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The Characterization of Strictly Parabolic Manifolds (*).

WILHELM STOLL

1. — Introduction.

A non-negative function v of class C* on a connected, complex mani-
fold M of dimension m with A4 = sup V7 <oco is said to be a strictly para-
bolic exhaustion of M and (M, 7) is said to be a strictly parabolic manifold
if for every r € R with 0<r < 4 the pseudoball

M[r] = {w e Mz(x)<r}
is compact, if 7 < 4% on M, if dd°r> 0 on M and if
(1.1) ddclogt>0 (ddclogT)»=0

on M, = M — M[0] where d° = (i/47)(0 — 0). Here 4 is called the mawimal
radius of the exhaustion 7. On C™ define 7, by 7,(2) = |2|* for all ze C™.
For each r with 0 <7<+ oo let Cm(r) = {z € C™|7y(2) < 2} be the open
ball of radius » centered at 0. Then (C™(r), 7,) is an example of a strictly
parabolic manifold of dimension m and maximal radius 7.

THEOREM. If (M, t) is a stricily parabolic manifold of dimension m with
maximal radius A, then there exists a biholomorphic map h: C™(A) — M
with t, = 7Toh.

Thus h is an isometry of exhaustions 7, = roh and an isometry of
Kaehler metrics h*(dd°r) = dd°t,. Up to isomorphism the balls (Cm(r), 7,)
if 0 < r < oo and the euclidean space (C™, 1,) if r = oo are the only strictly
parabolic manifolds. In this respect, the characterization theorem resembles

(*) This research was supported in parts by the National Science Foundation
Grant M.C.S. 75-07086 and Grant M.C.S. 78-02099.
Pervenuto alla Redazione il 12 Dicembre 1978.
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the Riemann mapping theorem. I am greatly indebted to Daniel Burns
for remarks which improved the weaker results announced in [17] and
simplified the proof. More details on his improvements will be provided
further down in the introduction. Also in [17], only the case 4 = co was
considered, the extension to the case 4<oo posed no preblem.

R. E. Greene and H. Wu have developed an extensive theory of non-
compact Kaehler manifolds. See the survey [9]. Also Siu and Yau [15]
established a uniformization theorem. Although the characterization the-
orem fits well into this cirele of results, the proof proceeds along different lines.

If the condition dd°r > 0 is replaced by the condition (ddct)” % 0,
the manifold (M, 7) is said to be parabolic. On parabolic manifolds with
A = oo a successful theory of value distribution has been established by
Griffiths and King [10], Stoll [16] and Wong [18]. Each affine algebraic
manifold is parabolic with 4 = oco. If ¢: M — M is a surjective, proper
holomorphic map with dim M = dim M , then I is parabolic. The cartesian
product of parabolic manifolds is parabolic [16]. A non-compact Riemann
surface is parabolic with 4 = oo if and only if every subharmonic funection
bounded above is constant. The strietly parabolic case had special ad-
vantages in value distribution theory, which inspired these investigations.
The result explains the advantages.

The function log 7 is a plurisubharmonic solution of the complex Monge-
Ampére equation (1.1). The complex Monge-Ampeére equation (ddcu)™ = 2
has been investigated intensively in recent years and has led to a number
of important applications. Yau [21] solved the Calabi conjecture. The
pertinent remark in [17] has been made obsolete by Burns’ contribution.
Other applications were in the theory of biholomorphic mappings. The
PDE of Monge-Ampeére equation is difficult because of the non-linearity
of the equation. The characterization theorem is a surprisingly smooth
result on the Monge-Ampére equation. The proof uses a foliation method
already investigated by others, for instance Bedford and Kalka [4].

Let (M, ) be a strictly parabolic manifold of dimension m. Then the
center M[0] consists of one and only one point denoted by 0 = 0,. (The-
orem 2.4). The maximal integral curves of the vector field grad vz on M,
are bijectively parameterized by the unit sphere § in C™ (Section 4d). The
integral curve assigned to £ 8 is complexified to a complex submanifold
L(¢) of dimension 1 in M,. The foliation {L(£)}sg 0f M, coincides with
the foliation of My by the annihilator of dd°log 7. The vector field f dual
to Or under the Kaehler metric » defined by dd°r > 0 is tangent to the
leaves L(£) and holomorphic on the leaves L(£). The center piece of the
proof is the determination of the leaf space of this foliation (Theorem 5.14).
This leaf space is the complex projective space P,_, obtained as the quo-
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tient space of the Hopf fibration P: § - P,,_,. If £, €8 and &,€ 8, then
L&) = L(&,) = L[w] if and only if P(§,) = P(§,) = w. As a consequence,
each leaf L[w] carries the induced topology and is a closed, smooth complex
submanifold of M,. Also the closure L[w] = L{w]U {0} of L{w] in M is
a closed, smooth complex submanifold of M with the induced topology.
Also the £ € 8 with P(£) = w are the tangents of length one to L{w] at 0
(Theorem 6.1). From here the results as announced in [17] can be easily
established. A homeomorphism h: C™(4) - M exists with 7, = toh such
that h: C™(A4) — {0} — M, is a diffeomorphism. Also h: C(4)& — L[w] is
biholomorphic if £ € § and w = P(£). If f is holomorphie, then h: C™(A4) — M
is biholomorphic. Also if  is differentiable at 0, then A is biholomorphiec.

