0 X C and a holomorphic mapping

such that

holds for 

Now we return to the notation of Section 2. We let X be a vector field

tangent to 8Q such that X # 0 at the regular points of We may choose

a vector field Y such that X and Y together span the tangent space T9 at
all regular points of aS2. Let us write

Since it is not clear a priori how to define Y at the complex tangencies of /~
we recall that there are no parabolic points. In this case, we can choose Y

to vary continuously. In fact, if we work in the local coordinates of (15)y
then we have a = 0, ~ E -R? ~ ~ 0 at the complex tangencies. Further,
we may make an arbitrarily small C2 perturbation of 9 and have oc =0

and # constant in a small neighborhood of the complex tangency, i.e. we

may in fact remove the o(lzI2) terms that were removed for convenience
in (15).

We claim that arg f3 is well defined on aQ, i.e. that the indexes of 9
about the disks in ~2 are all zero. This follows because the index, being an

integer, is constant under small C2 perturbations, y and 9 is a small C2 per-
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turbation of In the case of the index is seen to be zero because
of the existence of the smooth surface 1’( Øo).

Let b E O(Q) be the harmonic extension of arg # from aS~ to .~. Since

the asymptotic behavior of 8Q at hyperbolic points (i.e. it is as in Figure 4),
it follows that b E C2+6(fl) for some 6 &#x3E; 0. VVe wish to obtain the harmonic

conjugate by simply integrating the holomorphic function db~dz on D.
If D is simply connected, we can do this, and we obtain b + ib* E 
It follows now that after the change of coordinates

we have

for (q*, w*) E P. Now we let A2 denote the harmonic extension of a, from
to S~ and ~Te let Ã2 be the harmonic conjugate. Then A2 

e f1 c~ (,~) , and in the new coordinate system

we have

for (q**, ~**)e.T.
We conclude from this that we may make an arbitrarily small C2 per-

turbation of P, which we call I, such that

holds in a small neighborhood of in .1.
Thus we have proved the following.

LEMMA 7.6. ..., yg~ be a regular chain in Assume

that the barriers Vfl, P- as in Section 6 exist. Then there exist an arbitrarily
small neighborhood q and arbitrarily small C2 perturbations 
of .~~(~) with the following properties :

(ii) 

( iii) there is a nonsingular holomorphic function w * * on such that

for some open set containing C.
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i8. - Proof of Theorem 1.

ive wish to show that there exists 6 &#x3E; 0 ~uch that the conclusion of
’Theorem 1 holds for cp and aD which differ from go and aDo by at most 6
in the C2 norm. This number 6 &#x3E; 0 will be determined by Lemma 7.5 and
the restrictions on x = &#x3E; 0, such as (33), depending on 2nd order deri-
vatives, at each hyperbolic point. However, during the proof, it will be

,convenient to assume that gg,, and aDo have certain generic « good » properties.
=Thus we will replace go and aDo by C2 perturbations of size E &#x3E; 0, where

A small C2 perturbation of aD or 8Do will be again denoted as aD or aDo .
In particular, if we bump Do inward a small amount, then we may

.assume that 4% C2 solution of (4) in a neighborhood of Do.
By (14’ ) the c ,use Â. = 00 cannot occur for a surface of the form (1 ) if D

is strongly pseudoconvex. And by hypothesis there are no parabolic points,
so all complex tangencies of F(99) are either elliptic or parabolic.

Let us use the terminology that a is a complex disk if

it is in fact the boundary of a complex disk 
We recall that by (18), for every disk c~ c .1~’(~), ~ is locally a graph over

the z-agis. In particular, if we consider the projection n(d) of o from D X ~R
to D, we see that the u-axis is always transversal to a(i). Thus we may

xpeak of « UP» and « down» locally at a point of a.
In particular, we consider a chain C, and we may consider leaves of

~.(1~(~0) ) which are just ((above)&#x3E; and just (below)) C, in the sense of the
-u-coordinate of the projection. Since the leaves are closed, this serves to
,construct a family of disks which effectively separate C from the rest of 

Let us summarize this as a Lemma.

LEMMA 8.1..Let 0, be C2 in a neighborhood of Do, and let ~ _ (Yl’ ..., yt~
.be a chain in Then for any neighborhood ’BL of the closure of there

are families of complex disks ~* - a*l and ~** - ~ai*, ..., 
-which are just below and above C, respectively, and which have the following
_properties:

(ii) the connected component rz of UE**) containing e
.also lies in ’B1;

(iii) every hyperbolic point of Tx lies in C.
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The case of one hyperbolic point.

