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The Characterization of Strictly Parabolic Manifolds (*).

WILHELM STOLL

1. - Introduction.

A non-negative function r of class C’ on a connected, complex mani-
fold M of dimension m with 4 = sup VT c oo is said to be a strictly para-
bolic exhaustion of M and (M, T) is said to be a strictly parabolic manifold
if for every r c- R with 0 r  L1 the pseudoball

is compact, if T  L12 on M, if ddc -r &#x3E; 0 on M and if

on M* = M - .M[0] where d6 = (i/4n)(J - a). Here d is called the maximal
radius of the exhaustion r. On C- define -r,, by zo(z) = Iz 12 for all z E Cm.
For each r with 0  r  + oo let Cm(r) = {z E CmITo(Z)  r2} be the open
ball of radius r centered at 0. Then (Cm(r), To) is an example of a strictly
parabolic manifold of dimension m and maximal radius r.

THEOREM. I f (M, r) is a strictly parabolic mani f oZd o f dimension m with
maximal radius L1, then there exists a biholomorphic map h : Cm(L1) -+ M
with To = ’to h.

Thus h is an isometry of exhaustions -r,, = -coh and an isometry of

Kaehler metrics h*(ddcT) == ddc-r,,. Up to isomorphism the balls (C-(r), To)
if 0  r  oo and the euclidean space (C-, r,,) if r = oo are the only strictly
parabolic manifolds. In this respect, the characterization theorem resembles

(*) This research was supported in parts by the National Science Foundation
Grant M.C.S. 75-07086 and Grant M.C.S. 78-02099.

Pervenuto alla Redazione il 12 Dicembre 1978.
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the Riemann mapping theorem. I am greatly indebted to Daniel Burns
for remarks which improved the weaker results announced in [17] and
simplified the proof. More details on his improvements will be provided
further down in the introduction. Also in [17], only the case 4 = oo was
considered, the extension to the case Jc&#x3E;o posed no problem.

R. E. Greene and H. Wu have developed an extensive theory of non-
compact Kaehler manifolds. See the survey [9]. Also Siu and Yau [15]
established a uniformization theorem. Although the characterization the-
orem fits well into this circle of results, the proof proceeds along different lines.

If the condition ddc 7: &#x3E; 0 is replaced by the condition (ddc 7:)m "¥=- 0,
the manifold (M, 7:) is said to be parabolic. On parabolic manifolds with
L1 = oo a successful theory of value distribution has been established by
Grifhths and King [10], Stoll [16] and Wong [18]. Each affine algebraic
manifold is parabolic with Z)==oo. If cp: M ---&#x3E;- M is a surjective, proper
holomorphic map with dim if = dim M, then M is parabolic. The cartesian
product of parabolic manifolds is parabolic [16]. A non-compact Riemann
surface is parabolic with d = oo if and only if every subharmonic function
bounded above is constant. The strictly parabolic case had special ad-

vantages in value distribution theory, which inspired these investigations.
The result explains the advantages.

The function log r is a plurisubharmonic solution of the complex Monge-
Ampere equation (1.1). The complex Monge-Ampere equation (ddcu)m =,Q
has been investigated intensively in recent years and has led to a number
of important applications. Yau [21] solved the Calabi conjecture. The

pertinent remark in [17] has been made obsolete by Burns’ contribution.
Other applications were in the theory of biholomorphic mappings. The

PDE of Monge-Ampere equation is difficult because of the non-linearity
of the equation. The characterization theorem is a surprisingly smooth
result on the Monge-Ampere equation. The proof uses a foliation method

already investigated by others, for instance Bedford and Kalka [4].
Let (M, -r) be a strictly parabolic manifold of dimension m. Then the

center M[O] consists of one and only one point denoted by 0 = Om. (The-
orem 2.4). The maximal integral curves of the vector field grad VT on M*
are bijectively parameterized by the unit sphere S in C- (Section 4d). The
integral curve assigned to $ c S is complexiiied to a complex submanifold
L($) of dimension 1 in M*. The foliation {L($)Ics of M* coincides with
the foliation of .lVl* by the annihilator of ddc log -r. The vector field f dual
to d7: under the Kaehler metric x defined by ddC7: &#x3E; 0 is tangent to the
leaves L($) and holomorphic on the leaves L($). The center piece of the

proof is the determination of the leaf space of this foliation (Theorem 5.14).
This leaf space is the complex projective space Pm-l obtained as the quo-
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tient space of the Hopf fibration P: S - Pm-I. If i E S and , c S, then
L(l) === L(2) == L[w] if and only if P($,) = P($,) = w. As a consequence,
each leaf L[w] carries the induced topology and is a closed, smooth complex
submanifold of M*. Also the closure L[w] = L[w] U 101 of L[w] in lVl is

a closed, smooth complex submanifold of X with the induced topology.
Also the $ E S with P($) = w are the tangents of length one to L[w] at 0
(Theorem 6.1). From here the results as announced in [17] can be easily
established. A homeomorphism h : C-(,J) -+ M exists with -r,, -roh such

that h: C-(,J) - 101 * M* is a diffeomorphism. Also h: C(,J) -&#x3E; L[w] is

biholomorphic if $ c- S and w = P($). If f is holomorphic, then h: C-(,J) --&#x3E; M

is biholomorphic. Also if h is differentiable at 0, then h is biholomorphic.
Here Daniel Burns showed that each L[w] is totally geodesic. Since

the integral curves of grad (ilr[L($)) are trivially geodesic, the integral
curves of grad /r- are geodesic and h = expo is the exponential map if

Cm(4) is interpreted as a ball in the tangent-space at the center point 0.
Hence h is differentiable at 0 and consequently biholomorphic. Burns con-

structs a special coordinate system around L(w) for his proof. Here an

intrinsic variation of his proof is given (Lemma 3.2 and Proposition 3.8).
Originally, I failed to establish Lemma 3.7. However once the lemma was

proved, it is easy to compute directly that the integral curves of grad Vr
are geodesic.

I want to thank Daniel Burns for the interest in this problem and I

acknowledge the considerable improvement of the results and the simpli-
fications in the proof which are due to his contribution. Originally, I had
assumed that M[0] consists of one and only one point. I want to thank

Alan Huckleberry for suggesting that this assumption may be a consequence
of the other axioms of a strictly parabolic exhaustion, which turned out
to be so. 

2. - Parabolic manifolds.

a) Definitions.

Let S’ be the n-fold cartesian product of the set S. Let #S be the car-
dinality of 8. Let 6 be the Kronecker symbol on S. Thus 6,,,, = 0 and bxx = 1
if x E S and x =A y c- S. If S is partially ordered, define
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where a and b may belong to a larger partially ordered set. For instance

Let t be a non-negative function of class C°° on a connected, y complex
manifold lVl of dimension m. For 0  r  + c&#x3E;o define

Then lIT[r] and 1Vl(r) are called the closed and open pseudoballs of radius r
for T respectively and M r) is said to be the pseudosphere of radius r for 1’.

Also M[o] is called the cei%ter of 1’. Define d = sup ÝT  + 00. Then T is

said to be an emhaustion, if 0  r  J2 on M and if M[r] is compact for all
r E R[o, J). Here d is called the maximal radius of the exhaustion and the
exaustion is said to be bounded if d  + oo.

The non-negative function r of class C’ on M is said to be semi-para-
botic if

A semi-parabolic function r is said to be parabolic if (ddc"{)m:t= 0 on M and
if M[0] has measure zero. A semi-parabolic function is said to be strictly
parabolic if ddc7: &#x3E; 0 on M. If 7: is an exhaustion and if 7: is semi-parabolic
or parabolic or strictly parabolic, then r is said to be a semi-parabolic, resp.
parabolic, resp. strictly parabolic exhaustion and (M, i) is called a semi-para-
bolic, resp. parabolic, resp. strictly parabolic manifold. This conceptual struc-
ture permits us to separate the local properties of the solutions of (2.1) from
the exhaustion properties.

Let z be a semi-parabolic exhaustion. As shown in [16] a constant

ç &#x3E; 0 exists such that
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for all r&#x3E; o. Define

Then R+ - (9, has measure zero. If r E (9,, then Mr&#x3E; is a smooth oriented
submanifold of M with aM(r) = Mr&#x3E;. If Mr) is oriented to the exterior
of M(r), then

for all r E (9,. The semi-parabolic exhaustion z is parabolic if and only
if s &#x3E; 0. If the exhaustion r is strictly parabolic, then M is Stein and

(9, = R+ by (2.5).
In the case d - + oo, parabolic manifolds were introduced by Griffi-

ths and King [10] and studied in [16]. Any affine algebraic manifold is

parabolic with L1 = oo [10]. The product of parabolic manifolds is para-
bolic [16]. Parabolic manifolds are important in value distribution the-

ory [10], [16], [18]. For z E C- define ro(z) =IZ 12 then zo is a strictly para-
bolic exhaustion of CM.

b) Properties of the center and the sphere volume. 

A biholomorphic nxap 8 = (zl, ..., zm): U3 - U§ of an open subset U3
of .lIT onto an open subset U§ of C- is said to be a chart. If a E U3’ then 5
is called a chart at a. Let r be a semiparabolic function on M. On U, ab-
breviate

We shall use the Einstein summation convention. Then

Let JT = (Tp;) be the associated matrix and H’v be the matrix H without
the p-th row and the v-th column. Define T = detH&#x3E;0 and
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Define I and define

Then

Define

Then

If r is strictly parabolic on the open subset U =/= 0 of M, then ddc-r &#x3E; 0

defines a Kaehler metric x on U. The matrix H is invertible on U n U3.
Let H-1 = (7:;/) be the inverse matrix. Then T &#x3E; 0 and tv/-, = Tm-vlT on
U r1 U3r Now (2.5), (2.17) and (2.18) imply

LEMMA 2.1. Let r be a semi-parabol&#x3E;ic f unetion on M. Let i be a chart
on M. Then

If 7: is strictly parabolic on the open subset U of M with U fl Ua =1= ø, then

In particular -N/--r is the length of 8r and 3r in respect to the Kaehler
metric x on U. Also (2.20) is the fundamental identity concerning strictly
parabolic functions. The identities (2.5), (2.16) and (2.18) prove Lemma 2.1

trivially.
Now, the center shall be investigated. Let A( U) be the algebra of all

complex valued functions of class C’ on the open subset of M. Take a E U.

Then Ma = Ma(U) - c A (U) If (a) = 01 is an ideal in A ( U) . If 8 : U3 ---&#x3E; U’
is a chart at a with 8(a) = 0 and with U ç U3 such that 6(U) is convex,
then zi, ..., zm, Zl, ..., zm generate ma in A( U). o If 0 q p ar e integers and
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if f E ml’ then the q-th order derivatives of f belong to m:-tI. If K is com-

pact in U and if f E ml, then there exists a constant c &#x3E; 0 such that

) f)  c )8 )" on K. If B is a matrix, let tB be the transposed matrix.

PROPOSITIO,N 2.2. Let T be a semi-parabolic f unction on M. Take a E X[O]
and assume that ddcr(a) &#x3E; 0. Let õ: U3 --+ U§ 

I 

be a chart at a with õ(a) == 0.
Assume that U§ is convex. Define ma = ma( U3). Then there exists a function
REm: such that

PROOF. Define H,, = H(a). Consider z = (zl, ... , z-) as a matrix. Iden-

tify U3 = ’ such that i is the identity. Then r has a minimum at a with

z(a) - 0. Hence d-r(a) = 0. A constant symmetric matrix B over C and
a function B c- m’ a exist such that Taylor’s formula at a is given by

for all z c 3’ t Define Then

for all z E U3 . Hence

Therefore (2.20) implies

Hence -IB = B and B.H’o 1 B = 0. Therefore B = 0; q.e.d.
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Hence the Levi form of í at a coincides with the Hessian of í at a.

PROPOSITION 2.3. Let í be a semi-parabolic function on M. Take

a E M[O] and assume that ddcí(a) &#x3E; 0. Then a is an isolated point of M[o].

PROOF. Let i: U3 - U3 
I 

be a chart at a with õ(a) = 0. Then (2.21)
holds. Because ddCí(a) &#x3E; 0, a constant c &#x3E; 0 exists such that

Let U be an open neighborhood of a such that U is compact and contained
in u3. A constant q &#x3E; 0 exists such that IR I  q l 11 on U. An open neigh-
borhood V of a with V C U exists such that q)8 1 c on V. Hence

on V - {a}. Therefore M[O] f1 V = {a}; q.e. d. 
,

In particular, a strictly parabolic function is parabolic.

LEMMA 2.4. Let 8 be a compact sitbpet o f a connected mani f old M. Then

there exists a connected, compact subset K of M with S C K.

PROOF. For each a E S select a connected, open neighborhood U(a) of a
in M such that U(a) is compact. Finitely many points a,, ..., a, exist in 8
such that S C U(a,) u ... u U(ap) = U. Then U is compact. Let Lj be the
trace of a curve from a1 to aj in M. Then Lj and L = L1 U ... U L,
are compact. The union K = L u U is connected and compact with

S C K c M; q.e.d.

THEOREM 2.5. Let (M, t) be a semi-parabolic manifold. Assume that

ddc-r&#x3E; 0 on M*. Then the center M[0] is connected and not empty. Also

M(r) is connected for each r E R(o, L1).

PROOF. For each r E R(O, J) let %(r) be the set of connectivity com-
ponents of M(r). Define n(r) = #in(r).