Here Daniel Burns showed that each L[w] is totally geodesic. Since
the integral curves of grad (V7|L(§)) are trivially geodesic, the integral
curves of grad vz are geodesic and h = exp, is the exponential map if
C™(A) is interpreted as a ball in the tangent-space at the center point 0.
Hence & is differentiable at 0 and consequently biholomorphie. Burns con-
structs a special coordinate system around L(w) for his proof. Here an
intrinsic variation of his proof is given (Lemma 3.2 and Proposition 3.8).
Originally, I failed to establish Lemma 3.7. However once the lemma was
proved, it is easy to compute directly that the integral curves of grad vz
are geodesic.

I want to thank Daniel Burns for the interest in this problem and I
acknowledge the considerable improvement of the results and the simpli-
fications in the proof which are due to his contribution. Originally, I had
assumed that M[0] consists of one and only one point. I want to thank
Alan Huckleberry for suggesting that this assumption may be a consequence
of the other axioms of a strictly parabolic exhaustion, which turned out
to be so.

2. — Parabolic manifolds.

a) Definitions.

Let 8" be the n-fold cartesian product of the set 8. Let #S be the car-
dinality of 8. Let d be the Kronecker symbol on 8. Thus §,, = 0 and J,, =1
if ve S and x4 ye 8. If § is partially ordered, define

Sla,b] = {xeSla<w<b S(a,b) ={reSla<a<b}

Sla,b) ={reSla<e<b} S(a,b] ={xeSla<z<b}
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where a and b may belong to a larger partially ordered set. For instance
Rt =R(0, +00) ={weRjz>0} R, =R[0,+00) ={zreR[x>0}
R-=R(—00,0) ={weRjz< 0} R_=R(—o00,0]={reRjx<0}.

Let v be a non-negative function of class C* on a connected, complex
manifold M of dimension m. For 0<r <+ oo define

M[r] ={we Mpr(x) <r}} M(r)={we Mr(z)<ry
My = {ze Mr(x) =7} M, = M— M[0].

Then M[r] and M(r) are called the closed and open pseudoballs of radius »
for 7 respectively and M<(r) is said to be the pseudosphere of radius r for 7.
Also M[0] is called the center of v. Define A4 = supV/7< -+ co. Then 7 is
said to be an exhaustion, if 0 <7< 42 on M and if M[r] is compact for all
r € R[0, 4). Here 4 is called the maximal radius of the exhaustion and the
exaustion is said to be bounded if 4 < + co.

The non-negative function 7 of class C” on M is said to be semi-para-
bolic if

(2.1) ddelogt>0 (ddclogt) =0

on M. If ke N[1,m], we have

(2.2) ddet >0 on M

(2.3) T?dde log v = rdd°t — drNd°t on M,
(2.4) TH(dde log 7)* = t(dd°1)* — kdr AdeT A\ (ddeT)* on My
(2.5) T(ddeT)™ = mdrAd° T A\ (ddeT)! on M.

A semi-parabolic function 7 is said to be parabolic if (dd°r)™#0 on M and
if M[0] has measure zero. A semi-parabolic function 7 is said to be strictly
parabolic if dd°r > 0 on M. If 7 is an exhaustion and if 7 is semi-parabolic
or parabolic or strictly parabolic, then 7 is said to be a semi-parabolic, resp.
parabolic, resp. strictly parabolic exhaustion and (M, t) is called a semi-para-
bolic, resp. parabolic, resp. strictly parabolic manifold. This conceptual strue-
ture permits us to separate the local properties of the solutions of (2.1) from
the exhaustion properties.

Let v be a semi-parabolic exhaustion. As shown in [16] a constant
¢>0 exists such that

(2.6) (ddeT)™ = | (dd°T)™ = grzm
M’[[J M‘([)
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for all »>0. Define
(2.7) €, = {re R*|dz(x) # 0, Yo e M{r)}.

Then Rt — €, has measure zero. If r € €,, then M{r)> is a smooth oriented
submanifold of M with 0M(r) = M{r). If M{r) is oriented to the exterior
of M(r), then

(2.8) Iy =fd log T A (ddec log 7)m—1
MLy

for all € €,. The semi-parabolic exhaustion 7 is parabolic if and only
if ¢ > 0. If the exhaustion 7 is strictly parabolic, then M is Stein and
€, = R* by (2.5).

In the case 4 = + oo, parabolic manifolds were introduced by Griffi-
ths and King [10] and studied in [16]. Any affine algebraic manifold is
parabolic with 4 = oo [10]. The product of parabolic manifolds is para-
bolic [16]. Parabolic manifolds are important in value distribution the-
ory [10], [16], [18]. For z € C™ define 7,(2) = |2|*; then 7, is a strictly para-
bolic exhaustion of C=.

b) Properties of the center and the sphere volume.

A biholomorphic map 3 = (2% ...,2"): U, — U; of an open subset U,
of M onto an open subset U; of C~ is said to be a chart. If a € U, then 3
is called a chart at a. Let v be a semiparabolic function on M. On U, ab-
breviate
0 o 0 0

2.9 - oy T T e T AT ees T
( ) Ty lip 5y - o9p et 02M 03" 0z'» T

We shall use the Einstein summation convention. Then

(2.10) 0t = tudet  Ov = T,d7
(2.11) drNdet = L 0TA\OT = . TuT; d2A N\ d2
2n 27
) )
2.12 NP S T
(2.12) dder = 5 00T 5. Tus 4\

Let H = (z,;) be the associated matrix and H* be the matrix H without
the p-th row and the »-th column. Define 7 = det H>0 and

(2.13) Tw = (— 1)+ det H* .
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Define 7,: C™ — R, by 7,(2) = |2|* for all 2 C™ and define

(2.14) vy = 3H(ddTy) = = > derN\dE.
ZT[,‘=1

Then

(2.15) o = (ﬁ) m dANdEN ... \dem A\ dE"

(2.16) (dde 7)™ = Tw™.