Let us assume that is a 2-sphere with one hyperbolic point, as in
Figure 1. We will prove that Theorem 1 holds for small perturbations of 
Let C = f’Y21 y3~ be the unique chain in given by Lemmas 7.1 and 7.2.
By Lemma 7.5 there is a neighborhood ‘lb of the closure of C and strongly
pseudoconvex barrier functions Tl± on flL for small perturbations of 

Now we choose complex disks ~* and ~’* * as in Lemma 8.1, and open
sets ’l1’, with C c ’l1" cc ’l1’ cc Tz e’l1. Let us also choose a partition
of unity x2~ for a neighborhood of aDo such that - = 11 D ’l1" :) C
and supp y, c flL’. Every perturbation 99 of go may be written as 99 -f-cp1.
If 1 is small in C2, then so is Zjggl, j = 1, 2. In particular, when Q1 is small
use still have barriers for + XICPI)’ and the hyperbolic point H(To + 
stays within flL".

Without loss of generality, we may assume that 1:* = contains

two disks. Following the construction of 1-parameter families of disks given
in [4], we may construct families and for,(t)l in T(go -~- starting

and o3. These may proceed « upward until they reach complex
disks ä2 and Ogy whose closure contain the hyperbolic point. It follows from

the regularity theorems of [4] that these disks may be given as in (24).
For topological reasons, a2 and 03 cannot approach H(rpo + through
the same angle. Thus by Section 6, Cl = ~c~2, ~3~ forms a regular chain.

Let cCt be a neighborhood of the closure of e, such that + XIPI) n
r1 cQ e’l1". By Lemma 7.6, with a shrinking of ’ÎL if necessary, there is

a small perturbation T(§3) of + XIPI) and a holomorphic function w*
on fil such that

We consider

Then 82(o) is a chain containing the hyperbolic point where w e set

For small, aE(t) Further, the connected components
of Z(t) are complex disks. Thus, after possibly shrinking to and interchanging
t, , we may take Z* = and Z* * to have the properties
(i), (ii~ find (iii) in Lemma 8.1.

At this stage, is holomorphically flat, and is spanned by a 1-parameter
family of complex disks (i.e. Z(t), It remains to fill the

rest of FBqJ).
Since 0, 1:* and Z* * also have properties ( i ) , ( ii ) , and

(iii) for the surface + If g~1 is small in C2, then so is X2qJl, and
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thus the only complex tangencies of T(§3 + over supp X2 will be small

perturbations E; of the elliptic points E; , j = 1, 2, 3. It follows again from
the method of [4], that we may build 1-parameter families of disks « up »
from’, the disks of Z** and «down from the disks of 1* until they exit
through the perturbed elliptic points Ei, E2 and E’, as in Figure 1.

In this way we construct a smooth family of disks whose boundaries
fill T(§3 + We note that ’ + Z,ggl is an arbitrarily small C2 pertur-
bation of 99 and that the surface obtained, P((D), satisfies conditions 
of Theorem 1. 

’

In order to make the preceding argument work in the case of several
hyperbolic points, we need to know that we may bump slightly to
make the chains smaller. 

LEMMA 8.2. Let C be a chain of .1(go), and let H c- C be a hyperbolic 
Then for each E &#x3E; 0, we may make an arbitrarily small C2 perturbation, T’
to have the properties : 

’ ; ~ 
’

(ii) there is a chain such that

(iii) e’ contains no hyperbolic point  -I. , .

PROOF. The perturbation only involves a small neighborhood of H, so
we may use local coordinates as in (15), so that has the form, 

where or = o( ~z ~ 2 ). 
Now we let C be given near H = (0, 0) as = g(z) : z E where ~2

is the asymptotic approach region one half of which is pictured in Figure 4‘.
By Lemmas 6.3 and 6.4 we have g E 0 (S2) n C2+a(S~), and _ 

Let X E C~(C)+ be such that X = 1  1} and X = 0 &#x3E; 21.
We consider the new 2-manifold, .,r’’, given near z = 0 as

For E &#x3E; 0 small, f is a small C2 perturbation of and (i) is satisfied

(with a different ~) .
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Next we show the existence of the chain C’. We note that for 71 &#x3E; 0

is relatively compact inside A (:r/2 - 3,u, n/2 +3/~). Similarly, the set

is a set whose boundary is a small perturbation of yo if 8 &#x3E; 0 is small. (The
~ &#x3E; 0 now comes from Section 5.)

