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The Characterization of Strictly Parabolic Manifolds (*).

WILHELM STOLL

1. — Introduction.

A non-negative function v of class C* on a connected, complex mani-
fold M of dimension m with A4 = sup V7 <oco is said to be a strictly para-
bolic exhaustion of M and (M, 7) is said to be a strictly parabolic manifold
if for every r € R with 0<r < 4 the pseudoball

M[r] = {w e Mz(x)<r}
is compact, if 7 < 4% on M, if dd°r> 0 on M and if
(1.1) ddclogt>0 (ddclogT)»=0

on M, = M — M[0] where d° = (i/47)(0 — 0). Here 4 is called the mawimal
radius of the exhaustion 7. On C™ define 7, by 7,(2) = |2|* for all ze C™.
For each r with 0 <7<+ oo let Cm(r) = {z € C™|7y(2) < 2} be the open
ball of radius » centered at 0. Then (C™(r), 7,) is an example of a strictly
parabolic manifold of dimension m and maximal radius 7.

THEOREM. If (M, t) is a stricily parabolic manifold of dimension m with
maximal radius A, then there exists a biholomorphic map h: C™(A) — M
with t, = 7Toh.

Thus h is an isometry of exhaustions 7, = roh and an isometry of
Kaehler metrics h*(dd°r) = dd°t,. Up to isomorphism the balls (Cm(r), 7,)
if 0 < r < oo and the euclidean space (C™, 1,) if r = oo are the only strictly
parabolic manifolds. In this respect, the characterization theorem resembles

(*) This research was supported in parts by the National Science Foundation
Grant M.C.S. 75-07086 and Grant M.C.S. 78-02099.
Pervenuto alla Redazione il 12 Dicembre 1978.
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the Riemann mapping theorem. I am greatly indebted to Daniel Burns
for remarks which improved the weaker results announced in [17] and
simplified the proof. More details on his improvements will be provided
further down in the introduction. Also in [17], only the case 4 = co was
considered, the extension to the case 4<oo posed no preblem.

R. E. Greene and H. Wu have developed an extensive theory of non-
compact Kaehler manifolds. See the survey [9]. Also Siu and Yau [15]
established a uniformization theorem. Although the characterization the-
orem fits well into this cirele of results, the proof proceeds along different lines.

If the condition dd°r > 0 is replaced by the condition (ddct)” % 0,
the manifold (M, 7) is said to be parabolic. On parabolic manifolds with
A = oo a successful theory of value distribution has been established by
Griffiths and King [10], Stoll [16] and Wong [18]. Each affine algebraic
manifold is parabolic with 4 = oco. If ¢: M — M is a surjective, proper
holomorphic map with dim M = dim M , then I is parabolic. The cartesian
product of parabolic manifolds is parabolic [16]. A non-compact Riemann
surface is parabolic with 4 = oo if and only if every subharmonic funection
bounded above is constant. The strietly parabolic case had special ad-
vantages in value distribution theory, which inspired these investigations.
The result explains the advantages.

The function log 7 is a plurisubharmonic solution of the complex Monge-
Ampére equation (1.1). The complex Monge-Ampeére equation (ddcu)™ = 2
has been investigated intensively in recent years and has led to a number
of important applications. Yau [21] solved the Calabi conjecture. The
pertinent remark in [17] has been made obsolete by Burns’ contribution.
Other applications were in the theory of biholomorphic mappings. The
PDE of Monge-Ampeére equation is difficult because of the non-linearity
of the equation. The characterization theorem is a surprisingly smooth
result on the Monge-Ampére equation. The proof uses a foliation method
already investigated by others, for instance Bedford and Kalka [4].