Proof of the 1. Claim: Define ni = dim M. If m &#x3E; 1, define g = rl--.
If m == 1, define g = log -r. If m == 1, then ddcg = 0 on M*. If m &#x3E; 1, then
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on M*. Hence g is a solution of an elliptic differential equation on M*.
If M[0] r1 N = 0, then N is a compact subset of M* with g = r2-2- on
oN if m&#x3E;l respectively g = log r2 on aN if m==l. By the maximum
principle g is constant on N. Hence z is constant on N which contradicts

ddc7: &#x3E; 0 on N. Therefore N r1 M[O] 0 0. The 1. Claim is proved. In par-

ticular, Jtf[0] =A 0.

Proof of the 2. Claim: Since ø =F lVl[o] c X(r), the set 91(r) is not empty.
Hence n(r) &#x3E; 1. Since 9t(r) is an open covering of X[O], finitely many
elements Nt, ..., Nrp of 91(r) cover M[O] ç Nt u... u Nrp. If N E 91(r), then
N r) X[O] o 0 implies N = Ni for some Â. Hence 91(r) is finite. The

2. Claim is proved.

3. CLAIM: The function n is constant on R(O, LJ).

Proof of the 3. Claim : Take 0  r C s C L1. Define j: 91(r) --&#x3E; 91(s) by
j(N) :) N for all N E 91(r). Take Q E 91(8). Then a E Q r) X[O] exists. Take

N E %(r) with a c N. Then a E j(N) n Q. Therefore j(N) = Q. The map j
is surjective. Hence n(r»n(s). The function n decreases.

Take r c R(O, LJ). We shall show that n is constant in a neighborhood
of r. Let N,, ..., Nn(r) be the different connectivity components of M(r).
Take A E N[1, n(r)]. Since jtf[0] r) Nt = X[O] n Na, is compact, a connected,
compact subset KA of Nx exists by Lemma 2.4 such that M[0] r1 NA C; KA.
Then K = K, u... U Kn(r) is a compact subset of M(r). A number so E R(O, r)
exists such that t c so on K. Take any s c- R(s,,, r). Take Â E N[l, n(r)]. t
Then Kt C M(s). One and only one N( E W:(s) exists such that K. c N(.
Take N E %(s). Then a E N n M[O] exists. Also a E NA r) M[0] for some A.
Hence a c K, c N,,. Therefore N r) N’o 0 which implies N == N’. Con-

sequently, W:(s) == FN’IA == 17 ..., n(r)l and n(8) n(r). Because n decreases

n(r):n(s), hence n(r) = n(s). The function n is constant on R(so, r].
If n(r) = 1, then 1 n(s) cn(r) c1 for all s E R[r, J). Then n is constant

on R(ro, J). Consider the case n(r) &#x3E; 1. Take integers j and k with

1jkn(r). Assume that Njr),N,,00. Then xc2NjnaNk exists.

Since aNa C; Mr) and since Mr&#x3E; is the smooth boundary of M(r) and of

M - M[r] an open neighborhood U of x exists such that Ur)Nj-
= U n M(r) = U n Nk =F ø. Hence N; n Nk ø which contradicts j:* k.
Therefore Nj r) S, = o.

Open sets Ua, with NA c Ui exist such that VA is compact and such that
U,&#x26;o U,= Oif A=Alt. Then U= UU ... U U,(,) is an open neighborhood
of M[r] and a U = a U, U ... U ’c Un(r) is compact. A number s, &#x3E; r with
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8,  d exists, such that -r &#x3E; 82 1 on a U. Take any s c R(r, s,). The map

j : W(r) - W(s) defined by j(N) D N is surjective. Define PA = j(Nx). Then

%(s) = {P;.IÂ = I, ..., n(r)}. Since T&#x3E;sî&#x3E; S2 on oU;., the sets PA - Ua, =

PA - UA and P;. UA are open with 0 =,- NA c Pi r) UA - Hence Pa - UA == ø
and PA E-: U;.. Therefore Pa =A P, if A:A p, which shows n(s) == n(r). The

f unction n is constant on R(so, sl). The locally constant function n is con-
stant on R(O, d ). The 3. Claim is proved.

4. CLAIM : X(r) is connected for each r E R(O, L1).

Proof of the 4. Claim : By Lemma 2.4 a connected, compact subset K
of X contains X[O]. A number s E R(o, L1) exists such that X c X(s). One
and only one N E 91(s) exists such that X c N. Then M[0] c N. If P E W(s),
then P n M[O]:7-1 0. Hence P n N =A 0. Therefore P = N. Consequently
n(r) = n(s) = 1 for all r c R(O, J). The 4. Claim is proved.

5. CLAIM: -Llf[O] is connected.

Proof of the 5. Claim : Let U and V be open subsets of 31 such that

M[O] ç U u V, such that U n V - 0 and such that X[O] n U =A 0. We
have to show that X[O] c U. Since X[O] n U = X[O] - V is compact,
an open neighborhood W of lVl[0] m U exists such that W is compact and
contained in U. Then M[O]notV==ø. A number r c- R(O, J) exists such

that r2  -r on aW. Then M(r) - W = X(r) - W and 31(r) (-) IV are open
with X(i-) n -W 2 lVl[o] r1 U =F 0. Because X(r) is connected, we conclude
M[O] c M(r) ç 1V c U. Hence X[O] is connected. The 5. Claim is proved;

o q.e.d.

THEOREM 2.6. The center M[0] of a strictly parabolic manifold (M, T)
consists of one and only one point denoted by 0 == OM For each r E R( o, L1)
the pseudoball M(r) is connected.

PROOF. By Proposition 2.3, each point of the compact set ill[O] is an

isolated point. Hence X[O] is a finite set. By Theorem 2.5, X[O]:A 0 is

connected. Therefore M[o] consists of one and only one point; q.e.d,

PROPOSITION 2.7. If (M, T) is a strictly parabolic nzanifold, then -1.

PROOF. Take a chart õ: U3 -+ U3 
f 

at OM such that 1(0,,,) = 0, such

that U§ is convex and such that -r /ZV -(0,,,) = 3,r. Then D = C-[r,] c U§ 
I 

for

some ro ,&#x3E; 0. Identify U, = ’ such that 8 becomes the identity. Then

OM == 0 E em. Define -r,,: C- -* R+ by za(z) = Iz12. For each r E R(O, ro)
define C-r&#x3E; = Iz E C-1 lz I == rl. A constant s(r) &#x3E; 0 exists such that r &#x3E; s(r)2
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on Cm(r). If 0  t  s(r), then M(t) n C-r&#x3E; = 0 and 0 E M(). Since

M(t) is connected, we conclude that M(t) ç; Cm(r) c D. 
’

Let A( Ua) be the ring of functions of class 000 on U,. Let mo be the

ideal in A (U,) generated by zl, ... , z-, zl, ..., zm. Then B = r2013 -r, E xrto by
Proposition 2.2. A constant c &#x3E; 0 exists such that IR(z) I  c iz 13 for all z E D.
Abbreviate A := C-(l) and B = C-[2]. Take r1 &#x3E; 0 with 2r1  ro and

2er1  1. Define r, = Min (r1, s(rl)). Take r E R(O, r2). Then M(r) c Cm(r1) c

C D c Ua. Define 1, on C- by Âr(z) = 1 if z c- M(r) and Âr(z) - 0 if

z c Cm - M(r). A biholomorphic map ,ur: Cm - Cm is defined by flr(z) = rz
for all z E Cm. Then flr(B) cD. If Âr(rz) = 1 with iz I &#x3E; 2 7 then rz E M(1.).
Hence irz  r1 and

which is impossible. Hence A,(rz) - 0 if Iz I &#x3E; 2. Therefore

On B define X, by

With vo = ddcio on Cm we obtain tt:(ddc-r) == r2(vo + /r)’ Because

a constant Cl&#x3E; 0 exists such that

Hence there exists a function gr of class C°° on B and a constant c2 &#x3E; 0 such

that I g, I  0 on B uniformly for all r c- R(O, r,) such that

Hence Therefore for



98

Hence rz 0 1Vl(r) and År(rz) === 0. Therefore

The bounded convergence theorem implies

3. - Local parabolic geometry.

a) Local Kaehler geometry.

Some remarks on local Kaehler geometry shall clarify the notation.

Let X be a complex manifold of pure dimension m. Let T(M) and Tc(M)
be the real and complexified tangent bundles of X respectively. Then T(m)
is a real subbundle of T,,(M). Let Z(M) and t(M) be the holomorphic and
antiholomorphic tangent bundles respectively. Then Tc(M) = Z(M) (g) i(M).
Let ro: IC(M) - %(M) and r1: Tc(M) -+ %(M) be the projections. They
restrict to bundle isomorphisms ro: T(M) -+ %(M) and qi: T(M) -+ %(M)
over R. The complex structure on lVl defines a bundle isomorphism
J: Tc(M) ---&#x3E; TI(M) over C called the associated almost complex structure
such that - JoJ is the identity and such that JI:t(M) is the multiplica-
tion by i and J lt(M) is the multiplication by - i. Also the restriction

J : T(M) - T(M) is a bundle isomorphism over R. If p E lVl and u c T:(M),
then

Hence rooJ = iro and qioJ = - ir!. The sections of T(M), Tc( M), Z(M)
and %(M) are called real vector fields, complex vector fields, vector fields of
type (1, 0), vector fields of type (0, 1) respectively. The sections of A. T(M),

n

A. TC(M), n %(M)/B A. %(M) are called real vector fields of type n, complex
n p a

vector fields of type n and vector fields of type (p, q) respectively. The holo-

morphic sections of A. %(M) are called holomorphic vector fields.
p

The cotangent bundles T(M)*, TC(M)*, St(M)*, %(M)* are dual to T(M),
Tc(M), %(M) and %(M) respectively with TC(M)* = St(M)* EB !(M)* :-) T( M)*.
As usual denote

The sections of T(M) and T-v,’7(M) are called differential forms of degree
n respectively of bidegree (p, q). The holomorphic sections of n %(M)* =

p
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- TIO(M) are called holomorphic forms of degree p or bidegree (p, 0). Let

0, n&#x3E; be the inner product. If o is a differential form of degree n and if

X C-A T ( lVl ) with peM, denote w(p), X&#x3E; == w(p, X). If X is a vector
n

field of type n, a function cey(X) is defined by w(X)(p) == w(p, X(p)). If

X = XA ... AX. write also co(p, X) = m(p, Xl , ... , Xn ) respectively co(X) =
= oi(Xl, ..., X,). If X is a vector field of type 1 and if f is a function of
class C1, then X acts on f by Xf = df (X)

Let ð: Ua --* U3 be a chart on M. Then ð == (zl, ..., z") with xp = Re zju
and YA = mz. Then ojox1, alayl,..., alax-, alay- is a real analytic frame
of T(M) over R and of T,(M) over C on U, and dxl, dyl,..., dx-, dym is the
dual frame. Also alazl,..., alaz- is a holomorphic frame of Z(31) and

oj’ðz1, ..., oj’ðzm is an antiholomorphic frame of Z(M) over U, with dzl, ..., dzm
and dz, ... , dzm as the dual frames respectively. We have

A vector field X and a differential form V on U, are written as

These index and baring conventions extended to higher types and degrees.
A hermitian metric x on X is a function x : %(M) EB %(M) -+ C of class

C°° which restricts to a positive definite hermitian form Up = x IZ,(M) O %p(M)
for each p E M. The associated differential form o,) of bidegree (1,1) is de-
fined by w(p, X, Y) = (if2n)up(X, Y) for X E £tp(M) and Y E %p(M) and

p E M. Then o) &#x3E; 0 and x is a Kaehler metric if and only if dco = 0.

The Kaehler metric x defines a Riemannian metric g on T(M) by

for X and Y in Tp(M). Then g,,(JX, JY) - g,(X, Y) and gp(X, JX) - 0.

Also g extends to T,’,(M) such that g1J: T,’ (M) (D T,(M) ---&#x3E; C is complex bi-
linear with g,(X, Y) == 0 if X and Y are in %p(M) or if X and Y are in t,(M).
The Kaehler metric x induces a dual hermitian metric along the fibers

of Z(M)*.
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be a chart. Take

where (h;/-l) is the inverse matrix to _B’ == (h /-ZV -) - t.H’. The Ka,ehler metric

x defines a connection in Z(M) given by

where F,, = ( I£) is a matrix with

Also h is the Riemannian connection of the associated Riemannian metric

and is given as such by and and

m respect to the’ frame
Because u is a Kaehler metric,

The curvature tensor of x is defined by

The Ricci curvature and the Ricci form 9 are defined by

For each po E M, there exists a chart 8 : Ua -+ U§ n01’mal at Po E Ua such that



101

The connection h defines a covariant derivative V. If X and Y are vector

fields on M, if Y has class 01 and if õ: U3 - U§ is a chart, then in the nota-
tion of (3.4) we have 

In particular if Y is of type (1, 0) and holomorphic and if X is of type (0, 1),
then VY = 0.

Assume that - oo a - #  + c&#x3E;o. A map 99: R(oc, P) - M of class C 1

is called a curve and

is called the tangent vector at 99(t) for each t c R(a, fJ). The curve is said to

be smooth if CP(t) =1= 0 for all t E R(a, P). Let (p: R(a, P) --&#x3E;- M be a smooth

curve. Take a a’#’# such that 99 JR[oc, P’] is injective. A vector
field X of class C1 on M exists such that X op == cP on R[a’, #’]. Then

(V,X)ogg is independent of the choice of JC on R[a’, #’]. The curve q; is

said to be geodesic if (VxX)oq; == 0 on R[a’, #’] for any such choice. A geo-
desic is of class (7°.

Lot 99: R(a, fl) - M be a smooth curve. Take a chart 8 : Ua -* Ua 
, 

and

an interval R(ao, Po) with cx  ot,  PoP such that q;(t) E U5 for all t E R(exo, flo) .
Define 80p = (q;1, ..., q;m) and

on R(ao, /30). Then q; is geodesic if and only if J p, = 0 for p = 1, ..., m and
all possible choices of oco, #,, and j. 