Define

{5 = den Nd2P N\ dinag it nFEY

v#EAFEp

Lo= N dPNdz.

AFp
Then
7 \m—1
(2.17) (dde)ymt = (i) (m — 1)1 Twil ;
27
(2.18) mdr Ader A\ (dder)™t = T, 70y .

If 7 is strietly parabolic on the open subset U = @ of M, then dd‘r > 0
defines a Kaehler metric » on U. The matrix H is invertible on U N Uj;.
Lett H-1 = (7*) be the inverse matrix., Then 7> 0 and 7** = T»/T on
UnN U;. Now (2.5), (2.17) and (2.18) imply

LeMmA 2.1. Let 7 be a semi-parabolic function on M. Let 3 be a chart
on M. Then

(2.19) T =7, T, on U,.

If v is strictly parabolic on the open subset U of M with U N U5 @, then
(2.20) T=T17"7, on UN TU,.

In particular /7 is the length of @7 and 0v in respect to the Kaehler
metric % on U. Also (2.20) is the fundamental identity concerning strictly
parabolic functions. The identities (2.5), (2.16) and (2.18) prove Lemma 2.1
trivially.

Now, the center shall be investigated. Let A(U) be the algebra of all
complex valued functions of class C® on the open subset of M. Take ae U.
Then m, = m,(U) = {f € A(U)|f(a) = 0} is an ideal in A(U). If 3: U; — U;
is a chart at ¢ with 3(«) = 0 and with UC U, such that 3(U) is convex,
then 2%,...,2m, 21, ..., Z» generate m, in A(U). If 0<q<p are integers and
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if f € m? then the ¢-th order derivatives of f belong to m2~% If K is com-
pact in U and if fem], then there exists a constant ¢> 0 such that
|[fl<el3|” on K. If B is a matrix, let !B be the transposed matrix.

PROPOSITION 2.2. Let t be a semi-parabolic function on M. Take a € M[0]
and assume that dd°t(a) > 0. Let 3: Uy — U; be a chart at a with 3(a) = 0.
Assume that U; is convex. Define m, = m,(U,). Then there exists a function
Remd such that

(2.21) T = 1,(a)2¢2" + B on U,.

ProoF. Define H, = H(a). Consider z = (2, ...,2™) as a matrix. Iden-
tify U, = U; such that 3 is the identity. Then 7 has a minimum at a with
7(a) = 0. Hence dr(a) = 0. A constant symmetric matrix B over C and
a function R em? exist such that Taylor’s formula at a is given by

©(2) = }2B(%2) + 32B(%) + 2Hy(%) + R(2)
for all ze U,. Define ey = (8, ..., Oun) € C». Then
Tu(2) = euB'%2 4 euH,'Z + R,u(2)
7,5(0) = 7;5(a) + R,.(2)
for all ze U;. Hence

lim A—27(A2) = }2B(%z) + 3zB(2) + 2H,(2)

0<i—>0

lim A-17,(A2)

0<A—>0

I

euB('2) + euHy('Z)
lim 7,5(A2) = 7,5(a)
0<A—>0
lim 7#(A2) = v#(a).
0<i—>0
Therefore (2.20) implies
32B(%2) + 32B(7) + 2Hy(*2)
= (ZB + 2*H,)H; ' (B('2) + H,(2))
= ZBH; ' B('z) + 2B(%) + #B(%) + 2H,('z) .

Hence 3B = B and BH;'B = 0. Therefore B = 0; q.e.d.
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Hence the Levi form of 7 at @ coincides with the Hessian of 7 at a.

ProPOSITION 2.3. Let v be a semi-parabolic function on M. Take
a € M[0] and assume that dd°r(a) > 0. Then a is an isolated point of M[0].

Proor. Let 3: U, — U; be a chart at a with 3(a) = 0. Then (2.21)
holds. Because dd°r(a) > 0, a constant ¢ > 0 exists such that

rﬂ;(a)zﬂ2”>2c|3 [ on Uj.

Let U be an open neighborhood of a such that U is compact and contained
in U;. A constant q > 0 exists such that |[R|<q[3|* on U. An open neigh-
borhood V of a with V C U exists such that gj3|<<¢ on V. Hence

T>2¢3* — qlzP > e3> 0

on V — {a}. Therefore M[0]NV = {a}; q.e.d.
In particular, a strictly parabolic function is parabolic.

LEMMA 2.4. Let S be a compact subset of a connected manifold M. Then
there exists a connected, compact subset K of M with SC K.

PRrOOF. For each a € 8 select a connected, open neighborhood U(a) of a
in M such that U(a) is compact. Finitely many points ay, ..., a, exist in
such that 8C U(a,) U ... U U(a,) = U. Then U is compact. Let L, be the
trace of a curve from a, to a; in M. Then L; and L=L,VU..UL,
are compact. The union K = LU U is connected and compact with
SCKCM,; q.e.d.

THEOREM 2.5. Let (M, t) be a semi-parabolic manifold. Assume that
ddt> 0 on My. Then the center M[0] is connected and not empty. Also
M(r) is connected for each r € R(0, A4).

Proor. For each r e R(0, 4) let N(r) be the set of connectivity com-
ponents of M(r). Define n(r) = #R(r).