Let (M, ) be a strictly parabolic manifold of dimension m. Then the
center M[0] consists of one and only one point denoted by 0 = 0,. (The-
orem 2.4). The maximal integral curves of the vector field grad vz on M,
are bijectively parameterized by the unit sphere § in C™ (Section 4d). The
integral curve assigned to £ 8 is complexified to a complex submanifold
L(¢) of dimension 1 in M,. The foliation {L(£)}sg 0f M, coincides with
the foliation of My by the annihilator of dd°log 7. The vector field f dual
to Or under the Kaehler metric » defined by dd°r > 0 is tangent to the
leaves L(£) and holomorphic on the leaves L(£). The center piece of the
proof is the determination of the leaf space of this foliation (Theorem 5.14).
This leaf space is the complex projective space P,_, obtained as the quo-
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tient space of the Hopf fibration P: § - P,,_,. If £, €8 and &,€ 8, then
L&) = L(&,) = L[w] if and only if P(§,) = P(§,) = w. As a consequence,
each leaf L[w] carries the induced topology and is a closed, smooth complex
submanifold of M,. Also the closure L[w] = L{w]U {0} of L{w] in M is
a closed, smooth complex submanifold of M with the induced topology.
Also the £ € 8 with P(£) = w are the tangents of length one to L{w] at 0
(Theorem 6.1). From here the results as announced in [17] can be easily
established. A homeomorphism h: C™(4) - M exists with 7, = toh such
that h: C™(A4) — {0} — M, is a diffeomorphism. Also h: C(4)& — L[w] is
biholomorphic if £ € § and w = P(£). If f is holomorphie, then h: C™(A4) — M
is biholomorphic. Also if  is differentiable at 0, then A is biholomorphiec.

Here Daniel Burns showed that each L[w] is totally geodesic. Since
the integral curves of grad (V7|L(§)) are trivially geodesic, the integral
curves of grad vz are geodesic and h = exp, is the exponential map if
C™(A) is interpreted as a ball in the tangent-space at the center point 0.
Hence & is differentiable at 0 and consequently biholomorphie. Burns con-
structs a special coordinate system around L(w) for his proof. Here an
intrinsic variation of his proof is given (Lemma 3.2 and Proposition 3.8).
Originally, I failed to establish Lemma 3.7. However once the lemma was
proved, it is easy to compute directly that the integral curves of grad vz
are geodesic.

I want to thank Daniel Burns for the interest in this problem and I
acknowledge the considerable improvement of the results and the simpli-
fications in the proof which are due to his contribution. Originally, I had
assumed that M[0] consists of one and only one point. I want to thank
Alan Huckleberry for suggesting that this assumption may be a consequence
of the other axioms of a strictly parabolic exhaustion, which turned out
to be so.

2. — Parabolic manifolds.

a) Definitions.

Let 8" be the n-fold cartesian product of the set 8. Let #S be the car-
dinality of 8. Let d be the Kronecker symbol on 8. Thus §,, = 0 and J,, =1
if ve S and x4 ye 8. If § is partially ordered, define

Sla,b] = {xeSla<w<b S(a,b) ={reSla<a<b}

Sla,b) ={reSla<e<b} S(a,b] ={xeSla<z<b}
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where a and b may belong to a larger partially ordered set. For instance
Rt =R(0, +00) ={weRjz>0} R, =R[0,+00) ={zreR[x>0}
R-=R(—00,0) ={weRjz< 0} R_=R(—o00,0]={reRjx<0}.

Let v be a non-negative function of class C* on a connected, complex
manifold M of dimension m. For 0<r <+ oo define

M[r] ={we Mpr(x) <r}} M(r)={we Mr(z)<ry
My = {ze Mr(x) =7} M, = M— M[0].

Then M[r] and M(r) are called the closed and open pseudoballs of radius »
for 7 respectively and M<(r) is said to be the pseudosphere of radius r for 7.
Also M[0] is called the center of v. Define A4 = supV/7< -+ co. Then 7 is
said to be an exhaustion, if 0 <7< 42 on M and if M[r] is compact for all
r € R[0, 4). Here 4 is called the maximal radius of the exhaustion and the
exaustion is said to be bounded if 4 < + co.