Now we see that the chain C’ is given by the chain C away from
and over C’ is given as

where # is the extension of g given by reflection.
Finally, we observe that the point (0, ~3) is a hyperbolic point of the

surface .I". Since (0, s3) $ ~’, and since no new hyperbolic points are intro-
duced under a small perturbation of F(cpo) we see that (iii) holds.

The case of several hyperbolic points.

Now we show that Theorem 1 holds for small C2 perturbations of q;
and aD in the case of an arbitrary number of hyperbolic points. We will
show here that chains of arbitrary length may be perturbed by Lemma 8.2
and then flattened as in Lemma 7.6.

Once this is done, we may take families of disks 27* and ~* * (satis-
fying (i), ( ii ) , and (iii) of Lemma 8.1) about each flattened chain C. Fol-

lowing [4], we may build 1-parameter families of complex disks ~Q~ (t)~ and
f ~~ *(t)~, starting at a9 and o!*. By [4] the disks constructed in this manner
fill out an open and closed subset of Thus we fill with a smooth

family of disks satisfying the conclusions of Theorem 1.
To show that chains may be flattened, we proceed by induction. We

have already shown that a chain with two disks and one hyperbolic point
can be suitably flattened. Let us suppose that we have completed our

argument for chains of length  p, and be a chain containing
p -~-1 disks.

Let 27* and 27** be the sets of disks given as in Lemma 8.1, and let
be a hyperbolic point. Let .1~’ be the small perturbation of F(T,,)
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near .H given by Lemma 8.2; let C’ be the resulting chain with p hyper-
bolic points, and let H’ be the new hyperbolic point.

By Lemma 7.5, there are barrier functions defined in a neighborhood
N IV

of the closure of e, and thus the closure of C’. The induction hypothesis
allows us to flatten a small neighborhood of after a preliminary, small
C2 perturbation in the interior of Now let 1::, 1::* c rx be disks above
and below C’ as in Lemma 8.1. Without loss of generality, we may assume
that ..g’ lies between 1:~ and ~~.

Now we start with the disks of 1 and build 1-parameter families of
disks with boundaries in r’ and moving down. One of these families must
have a limit disk 61 which contains H’ in its closure. Similarly, we build
1-parameter families starting at the disks of 1* and proceeding upward.
And likewise, there must be a limit disk 6 touching H’ from below. How-
ever, since none of these families of disks can intersect, one of these limiting
disks, say 6 = u(to), must approach the asymptotic approach region from
the « outside ». Let us suppose that J fills the asymptotic approach region
containing the negative y-axis (not pictured in Figure 4). Then the disks

approaching 5 from the outside must project to the upper approach
region, too (cf. Figure 3). Thus the limiting set of Q(t) as t - to contains
a pair of disks Q’ and ir", each corresponding to an asymptotic approach
region.

These disks are trapped within appropriate barriers, so by Section 6,
they fit together in a C2 manner. Since H’ is the only hyperbolic point
in the region between 2.’* and C1 = {,5’7 j"} is a regular chain with one
hyperbolic point. Now by our previous arguments, it can be flattened.

This completes the induction step.

Conclusion of the Proof.

As was noted in the Introduction, Theorem 1 is more easily proved in
the absence of hyperbolic points. For instance, if is a totally real
2-torus, then we may use Theorem 2.1 to obtain the solution of [4]. By
the Bishop Index Theorem in [7], the only other case without hyperbolic
points is when r(cpo) is a 2-sphere with 2-elliptic points, in which case we
use Theorem 1 of [4].

In case there are one or more hyperbolic points, we have shown that
there exist 99, and D~ for which Theorem 1 holds and such that ogj, -D~ con-
verge to q, D in C2. It follows by Theorem 4.5 that 0, converges uniformly
to a solution 0 of (4) satisfying (19), The regularity
statement (iv) follows from Theorem 5.1 of [4]. The uniqueness part of (ii)
and (iii) comes from Lemma 4.6. The existence of a complex disk f : 11 -+ 
in (ii) follows from the arguments of [4], since we may consider the cor-
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responding disk f; : 4 - f(W;) with /,(0) == &#x3E; 0, and use the
a priori estimate of [4] to conclude that the sequence fj converges uni-
formly on if.

~. ) / Polynomial hull.