-

geodesics with p(y) = y(y) and CP(y) = 1jJ(y), then VIR(A, fJ) = p and 1p is

called an extension of cp. There exists one and only one maximal extension.
Take p E M and 0 0 X E T,)(M). Then one and only one maximal geodesic

with

exists such that ggx,,(O) = p and ox,,(O) = X. A geodesic (p: R(a, fl) -&#x3E; M

is said to be complete if a = - oo and fJ = + oo. The Kaehler manifold M

is said to be complete if every maximal geodesic is complete, which is the
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case if and only if p E lVl exists such that f3x,p -- + oo for all X c Tp(M).
If X = 0, define f3x,p = + oo and cex,p -00.

Take p E M. Then E = fX c Tp(M) lf3x,p &#x3E; 11 is an open neighborhood
of 0 c T,(M). The exponential map egpp : E -+ M is defined by expp X ==
= px,p(l) if 0 =F X E E and expp (0) = p. Then exp, (tX) === Px,p(t) for all

X c- E and all t E R(cxx,p, f3x,p). Open neighborhoods U of 0 in E and N
of p in M exist such that egpp : U -+ N is a diffeomorphism. Also expp:
E - M is of class C°°. If M is complete, then exp,: Tp(M) -+ M is surjective.

Let N be a connected, complex submanifolds of dimension n of M. This

means that N is a connected, complex manifold and a subset of N not
necessarily carrying the induced topology and that the inclusion map
t: N -* M is differentiable and that the differential dt(x): %(N) - Zx(M)
is injective. The normal bundles T(N).l., TC(N).l. and %(N)I are defined

such that

I 

The Kaehler metric x on M restricts to a Kaehler metric x on N. Let

r and V be the Riemannian connection and the covariant derivative asso-

ciated to x. Let B be the associated second fundamental form. If X and Y

are vector fields of class C°° on N, then B(X, Y) = B( Y, X) is a section of
class C°° of T6(N)I which is in T(N)I if X and Y are real and in Z(N)-L if Y
is of type (1, 0). Also B is bilinear over C for complex vector fields and
bilinear over R for real vector fields and B(fX, Y) = B(X, f Y) = fB(X, Y)
if f is a function of class C°° . If U is open in lVl with N r1 U 0 and if X
and Y are vector fields of class C°° on N and if X, Y are vector fields of class
C°° on M with 1INn U==XlNr)U and -flnn U= YINN U, then

f

B(X, Y) = VI Vx Y on N r1 U. If JT is a vector field of type (o, 1)
on N and if Y is a holomorphic vector field on N, then B(X, Y) = 0.

The submanifold N is said to be totally geodesic, if each geodesic
p: R(ot, fl) --&#x3E;- M such that there exists y E R(a, fl) with p(y) c- N and §l(y) c-
E T,,(,,)(N) is a curve in N. A submanifold N is totally geodesic if B(X, Y) = 0
for all vector fields of class C’ on N. If there exist holomorphic vector fields

Zl , ... , Zn on N such that Z,(p),..., Z.(p) are linearly independent over C
for at least one point p E N and such that B(Z,, Z,) = 0 for all p, v = 1, ..., n,
then N is totally geodesic. 



103

b) The complex gradient vector field.

Let M be a connected complex manifold of dimension m. Let r be a

strictly parabolic function on M. Let x be the Kaehler metric defined by
dd 0 -c &#x3E; 0. Then there exists one and only one vector field f of type (1, 0)
and class C°° on M such that x(f, X) = d7:(X) for every vector field .X of
type (1, 0) and class C°° on M. The vector field f is said to be the complex
gradient vector field of -c. If 8 : Us ---&#x3E; U,is a chart, then

If X is any vector field of type (1, 0) on M, then

on U3. Therefore we have

on U3 and (2.20) implies

Therefore v1 is the length of f and f (p) 0 0 if p E M*.
Let g be the Riemannian metric associated to x. A real vector field

field grad 7: of class C°° called the gradient of 7: is defined by g(X, grad -C) =
== d1’(X) for all real vector fields X. Then (3.5) implies

Now some local properties of the vector field f shall be proven. If X

is a vector field of type (1, 0) and class C’ on M, then dX is a section of

%(M)* (D %(M). The Kaehler metric x is an hermitian metric along the
fibers of Z(M). Let ;q* be the conjugate dual hermitian metric along the
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fibers of Z(M)*. The tensor product hermitian metric ,",*@ x along the
fibers of ft(M)*@ %( M) shall be denoted by x again. Then the length
II ð"xll" is defined. Let (} be the Ricci form associated to the Kaehler metric x.

THEOREM 3.1.

PROOF. Take any chart ð: U3 -+ U§ . For any differentiable function g
use the convention (2.9). Then 

.

Hence (3.21) implies

The identity (3.23) implies

Take po E M. Then there exists a chart 8 : U - 5 at po which is normal
at po for m. Hence (3.15)-(3.17) hold for 7: - = h - and 7:vp = h"iP. At po we

have the following identities.
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which implies

We obtain

Hence f is holomorphic if and only if @(f, 1) = 0 on M.

LEMMA 3.2. Let V be the covariant differentiation defined by x. Then

PROOF. Take any chart a. Then

Let y be a differential form of bidegree (1, 1) on M. Take p E M. Then

is called the ann/ihilator of y of type (1, 0) at p. Clearly W,,(V) is a linear

subspace of Stp(M) over C. If V &#x3E; 0, then

PROOF. Abbreviate w = dd,- log -r.
Then (2.3) and (3.23) imply

be a chart at p.
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Hence f (p) c- %,,(o)) - In fact $ can be taken such that

Here n C m since rom = 0. Also (2.4) and (2.5) imply

Hence w(p)m-l =F o. Therefore n&#x3E;m -1. Hence n == m -1 with ep, &#x3E; 0
for ,u = 1,..., m - 1. Consequently %,(o)) has complex dimension 1. Since

f (p) =A 0, we conclude that W, (o-)) = C f ( p ) , q. e. d.

c) The complex gradient foliation.

Let M be a connected, differentiable manifold of dimension m with

real tangent bundle T(M). A subset IZ of T(M) is said to be a distribution
on M if IZ,:= Z n T,,(M):4- 0 is a linear subspace of Tp(M) for each p E M.
If :Ðp is r-dimensional for each p E M, then r is called the rank of Z. The

distribution T) is said to be differentiable, if ? has rank r for some r E Z[O, n]
and if IZ is a subbundle of class C°° of T(M). A vector field JP on M belongs
to 1) if X(p ) c- Z, for all p E M. A distribution is involutive if [X, Y] belongs
to IZ for all vector fields X and Y of class C’ which belong to IZ.

Let N be a submanifold of M. This means that N is a subset of M and N

is a differentiable manifold of class C°° and of pure dimension not neces-

sarily with the induced topology and that the inclusion map i: N -* M

is of class C°° and such that di(p) : Tp(N) -+ Tp(M) is injective; then dt(p)
is considered an inclusion such that T(N) is a subbundle of T(M) )N. If N

carries the induced topology, N is said to be a proper submanifold, which
is the case, if and only if there exists an open neighborhood U of N such
that i : N -* TI is proper. Let Z be a distribution of rank r on M. A con-

nected submanifold N of M is said to be an integral manifold of IZ if

T,(N) = 1)p for all p E N. An integral manifold Ñ of IZ is an extension of
an integral manif old N of Z if N is open in the manifold IZ. An integral
manifold N of T is said to be maximal if N is the only extension of N.

A differentiable distribution T of rank r is said to be completely integrable
if for each p E M there exists an open neighborhood p of U and a map
-Z’ : U  Rm-r of class oeo and rank dF(p) = m - r for each p E U such
that P-l(F(p)) is an integral manifold of Z for each p E U. By Fro-

benius, a differentiable distribution is completely integrable if and only
if ’Z is involutive. If T is a completely integrable, differentiable distribu-
tion on M and if p E M, then one and only one maximal integral manifold L_,
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of I with p e Lp exists. If p :A q, then Lp =F Lq. Here Lp is called the leaf
of I through p and S == {Lp}vEM is called the foliation defined by Z. The

leaf space A = {L"lp E M} carries the quotient topology and the residual
map Â: N -* A is defined by A(p) = Lp .

Let Q be a differential form of degree 2 and class C°° on M. The anni-

hilator W[D] is a distribution on V defined by 
’

LEMMA 3.4. I f dS2 = 0, then %[Q] is involutive.

PROOF. Let X and Y be vector fields of class C’ which belong to W[S2].
If peM and v c-T,,(M), then Q([X, Y](p), v) - 0 has to be shown. Since for

each v E T,(M), there exists a vector field V of class C’ on 1V1 with V(p) = v,
only Q([X, Y], Z) - 0 for all vector fields Z of class C’ on M has to be
demonstrated. Because X and Y belong to W[D] the function Q(Y, Z),
Q(X, Z), 92(X, Y), Q(X, [Y, Z]) and D(Y, [X, Z]) vanish identically on M.
We have

Hence S2([X, Y], Z) == 0 on M ; q.e.d.

Now let .lVl be a connected complex manifold of complex dimension m.
Let S2 be a real form of bidegree (1, 1) on M. Take p E lVl. Then qo : T1)(M) --*
- %1)(M) is a linear isomorphism over R. Define %p(Q) by (3.40) and 9t,[Q]
by (3.43). Then we see easily that

Let r be a strictly parabolic function on M. Define a real vector field

on M. Then qo(F) = f. Abbreviate (o = ddclog 1":&#x3E;0 on M*. Then 5lI[w]
is an involutive distribution on M*. Lemma 3.3 and (3.44) imply

on M*. Hence %[(o] is an involutive, differentiable distribution of rank 2
on M* since F(p) =A 0 for each p E M*. The foliation 2 == {L.,},cm. and the
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leaf space J. = {Lplp E M*} defined by W[(o] on M* are called the foliation
and the leaf space associated to -r. Take p E M*. Then Lp is a connected
submanifold of class C2 of M* . If q EE L,, then Tq(Lp) == $2!p[w] is invariant
under J : T,(M) -* T,(M) by (3.46). Therefore J restricts to an almost

complex structure without torsion on Lp. Hence J defines a complex struc-
ture on Lp, such that Lp is a complex submanifold of M* with

on L(p). 

PROPOSITION 3.5. If p E M*, then flLp is a holomorphic vector field on Lp .
Also log -rILp is harmonic on L,. (Compare Bedford and Kalka [4], The-
orem 2.4.)

PROOF. Take q c- L,. Let 8: U3 ----&#x3E; U3 
, 

be a chart of L, at q. Then

b == õ-1: 1I§ , - U3 is biholomorphic and b : U’ ----&#x3E;. M* is holomorphic. Here

tJ’3 is open in C. If Z E U;’, then b’(z) E St:u(z)(Lp). Because flLp is a differen-
tiable frame of %(Lp), a function h: IT3 -- C of class oeo exists such that

b’(z) = h(z) l{b(Z)) =1= 0. Hence

on U§ . Hence log 2ob is harmonic on Un. Consequently, log TILp is harmonic.
Without loss of generality we can assume that U3 ç U tJ) where ro: U tJ) U

is a chart on M*. Then roob = (VI,..., vm) and b’ == (wml ’ ( 8j8wM) and f = f&#x3E;( 8 j8w’i ) ,
Hence (VIl)’ == hf/lob on U3. Therefore

since logrob is harmonic. Therefore h is holomorphic. Hence fob is holo-

morphic on U§ . Consequently f ILp is holomorphic; q.e.d.

LEMMA 3.6. Take p E M* and q E Lp . Take a E C. Then there exists a

biholomorphic map b : lJ’’ - U of acn open neighborhood lT’ of ac in C onto

an open neighborhood U of q in Lp such that b(a) = q and b’ = f ob on U’.

PROOF. Lot i: U3 -+ U§ 
t 

be a chart of Lp at q with i(q) = a. Then

tJ = õ-1: IT3 f --&#x3E; U3 is biholomorphic. A holomorphic function h exists on U§ 
I
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such that t)’== hfot) on U§ . Since t)’(z) # 0, we have h(z) # 0 for all z e lI§ .
Without loss of generality we can assume that lT§ is convex. A holomorphic
function H exists on U§ such that HI == l/h on U§ and such that H(a) = a.
Open neighborhoods U’ and U" of a in U§ exist such that JET: U’ - U" is

biholomorphic. Then U == t) (U") is open in Zp and b == t) oH: U’ - U is

biholomorphic with b(a) == q..Also b’ == (t)’ oH). HI == h(fot)oH)H’ === fob on U’ ;
q.e.d.

PROOF. Since f(p) = 0 for all p e M[O], we have f£u fM = 0 on M[O] f1 U?J
Take p E M* n U.". A biholomorphic map b : U’- U of an open neigh-
borhood U’ of 0 in C onto an open neighborhood U of p in L1) exists such
that D(0) = p and b’ = f ob on U’ and U ç: U3 n M* Define õob == (vI, ..., vm)
where each v" is holomorphic on U’ with (v")’ == f"ob on Uf. Hence

If X is a real vector field on M, a curve ep: R(«, f3) -+ M is said to be an
integral curve of X, if if; == Xoep on R(oc, fJ).

THEOREM 3.8. The integral curves o f the vector f ieZd grad VT on 11l* are

geodesic.