The non-negative function 7 of class C” on M is said to be semi-para-
bolic if

(2.1) ddelogt>0 (ddclogt) =0

on M. If ke N[1,m], we have

(2.2) ddet >0 on M

(2.3) T?dde log v = rdd°t — drNd°t on M,
(2.4) TH(dde log 7)* = t(dd°1)* — kdr AdeT A\ (ddeT)* on My
(2.5) T(ddeT)™ = mdrAd° T A\ (ddeT)! on M.

A semi-parabolic function 7 is said to be parabolic if (dd°r)™#0 on M and
if M[0] has measure zero. A semi-parabolic function 7 is said to be strictly
parabolic if dd°r > 0 on M. If 7 is an exhaustion and if 7 is semi-parabolic
or parabolic or strictly parabolic, then 7 is said to be a semi-parabolic, resp.
parabolic, resp. strictly parabolic exhaustion and (M, t) is called a semi-para-
bolic, resp. parabolic, resp. strictly parabolic manifold. This conceptual strue-
ture permits us to separate the local properties of the solutions of (2.1) from
the exhaustion properties.

Let v be a semi-parabolic exhaustion. As shown in [16] a constant
¢>0 exists such that

(2.6) (ddeT)™ = | (dd°T)™ = grzm
M’[[J M‘([)
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for all »>0. Define
(2.7) €, = {re R*|dz(x) # 0, Yo e M{r)}.

Then Rt — €, has measure zero. If r € €,, then M{r)> is a smooth oriented
submanifold of M with 0M(r) = M{r). If M{r) is oriented to the exterior
of M(r), then

(2.8) Iy =fd log T A (ddec log 7)m—1
MLy

for all € €,. The semi-parabolic exhaustion 7 is parabolic if and only
if ¢ > 0. If the exhaustion 7 is strictly parabolic, then M is Stein and
€, = R* by (2.5).

In the case 4 = + oo, parabolic manifolds were introduced by Griffi-
ths and King [10] and studied in [16]. Any affine algebraic manifold is
parabolic with 4 = oo [10]. The product of parabolic manifolds is para-
bolic [16]. Parabolic manifolds are important in value distribution the-
ory [10], [16], [18]. For z € C™ define 7,(2) = |2|*; then 7, is a strictly para-
bolic exhaustion of C=.

b) Properties of the center and the sphere volume.

A biholomorphic map 3 = (2% ...,2"): U, — U; of an open subset U,
of M onto an open subset U; of C~ is said to be a chart. If a € U, then 3
is called a chart at a. Let v be a semiparabolic function on M. On U, ab-
breviate
0 o 0 0

2.9 - oy T T e T AT ees T
( ) Ty lip 5y - o9p et 02M 03" 0z'» T

We shall use the Einstein summation convention. Then

(2.10) 0t = tudet  Ov = T,d7
(2.11) drNdet = L 0TA\OT = . TuT; d2A N\ d2
2n 27
) )
2.12 NP S T
(2.12) dder = 5 00T 5. Tus 4\

Let H = (z,;) be the associated matrix and H* be the matrix H without
the p-th row and the »-th column. Define 7 = det H>0 and

(2.13) Tw = (— 1)+ det H* .
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Define 7,: C™ — R, by 7,(2) = |2|* for all 2 C™ and define

(2.14) vy = 3H(ddTy) = = > derN\dE.
ZT[,‘=1

Then

(2.15) o = (ﬁ) m dANdEN ... \dem A\ dE"

(2.16) (dde 7)™ = Tw™.

Define

{5 = den Nd2P N\ dinag it nFEY

v#EAFEp

Lo= N dPNdz.

AFp
Then
7 \m—1
(2.17) (dde)ymt = (i) (m — 1)1 Twil ;
27
(2.18) mdr Ader A\ (dder)™t = T, 70y .