1. Cuamm: If re R(0,4) and N € N(r), then N N M[0] = 0.

Proof of the 1. Claim: Define m= dim M. If m > 1, define g = 7™
If m =1, define g =logz. If m =1, then dd°g =0 on M,. If m>1, then

ddcg/\ (ddc t)m-l —_ (m —_ 1) T—m—l(md-r/\dc T/\ (ddcr)m—l _ T(ddc T)m) =0
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on M,. Hence g is a solution of an elliptic differential equation on M,.
If M{0]N N =@, then N is a compact subset of M, with g = r>*™ on
ON if m >1 respectively g = logs? on oN if m =1. By the maximum
principle g is constant on N. Hence 7 is constant on N which contradicts
dd°r > 0 on N. Therefore N N M[0] 0. The 1. Claim is proved. In par-
ticular, M[0] = 0.

2. CuamM: If re R(0, 4), then 1<n(r) < oco.

Proof of the 2. Claim: Since 0= M[0]c M(r), the set N(r) is not empty.
Hence n(r)>1. Since MN(r) is an open covering of M[0], finitely many
elements N,,..., N, of N(r) cover M[0]C N, U ...UN,. If N eN(r), then
NN M[0]# @ implies N = N, for some A. Hence (r) is finite. The
2. Claim is proved.

3. CramM: The function « is constant on R(0, 4).

Proof of the 3. Claim: Take 0 <r<s< A. Define j: N(r) — N(s) by
J(N)2 N for all N € N(r). Take @ € N(s). Then a e Q N M[0] exists. Take
N eN(r) with ae N. Then a €j(N) N Q. Therefore j(N) = ¢. The map j
is surjective. Hence n(r)>mn(s). The function n decreases.

Take r € R(0, A). We shall show that » is constant in a neighborhood
of r. Let N,,..., N,, Dbe the different connectivity components of M(r).
Take A€ N[1, n(r)]. Since M[0]N N, = M[0] N N, is compact, a connected,
compact subset K; of N, exists by Lemma 2.4 such that M[0] N N,C K.
Then K = K, U...U K, is a compact subset of M(r). A number s, € R(0, r)
exists such that r<sZ on K. Take any se R(s,,r). Take Ae N[1,n(r)].
Then K;C M(s). One and only one N, e %(s) exists such that K,c N;.
Take N € N(s). Then a € N N M[0] exists. Also a € N, N M[0] for some A.
Hence ac K,c N,. Therefore N N N, § which implies N = N,. Con-
sequently, N(s) = {N;]A =1, ...,n(r)} and n(s)<n(r). Because n decreases
n(r)<n(s), hence n(r) = n(s). The function » is constant on R(s,, r].

If n(r) =1, then 1 <n(s)<n(r)<1 for all s € R[r, 4). Then = is constant
on R(ry, A). Consider the case n(r)>1. Take integers j and k with
1<j< k<n(r). Assume that N, N\ N, @. Then =xeoN; N 0N, exists.
Since 0N,C M{r> and since M{r) is the smooth boundary of M(r) and of
M — M[r] an open neighborhood U of x exists such that UNN,; =
=UNMr)=UNN,>= 0. Hence N, N N,# @ which contradicts j+# k.
Therefore N, N\ N, = 0.

Open sets U; with N, c U, exist such that U, is compact and such that
U.nU,=0if A u. Then U= U, U...U U, is an open neighborhood
of M[r] and oU = oU, U ... U dU,, is compact. A number s,>r Wwith
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8, < A exists. such that r7>s; on dU. Take any se R(r,s,). The map
j: N(r) — N(s) defined by j(N)2 N is surjeetive. Define P, = §(N;). Then
N(s) = {Pa]d =1, ..., n(r)}. Since v>s>> s* on 0U;, the sets P, — U; =
= P, — U,and Py N U, are open with = N, C P, U,. Hence Py — Us— 0
and P,C U,. Therefore Py P, if A5~ u, which shows #n(s) = n(r). The
function » is constant on R(sy, s,). The locally constant function » is con-

stant on R(0, 4). The 3. Claim is proved.
4. CLAamM: M(r) is connected for each v € R(0, A).

Proof of the 4. Claim: By Lemma 2.4 a connected, compact subset K
of M contains M[0]. A number s € R(0, A4) exists such that K ¢ M(s). One
and only one N € 9¥(s) exists such that K c N. Then M[0]c N. If P e R(s),
then PN M[0]s~ 0. Hence P N N s~ @. Therefore P = N. Consequently
n(r) = n(s) =1 for all r € R(0, 4). The 4. Claim is proved.

5. CrnAiM: M[0] is connected.

Proof of the 5. Claim: Let U and V be open subsets of M such that
M[0]C UV YV, such that UNV = @ and such that M[0]N U~ 0. We
have to show that M[0]Jc U. Since M[0]N U = M[0] — V is compact,
an open neighborhood W of M[0] N U exists such that W is compact and
contained in U. Then M[0]NoW=490. A number re R(0,4) exists such
that »*<<7 on 0W. Then M(r)— W = M(r) — W and M(r) " W are open
with M(r) N W2 M[0] N U= 0. Because M(r) is connected, we conclude
M[0]c M(r)C Wc U. Hence M[0] is connected. The 5. Claim is proved;

q.e.d.

THEOREM 2.6. The center M[0] of a strictly parabolic manifold (M, )
consists of one and only one point denoted by 0 = Oy. For each r € R(0, A)
the pseudoball M(r) is connected.