PROOF. Abbreviate q == grad VT = (l/B/r)(/ + f) . Let cp: R(«, fJ) -+ M*
be an integral curve of q. Then if; == qoep on R(oc, fJ). Because q(p) =I=- 0
for all p E M *, the curve ep is smooth. Also cp is of class 000. Take y E R(«, fl)
and let ð: U3 -+ lT§ be a chart of M* at ep(y). Take «o and f30 in R with
oc  OCo  y  fJo  fJ such that ep(t) E U3 for all t E R(oco, f3o). Define ?Joep ==

= (epl, ..., epm). Then if; = qi.(ojozi.) + (fi.(oj’ðz,J.) on R(oco, f3o) and q = q;(ojozJj) +
+ #)(8j8£M) on U3 with qi. === (1jV7:) fi. and if;i. == qi.of. Define Jtt by (3.19).
We have to show Ji. = 0 on R(oco, fJo) for Â == 1, ..., m. Here if;i. == qi.ocp and

nefine H = HI(alazA) on U, with
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Then HÂocp = JA. It suffices to show that H = 0 on U3. Now, (3.23),
Lemma 3.7 and Lemma 3.2 imply

PROPOSITION 3.9 (D. Burns). The leaves of the foliation associated to 7:

are totally geodesic.

PROOF. Take p e M*. Let .Lp be the leaf of ,2 with p E Lp . Then f IL_,
/

is a holomorphic frame of %(L(p)) with Vff = f. Let V be the covariant

derivative of the restriction of x to Lp. Let B be the second fundamental

form. Then B( f, f) = Vf f - Vf f = f - Vf f is a section in St(Lp) and in St(Lp)l..
Hence B( f , f) = 0. As mentioned at the end of section 3a, this shows that Lp
is totally geodesic; q.e.d.

This result of D. Burns permits an essential improvement and a sub-
stantial simplification of the results as announced in [17].. The intrinsic
proof given here differs from the proof provided by D. Burns. We shall

use Theorem 3.8 instead of Proposition 3.9 to obtain the afore-named im-

provement and simplification.

4. - The flow of the gradient vector field. 

a) The foliation defined by a vector field.

If not stated otherwise, differentiability means differentiability of class C°°.
Let .M be a connected, differentiable manifold of dimension m with real

tangent bundle T(M). A patch on M is a diffeomorphism I: U, --* U of
an open subset U. of M onto an open subset Ux of Rm. Then I == (xl, ..., xm)
and ’ðj’ðx1,..., alax- is a frame of T(M) over Ux. A differentiable curve
q;: R(0153, fl) --&#x3E;- ll is said to be an integral curve of the differentiable vector
field Y on M it §§ = Yoq on R(oc, fl). If to E R(a, fl) and q = q;(to), then
is called an integral curve through q. If ip: R(8v, fl) - 1VI is an integral curve
through q = (t,) with to E R(i, II), then == ip on R(a, fl) r) R(a, #). Given

q E M and to E R, there exists one and only one maximal interval R(a, fl)
and one and only one integral curve q : R(oe7 fl) --&#x3E; M of Y such that to E R(ot, fJ)
and 99(t,,) = q. This curve q; is called the maximal integral curve of Y through q
for to.

Again, let Y be a differentiable vector field on M. Then Y defines a

local one parameter group of diffeomorphisms at any q E M, which means:
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An open neighborhood U of q and 0  8  oo and a map

of class C°° exist such that

20) The map gg,: U --* gg,(U) defined by pi(p) = 99(t, p) is a diffeomor-
phism of U onto the open image qh( U).

If §5, 6, E is another choice, then 99(t, p) == ip( t, p) for all t E R(- e, e) n
rl R(- 9, ff) and p E U r1 U. Also q; is called a (global) one parameter group
of diffeomorphisms of Y if E = + oo and U - M. If Y admits a global
one parameter group Y is said to be complete,. If M is compact, then Y is
complete.

Let 6: M --&#x3E;- R be a differentiable function. If - c&#x3E;o  a  #  + oo define

THEOREM 4.1. Let M be a connected, differentiable manifold of dimension m.
Take 0  d  + oo. Let 6: M -+ R(- oo, J) be a function of class C°°. As-

sume that M[O, J) is not empty, not compact and connected. Suppose that

M[0, t] is compact for each t E R[O, J). Then S = MO) is not empty..I’ur-
ther assume that a vector field Y of class C°° is given on M such that

dð(p, Y(p)) == 1 for all p E M[O, J). Then there exists q &#x3E; 0 and a map

of class C°° such that
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(5) If 00, define ’ljJt: S - X by ’ljJt(p) = ’ljJ(t, p) for all pES. Then

yi : S - Mt&#x3E; is a diffeomorphism.

REMARK 1. If q is given, then ’ljJ is uniquely defined by (1) and (2).

REMARK 2. The number r &#x3E; 0 can be taken so small that ’ljJ in (4.1) is a

diffeomorphism onto its open image.

The proof is delegated to the appendix.

b) The double at a po&#x3E;int.

Let N be a differentiable manifold of dimension m &#x3E; 1. Let L be a

proper differentiable submanifold of dimension m 2013 .1. Take a E L. Let

h: N - R be a function of class C°° with hlL = 0. An open neighborhood U
of a and functions t: U -* R and h,,,: U -+ R of class C’ exist such that
t-’(O) = L r) U, such that dt(x) 0 0 for all x E II and such that h = tho
on U. Then h is said to vanish of order p at a on L, if an open neighborhood U,
of a in U and a function hi: U, ---&#x3E;- R of class C°° exist such that h = t"hi
on Ul and hI(a) =1= 0. Of course, h may not vanish of any order at a on L.

Let M be a differentiable manifold of dimension m. Let f: N ---* lVl be
a differentiable map. Assume that b c- M exists such that f)L = b. Take

a E L. Let x: Uz - U% and t): U.0 ---* U§ be patches at a respectively b with
x(a) = 0 and t)(b) = 0. Then x == (xl, ..., xm) and t)of = (fl, ..., fm) and

with d IL = 0. Then f is said to branch of order p - 1n + 1 at a on .L if d
vanishes of order p at a on L. Since f IL = 0, we have f == tgj in a neigh-
borhood U of a where gi is of class C°° on U. Hence d = tm-1 L10 on U
where do is of class C°° on U. Therefore p - m + 1&#x3E; 0. This definition is

independent of the choice of the patches i and 0.
Ijet S == {x E RmllII == I} = Rml) be the unit sphere in Hm. Let M

be a connected, differentiable manifold of dimension m &#x3E; 1. Assume that

a base point 0 = OM in M is given and define M* = ill - {O}. Then (N, e)
is said to be a double of X at 0 (connected sum of lVl and M at (» (Keii&#x3E;aire-
Milnor [13]) if and only if

(1) A connected differentiable manifold N of dimension m is given.

(2) The map e: N - M is proper, surjective and of class C°°.

(3) The inverse image So = e-1( 0) is a proper, compact, differentiable
submanifold of dimension m -1 of N. Moreover So is diffeomorphic to the
sphere S.



113

(4) The map e branches of order 0 at every point of so-

(5) Open subsets Nj =1= 0 of N exist for j = 1, 2 such that N = N, U
u N2 U S is a disjoint union and such that

is a diffeomorphigm.

Since N is connected, we conclude that S,, = aNj is the smooth boundary
of Nj with Nj == ,So U Ni.

Let X and M be differentiable manifolds of dimension m &#x3E; 1 with base
points 0 E M and 5 E.M. Let 99: M -* M be a diffeomorphism with 6 = qJ(O).
Let (N, @) and (9, ë) be doubles of X at 0 respectively M at 6. A dif-

feomorphism f : N -*9 is said to be an isomorphism of doubles over qJ if and
only if jof = qJ°e and f (Nj) = Ñj for j = 1, 2. Then f : S,, -+Sõ is a diffeo-
morphism. If M = M and if qJ is the identity, an isomorphism of doubles
over the identity is also called an isomorphism of doubles.

Define r: R X S -+ Rm by r(t, I) = tx for all t E R and i c S. Then (R X S, t)
is a double of Rm at 0 such that (R X S)2 = R+ X S.

The proofs of the following statements on doubles are found in the ap-

pendix. Here M and M denote connected differentiable manifolds of dimen-
sion m &#x3E; 1 with base points 0 E X respectively e M..Also (N, e) and
(lit, are doubles of M at 0 respectively of M at #.

(6) If U is open in M with 0 E U and if Tr == e-I( U), then (V, e IV)
is a double of U with Vj = Nj r1 V. Denote ( V, e IV) = (N, e) [ U.

( 7 ) If I: UX -+ U§ is a patch of M at 0 with I(O) = 0, then there exists

one and only one isomorphism of doubles from (N, e ) ) lUx to(R X S, r) I U§ over I.

(8) If qJ: M -+ M is a diffeomorphism with cp(O) = 5, then there exists

one and only one isomorphism of doubles from (N, e) to (9, ë) over qJ.

(9) There exists one and up to isomorphism only one double of M at 0.

Now, the behavior of functions and vector fields lifted to the double
shall be studied.

LEMMA 4.2. Let U be an open, connected neighborhood of 0 E Rm. De-

fine V = t-1( U) and VI = (R- X 8) n V and V2 == (R+ X S) m V. Define
U* == U - {O}. Let h : U -+ R+ be a f unction of class C°° with h(O) = 0 C h(x)
for all x E U*. Assume that the Hessian H of h at 0 is positive definite.
Then there exist uniquely determined functions g: V -+ Rand G: V - R of
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class C°° such that g2 = hot on V with glV1 C 0 and g/V2 &#x3E; 0 and such that

PROOF. A function R: Il x Rm - R of class C’ exists such that R(x, ty) -
- t3 R(x, y ) for all t E R, x E U, and y E Rm such that

for all (t, x) eV. Hence H(s) + tr(tx, x) &#x3E; 0 for all (t, x) c-V. Also HIS &#x3E; 0.
A function 01: V --* R of class C°° exists such that

Then G,(O, x) = 0 for all x E S. Therefore a function G : V- R of class C°°

exists such that G1(t, x) == tG(t, x) for all (t, x) EV. A function g: V -+ R
of class C°° is defined by

Hence g [Vi  0 and g IT’, &#x3E; 0. Also g2 = hor; q.e.d.
We obtain an immediate consequence:

OOROLLARY 4.3. Let M be a connected differentiable manifold of dimension
m&#x3E; 1 with 0 E M. Let (N, e) be the double of M at 0. Let h : M -+ R be a

function of class 0’ such that h(O) = 0 C h(x) if 0 =A x E M. Assume that h

has a positive definite Hessian at zero. Then one and only one function g : N- R
of class C°° exists such that g2 = hoe and such that glNl C 0 and g1N2&#x3E; 0
with g ISo = 0.

In order to study vector fields on (N, o) , it suffices to investigate a neigh-
borhood of S. Hence we can restrict ourself to the double (R X S, t) of Rm
with r(t, x) = tx for all t E R and x E S. The tangent bundle splits

where alat is a frame of T(R) over R. Let ( . , . ) be the inner product on Rm.
If x c- 8, then
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we can consider T(S) as a subbundle of the trivial bundle T(R-) IS. Also
we can identify R(alat) = R at any given point t E R such that 8jlt = 1.
Then

is a linear subspace of R-+’. If (t, x) c- R x S, then the linear map

is given by

for all (t, x) E R X 8 and (u, y) E R 0+ Tx(S). If t 0 0, (4.4) is an isomorphism,
the inverse map is given by

Now consider the complex case. We identify R2m = Cm such that

At each point p of R2- = Cm, we identify tangent spaces

such that qo is the identity and such that J is multiplication with i and
such that conjugation is obtained by conjugation of the coordinates. Then

defines an orthogonal base over C with n, = em.
Now, S is the unit sphere in Cm with tangent space T,,(S) C Cm for each

x c- S. The holomorphic tangent space at x c 8 is given by
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are direct sums. If u E R and v E R and w E %ae(S), then

reflects the splitting (4.12). Hence

with (z - (zlx)x) c- Define R* = R - {o}. The surjective local dif-

feomorphism r : R* x S - Cm - {o} define a complex structure on R* x S.
Let J be the associated almost complex structure. Then

The almost complex structure breaks down if t -* 0.

c) The gradient vector field near the center.

Let (M, 7:) be a strictly parabolic manifold of dimension m. The center

M[0] consists of one and only one point 0 = OM. Let (N, p) be the double
of M at 0. By Corollary 4.3, there exists one and only one function 3 : N --&#x3E;- R

of class 000 such that 62 = io p and such that 6 IN, 0 and 6 IN, &#x3E; 0. Also

the vector fields f and q = grad B/T lift to vector fields f and g on N - So
by ei 1: M* --&#x3E;. Nj for j 1, 2. In order to study the behavior at 0 respec-
tively So, local coordinates at 0 are chosen.

Let i: U3 - 1I§ be a chart at 0 E Jtf such that 1(0) = 0. We can as-

sume that Ua is connected and that i is normal at 0 in respect to the Kaehler
metric x defined by dde-c. Then

A number t,,, &#x3E; 0 exists such that the closure of the ball B = Cm(to) of

radius to and center 0 is contained in U’. We identify U, = U’ such that 5
becomes the identity. A number r,,, &#x3E; 0 exists such that -r(x) &#x3E; ro if x E aB.
Because M[ro] is connected and contains 0, we have
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There exists one and only one isomorphism of doubles from (N, e) I U, to
(R X S, -c) I U’3 

’ 

over j. This isomorphism is used as identification map such
that (N, e) IB identifies with (R(- to, to) x S, r). On Cm we define

According to Proposition 2.2, the function 7: has the Hessian ro at 0. By
Lemma 4.2, there exist functions 6, 30 on R(- to, to) x 8 of class C°° such that
62 = TO r and

if - to  t  to and x E S. By (4.18) and (4.19) there exists a holomor-

phic, homogeneous polynomial P : Cm - C of degree 3 and a function

fi: B X cm - R of class C°° such that 

Define P,, = P. and Q = (P,,,..., Pm). Also define

The vector field f = jtt(’ð/ozJL) can be considered as a vector function

LEMMA 4.4. There exists a vector function K : W -* Cm of class C- such that

PROOF. Define R: W - R by f?(t, z) = .R(tz, z). Use the convention (4.9)
for r, P and R. Then

Function ffvo: -W -&#x3E; C of class C°° exist such that
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Define

Then . is of class C°° with

Therefore, (4.5) implies

.

for - to C t  to and x E S. Functions of class C°° are defined by

If - to  t  to and x c- S, then

A vector field F of class C’ on R(- t,, t,,,) x S is defined by

such that
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We see that the vector field f originally only defined on N - S,,, extends
to a vector field of class C°° on N by (4.29) and (4.30). The vector field

f i = i f lifts to a vector field f of class C’ on N - S. Also this vector field

will extend over S,. By (4.14), we have

Define functions of class C°° by

Then

Since the identity (4.16) implies

for (t,x)ER(-to,to)xS if t:7-c- 0. However (4.34) extends the vector field f i
to a vector field of class C’ on N with

Now consider the real vector fields of class C’

Then
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By (4.21), (4.29) and (4.30), the vector field g extends across So to a vector
field g of class C°’ on X* such that

Since qo(jg) _ (116)fi, the identities (4.21), (4.26), (4.31) and (4.34) imply

for t--*O if XES.