If 7 is strietly parabolic on the open subset U = @ of M, then dd‘r > 0
defines a Kaehler metric » on U. The matrix H is invertible on U N Uj;.
Lett H-1 = (7*) be the inverse matrix., Then 7> 0 and 7** = T»/T on
UnN U;. Now (2.5), (2.17) and (2.18) imply

LeMmA 2.1. Let 7 be a semi-parabolic function on M. Let 3 be a chart
on M. Then

(2.19) T =7, T, on U,.

If v is strictly parabolic on the open subset U of M with U N U5 @, then
(2.20) T=T17"7, on UN TU,.

In particular /7 is the length of @7 and 0v in respect to the Kaehler
metric % on U. Also (2.20) is the fundamental identity concerning strictly
parabolic functions. The identities (2.5), (2.16) and (2.18) prove Lemma 2.1
trivially.

Now, the center shall be investigated. Let A(U) be the algebra of all
complex valued functions of class C® on the open subset of M. Take ae U.
Then m, = m,(U) = {f € A(U)|f(a) = 0} is an ideal in A(U). If 3: U; — U;
is a chart at ¢ with 3(«) = 0 and with UC U, such that 3(U) is convex,
then 2%,...,2m, 21, ..., Z» generate m, in A(U). If 0<q<p are integers and
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if f € m? then the ¢-th order derivatives of f belong to m2~% If K is com-
pact in U and if fem], then there exists a constant ¢> 0 such that
|[fl<el3|” on K. If B is a matrix, let !B be the transposed matrix.

PROPOSITION 2.2. Let t be a semi-parabolic function on M. Take a € M[0]
and assume that dd°t(a) > 0. Let 3: Uy — U; be a chart at a with 3(a) = 0.
Assume that U; is convex. Define m, = m,(U,). Then there exists a function
Remd such that

(2.21) T = 1,(a)2¢2" + B on U,.

ProoF. Define H, = H(a). Consider z = (2, ...,2™) as a matrix. Iden-
tify U, = U; such that 3 is the identity. Then 7 has a minimum at a with
7(a) = 0. Hence dr(a) = 0. A constant symmetric matrix B over C and
a function R em? exist such that Taylor’s formula at a is given by

©(2) = }2B(%2) + 32B(%) + 2Hy(%) + R(2)
for all ze U,. Define ey = (8, ..., Oun) € C». Then
Tu(2) = euB'%2 4 euH,'Z + R,u(2)
7,5(0) = 7;5(a) + R,.(2)
for all ze U;. Hence

lim A—27(A2) = }2B(%z) + 3zB(2) + 2H,(2)

0<i—>0

lim A-17,(A2)

0<A—>0

I

euB('2) + euHy('Z)
lim 7,5(A2) = 7,5(a)
0<A—>0
lim 7#(A2) = v#(a).
0<i—>0
Therefore (2.20) implies
32B(%2) + 32B(7) + 2Hy(*2)
= (ZB + 2*H,)H; ' (B('2) + H,(2))
= ZBH; ' B('z) + 2B(%) + #B(%) + 2H,('z) .

Hence 3B = B and BH;'B = 0. Therefore B = 0; q.e.d.
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Hence the Levi form of 7 at @ coincides with the Hessian of 7 at a.

ProPOSITION 2.3. Let v be a semi-parabolic function on M. Take
a € M[0] and assume that dd°r(a) > 0. Then a is an isolated point of M[0].

Proor. Let 3: U, — U; be a chart at a with 3(a) = 0. Then (2.21)
holds. Because dd°r(a) > 0, a constant ¢ > 0 exists such that

rﬂ;(a)zﬂ2”>2c|3 [ on Uj.

Let U be an open neighborhood of a such that U is compact and contained
in U;. A constant q > 0 exists such that |[R|<q[3|* on U. An open neigh-
borhood V of a with V C U exists such that gj3|<<¢ on V. Hence

T>2¢3* — qlzP > e3> 0

on V — {a}. Therefore M[0]NV = {a}; q.e.d.
In particular, a strictly parabolic function is parabolic.