Proor. By Proposition 2.3, each point of the compact set M[0] is an
isolated point. Hence M[0] is a finite set. By Theorem 2.5, M[0] @ is
connected. Therefore M[0] consists of one and only one point; q.e.d,

ProrosIitionN 2.7. If (M, 1) is a strictly parabolic manifold, then ¢ = 1.

Proor. Take a chart 3: U, — U, at Oy such that 3(0,) = 0, such
that U; is convex and such that 7.(Oy) = 0w. Then D = C"[r,]c U for
some 7> 0. Identify U, = U; such that 3 becomes the identity. Then

w = 0 e Cm Define 7,: C» - R, by 7(2) = |2|*. For each re R(0,r,)
define C(r) = {z € le |z] = r}. A constant s(r)> 0 exists such that 7 > s(r)?
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on Cm{ry. If 0<<t<<s(r), then M(t)NC*r> =0 and Oe M(t). Since
M(t) is connected, we conclude that M(t) € C(r) c D. ‘

Let A(U;) be the ring of functions of class * on U,. Let m, be the
ideal in A(U,) generated by 21,...,2™ 2, ...,2" Then R = v — v,emg by
Proposition 2.2. A constant ¢> 0 exists such that |[R(2)|<ec|z|® for all z € D.
Abbreviate 4 = C(1) and B = C~[2]. Take r,>0 with 2r, <7, and
2¢r, < 1. Define r, = Min (ry, s(r,)). Take r € R(0,7,). Then M(r)c C™(ry)C
cDcU,. Define A, on C™ by A(2) =1 if ze M(r) and A(2) =0 if
ze G™— M(r). A biholomorphic map y,: C» — C™ is defined by u.(2) = rz
for all e C™ Then u(B)cD. If A(rz) =1 with [2|>2, then rze M(r).
Hence |rz| <7, and

2> 7(r2) = r2fe|* + R(re)>r2e[*(1 — ere]) > r?
which is impossible. Hence A,(rz) = 0 if |z|>2. Therefore

grm = [(@@r)m =[2,(ad 0 = [(drop (@@ ).
M(r) D B

On B define y, by

i =
21e(2)= o R (rz)dzr NdZ .

With v, = dd°r, on C™ we obtain u}(dd°r) = r*(v, + x,). Because Remg,
a constant ¢; > 0 exists such that
B .. (2)|<ele| VYzeD.

Ll

Hence there exists a function g, of class ¢ on B and a constant ¢, > 0 such
that |g.|<C on B uniformly for all » € R(0, r,) such that

prdderyn = rim(1 4 rg)oy  and ¢ =[(Rom)(1 + rg,)vy
B

for all » e R(0, r,).
Take z€ A. Take r e R(0,r,) with ¢z[3r <1— |2[2. Then

T(rz) = r2fz|2 4 R(rz) <rfe|* 4 elz[>r® < r2.

Hence rz € M(r) and A.(u.2]) = A,(rz) =1. Therefore A,ou, -1 for r -0
on A. Take ze B— A. Take re R(0,r,) with cl¢*r < [¢|* —1. Then

T(rz) = r222 4+ R(r2)>r2je|2 — cle?rs > r2.

7 - Ann. Scuola Norm. Sup. Pisa Cl. Sci.
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Hence rz ¢ M(r) and 2,(rz) = 0. Therefore A,ou, —0 for r -0 on B— 4.
The bounded convergence theorem implies

¢ =|vg =1 q.e.d. .
A

3. — Local parabolic geometry.

a) Local Kaehler geomeiry.

Some remarks on local Kaehler geometry shall clarify the notation.
Let M be a complex manifold of pure dimension m. Let T(M) and T¢(M)
be the real and complexified tangent bundles of M respectively. Then T(M)
is a real subbundle of T¢(M). Let T(M) and T(M) be the holomorphic and
antiholomorphic tangent bundles respectively. Then T°(M) = (M) D T(M).
Let 7y: Te(M) — (M) and 7,: T(M) — ZT(M) be the projections. They
restrict to bundle isomorphisms #,: T(M) — (M) and 5,: T(M) — (M)
over R. The complex structure on M defines a bundle isomorphism
J: Te(M) — T<(M) over C called the associated almost complex structure
such that —JodJ is the identity and such that J|T(M) is the multiplica-
tion by ¢ and J|I(M) is the multiplication by —i. Also the restriction
J: T(M) — T(M) is a bundle isomorphism over R. If p € M and u € T (M),
then

(3.1) No(%) = ¥(u —iJu) m(u) = }(u + iJu).
Hence 7,0J = iy, and #,0J = — in,. The sections of T(M), T(M), T(M)

and T(M) are called real vector fields, complex vector fields, vector fields of
type (1, 0), vector fields of type (0, 1) respectively. The sections of A T(M),
n

N\ To(M), A\ T(M)A N\ T(M) are called real vector fields of type n, complex
n » /]

vector fields of type n and vector fields of type (p, q) respectively. The holo-
morphic sections of A\ T(M) are called holomorphic vector fields.