For each z E lVl* we have

If p E N2 , abbreviate z = e(p). Then

If p c- N,, abbreviatc z = e(p). Then

Hence dð(p, g(p)) == 1 for all p E N - So. Also

is the maximal radius of the exhaustion r. We have

If t e R[O, Zt), then

is compact since is proper. The assumptions of Theorem 4.1 are satisfied.

d) The gradient lines.

Again let (M, 1’) be a strictly parabolic manifold of dimension m. The

center M[O] consists of one and only one point 0 = Om: Let (N, e) be the
double of M at 0. We use the same notation as in the previous section c).
The results obtained in c) show that the assumptions of Theorem 4.1 are

satisfied, which gives the following result:
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THEORElBi 4.5. There exists a number ’Y} &#x3E; 0 and a map

of class C°° such that

i.g a diffeomorphism..

Observe that S == &#x26; is the unit sphere in Cm. Mso q can be taken so
small that 0 ,q  ro and that the map V in (4.42) is a diffeomorphism onto
the image and that 0 (N[- q, q]) c B. Also observe that N[O, A) == N2 ==
== N2 U S. If t E R( o, LI) then

and the maps

are diffeomorphic.
Now, we define a map T of class 000 called the flow of c by

Then q; satisfies the following conditions.
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(7’) If ; E 8, the curve cp(D,;): R(O, J) --* M* is geodesic in respect to
the Kaehler metric x. (See Theorem 3.8, and (4.36)).

Define To as in (4.20).

THEOREM 4.6. A homeomorphism h : Cm(L1) -+ M is defined by h(O) = 0 and

Moreover h : Cm - {O} ---7 M* is a diffeonaorphisna. Moreover 1’0 = 1’oh on Cm(L1).

PROOF. The map r,: R(O, J) x S ---&#x3E;- C-(,A) defined by r,(t, $) = t$ is a

diffeomorphism with t;-l(Z) = ( Iz 1, zl Iz 1). Hence

is a diffeomorphism. If 0=,-zc-C,,, define $=z/lzl. Then -r(h(z))
- í{cp( Izl, $)) = IZ 12 = ío(Z). Hence h(z) ---&#x3E;- 0 for z - 0 and h-l(p) -+ 0 for

p - 0. Therefore h : C- ---&#x3E; lVl is a homeomorphism, q.e.d.
Later we shall show, that h is biholomorphic.

5. - The leaf space of a strictly parabolic exhaustion.

a) A parameterization of the leaf space.
Let (M, T) be a strictly parabolic manifold of dimension m with maximal

exhaustion radius L1 and with center M[0] = {0}. Then r is a strictly para-
bolic function on M, which determines a foliation 2 == {Lp}vEM. with leaf
space d. = {L,lp E M*} on M* as described in (3.45) to (3.47) and Propo-
sitions 3.5 to 3.9. We will show that the unit sphere S in Cm provides a
natural parameter space for A. First some preparations are needed.

REMARK 1. Let 99: R(- n, /)) x S --&#x3E; M be the flow of í as defined in (4.45).
Put 40 = log d and Io = R(- oo, do). Define a diffeomorphism

Then (1’)-(7’) in section 4d) imply
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is a difleomorphi-8m.

REMARK 2. Let U be an open subset of C with a = « -+- ip E U’ where «
and P are real. Let b : U -- M be a holomorphic map. Define b = b(a).
The differential db(a) is a C-linear map of Ta(C) into T§(M) which maps
Ta(C), Z.(C), !.(C) into Tb(M), Zb(31)1 %(M) respectively. Denote

Then

The sets I(#) = { E R It + ifl E Ul and I[cxl _ It E R la -[- it E U} are open
with a E I(#) and fl E IM. Define ,: l(fl) ---&#x3E; M and I : l[a] -* lVl by ’(t) =

b(t + ifl) for t E I(fl) and A(t) = b(a + it) for t E I[a]. Then I(q) = bx(a)
and A(fl) = b,,(a). Therefore, we also write

LEMMA 5.1. For each $ E 8, there exists one and only one leaf L($) EA
of 2 such that z(t, $) E L($) for all t E I,,. Moreower, A == (L($) )$ E S}.

PROOF. Take r E 10: For $ E S define L($) = Lx(r,;). * For each LEA

define

If s E l(L, $), then p = z(s, $) E L. Hence Z == L1P By Lemma 3.6 there
exists a rectangle
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with as  s  bs  do and cs &#x3E; 0 and a biholomorphic map

onto an open subset Us of Lp such that

Now, (5.4) gives

Hence (5.3), (5.5) and (lo) imply

Therefore s E R(a,, bs) ç I(L, $) . The set I(L, $) is open.
If tElo, define p = X(t, $). Then p c- L,, c A. Hence t E 1(Lp, ). If

t E I(L, $) r) I(L’, z), then L = Lp = L’ with p = x(t, $). The open con-

nected interval Io is the disjoint union of the open set I(L, $) with LEA
where r E l(L($), $). Hence Io = l(L($), $). Consequently X(t, $) E Z() for
all t E Io. If X(t, $) E L e A for all t E lo, then L = L($) trivially. If L c- A,
then L = Lp for some p E M*. Then s E Io and e S exist such that

p = X(s, $). Then p E L($) r1 L,. Hence Z() = L, = L; q.e.d.

By (3.23) we have 07:(/) - ?T(/) = T. Define F = f + f as in (3.45). Then

Take t c- R(O, A). Then Mt&#x3E; is a proper, compact submanifold of real

dimension 2m -:L of M*. Moreover v E T,(M) belongs to T,(Mt&#x3E;) if and

only if d-r(p, v) = 0. Hence JF(p) E Tp(Mt») and JFIMt) is a differen-

tiable vector field on the compact manifold Mt&#x3E;. Therefore there exists

one and only one parameter group 
.

of diffeomorphisms such that
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i,4 a diffeomorphism. Consider D = Io X R as an open subset of C. Define

by

LF,MMA 5.2. The map tv: D X S - M* is of class C°°.

PROOF. Clearly, tu is of class Coo on lxl x R x S for every fixed x E Io
but we have to prove more. Take xo E Io and define to = ex-. Then to E R(o, J).

The real vector field J F defines a local one parameter group of diffeo-

morphisms at every q E M*. An open neighborhood WQ of q and a number
Sq &#x3E; 0 and a differentiable map

exist such that (!q(O, p) = p and f!q(y, p) = JF((!q(Y, p)) for all y E R(- êq, fq)
and p E Wq . Finitely many points q,, ..., q,, exist in Mt,,&#x3E; such that

Define 8 = Min (81’ ..., 8q). Then Qqj(Y,p) == ’lllk(Y’P) if )y )  s and p E

E Wllj r1 Wllk. Therefore a map

of class C°° exists such that e(y, p) = etlJ(Y’ p) if Iy I  E and p E Wqj. In

particular e(O, p) = p and é(Y,p) = JF(e(y,p)) for all YER(-e,e) and
p E W.

Since X(x., ) E Mt.&#x3E; c W for all $ E S. A number ’YJo&#x3E; 0 exists such

that x, + q  do and such that X(x, $) E W if Ix - zo 1 qo and $ E S. Then

Mex&#x3E; c W if .? - x(,  17,,. Take p E Meae). Then
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Therefore W is of class C°° on R(- n,, + Xo, xo + qo) xR(- P, 8) xS. There

exists a maximal r with e  r  + oo, I such that ? is of class C°° on

Assume that r  oo: Take g e R(o, r) with 0  r - s  e. The maps

are of class C°°. If Ix - xol  qo and $ E Sand Iy - 81  E, then

Thus tv is of class C°° on

The maximality of r implies s + er which contradicts r - s  8. There-

fore r = oo. Hence tv is of class C°° on R(- ’Y}o + xo xo + no) X R X S for
each xo E Io. Consequently tv is of class C°° on D X S; q.e.d.

LElBIlBIA 5.3. For ewery $ E S there exists an open neighborhood U¿ o f 10
in C of the form
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where 0  C(x, $) c + oo for all x E 10 sitch that there exists a locally biholo-

morphic macp W(11, S) : Ui - L(S) such that

If Ut; is given, then W(D, S) is uniq2ce.

PROOF. Take $ c- S. Take s e Io. Then z(s, $) E L() by Lemma 5.1.

Construct the rectangle Q(s, $) of (5.1) and the map w(E], s, $) of (5.2) and
(5.3) to (5.6) where U,, C L($). For x c I,,, define c(x, $) = sup {CslxER(as, bs )
and s E Io}. Then

is an open, connected neighborhood of Io in C.
Take s, E 10 and S2 E 10 with Q(s,, $) n Q(S2’ $):A 0, which is convex.

Then R(as1, b,, ) n R(a,,,, b,,) :A ø with

for all Analytic continuation shows that

Hence a locally biholomorphic map w(D, $): U; ---&#x3E;- L($) is defined by
w(z, $) = w(z, s, $) for all z E Q(s, $) and s E 10. If t E 10, then w(t, $) --=
= w(t, t, $) ::= X(t, $). If z E U;’ then z E Q (s, $) for some s E 10. Then

PROOF. Take $ E S and x E 10. Then

If ly I  c(x, ), then we have



128

Since qo is injective, we obtain t¿Vll(x -+- iy, $) = JF(w(s + iy, $)) . There-

fore tu(x + iy, $) = w(s -f- iy,) for all y E R(- c(x, $), c(x, $)); q.e.d.
Consequently w(D, $) is locally biholomorphic on U$ and maps U

into L($).

LEMMA 5.5. If $ c- S and zED, then tu(z, $) E L($).

PROOF. Take $ e S and x e Io and keep fixed. For each leaf E e A define

Take b E I(L). Then p = tu(x + ib, $) E L. The vector field JF restricts

to a vector field JF IL along L. Hence there exists a curve y : R(«, P) --&#x3E;- L

of class C°° with a  b  # such that y(b) = p and (y) = Jh’(y(y)) for all
y E R(«, fl). As before ít&#x3E;lI(x + iy, $) = JF(W(X + iy, $) for all y E R. There-

fore ít&#x3E;(x + iy, $) = y(y) E L for all y E R(«, P). Hence R(a, I(L). The

set l(L) is open in R.

If y e R, then p = tu(x -)- iy, $) e M*. Hence rv (x + iy, $) E Lp and
y E l(L,). If y E l(L) m I(L’), then ít&#x3E;(x + iy, $) e L m L’. Therefore L = L’.

Since tu(x, $) = x(x, $) eL($), we have 0 eI(L($)). Therefore R is the

disjoint union of the open sets I(L) with LEA where l(L($)) =A 0. Con-

sequently, l(L($)) =-- R and tu(x + iy, $) e Z() for all y e R ; q.e.d.

LEMMA 5.6. If x E Io and y E R and c- 8, them

PROOF. By (5.12) and (5.10) we have tu(x + iy, $) E llIeae), which im-
plies (5.13); q.e.d.

LEMMA 5.7. T’or each $ G 8, the map ro(D,): D - L($) is surjective.

PROOF. Take $ E.S and x E 10. Define L($, x) = L($) r1 Meae). Then

L($, x) is a closed subset of L(). Moreover p E L() belongs to L($, x) if

and only if -r(p) = ex. Let j : L($) --)- M* be the inclusion map. Take

p E L($, x). Then F( p ) e T,(L($)) and
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Hence L($, x) is a proper, differentiable submanifold of dimension 1 of L($).
We claim that L($, x) is connected. Define q = y(x, $) E L($, x). Pick

any point p c- L($, x). Because Z() is a connected manifold there exists

a continuous curve y : R[O, 1] ---&#x3E;- L($) with y(O) = q and y(l) = p. The

map X: 1,, x S ---&#x3E;- M* is a diffeomorphism. Therefore

is a continuous curve in I, x S with fl(0) = (x, $). Hence #,.(0) = x and
fJ2(0) _ . Also X(fJl(l), fJ2(1)) = y(l) == p E Mex). Hence PI(l) = x. Ab-

breviate Q = R[O, 1] x R[o, 1]. A continuous map B: Q - X* is defined by

Therefore L(#,(y)) = L($). Hence B maps into Z(). Define a continuous

curve a: R[o, 1] --* -L($) by «(y) = B(y, 1) for all y E [o, 1]. Then

with m(O) = X(x, $) = q and a(1) = X(Pl(l), fJ2(1)) = y(l) = p. Consequently
L($, x) is connected.