LEMMA 2.4. Let S be a compact subset of a connected manifold M. Then
there exists a connected, compact subset K of M with SC K.

PRrOOF. For each a € 8 select a connected, open neighborhood U(a) of a
in M such that U(a) is compact. Finitely many points ay, ..., a, exist in
such that 8C U(a,) U ... U U(a,) = U. Then U is compact. Let L, be the
trace of a curve from a, to a; in M. Then L; and L=L,VU..UL,
are compact. The union K = LU U is connected and compact with
SCKCM,; q.e.d.

THEOREM 2.5. Let (M, t) be a semi-parabolic manifold. Assume that
ddt> 0 on My. Then the center M[0] is connected and not empty. Also
M(r) is connected for each r € R(0, A4).

Proor. For each r e R(0, 4) let N(r) be the set of connectivity com-
ponents of M(r). Define n(r) = #R(r).

1. Cuamm: If re R(0,4) and N € N(r), then N N M[0] = 0.

Proof of the 1. Claim: Define m= dim M. If m > 1, define g = 7™
If m =1, define g =logz. If m =1, then dd°g =0 on M,. If m>1, then

ddcg/\ (ddc t)m-l —_ (m —_ 1) T—m—l(md-r/\dc T/\ (ddcr)m—l _ T(ddc T)m) =0
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on M,. Hence g is a solution of an elliptic differential equation on M,.
If M{0]N N =@, then N is a compact subset of M, with g = r>*™ on
ON if m >1 respectively g = logs? on oN if m =1. By the maximum
principle g is constant on N. Hence 7 is constant on N which contradicts
dd°r > 0 on N. Therefore N N M[0] 0. The 1. Claim is proved. In par-
ticular, M[0] = 0.

2. CuamM: If re R(0, 4), then 1<n(r) < oco.

Proof of the 2. Claim: Since 0= M[0]c M(r), the set N(r) is not empty.
Hence n(r)>1. Since MN(r) is an open covering of M[0], finitely many
elements N,,..., N, of N(r) cover M[0]C N, U ...UN,. If N eN(r), then
NN M[0]# @ implies N = N, for some A. Hence (r) is finite. The
2. Claim is proved.

3. CramM: The function « is constant on R(0, 4).

Proof of the 3. Claim: Take 0 <r<s< A. Define j: N(r) — N(s) by
J(N)2 N for all N € N(r). Take @ € N(s). Then a e Q N M[0] exists. Take
N eN(r) with ae N. Then a €j(N) N Q. Therefore j(N) = ¢. The map j
is surjective. Hence n(r)>mn(s). The function n decreases.

Take r € R(0, A). We shall show that » is constant in a neighborhood
of r. Let N,,..., N,, Dbe the different connectivity components of M(r).
Take A€ N[1, n(r)]. Since M[0]N N, = M[0] N N, is compact, a connected,
compact subset K; of N, exists by Lemma 2.4 such that M[0] N N,C K.
Then K = K, U...U K, is a compact subset of M(r). A number s, € R(0, r)
exists such that r<sZ on K. Take any se R(s,,r). Take Ae N[1,n(r)].
Then K;C M(s). One and only one N, e %(s) exists such that K,c N;.
Take N € N(s). Then a € N N M[0] exists. Also a € N, N M[0] for some A.
Hence ac K,c N,. Therefore N N N, § which implies N = N,. Con-
sequently, N(s) = {N;]A =1, ...,n(r)} and n(s)<n(r). Because n decreases
n(r)<n(s), hence n(r) = n(s). The function » is constant on R(s,, r].

If n(r) =1, then 1 <n(s)<n(r)<1 for all s € R[r, 4). Then = is constant
on R(ry, A). Consider the case n(r)>1. Take integers j and k with
1<j< k<n(r). Assume that N, N\ N, @. Then =xeoN; N 0N, exists.
Since 0N,C M{r> and since M{r) is the smooth boundary of M(r) and of
M — M[r] an open neighborhood U of x exists such that UNN,; =
=UNMr)=UNN,>= 0. Hence N, N N,# @ which contradicts j+# k.
Therefore N, N\ N, = 0.