D
The cotangent bundles T(M)*, T¢(M)*, T(M)*, T(M)* are dual to T(M),
Te(M), T(M) and T(M) respectively with Te(M)* = T(M)*D T(M)* 2 T(M)*.
As usual denote

VM) =\ T(M)*  T"U(M) =\ (M)A NT(M)*.

n

The sections of T™(M) and T™%M) are called differential forms of degree
n respectively of bidegree (p,q). The holomorphic sections of A T(M)* =
D
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= T"°(M) are called holomorphic forms of degree p or bidegree (p,0). Let
(F1,0) be the inner product. If @ is a differential form of degree n and if
XeN\ T)}(M) with pe M, denote {w(p), X> = w(p, X). If X is a vector

field of type w, a function w(X) is defined by o(X)(p) = w(p, X(p)). If
X = X, A\...AX, write also w(p, X) = o(p, X,, ..., X,) respectively w(X) =
= (X, ..., X,). If X is a vector field of type 1 and if f is a function of
clags O1, then X acts on f by Xf = df(X).

Let 3: U, — U, be a chart on M. Then 3 = (2', ..., 2") with a# = Re z*
and y# = Fmeet. Then o/ox', o/dyY, ..., 0/ox™, 0[0y™ is a real analytic frame
of T(M) over R and of T<(M) over C on U, and da?, dy*, ..., da™, dy™ is the
dual frame. Also 9/0#, ..., 0/de™ is a holomorphic frame of T(M) and
0/0z1, ..., 9/0z™ is an antiholomorphic frame of T(M) over U, with dz', ..., dem

and dz, ..., dz" as the dual frames respectively. We have
0 0 0 .0 0 .0
0 0 0 . 0
(3.3) Mo (%) = oo Mo (a_yﬂ) =1 e

A vector field X and a differential form y on U, are written as

0 _ 0 -
(3.4) X = Xﬂ@ + X#@, Y =y, d2" + yydz.

These index and baring conventions extended to higher types and degrees.
A hermitian metric » on M is a function »: I(M)P T(M) — C of class
C* which restricts to a positive definite hermitian form », = »|T (M) D T,(M)
for each p € M. The associated differential form w of bidegree (1, 1) is de-
fined by w(p, X, Y) = (§/27)»,(X, ¥) for X €T, (M) and Y e T, (M) and
pe M. Then w> 0 and x» is a Kaehler metric if and only if dw = 0.
The Kaehler metric » defines a Riemannian metric ¢ on T(M) by

(3.5) 9(X, Y) = Re s, (1o(X), no(¥))

for X and Y in T,(M). Then ¢,(JX,JY) = g,(X, Y) and g¢,(X,JX) = 0.
Also g extends to Tj(M) such that g,: T5(M)@® To(M) — C is complex bi-
linear with g,(X, ¥) = 0if X and ¥ arein ¥,(M) or if X and Y are in A;L,,(M).
The Kaehler metric » induces a dual hermitian metric along the fibers
of T(M)*.
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Let 3€ U, — U; be a chart. Take pe U,. Take X and Y in Z,(M)
and y and y in T, (M)*. Then

(5.6) %X, Y) = h(p) Xu T
) _

(37) o = é?t hﬂ;,dzﬂ/\dz"

(3.8) oy, 1) = W*(D) puily

where (k%) is the inverse matrix to H = (h,;) = ‘H. The Kaehler metric
» defines a comnection in T (M) given by

(3.9) I'= (0H)H-* = T,des
where I, = (I'},) is a matrix with

(3.10) I* —=h- b = — b _h*

wy vz o gk

Also I'is the Riemannian connection of the associated Riemannian metric
and is given as such by I%, and IL =T} and by I? =1% =T% =
=TI% =1I% =T% =0 inrespect to the frame 3/32%, ..., 3/dem, 3/0%", ..., 8/czm
Because x is a Kaehler metrie,

(3.11) " =i,
The curvature tensor of x» is defined by

R. . =h, R

&Py Az gur *

=1

Bzt )

(3.12) R

pitv
The Ricei curvature and the Ricci form o are defined by

(3.13) E. = R = (logdetH),

s -
7 Bru uz?

(3.14) 0 = ddclogH = ﬁ Ry, dex @2 .

For each p, € M, there exists a chart 3: U, — U; normal at p, € U, such that

(3.15) h;(po) = 6,,,, = 1*(po)
(3.16) h52 (Do) = R z,.(Do) = B2(pe) = hZi(py) = O
(3.17) I (po) = 0.
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The connection I" defines a covariant derivative V. If X and Y are vector
fields on M, if ¥ has class C* and if 3: U; — Usl is a chart, then in the nota-
tion of (3.4) we have

0

(3.18) VxY = (YhX* 4+ YAXF + T, XY P

+ (YA X" 4+ YALX* 4 % X7 Y) aa

In particular if Y is of type (1, 0) and holomorphic and if X is of type (0, 1),
then Vz;Y =

Assume that — co<a < f<+ c0. A map ¢: R(e, ) -~ M of class O!
is called a curve and

0 =d<p( at)ETw(t)( )

is called the tangent vector at ¢(?) for each ¢ € R(a, 8). The curve is said to
be smooth if ¢(¢) %= 0 for all t € R(x, ). Let ¢: R(a, f) — M be a smooth
curve. Take a << a'<< f'<< f such that @|R[«,f'] is injective. A vector
field X of class C' on M exists such that Xop = ¢ on R[a/,f’]. Then
(VzX)op is independent of the choice of X on R[e', f']. The curve ¢ is
said to be geodesic if (VxX)op = 0 on R[a’, §'] for any such choice. A geo-
desic is of class C~.

Let @: R(a, B) — M be a smooth curve. Take a chart 3: U, — U3 and
an interval R(a, f,) With & <ay < < such that ¢(t) € U, for all t € R(oo, fo)-
Define 3op = (¢, ..., ¢™) and

(3.19) Ju = it + I

on R(ey, fo). Then ¢ is geodesic if and only if J# = 0 for u =1, ..., m and
all possible choices of «,, f§, and 3.