Since L($, x) is a connected, differentiable submanifold of dimension 1,
there exists a surjective map p : R(- 1, l-) ---&#x3E;- L($, x) of class C°° withu(O) = q
and o # ft(t) E T,,(t) (L($)). Because F and JF are a frame of the bundle

T(L($)) , there exist real differentiable functions a and b on R(- 1, 1) such that

for all t E R(- 1, 1). By replacing t by - t, if needed, we can assume w.l.o.g.
that b(O»O. Since TOfl==e2x is constant on R(-l,l) we have

Therefore a(t) = 0 and b(t) =1= 0 for all t E R(2013 1,1). Hence b(t) &#x3E; 0 for all

t c- R(- 1, 1). A function v: R(- -1, 1) -* R of class C°° exists such that

v(O) = 0 and v’(t) = b(t) &#x3E; 0. Then real numbers wo and v, with wo  0  v,

exist such that v : R(- 1, 1) -+R(vo, VI) is a diffeomorphism. Define u = v-I.
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is a surjective map of class with

for all y E R(vo, VI). Consequently, (5.7) and (5.8) imply

For all y E R(vo, VI). Since e is surjective, we have L($, x) ç w(D, $) for

all x E Io . Hence L($) C: ro(D, ) ç E($); q.e.d.

LEMMA 5.8. For each $ c- 8, the macp ro(D, $): D  L() is locally biholo-
morphic. If z E L($), then W’(Z, $) == f(ro(z, $)) .

PROOF. According to Proposition 3.5, the function u -- log rIL($) is

harmonic on L($). Hence A = au is a holomorphic form on L($). Also

f)L($) is a holomorphic vector field on L($). Hence a holomorphic func-
tion 0: L ( ) -* C is defined by 0(p) 2(p, f(p)). For all x E Io and y E R
Lemma 5.6 implies u(tu(x -f- iy, $)) 2x. Abbreviate p = tu(x + iy, $).
Then

By Lemma 5.3 and Lemma 5.4 tu(E], $) is locally biholomorphic on U,’.
Hence V, = tu(U$, $) is open in L(I). If z == x + iy c- U,, then

where tv’(z, ) = f ( p ) by Lemma 5.3. Hence 0(p) = au (p, f (p)) = 1 for

all p E V,. By analytic continuation P = 1 on L($).
Let n: N -+ L() be the universal covering space of L($). Take xo E Io

and define po = X(x,,, $) c- L(). Pick qo E N with n(qo) = po. Because n is

locally biholomorphic, the form n*(A) is holomorphic on N and nowhere
zero. Hence one and only one locally biholomorphic function H: N C

exists such that dH == n*(A) and H(qo) -- xo. Observe that W(xo, _
== X(x,,, $) = po and that D is simple connected. Hence one and only one

. differentiable map W: D -* N exists such that W(xo) = qo and n(-w(z))
= w(z, $) for all z E D. For x E 10 abbreviate W(0153) = q and z(s, $) =
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tu(x, $) = p. Then n(q) = p and

Since H(W(so)) = H(qo) = xo, we obtain H(TV(x)) = x for all x E 10.
Fix x E Io . For any y E R, denote p = tu(x + iy, $) and q = -W(x -E- iy).

Then (5.12) and (5.8) imply Wll(x + iy, $) = JF(p). Therefore

Therefore jEr(Tr(.r + I,y)) = H (W(x)) + iy = x + iy. The map goyY: D --&#x3E;- D
is the identity.

Take a E D. Define b = W(a) and C E n(b). Open connected neighbor-
hoods Ua of a in D and Ub of b in N and U, of c in L() exist such that
W(Ua) C Ul and such that H : Ub --&#x3E; Ua and n: Ub -+ Uc are biholomorphic.
Then W I Ua = (HIUb)-l maps Ua biholomorphically onto Ub and w (D , $ ) ) Ua -
7c 0 W I Ua maps Ua biholomorphically onto U,. The map tu (E], $): D -+ L
is locally biholomorphic.

Also we have

for all x -i- iy ED; q.e.d.
Below we will see that tu([], $) : D -+ Z() is the universal covering space

of 2). Hence W : D - N is biholomorphic. Take xo E Io and keep xo fixed.
According to (3 o) the map ,
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is a diffeomorphism. Since tu(xo + iy, ;) E Mexl&#x3E; for all y E R and $ e 8,
a map

of class C°° is defined by

PROOF. Take y E R and $ e S and keep fixed. For all x E Io Lemma 5.8

implies

Since qo is injective, we obtain

Therefore q.e.d.

LEMMA 5.10. For 6ach $ E 8, the map tu(D, $) : D -&#x3E;L($) is the (universal

covering space of L($).

PROOF. Take $ E S and keep fixed. We distinguish two cases.

1. Case: The map ,(0, $): R ---&#x3E; S is injective. We claim that tu([:], $)
is injective. Assume that Xj E 10 and yj E R for j = 1, 2 are given with

Because X is injective, we have C(y,, $) = C(Y2’ $) . Hence y, = Y2; there-

fore tu(E], $) is injective. Now Lemma 5.7 and Lemma 5.8 imply that
tu(D, $) : D -* L($) is biholomorphic, which proves the Lemma in the 1. Case.

2. Case : The map ((D, $): R - S is not injective. We claim that

tu(E:I, $) is periodic in the direction of the imaginary axis. Define po =
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X(x., $). Then tu(xo -)- iy) = a(y, p., ex,.). Abbreviate

By assumption Yl E Rand Y2 E R with y, &#x3E; Y2 exist such that C(Yl,;) =
- C(Y2’ $) . Hence w(zo + iYl, ;) = iro (xo + iY2,;) which means a(Yl’ po) =
= a(Y2’ po). Therefore

with yl - y2 &#x3E; 0. Define a = inf ly E R+ lor(y, po) = p,,,}. Since 
‘ 

j(0, po) ==

JF(po) =A 0, we have a &#x3E; 0. By continuity (y(x, po) = po. If y E R, then

for all x E Io and y E R. Therefore if z E D and n E Z, then

Assume that xj E Io and yj e R are given for j == 1, 2 such that tv (x, -)- iyl, $) =

W(x, + iy., $) = p. Then x, = 2 log -r(p) = x, and

Hence ((yi , $ ) = Q(y , $ ) which implies

An integer n E Z and r E R[O, 1) exist such that yl - y, = na -t- ra. Then

po = a(na + ra, po) = C1(r0153, po). The definition of oc implies r = 0. Hence

X, + iyl = X2 + iy2 + ina. Let D,, = DjiaZ be the quotient space. The

residual map a: D --&#x3E;- D,,, is locally biholomorphic and in fact, the universal
covering space of D,,. Also h)(L]):.D 2013Z() factors to a biholomorphic
map tuo: D,,,, --&#x3E; L() such that notuo = tu(D, $) . Hence  tu(D, $) : D - L($)
is the universal covering of -L(); q.e.d.
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LEMMA 5.12. I f e 8 and $, E S, then L($) = L($i) if and only if there
exists y E R such that $., = C(y, $).

PROOF. If L($) = L($i) , then X(xo, c- L($) . Hence x E 10 and y E R
exist such that X(xo, $i) == )i3(.c + iy, $) == p. Then zo = 2 log z(p) = x.
Hence (5.14) and (5.16) imply $i == C(y, $). If $i == ((y, $) for some y e R,
then z(zo , $,) = tu(xo + iy, $) = q with q E L($) n L(1). Hence L($) =
= L($i ) ; q.e.d.

b) The determination of the leaf space.

In section a) the parameterization iro of the foliation associated to i was
constructed and a parameterization of the leaf space A by S was provided.
The orbit of the curves C(F-1, $): R - S determines exactly one leaf. Hence

the orbit space is the leaf space. Local consideration at the center, i.e. the
limit z - - oo, will enable us to determine these orbits. In order to carry
out these asymptotic considerations at the center, we revert to the special
coordinates introduced in section 4c). In particular we identify U, = U§
such that ð is the identity. For the tangent spaces at points of U, we use
also the identifications explained in (4.8)-(4.16). In particular, the unit
sphere S is considered as the unit sphere in To(M) = Z,,(M) = Cm. Hence

$ e S can be considered as a real tangent vector at 0 and as a tangent vector
of type (1, 0) at 0 with qo($) == as need may be. Also let (N, p) be the
double of M at 0. As in section 4c) (N, U5 is identified with (R x S, t) U3 
and (N, o) )B with (R(- to, to) X S, r). Recall also the maps y of Theorem 4.5

and lfJ of (4.45). It is important, not to mix up the parameter t in V(t, $)
and lfJ(t,) with the parameter t in r(t, $). The notation Cm(t) refers to the
exhaustion To of Cm defined by (4.20) where upon M(t) refers to the strictly
parabolic exhaustion 7: given on M even if M[t] c U, which is the case for
0  t  ro (see (4.19)). Similarly the notations N[a, b] etc. are determined

by 6. Observe O : Nt&#x3E; ---&#x3E;- Mt) for all t E R[O, LI). Because of Theorem 4.5 (4),
y maps R[O, r,,] x S into N[O, ro] with o (N[o, ro]) = M[r,] c B. Also we

can take q &#x3E; 0 so small that e(ip(t, $)) E B if - q  t C 0. In view of our

identification we have
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and $ E S. Therefore these are functions

of class C°° such that 1jJ == (V.1 1p2) on R(- q, ro). We have yi(t, $) &#x3E; 0 if

Otr,D and yi(t, $)  0 if - q  t C ro and yi(o, $) = 0 for all $ e S.
Also the map cp === e°1p of (4.45) is given by

LEMMA. 5.13. There exist functions

of class Coo such that

PROOF. Recall that we identified S = &#x26; = {0} X S. By Theorem (4.5)
we have Y(O, $) = which reads V(O, $) = (o, $) with V,(O, $) = 0 and
ip,(O, $) = $ for all $ E S. Therefore there are functions 1J’4: R(- q, ro) X S - Cm
and 1J’s: R(-,q, r,,) x S --&#x3E;- R of class C°° such that

for all t c- R(- q, r,,) and c- S with Qi(0, $) = 1Jl5(0, $) . With our identifi-

cations we have ro( 1jJ) == 1jJ and

where p = 1J’( t, I). Also
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By (4.40), this implies

Therefore V,(O, $) = yi ( o, ) = 1 for all $ E S. A function
x S ---&#x3E; R of class C°° exists such that

for all t E R(- 27, ro) and $ c- S; q.e.d.

Now we come to the determination of the orbit of $ under which is
the fundament of the proof.

THEOREM 5.14. If y e R and  c- S, then ’(y,) = ciy$.

PROOF. For t &#x3E; 0 abbreviate I(t) = log t. Ta,ke $ E S and y E R and
t E R(O, ro). Then ro  4 and I(t)  log d = Jo. Hence

Observe that 99(t, ’(y, $)) E ilf t&#x3E; c B. Hence Q2 1 = t;-l can be applied.
We have

Abbreviate Then

Denote the partial differentiation alay also by affixing the index y. Then

for 0  t  ro: The limit of Y1l(t, y) for t --&#x3E;. 0 exists and is denoted by
Y1l(0, y) with
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Considering that qo is an identification map we have

Therefore

The limit t -+ 0 and (4.35) imply

Comparison implies ’y(y, ;) = ii(y, ;) for all y E 11. Hence

for all y E R. Hence

for all y E R ; q.e.d.

Hence’ determines the Hopf fiberation on S. According to Lemma 5.12,
we have L($) = L(,) if and only if 1 = eiy for some y E R. Let P(Cm) =
= P.-, be the complex projective space of dimension m - I and let

P: Cm - {0} -+ P,,,-, be the projection. For each w E Pm_1, there exists one
and only one leaf L[w] c- A such that L[w] == L($) for each $ E S with

P($) = w. Also L[w] =,,: L[w,] if w E Pm-t and w, E Pm-t with w =,,-- wi : More-

over for each leaf L c- A, there exists one and only one WE Pm-t such that
L = L[w]. Hence Pm-, provides a bijective parameterization of the leaf

space A. 
If x E Io and y E R, if $ c- S and ’It E Z, Lemma 5.9 and Theorem 5.14 imply
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LEMMA 5.15. I f z, E D and Z2 E D ahd $ are given such that tv(Zl’ $) =
== tv (Z2’ $) , then n E Z exists such that Z2 === z, + 2nin.

PROOF. Let Xj and yj be the real part and imaginary parts of zj respec-
tively for j = 1, 2. Then

Because X is injective, we have x, = x, and eiv. = eiy¿. Therefore an integer n
exists such that y2 = yl -)- 2nn. Hence z2 = z, + 2xin, q.e.d.

Consequently, , the 1. Case in the proof Lemma 5.10 is impossible and
we have a = 27r in the second case.

6. - The parabolic mapping theorem.

Let (M, 7:) be a strictly parabolic manifold of dimension m. Then the

center M[0] consists of one and only one point denoted by 0 = OM . . Let d

be the maximal radius of the exhaustion 7:. We continue the same assump-

tions, , conventions and identifications as in section 5. In particular
Cm = Z,(M) = T,,(M) are identified such that qo is the identity. Also xo

is the hermitian metric on Cm. The square length is given by To in (4.20).
As before Cm(r) denotes the open ball of radius f and center 0 in respect
to io. Abbreviate E = C(J) and E* = B - {01. Also = C-l&#x3E; is the

unit sphere in em.