Open sets U; with N, c U, exist such that U, is compact and such that
U.nU,=0if A u. Then U= U, U...U U, is an open neighborhood
of M[r] and oU = oU, U ... U dU,, is compact. A number s,>r Wwith
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8, < A exists. such that r7>s; on dU. Take any se R(r,s,). The map
j: N(r) — N(s) defined by j(N)2 N is surjeetive. Define P, = §(N;). Then
N(s) = {Pa]d =1, ..., n(r)}. Since v>s>> s* on 0U;, the sets P, — U; =
= P, — U,and Py N U, are open with = N, C P, U,. Hence Py — Us— 0
and P,C U,. Therefore Py P, if A5~ u, which shows #n(s) = n(r). The
function » is constant on R(sy, s,). The locally constant function » is con-

stant on R(0, 4). The 3. Claim is proved.
4. CLAamM: M(r) is connected for each v € R(0, A).

Proof of the 4. Claim: By Lemma 2.4 a connected, compact subset K
of M contains M[0]. A number s € R(0, A4) exists such that K ¢ M(s). One
and only one N € 9¥(s) exists such that K c N. Then M[0]c N. If P e R(s),
then PN M[0]s~ 0. Hence P N N s~ @. Therefore P = N. Consequently
n(r) = n(s) =1 for all r € R(0, 4). The 4. Claim is proved.

5. CrnAiM: M[0] is connected.

Proof of the 5. Claim: Let U and V be open subsets of M such that
M[0]C UV YV, such that UNV = @ and such that M[0]N U~ 0. We
have to show that M[0]Jc U. Since M[0]N U = M[0] — V is compact,
an open neighborhood W of M[0] N U exists such that W is compact and
contained in U. Then M[0]NoW=490. A number re R(0,4) exists such
that »*<<7 on 0W. Then M(r)— W = M(r) — W and M(r) " W are open
with M(r) N W2 M[0] N U= 0. Because M(r) is connected, we conclude
M[0]c M(r)C Wc U. Hence M[0] is connected. The 5. Claim is proved;

q.e.d.

THEOREM 2.6. The center M[0] of a strictly parabolic manifold (M, )
consists of one and only one point denoted by 0 = Oy. For each r € R(0, A)
the pseudoball M(r) is connected.

Proor. By Proposition 2.3, each point of the compact set M[0] is an
isolated point. Hence M[0] is a finite set. By Theorem 2.5, M[0] @ is
connected. Therefore M[0] consists of one and only one point; q.e.d,

ProrosIitionN 2.7. If (M, 1) is a strictly parabolic manifold, then ¢ = 1.

Proor. Take a chart 3: U, — U, at Oy such that 3(0,) = 0, such
that U; is convex and such that 7.(Oy) = 0w. Then D = C"[r,]c U for
some 7> 0. Identify U, = U; such that 3 becomes the identity. Then

w = 0 e Cm Define 7,: C» - R, by 7(2) = |2|*. For each re R(0,r,)
define C(r) = {z € le |z] = r}. A constant s(r)> 0 exists such that 7 > s(r)?
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on Cm{ry. If 0<<t<<s(r), then M(t)NC*r> =0 and Oe M(t). Since
M(t) is connected, we conclude that M(t) € C(r) c D. ‘

Let A(U;) be the ring of functions of class * on U,. Let m, be the
ideal in A(U,) generated by 21,...,2™ 2, ...,2" Then R = v — v,emg by
Proposition 2.2. A constant ¢> 0 exists such that |[R(2)|<ec|z|® for all z € D.
Abbreviate 4 = C(1) and B = C~[2]. Take r,>0 with 2r, <7, and
2¢r, < 1. Define r, = Min (ry, s(r,)). Take r € R(0,7,). Then M(r)c C™(ry)C
cDcU,. Define A, on C™ by A(2) =1 if ze M(r) and A(2) =0 if
ze G™— M(r). A biholomorphic map y,: C» — C™ is defined by u.(2) = rz
for all e C™ Then u(B)cD. If A(rz) =1 with [2|>2, then rze M(r).
Hence |rz| <7, and