If —oco<d<a<y<p<f if p:R(a, ) - M and y: R(& f) — M are
geodesics with ¢@(p) = p(y) and ¢(y) = ¥(y), then p|R(e, f) = ¢ and p is
called an extension of ¢. There exists one and only one maximal extension.
Take pe M and 0% X € T,(M). Then one and only one maximal geodesic

Pxpt R(otxy fxs) > M with 0 € R(otx,, Bx»)
exists such that ¢g,(0) =p and ¢,(0) = X. A geodesic ¢: R(«, ) > M

is said to be complete if « = — oo and f = -+ co. The Kaehler manifold M
is said to be complete if every maximal geodesic is complete, which is the
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case if and only if p € M exists such that 8y, = + oo for all X € T (M).
If X =0, define By, = 4 oo and oy, = — co.

Take p € M. Then E = {X € T,(M)|fx,, > 1} is an open neighborhood
of 0 T,(M). The exponential map exp,: B — M is defined by exp, X =
= @x,(1) if 052 X € F and exp, (0) = p. Then exp, (tX) = gyx,(t) for all
XeE and all te R(ox,, fxy).- Open neighborhoods U of 0 in E and N
of p in M exist such that exp,: U — N is a diffeomorphism. Also exp,:
E — M is of class C°. If M is complete, then exp,: T,(M) — M is surjective.

Let N be a connected, complex submanifold of dimension n of M. This
means that N is a connected, complex manifold and a subset of N not
necessarily carrying the induced topology and that the inclusion map
t: N > M is differentiable and that the differential di(x): T (N) — T, (M)
is injective. The normal bundles T(N)t, T¢(N)* and I(N)' are defined
such that

T,(N)t = {zeT,(M)g(X,Y)=0 VY e T,(N)}
TyN)* = {we T(M)|g(X, Y) = 0 VY € T(N)}

TN): ={zeT,(M)x(X,Y)=0 VY eI, (N)} -

T(M)|N =T(N)D T(N)* T«(M)|N =T(N)D T(N)*
M|V =TN)D TN no(T(N)Y) = T(N)*.

The Kaehler metric x on M restricts to a Kaehler metric # on N. Let

I” and V, be the Riemannian connection and the covariant derivative asso-
ciated to #. Let B be the associated second fundamental form. If X and ¥
are vector fields of class C® on N, then B(X, Y) = B(Y, X) is a section of
class C° of T°(N)‘ which is in T'(N)* if X and Y are real and in (N)tif ¥
is of type (1,0). Also B is bilinear over C for complex vector fields and
bilinear over R for real vector fields and B(fX, Y) = B(X,fY) = fB(X, Y)
if f is a function of class C*. If U is open in M with NN U=~ 0 and if X
and Y are vector fields of class C° on N and if X, ¥ are vector fields of class
0° on M with XSINNU=X|NNU and YINN U= Y|NN U, then
B(X,Y) = V;(Y——\,GY on NN U. If X is a vector field of type (0,1)
on N and if Y is a holomorphic vector field on N, then B(X, Y) = 0.

The submanifold N is said to be totally geodesic, if each geodesic
@: R(x, f) — M such that there exists y € R(x, f) with ¢(y) e N and ¢(y) e
€ T,,)(N)is a curvein N. A submanifold ¥ is totally geodesic if B(X, ¥) = 0
for all vector fields of class C* on N. If there exist holomorphic vector fields
Z,y...;Z, on N such that Z,(p), ..., Z,(p) are linearly independent over C
for at least one point p € N and such that B(Z,, Z,) =0 forall y,» =1, ..., n,
then N is totally geodesic.
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b) The complex gradient vector field.

Let M be a connected complex manifold of dimension m. Let 7 be a
strictly parabolic function on M. Let » be the Kaehler metric defined by
dder > 0. Then there exists one and only one vector field f of type (1, 0)
and class C° on M such that x»(f, X) = 97(X) for every vector field X of
type (1, 0) and class C* on M. The vector field f is said to be the complex
gradient vector field of 7. If 3: U, — U, is a chart, then

(3.20) f=1 52—1‘ on Uj;.

If X is any vector field of type (1, 0) on M, then
f“t”;X’ = x(f, X) = 01(X) = ‘r;X"

on U,. Therefore we have

(3.21) f/‘-r:”; =17 ff=r17

[a3)

(3.22) f= 7,7 —

on U; and (2.20) implies

(3.23) T=frry =Pr; = frowf = x(f, f) .

.

Therefore v/7 is the length of f and f(p)+« 0 if p € M,.

Let g be the Riemannian metric associated to x». A real vector field
field grad v of class C* called the gradient of T is defined by ¢(X, grad 7) =
= dv(X) for all real vector fields X. Then (3.5) implies

Re #(1o(X), no(grad 7)) = g(X, grad 7) = dv(X)
= 2 Re 07(1y(X)) = 2 Re x(no(X), 1) -
Hence 2f = n,(grad v) and grad v = 2f + 2f. Take X = grad 7, then
(3.24) dr(grad ) = g(grad 7, grad 7) = 4x(f, f) = 47.
Now some local properties of the vector field f shall be proven. If X
is a vector field of type (1,0) and class C* on M, then 0X is a section of

FT(M)* @ T(M). The Kaehler metric » is an hermitian metric along the
fibers of T(M). Let #* be the conjugate dual hermitian metric along the
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fibers of T(M)*. The tensor product hermitian metric #*® » along the
fibers of T(M)*® T(M) shall be denoted by » again. Then the length
|0X]|, is defined. Let o be the Ricci form associated to the Kaehler metric x.