THEOREM 6.1. For each w E Pm-I’ the leaf L[W] 18 a proper, clo8ed, complex
submani f oZd of complex dimension 1 of M*. The closure L[w] = L[w] U {o}
of L[w] in M is a proper, closed, complex submanifold of complex dimension 1

of M. There exists a proper, -gurjective, differentiable map b : Ex S -+ M

satisfying the following conditions.
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PROOF. The exponential function maps D onto E*. By (5.25) the surjec-
tive map w : D x S -* M* of class C°° factors to a surjective differentiable
map b : D* x 8 --* M* such that (7) holds. If $ c- S and w = P($), the map
w(O, $) : D - L[w] is locally biholomorphic and surjective. Hence b(O, $):
E* ---&#x3E;- L[w] is locally biholomorphic and surjective. By Lemma 5.15,
t)(D) is injective. Hence b(D, $): B* ---&#x3E; L[w] is biholomorphic. For each

$ c- S, define b (0, $) == 0 c- M. Then (6), (8) and (9) are trivially true for
z = 0 respectively t = 0. If 0 0 z E E and $ E S, then u E D exists such
that z = e’. Let x be the real part and y be the imaginary part of u. Then

If a E R, then

If t E jR(0, d ), define x == log t. Then

Therefore (2), (6), (7), (8) and (9) are proved.

Let E be a compact subset of M*. Then Ki = )a-’(K) is a closed subset of
E* X S. Let a &#x3E; 0 be the minimum of -B/--r on K and let p  d be the maxi-

mum of B/r on K. If (z, $) e Ki, then a2  1(b(z, $)) = ]z)2  fl2. Hence KI
is contained in the compact subset (C[fl] - C(a)) x S of E X S. Therefore

Ki is compact. The map b : E* x S --* -11* is proper. Hence (1) is proved.

Let U be any open neighborhood of 0 E M. Take an open neighborhood V
of 0 E M with 0 E V c V c U such that V is compact. A number E &#x3E; 0
exists such that T(p) &#x3E; 82 for all p E 3V. Since M(£) is connected with

0 E M(E), we conclude that M(e) C; V. If (z,) E C(s) X S, then ]z I  E and
b (z, ) E M Iz I&#x3E; c M(8) c U. Hence b is continuous at every point of {0} X S.
The map b : E X S - M is continuous. Take a compact subset .K of M.

Let fl  L1 be the maximum of ili on K. Then gl = b-1(K) is a closed

subset of E x S. If (z, $) c- Kl, then i(b(z, $)) fl2. Hence Iz I  fl and K,
is contained in the compact subset C[fl] X S of E x S. The set JE’i is compact.
The map b : E X S - M I s proper.

Take $ e S and define w = P(). Then b(O, $): E - M is continuous
on E and holomorphic on E*. Hence b(O, E --&#x3E; M is holomorphic. Take
z E E. If z = 0, then f (b(O, f(O) == 0. Hence (4) holds. If z =A 0, then
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n E D exists with e’ = z. Also

Therefore (4) is proved.

If 0  t  ro and $ c- S, then Lemma 5.13 and 5.20 apply. Hence

where b(t,) c- U, C: Cm. Under the identification I

obtain

which proves (5).
Take c- S and define w = P($). Because b : E* x S --&#x3E;- JiI * is proper,

also b(0, $): E* --&#x3E; .ltT* is proper where b(0, $) : E* ---&#x3E;- L[w] is biholomorphic
with b’(z, $) # 0 for all z E E*. Hence L[w] carries the induced topology
from M* as the manifold topology and is a closed subset of J.1[*. Thus L[w]
is a proper, closed complex submanifold of dimension 1 of M* and b(O, $) :
E* -+ L[w] is biholomorphic. Because b(O, $) = 0 and because b(D, $):
E ---* M is continuous, L[w] = L[w] U {0} is the closure of L[w] in M. Also
L[w] continuous ZM as an analytic set on M where b(D, $): E - .L[w]
is bijective and holomorphic. Since b’(o, $) 0, the point 0 is a simple point
of L[w] and L[w] is a proper, closed, complex submanifold of dimension 1
of M such that b(0, $): E --&#x3E; -L[w] is biholomorphic. Therefore (3) is proved.

By (8) and (4.19) b maps C(ro) xS into M(ro) c U3. Hence b can be

considered as a vector function b : C(ro) x S ---&#x3E; Cm. Take 0  r  ro and

(z, $) c- C(r) x S. Then

Therefore b is of class C°° on C(r) X S. Consequently b : E X S - M is a

map of class C°°, q.e.d.

Again identify Cm = To(M) = %o(M). Then the ball C",(,J) is an open
subset of the real tangent space of M at 0. Recall the homeomorphism
h: C-(,J) --&#x3E;- M defined in Theorem 4.6 with h(t, $) = q(t, $) if t E R[O, 4)
and $ E S.

THEOREM 6.2. (D. Burns) The homeomorphism h: Cm(L1) - M is a dif-
f eomorphism. In fact h = expo is the exponential map at 0 E M. If L1 = 00,
then M is complete in respect to the Kaehler metric.
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PROOF. Take 0 =F X c- To(M). Let cpx: R(ocx, (3x) -+ M be the maximal
geodesic through 0 E M. Then ax  0  fly and qJx(O) = 0 and cpx(O) == X.

Also and = - flx and According and f/J-x(t) == qJx(- t) . Define $ = XIIX ]in Sand c = )X] &#x3E; 0. According to (7’) section 4d) q(D, $) : R(O, J) ---&#x3E; X

is a geodesic. Then ’ljJ: R[O, LJfc) -+ M is a geodesic where y(t) = q(ct, $)
with V(O) == qJ(O, $) == 0 and Q(0) = cCP(O, $) == c == X. Hence (3x &#x3E; 4jc and

Also expo (0) = 0 = h(O). Therefore h : C-(,J) --&#x3E; M is the exponential map
and as such of class C°° and locally diffeomorphic at 0. By Theorem 4.6
the map h: C-(,J) ---&#x3E;- lVl is a homeomorphism and h: C-(,J) - {0} --&#x3E; X* a

diffeomorphism. Therefore h: Cm(LI) -+ M is a diffeomorphism; q.e.d.
Daniel Burns pointed out to me that h is the exponential map. Using

a special coordinate system along .L[w], he shows that .L[w] is totally geodesic.
Trivially 99(0, $): R[O, J) --&#x3E;- -L[w] is geodesic for each $ c- S with P($) - w.
Since L[w] is totally geodesic, q(D, $) is geodesic in M and Theorem 6.2
follows. Subsequently, I was able to prove Lemma 3.7 which yields The-
orem 3.8 and the result that L[w] is totally geodesic is not explicitly used
for the proof of Theorem 6.2 given here. Originally, , I failed to establish

Lemma 3.7. Hence a term did not cancel in the proof of Theorem 3.8.
The Theorem of Burns will improve the result considerably as can be

seen from announcement [17].

LEMMA 6.3. Take $ c- S. De finc ji : E - Cm(LI) by ji(z) = z$. Then

hoji = 0(0, $): E  X is holomorphic.

PROOF. Take $ E S and z E E,. Define zl Iz 1. . Then 

LEMMA. 6.4. Let H: Cm - C be a f unction of class Cp with 0 p E Z
such that H(wõ) == wpH(õ) f01’ all WEe and i E em. Then H is a homo-

geneous polynomial of degree p in õ == (Zl’ ..., zm) over C.
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PROOF. If p = 0, then H(wi) = H(õ) for all w E C and i E Cm. Take
w = 0. Then JT(0) == H(8) for all i E Cm. Hence is constant.

Take p &#x3E; 0 and assume that the lemma is established for p - 1. Dif-

ferentiation for z, yields H,,,,,(wi) = wp-’H,,,,(i) for all w E C and õ E Cm
where .gzu has class Cp-’. Hence Hzu is a homogeneous polynomial of degree
p -1 in I = (zl, .., zm) over C. Differentiation f or w implies

since (ojow)(ïõz/.l) == o. If we take w = 1, we see that H is a homogeneous
polynomial of degree p in 8 = (zi, ..., zm) over C; q.e.d.

LEMMA 6.5. Take r &#x3E; 0. For each i E C- define j3: C - Cm by j3(w) = wi.
Let H: Cm(r) - C be a functions of class C°° such that Hoji is holomorphic
on C(r) for each fized $ E S. Then H is holomorphic on Cm(r).

PROOF. An open neighborhood W of {0} X C’m in C-+’ is defined by

A function G: W - C of class C°° is defined by G(z, õ) - H(zõ). Take

i E Cm. If i = 0, then G(z, 0) = H(O) is constant. Hence G(0, 0) : C -7 C
is holomorphic. Assume that 5 0 0 and define = õ/ )8 in S. Then G(z, õ) =
== Hoj(z li 1) if )z ) I  r//õl. Hence G(O, 6): C(rl li 1) --&#x3E; C is holomorphic. For
each integer p &#x3E; 0, define a function G,: W - C of class C°° by

A function H,,: C- ---&#x3E;- C of class C°° is defined by Hp(j) = 0;p(0, õ). We have
the Hartogs series development

for all (z, j) E W.
Take WEe and icC-. If W == 0 or 8 = 0 or r = oo define s === 00.

If w 0 0 and a =A 0 and r  oo define s = rl(lwi 1). Take any z E C(s). Then
(z, wõ) E W and (zw, õ) E W. Therefore
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Therefore Hp(wõ) = Hp(õ)wP. By Lemma 6.3 .gp is a polynomial of degree p
over C in 8 = (z,,..., z,,,). In particular H,: C- --&#x3E; C is holomorphic.

For each t E R(o, r) define u(r) = Max I IH(j) I I li I t}. Take 0  t  s r

and set ()==t/sl. If Izll and li I  s, then (z, 8) e W and ]G(z, $) ] =
- ]H(z8 ) ]  p (s ) . Hence IHp(õ)lfl(s). If lilt, then 10ils and IH,,(i)l
- ()-p IH p( ()õ) 1 (j-P fl( s). Therefore the series

converges uniformly for all $ E Cm[t] for each t E R(O, r). The function H

is holomorphic on Cm(r) ; q.e.d.

THEOREM 6.6 (The parabolic mapping theorem). Let (M, r) be a strictly
parabolic ina&#x3E;iifold o f dimension m. Let L1 &#x3E; 0 be the maximal radius of the
exhaustion T. On Cm, de fine To: em -+ R+ by i{z) = Iz12. Then there exists

a biholomorphic map h : Cm(L1) - M such that roh = To.

PROOF. If d = oo , define or = T. If L1  oo , define or = Tj(L12 - T).
Then o’ is an exhaustion of .lVl with maximal radius oo and with ddc(J&#x3E; 0

on M. Therefore 1’VI is a Stein manifold. A proper, injective, smooth, holo-
morphic map k: M ---&#x3E;- C2m+l exists such that N = k(M) is a proper, closed,
complex submanifold of C2m+l . The map k : M -+ N is biholomorphic. Define
k == (k,, ..., k2M+l) and H, = k,o h: Cm(,J) -&#x3E; C for each It = 1, ..., 2m + 1.
For each $ c- S, define j;: C - Cm by ji(z) - z$. Then H/-loj;: C(L1) --&#x3E;- C

is holomorphic for each $ E S. By Lemma 6.5, H, is holomorphic on C-(,J).
Hence H = koh: C-(,J) -* N is a holomorphic diffeomorphism and con-
sequently H: Cm(L1) ---&#x3E; N is a biholomorphic map. Hence h = k-10H:

Cm(4) - x is biholomorphic with To = Toh by Theorem 4.6, q.e.d.

REMARK 1. The biholomorphic map h is an isometry of exhaustions
To = Toh and of Kaehler metrics h*(dd-,-r) = ddc-r,,.

REMARK 2. The map h can be defined a priori. Let x be the Kaehler

metric on lVl with exterior form ddc,-r. The center if[0] consists of one

and only one point 0. Then x defines a hermitian metric xo on the holo-

morphic tangent space ZO(M) at 0 c- M. Define To(Z) == xo(z, z). Consider

Cm(L1) as the ball in Z,,(M) defined by io(z)  L12. Identify the real tangent
space To(M) with Z,(X) such that qo is the identity. Then h = expo:

Cm(,J) ---&#x3E; M is the exponential map.

REMARK 3. A weaker version of Theorem 6.6 was announced in [17]
and Theorem 6.6 was obtained only for those exhaustions with holomorphic
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vector field f. D. Burns observed that the leaves L[w] are totally geodesic
and that therefore h is the exponential map. Once h is recognized to be
differentiable at 0 the biholomorphy of h follows easily. As a consequence f
is holomorphic. A variation of the proof of Burns was given here. His

contribution, which led to a considerable improvement, is gratefully acknow-
ledged here.

Appendix. 

a) Proof of Theorem 4.1.

Take xo E M[O, 11). Then 3(zo)  4 . Take r with 3(zo)  r  z!. Since

M[O, r] is compact, a point Xl E M[O, r) exists such that ð(Xl)  6(x), for all
x E M[o, r]. Then 6(x,)  3(zo)  r. Hence x, E lVl[o, r). If Xl E 31(0, r), then
dð(xI’ v) = 0 for all v E TXl(M) which contradicts dð(X1’ Y(x,)) = 1. Hence

x, E MO&#x3E; = S. The set S is not empty.
A number q,, &#x3E; 0 exists such that db (x, Y(x)) =A 0 for all x E lVl (- qo , J).

Hence 6 has no critical point on M(- qo, 4 ) and Mr&#x3E; is a proper, compact
differentiable submanifold of lVl for each r E R(- ro, d ).

1. Step. The construction of the now (p. For each q E M select a local
one parameter group

of diffeomorphisms of Y such that 10, 20 and 30 hold and such that q E U,,.
Then

is an open neighborhood of {o} x X in R X M. Therefore there exists a

positive continuous function pi on X such that

is contained in Vo- Here VI is open with

Take (to, po) E VI. Then q E X exists such that
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Then tpq(D, Po) and gg,,(E], p.) are integral curves of Y with CPq{O, Po) = Po ==
= q8(0, po). Hence tpq(t, po) = q;,(t, po) for all t E R(- 8q, 8qfn R(- 88, 88). *
In particular, ggq(t., Po} = tp’(to, po). Therefore cp: V, - M is well defined

and differentiable. We have

(30) For each (to, po) E Vl, there exists an open neighborhood U(to, p.)
of po in M such that

is a difleomorphigm onto the open image.