2> 7(r2) = r2fe|* + R(re)>r2e[*(1 — ere]) > r?
which is impossible. Hence A,(rz) = 0 if |z|>2. Therefore

grm = [(@@r)m =[2,(ad 0 = [(drop (@@ ).
M(r) D B

On B define y, by

i =
21e(2)= o R (rz)dzr NdZ .

With v, = dd°r, on C™ we obtain u}(dd°r) = r*(v, + x,). Because Remg,
a constant ¢; > 0 exists such that
B .. (2)|<ele| VYzeD.

Ll

Hence there exists a function g, of class ¢ on B and a constant ¢, > 0 such
that |g.|<C on B uniformly for all » € R(0, r,) such that

prdderyn = rim(1 4 rg)oy  and ¢ =[(Rom)(1 + rg,)vy
B

for all » e R(0, r,).
Take z€ A. Take r e R(0,r,) with ¢z[3r <1— |2[2. Then

T(rz) = r2fz|2 4 R(rz) <rfe|* 4 elz[>r® < r2.

Hence rz € M(r) and A.(u.2]) = A,(rz) =1. Therefore A,ou, -1 for r -0
on A. Take ze B— A. Take re R(0,r,) with cl¢*r < [¢|* —1. Then

T(rz) = r222 4+ R(r2)>r2je|2 — cle?rs > r2.

7 - Ann. Scuola Norm. Sup. Pisa Cl. Sci.
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Hence rz ¢ M(r) and 2,(rz) = 0. Therefore A,ou, —0 for r -0 on B— 4.
The bounded convergence theorem implies

¢ =|vg =1 q.e.d. .
A

3. — Local parabolic geometry.

a) Local Kaehler geomeiry.

Some remarks on local Kaehler geometry shall clarify the notation.
Let M be a complex manifold of pure dimension m. Let T(M) and T¢(M)
be the real and complexified tangent bundles of M respectively. Then T(M)
is a real subbundle of T¢(M). Let T(M) and T(M) be the holomorphic and
antiholomorphic tangent bundles respectively. Then T°(M) = (M) D T(M).
Let 7y: Te(M) — (M) and 7,: T(M) — ZT(M) be the projections. They
restrict to bundle isomorphisms #,: T(M) — (M) and 5,: T(M) — (M)
over R. The complex structure on M defines a bundle isomorphism
J: Te(M) — T<(M) over C called the associated almost complex structure
such that —JodJ is the identity and such that J|T(M) is the multiplica-
tion by ¢ and J|I(M) is the multiplication by —i. Also the restriction
J: T(M) — T(M) is a bundle isomorphism over R. If p € M and u € T (M),
then

(3.1) No(%) = ¥(u —iJu) m(u) = }(u + iJu).
Hence 7,0J = iy, and #,0J = — in,. The sections of T(M), T(M), T(M)

and T(M) are called real vector fields, complex vector fields, vector fields of
type (1, 0), vector fields of type (0, 1) respectively. The sections of A T(M),
n

N\ To(M), A\ T(M)A N\ T(M) are called real vector fields of type n, complex
n » /]

vector fields of type n and vector fields of type (p, q) respectively. The holo-
morphic sections of A\ T(M) are called holomorphic vector fields.