, 

In this Section we give a proof of Theorem 2. The main step is the

following.

’ LEMMA 9.1. Let Dee C x R be bounded, be strongly
pseùdoconvex. If 2-sphere, then D is polynomially convex.

PROOF. We wdll consider a sequence of domains with

= D, and it will suffice to show that Dj is polynomially convex. We
obtain Dj by a small perturbation of D, so we may assume that aD is a
2.sphere, y and all the complex tangencies of aD are either elliptic or hyper-
bolic. Further, if for c c R we denote the slices by

we may assume that there is only one complex tangency of aD on each D(c).
I First, it is clear that the polynomial hull of D lies inside {v = 0}~ for

we may consider a sequence of polynomials approximating exp (:::f: iw).
I 

Next, if we show that D(c) is a simply connected subset of C, then D
is polynomially convex. In this case, for each zo E CBD, we may choose
a polynomial p (z) such that Now by considering p (z) ~

D(c)

.exp(-k(w-c)2) for large k, we see that (zo, c) is not in the polynomial
hull of D.

Let us review the possibilities for D(c). The intersection of aD and

== el is transverse unless c is one of the finite number of critical values,
i’.e. D(c) contains a complex tangency. At a complex tangency (zo, c) E aD
we may write

Since (zo, c) is either elliptic or hyperbolic, we have =j=. lb I. In other

the coordinate function u is a Morse function on aD.
" 

’ If’ c is a regular value for u, then aD(c) consists of a finite number of
smobth curves, and D(ci) is diffeomorphic to D(c2) if [e,, c2] consists of re-
gular values (see [15]). If p E D(co) is an elliptic point, and if p is isolated,
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then for c = c, + s or c = co - s, D(c) contains a small disk which is shrin-
king away to p. A hyperbolic point is a place where two curves
of aD(co) cross (analogous to y, and y, in Figure 1).

Now let us suppose that D(c*) is not simply connected for some fixed
value c*. Let w1(c*) denote a bounded component of CBD(c*). This choice

of cvi(c*) may be used to define a connected component w(e) of CBD(c) in
the following manner. If (c’, c") is an open interval of regular points con-
taining c*, we define w1(e) by the natural diffeomorphism between D(c*)
and D(c), which is induced by the Morse function u. If we have defined

(Ù1(e) for c E (c’, c") and c" is a critical value, we will define by con-
tinuity.

First we note that by the pseudoconvexity of D (o,(e) cannot vanish
to a point as cllc’, for this could occur only at a pseudoconcave point.
Let us suppose that p" - (z", c") E D(c") is critical. If p" is elliptic, it cannot
be isolated, so either a component of CBD(c) is vanishing to ~z"~ as 
or a small « hole » in is being created for c = s. But both

possibilities contradict the pseudoconvexity of D x iR.
Thus p" is a hyperbolic point. Now it is possible that p" « splits » w1( e")

as e/c". (An example would be the curves y in Figure 1 decreasing to Y1.)
In this case we arbitrarily choose one component w1(e") and use that to
define (o,(e) for c = c" + ~. The other possibility is that p" serves to adjoin
a new component, y such as y increasing to y, in Figure 1. Again, the defi-
nition of (01(e) is clear.

Now we proceed in this manner for all c E R. For lel very large, we
have w1(e) = C since D is compact. It follows now that D is not simply
connected, since we may define a continuous curve t -~ (z(t), t), - oo C t  o0

where z(t) E cvl(t) . Now we see that aD is not a 2-sphere, so by this con-
tradiction we conclude that D(c) is simply connected, which completes the
proof.

PROOF oF THEOREM 2. Let ~O be a strongly plurisubharmonic defining
function for Do, and let DE = fe  El. Thus D~ is strongly pseudoconvex
for 0 C £  e,,. Let ép denote a C2 extension of qo to a neighborhood of aDo :
By Lemma 4.2, there is a constant K such that

where Wg is the solution to (4) on the domain D, with boundary data 

It follows, then, that the domains
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are pseudoconvex if 0  E  ~o . Further, we claim that if 

. This follows because by (43), we see that

on Thus by (18), we have the same inequality on all of 
We may construct another increasing family of pseudoconvex domains

by setting

where di = 0,,.. The family ~,5~~ ~ is an increasing 1-parameter family of

domains of holomorphy, and D’ 0 = 
By Lemma 8.1, it follows that is polynomially convex.