Proof of (3°). Take qEM with (to,Po)ER(-8q,8q)XUq. An open

neighborhood U(to, po) of po exists such that U(to, Po) ç Uq and such that
- (!l(P)  to  (!l(P) for all p E U(to, po). Hence q;(to, p) = ggq(t,,, p) for all

p- E U(to, po) and

is a diffeomorphism onto the open image set, which proves (30).

is an open interval with 0 E I. Define A: I -&#x3E;- lVl and p: I --&#x3E;- lVl by A(t) =
= 99(t -)- s, p) and p(t) = 92(t, q;s(p)) for all t E I. Then , and ,u are integral
curves of Y with A(O) = 99(s, p) = q;(O, 99.,(p)) = u(O). Therefore A == fl,
which proves (4°).

Take p E M. Then there exists one and only one differentiable extension
of q;(D, p) again called q;(D, p) to a maximal interval R(- et(p), e2(p))
such that
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Observe that - Q,(p) was kept fixed. Define

Then TiC V2. As above, the assertion (4*) is easily proved:

Let Vg be the set of all interior points (t, p) of V2 such that is of class C°°
on a neighborhood of (t, p) and such that is a local diffeomorphism at p.
Then Y3 is an open subset of V2.

Proof of (5*). For each p E lVl define

Then h(t, p ) &#x3E; t. Take s E R with

exists such that

. 

Because R[O, r] x {Po} is a compact subset of Va, an open neighborhood Uo
of po exists such that R[O, r] x Uo c V,. Then R(- el(p), r] x{p} ç V3 for
all p E Uo. Hence e3(p) &#x3E; r for all p E Uo. Since h(r, 0) is continuous on
Uo, an open neighborhood Ux of po with U1ç Uo exists such t.hat s h(r, p )
for all p E U,. Then

is open in R X Ul . A differentiable map z: -W --&#x3E;- .M is defined by

because



147

Hence 99(t, p) = z(t, p) in a neighborhood of r. The maximality of (22(P)
implies h(r, p)  (22(P) and 99(t, p) = X(t, p) if r  t  h(r, p). Because s  h(r, p)
for all p E UI we have og = x on R(r, s) X U,,. Hence R(r, s) X U, C; Int V,
and is differentiable on R(r, s) X U, with

Because (r, p) E Va, the differential dpr(P): Tp(M) -+ is a linear iso-
morphism. Since (t - r, gg,.(p)) c- Viy the differential dpt-r(p(r, p)) : Tg,(,,v)(M) --*
--* Tg,,(,)(M) is a linear isomorphism. Hence dpt(p): T(M) - Tq;t(’P)(M) is

a linear isomorphism. Therefore R(r, s) x U, C V,. In particular Q,,(p) &#x3E; 8
for all p E Ih which contradicts 9,(p,)  s. This proves (5*).

(6*) If (t, p) E V2 with t&#x3E; 0 and ð(p) &#x3E; 0, then ð(p(t, p)) = t + ð(p).

Proo f of (6*). First assume that b(p) &#x3E; 0. Since cp(O,p) = p, a largest
number Q4(P) E R(0, Q2(P)) exists such that ð(p(t, P)) &#x3E; 0 if 0t Q4(P).
Then p(t, p) E M(0, A) for all t E R[O, Q4(P)). Therefore

for 0  t  e, (p) - Therefore

Now consider the case 3(p) == 0. Because 6 has no critical points on
S = MO&#x3E; = 6-1(0), the set S has the structure of a proper, compact dif-
ferentiable submanifold of M bounding M(0, Z)). Hence a sequence {PI},Ac-N
with 3(pi) &#x3E; 0 converges to p. Take t with 0 C « (!l(P). A number Ao e N
exists such that 0  t  e, (pA) for all Â&#x3E; Âo. Therefore ð(cp(t, P;’)) = t +
+ ð(PA). Now A - oo implies ð(cp(t,p)) = t + b(p) for all t E R[O, el(p)).
A largest number (!4(P) E R(O, (!2(P)) exists such that ð(cp(t, p)) &#x3E; 0 if 0  t 

 Q,(p). As before we obtain 3(q(t, p)) = t + b(p) if 0« (!4(P).
Assume that (!4(P)  (!2(P). Then 6 (99 (Q 4 (P) I P)) = (!4(P) + 3(p) &#x3E; 0. The-

refore s E R((!4(P), (!2(P)) exists such that ð(cp(t, p)) &#x3E; 0 if t E R(O, s) which
implies S(!4(P). Contradiction! Therefore (!4(P) = (!2(P) which proves (6*).
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Proof of (7*). Take p E M[O,,J) and assume that r = (!2(P) + 3(p)  d.

Take t E R(0, Q,. (p)) - Then 6 (99 (t, p)) = t + 6 (p) and 99 (t, P) E M[O, r], which
is compact. A sequence {tl’l,,c-N with 0  tv C o2(p) exists such that tp --&#x3E;. O2(p)
and T(t,,, p) - q e M[0, r] for v --&#x3E;- oo. Take v E N. Then

is defined for all t E R with

with X(t,, p) &#x3E; = cp(tv, p &#x3E; and i(t, p) = Y(X(t, p)) and if;(t, p) _ Y(cp(t, p» . By
the maximality of 9,(p) we have

The limit v --&#x3E;- oo implies

which is impossible. Therefore (!2(P) + ð(p) &#x3E; L1. If 0  t  Q,(p), then

t + ð(p) == ð(cp(t,p)) L1. Hence (!2(P) + ð(p);L1. Together we obtain

(!2(P) -p b(P) = L1 which proves [7*).

2. Step. The construction of "p. Because S o 0 is compact, a number

,q &#x3E; 0 exists such that pi(p) &#x3E; ?y and dð(p, Y(p)) =F 0 if p e M[- q, 0]. Then
Y(p) =A 0 if p E M[- 77, 0). A differentiable map

is defined by y(t, p ) = 99(t, p ) for all t E R(- q, d ) and p c- S. Step 1 implies

Therefore points (1), (2) and (4) of Theorem 4.1 are proved.
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Proof of We have and

There-
Hencei 1

which proves

(5’ ) The map V: R[O, zi) x 8 -* M[0, zt) is injective.

Proof of (5’). If t c- R[O, J) and p c- S, then y(t, p) c M[O, J) by (3
Assume that 1p(to, po) = 1p(tI, PI) where (to, po) and (tl, pl) belong to R[o, d ) X S.
Then to = ð(1p(to, po)) = 6 (V(ti PI)) = tl Because 1p(D, po) and 1p(D, PI) are
integral curves of Y with 1p(to, po) = 1p(tl, p,) we have 1p(t, po) = 1p(t, PI)
for all t E R(2013 r, d). Hence po = 1p(0, po) = 1p(0, PI) = pi. The map 1p is

injective on R[O, s) x S, which proves (5).

(6’) The map 1p is locally diffeoneorphic at every point (to, po) E R[O, J) X S.

Proof of (6’). Define p, = 1p(to, po) E M[O, L1). Then ð(PI) = to &#x3E; 0 and
db(p,) =A 0. The map dcpto(po) : T,.(M) - T,,(M) is a linear isomorphism. Now
CPto = ?p,.: S -* Mt,,,&#x3E; implies that

This injective linear map is an isomorphism since Tp o (8) and Tp 1 (Mto»)
have dimension m -1. Identify the tangent space of R at to with R such
that alat = 1 at to. Then

Also d1p(to, po) ITpo(S) = d1pto(Po} ITpo(S). Hence the image of dy(to, po) con-
tains the linear subspace T,,,,(mto&#x3E;) - Here

Therefore Y(p,,) E T,,,(M) - Tpl(Mto») where

Hence d1p(to,Po): T(to,vo)(RxS) -- TV1(M) is surjective and for dimensions
reason a linear isomorphism, which proves (6’).

is a di f f eomorphism.
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Proof o f (7’). Let q be an accumulation point of 1jJ(R[O, Z)) X S). A se-
quence {(t,, p,)},.N of points (tv, p,) E R[0, zJ) X S exists such that 1jJ(tv, pv) -+ q
for v --&#x3E; oo. Since S is compact, we may assume that p, --&#x3E; p c- S for v --&#x3E; oo.

Then

Hence V (R[O, J) x S) is closed in M[O, J). By (6’), V (R[O, J) x S) is not

empty and open in the connected space M[O, L1). Hence

is a surjective map and consequently a diffeomorphism, which proves (7’)
If t E R[o, J), then 1p t: S - M  t) is an injective, local diffeomor-

phism. If qEMt), then q = V(s, p) for some (s, p) c R[O, J) x S. Hence

s = p)) == 6(q) = t. Therefore ’lpt(p) = q. The map ’lpt: S -+ Mt) is
also surjective and consequently a diffeomorphism; q.e.d.

Obviously, the number q &#x3E; 0 can be taken so small that

is a diffeomorphism onto the open image set.

b) Proofs of the properties of the double.

Proof of property 7&#x3E; : Define U = e-1( Ux) and Ûj = CANJ for j = 1, 2.
Define 6 = t-i( U§) and U1 = (R- X S) r1 U and U2 = (R+ X S) r1 U. Then

So ç U and So = (o) X S ç U. Define U* == Ux - {a} and U* - U§ - (0).
The restrictions

are diffeomorphisms with

for all e Ul . A difleomorphism f: C’ - So - 0 - 80 is defined by setting
I = t;:-loIoQ; on ();: Then I(();} == U; and tol = IOQ.

We have to show that f extends to a diffeomorphism I: fl - U. Take

a E So. A patch õ: Ua -- lI§ at a exists satisfying the properties
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Define h = Ioeoõ-l: lI§-U§ . If YEW, then h(t, y) = 0. Therefore a map
g: U§ -?- Rm of class C°° exists such that h(t, y) = tg(t, y) for all (t, y) e V X

X W = U§ . Then g == (gl, ..., gm) and h === (hI, ..., hm). If YEW, write

Y == (Y2’ ..., Ym). The Jacobian determinant of O in respect to these co-

ordinates is given by

Because e branches of order 0, we conclude that

The vectors g(0, y), gy,(Og y)g ... 9 gv,,,(O, y) are linearly independent for each
YEW; in particular g(o, y) :A 0 for all y e W.

A map ’: II3  R X S of class C°° is defined by

for all (t, y) c- V x -W = U5 - Let ( . ; ) be the inner product on Rm. Then

which implies A, == ... == Â.m = 0. The map F is a local diffeomorphism at
every point of {0} X W. Hence f = Fo8 is a local diffeomorphis mat every
point of So .
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If x E Û1 n Ua, then i(x) = (t, y ) with 0 &#x3E; t E V and y c W. Therefore

If x E CJ,, (B Ua, then i(x) = (t, y) with 0  t E V and YEW. Therefore

Hence f extends onto U, with J( Ua n So) c So. Hence f extends to a local
diffeomorphism CJ ---* 0. Because f : U - -&#x3E;. CT - Ag,, is injective. Also

f : CJ U is injective. Also f : S, -&#x3E; ig, is a local diffeomorphism. Hence

f: So 9,, is a diffeomorphism and f: Û -+ U is surjective. Therefore

f: fl- 0 is a diffeomorphism with tof === io 9 and f (CTj) = CT, for = 1, 2.
Consequently, f is an isomorphism of doubles over * ; q.e.d.

Now, property (8) follows trivially.

Proof of Property (9): Take a patch x: UX -+ lI§ of M at 0 with

1(0) = 0. Assume that U, is connected. Define

and regard Ml and .M2 as disjoint copies. Also let Ao; equal U* as a subset
of M; for j = 1, 2. Define A12 = 0 = A21 and Au = Mj for = 1, 2. Then

t; == t/A;o U; is a diffeomorphism. Define the diffeomorphisms y;o ==
= i-lorj: Ajo  AOi and yoj = y;,l for j = 1, 2. Define Ajj = M, and let

yjj: Ajj - A;; be the identity for = 1, 2. The assumptions of Theorem 17.1
in [1] are satisfied in the differentiable case. Therefore there exists a con-

nected, differentiable manifold N, open subsets Ni and diffeomorphisms
yj: M; - Nj such that N = No U N, V N2 and such that yj(Aii) = yi(Aji) ==
Ni r) N, if Aij:* 0 and such that y-;loy; = Î’ii: Au -* Au if A; 0.

For j=1,2, the map

is a diffeomorphism. The map
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is of class C°°. Observe Ni n N2 == 0. Take x E N,,, n N; vPith j = 1 or 2.
Then x == yj(y) with y E Ao f and

Hence oo(z) = 3c-loroyo I(x) = y = y, 1(x) = ei(x). One and only one map o
of class C°° is defined such that 9 INj = ej for j = 0, 1, 2. In particular
Ceo = o yo x. Hence

is a proper, compact, differentiable submanifold of N such that N = N, U
U N2 U rSo is a disjoint union. The restrictions

are diffeomorphisms. Hence

map o is surjective.
Let jS" be a compact subset of M. Let V be an open neighborhood of

0 c- M with V C V c U,, such that V is compact. Then K, = K n V and
K’= K - V are compact subsets of N with K = .Ko U K. Here Ko c U.,
and K’ c M*. Hence l(K’) are compact. Since Ioeo = toy;t, the
map Q,,: Mo --&#x3E; Ux is proper. Hence go = go l(K,,,) is compact. Then e-1(K) ==
= £o U gl U f{2 is compact. Therefore 2 is proper. Because xoe(, = xoyo l,
the map go = e JNO branches of order 0 on So c No. Therefore (N, 2) is a

double of X at 0; q.e.d.
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