@article{ASNSP_1981_4_8_1_103_0, author = {McClendon, J. F.}, title = {Classifying relative principal fibrations with loop space fibers}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {103--118}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 8}, number = {1}, year = {1981}, mrnumber = {616902}, zbl = {0478.55011}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1981_4_8_1_103_0/} }
TY - JOUR AU - McClendon, J. F. TI - Classifying relative principal fibrations with loop space fibers JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1981 SP - 103 EP - 118 VL - 8 IS - 1 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1981_4_8_1_103_0/ LA - en ID - ASNSP_1981_4_8_1_103_0 ER -
%0 Journal Article %A McClendon, J. F. %T Classifying relative principal fibrations with loop space fibers %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1981 %P 103-118 %V 8 %N 1 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1981_4_8_1_103_0/ %G en %F ASNSP_1981_4_8_1_103_0
McClendon, J. F. Classifying relative principal fibrations with loop space fibers. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 8 (1981) no. 1, pp. 103-118. http://www.numdam.org/item/ASNSP_1981_4_8_1_103_0/
[1] Obstruction Theory, Lecture Notes in Math. 628, Springer, Berlin (1977). | MR | Zbl
,[2] The section extension theorem and loop fibrations, Mich. Math. J., 15 (1968), pp. 401-406. | MR
,[3] Homology Theory, Cambridge Univ. Press (1960). | MR | Zbl
- ,[4] Higher order twisted cohomology operations, Invent. Math., 7 (1969), pp. 183-214. | MR | Zbl
,[5] Reducing towers of principal fibrations, Nagoya Math. J., 54 (1974), pp. 149-164. | MR | Zbl
,[6] Relative principal fibrations, Bol. Soc. Mat. Mex., 19 (1974), pp. 38-43. | MR | Zbl
,[7] On evaluation fibrations. Houston J. Math., to appear. | MR | Zbl
,[8] Obstruction theory in fiber spaces, Math. Z., 120 (1971), pp. 1-17. | MR | Zbl
,[9] Algebraic Topology, McGraw-Hill, New York (1966). | MR | Zbl
,