THEOREM 3.1.

ol P =5 13113

Proor. Take any chart 3: U, — U;. For any differentiable function ¢
use the convention (2.9). Then

(3.25) Ta”'it'“-ﬁ- + Ta”‘['uﬁ =0 y TM‘Z = - z‘ﬁl"tvﬂ‘[""' .

Hence (3.21) implies

(3.26) =t — T tw-ﬁ-rﬁ”

(3.27) i =T — T

(3.28) = T T T T — T, T — f”rvﬁatﬁl‘ —fra 7

(329) M =TTt =0, + 5.

The identity (3.23) implies

(3.30) 73 = TP + ol + gl

331) 7, =14uaP + vl + Bk + fingP + g + Pk

+ sty + Pty + Prrf,

Take p, € M. Then there exists a chart 3: U; — U; at p, which is normal

at po for ». Hence (3.15)-(3.17) hold for 7,; = h; and 7 = k™. At p, we

have the following identities.

(3.32) =1 f=< f=t; k=<

(3.33) f4=29,= }4;.

(3.34) gﬂ = fytvﬂa fi‘a = fer'g'via
m
(3:35) B =g B =2 g,

(836) b, =— Pl + Bl + gl + 0, — PR,
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which implies

(3.37) 1l = Fy751
We obtain
(3.38) 2mo(f, f) = iR, fofr = i Ef Tl
(3.38) =1 Zfl Tl = ifjT R
— i3 ged.

Hence f is holomorphic if and only if o(f, f) = 0 on M.

LeMMA 3.2. Let V be the covariant differentiation defined by x. Then
(3.39) Vif=f.

Proor. Take any chart 3. Then

f = (fﬁfz" + f’sf"‘l’,,,,e) Fw
5 2 7 s ©
2 VA * A
= (fﬁTFﬂT * + ;/51’7'525 - fﬂ‘rﬁt" Tia'rzp) (@)
= + P — P 5 =) =1 qed.
Let y be a differential form of bidegree (1,1) on M. Take p € M. Then
w )

(3.40) Uy(p) = {X e T,M)|p(X,Y) =0 VY € T,(M)}

is called the annihilator of v of type (1,0) at p. Clearly ,(y) is a linear
subspace of T,(M) over C. If y>0, then

(3.41) Wy (y) = {X e TL(M)|p(X, X) =0 VX € T,(M)}.

LEmMA 3.3. If pe My, then A, (ddelog v) = Cf(p).

PrOOF. Abbreviate w = dd°log v. Let 3: U; — U3 be a chart at p.
Then (2.3) and (3.23) imply

2ntto(f, f) = i(tf"rl‘;f’ — i) = i(v?—7?) = 0.
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Hence f(p) eA,(w). In fact 3 can be taken such that

n

2n7(p)*o(p) = 1 3, eudet(p) \d24(p) .

n=1
Here n < m since w™ = 0. Also (2.4) and (2.5) imply

(3.42) 0 < (dde7)™ = mrmtdrAdev ) (dde log 7)1 .

Hence w(p)”—1s 0. Therefore n>>m —1. Hence n = m —1 with ¢,> 0
for y =1,...,m — 1. Consequently 2,(w) has complex dimension 1. Since
f(p) %= 0, we conclude that A, (w) = Cf(p), q.e.d.

¢) The complex gradient foliation.

Let M be a connected, differentiable manifold of dimension m with
real tangent bundle T'(M). A subset D of T(M) is said to be a distribution
on Mif®D,=DN T,(M)=~ 0 is a linear subspace of T,(M) for each p € M.
If D, is r-dimensional for each p € M, then r is called the rank of ®. The
distribution D is said to be differentiable, if D has rank r for some r € Z[0, n]
and if D is a subbundle of class C® of T(M). A vector field X on M belongs
to D if X(p)eD, for all p e M. A distribution is involutive if [X, Y] belongs
to ® for all vector fields X and Y of class O! which belong to D.

Let N be a submanifold of M. This means that N is a subset of M and N
is a differentiable manifold of class C® and of pure dimension not neces-
sarily with the induced topology and that the inclusion map ¢: N - M
is of class ¢ and such that du(p): T,(N) — T,(M) is injective; then di(p)
is considered an inclusion such that T(N) is a subbundle of T(M)|N. If N
carries the induced topology, N is said to be a proper submanifold, which
is the case, if and only if there exists an open neighborhood U of N such
that ¢: N — U is proper. Let ® be a distribution of rank » on M. A con-
nected submanifold N of M is said to be an integral manifold of D if
T,N)=2D, for all pe N. An integral manifold N of D is an extension of
an integral manifold N of ® if N is open in the manifold N. An integral
manifold N of D is said to be mawximal if N is the only extension of N.

A differentiable distribution ® of rank r is said to be completely integrable
if for each p € M there exists an open neighborhood p of U and a map
F:U—R"" of class 0° and rank dF(p)=m—r for each pe U such
that F-'(F(p)) is an integral manifold of ® for each peU. By Fro-
benius, a differentiable distribution is completely integrable if and only
if ® is involutive. If D is a completely integrable, differentiable distribu-
tion on M and if p € M, then one and only one maximal integral manifold L,
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of ® with p € L, exists. If