Thus it follows from the theorem of Docquier and Grauert [9] that =

= is holomorphically convex in and thus it is polyno-
mially convex.

We note that P(O) satisfies property (19), and so by (20) the polynomial
hull of contains which completes the proof.

Appendix : Holomorphic flattening.

The local construction of the solution of (4) may be shown to be related
to the problem of «local flattening » of We will use this to show that

the question of regularity of the solution of (4) is delicate. If S c C2 is a

real analytic Levi-flat hypersurface, then it is a classical result that there
is locally a holomorphic change of coordinates (z*, w*) such that (locally)
S == ~Im ~~ = 0}. In particular, if the solution of (4) is real analytic in
a neighborhood of D, then can be flattened over the points 8D. Thus,
locally, we also have 

EXAMPLE. There are real analytic aD and (p such that there is no local

flattening of F( cp) at a hyperbolic point.

Let us write aD near (0, 0) as

and let us set
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Clearly we can find global D and qJ to arrange this. Let us suppose that

there is polynomial change of coordinates in a neighborhood of (0, 0) which
flattens the surface S to 3rd order. That is, there is a nonsingular
holomorphic change of coordinates (z*, w*) such that

Any possible coordinate change must have the form

where E R, and 0. Without loss of generality we may assume that
a = b = 1. Thus in the new coordinates becomes

since g,v = Thus we may assign « weight one » to z* and « weight
two » to w*. The only terms in w* which will influence will be of

weight 3, y so we may consider coordinates

leaving z* = z*(z, unspecified. Thus we see that for (z*, w*) E 
have

Now to have Im tv* = 0 on we must choose al and such that

is real. Comparing the coefficients of (z*)2i* and Z*(~*)2 we must have

which is clearly impossible. Thus cannot be flattened to third order.

Now we use this Example to show that:

there exist real analytic aD and ~p such that the golution 0 of (4) is not

smooth of class C"(.D).
This follows from the Example and the Proposition below. For if ø is C3

at (0, 0), then f’(t/J) can be flattened at (z, u) = (0, 0) to order 3. Thus

can also be flattened, which is a contradiction.
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Since the holomorphic flattening of S is a bit subtle when ~S is not Crn

(cf. [3 ] ), we will indicate the proof of the following.

PROPOSITION. Let aD, and q be as above. If ø E Ck(D), then there is
a holomorphic change of coordinates (z*, w*) at (o, 0) such that

holtls for

PROOF. We may assume that dfl/dz = 0 at (0, 0). Thus we may make

a change of coordinates of the form w * = w + a2 W’ 2 -~- ... , 9 I.e. transforming
the w-axis within itself to obtain 0) = o(uk), u¿O. Since the complex
manifolds in are given by Ø), they form a Ck-foliation of f’(f/».
Working modulo + Uk)g we see that the leaf passing through the
-point (zo, wo) = (o t + i o(tk) ) is given by

where is a polynomial of degree k - j. Our coordinate change is now:

which completes the proof.
Now we may consider the regularity of the curves y at H. We suppose

that the hyperbolic point has the form

where 1p(z) is real, real analytic and vanishing to order 3 at 0. By (15’)
and Section 6 the angle of opening of y at H is

EXAMPLE. If the hyperbolic point H has the form (44) and if 1  A  o0

is chosen so that a is irrational, then y is not piecewise real analytic at H
unless it is trivial ( i. e . the curve y lies in the z-axis and is given by setting
~ = 0 in (44).)

As in Sections 5 and 6, we let Q denote the z-projection of the hyper-
bolic disk near H. If « is irrational and if y is piecewise analytic, then by
Lehman [14], the Riemann mapping function f: Q has the asymptotic
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expansion

On the other hand, y is the boundary of a complex analytic disk, and so
it follows that is the boundary value of an analytic function in C.
’Since by (44) ~v is real, we apply the Schwarz reflection principle to obtain

If y is not trivial then there must be a nonzero C. in (45). Now we
note that we cannot have = 0 for j = 1, 2, .... This is because a is

irrational, and in this case all the nonzero terms of would have

irrational exponents. But since there is a nonzero Cm in (45), we must
be able to write in the form

where A and Bm are both nonzero. Using this expansion, we see that the
term of order m + a in is given by

Since this must vanish by (45) and since Qm is real for ~ E R, we have

But if this holds for ~ E R+ and ~ E R-, y then we conclude that

’Thus Bm = 0. From this contradiction we conclude that y is trivial.
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