D
The cotangent bundles T(M)*, T¢(M)*, T(M)*, T(M)* are dual to T(M),
Te(M), T(M) and T(M) respectively with Te(M)* = T(M)*D T(M)* 2 T(M)*.
As usual denote

VM) =\ T(M)*  T"U(M) =\ (M)A NT(M)*.

n

The sections of T™(M) and T™%M) are called differential forms of degree
n respectively of bidegree (p,q). The holomorphic sections of A T(M)* =
D
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= T"°(M) are called holomorphic forms of degree p or bidegree (p,0). Let
(F1,0) be the inner product. If @ is a differential form of degree n and if
XeN\ T)}(M) with pe M, denote {w(p), X> = w(p, X). If X is a vector

field of type w, a function w(X) is defined by o(X)(p) = w(p, X(p)). If
X = X, A\...AX, write also w(p, X) = o(p, X,, ..., X,) respectively w(X) =
= (X, ..., X,). If X is a vector field of type 1 and if f is a function of
clags O1, then X acts on f by Xf = df(X).

Let 3: U, — U, be a chart on M. Then 3 = (2', ..., 2") with a# = Re z*
and y# = Fmeet. Then o/ox', o/dyY, ..., 0/ox™, 0[0y™ is a real analytic frame
of T(M) over R and of T<(M) over C on U, and da?, dy*, ..., da™, dy™ is the
dual frame. Also 9/0#, ..., 0/de™ is a holomorphic frame of T(M) and
0/0z1, ..., 9/0z™ is an antiholomorphic frame of T(M) over U, with dz', ..., dem

and dz, ..., dz" as the dual frames respectively. We have
0 0 0 .0 0 .0
0 0 0 . 0
(3.3) Mo (%) = oo Mo (a_yﬂ) =1 e

A vector field X and a differential form y on U, are written as

0 _ 0 -
(3.4) X = Xﬂ@ + X#@, Y =y, d2" + yydz.

These index and baring conventions extended to higher types and degrees.
A hermitian metric » on M is a function »: I(M)P T(M) — C of class
C* which restricts to a positive definite hermitian form », = »|T (M) D T,(M)
for each p € M. The associated differential form w of bidegree (1, 1) is de-
fined by w(p, X, Y) = (§/27)»,(X, ¥) for X €T, (M) and Y e T, (M) and
pe M. Then w> 0 and x» is a Kaehler metric if and only if dw = 0.
The Kaehler metric » defines a Riemannian metric ¢ on T(M) by

(3.5) 9(X, Y) = Re s, (1o(X), no(¥))

for X and Y in T,(M). Then ¢,(JX,JY) = g,(X, Y) and g¢,(X,JX) = 0.
Also g extends to Tj(M) such that g,: T5(M)@® To(M) — C is complex bi-
linear with g,(X, ¥) = 0if X and ¥ arein ¥,(M) or if X and Y are in A;L,,(M).
The Kaehler metric » induces a dual hermitian metric along the fibers
of T(M)*.
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Let 3€ U, — U; be a chart. Take pe U,. Take X and Y in Z,(M)
and y and y in T, (M)*. Then

(5.6) %X, Y) = h(p) Xu T
) _

(37) o = é?t hﬂ;,dzﬂ/\dz"

(3.8) oy, 1) = W*(D) puily

where (k%) is the inverse matrix to H = (h,;) = ‘H. The Kaehler metric
» defines a comnection in T (M) given by

(3.9) I'= (0H)H-* = T,des
where I, = (I'},) is a matrix with

(3.10) I* —=h- b = — b _h*

wy vz o gk

Also I'is the Riemannian connection of the associated Riemannian metric
and is given as such by I%, and IL =T} and by I? =1% =T% =
=TI% =1I% =T% =0 inrespect to the frame 3/32%, ..., 3/dem, 3/0%", ..., 8/czm
Because x is a Kaehler metrie,

(3.11) " =i,
The curvature tensor of x» is defined by

R. . =h, R

&Py Az gur *

=1

Bzt )

(3.12) R

pitv
The Ricei curvature and the Ricci form o are defined by

(3.13) E. = R = (logdetH),

s -
7 Bru uz?

(3.14) 0 = ddclogH = ﬁ Ry, dex @2 .

For each p, € M, there exists a chart 3: U, — U; normal at p, € U, such that

(3.15) h;(po) = 6,,,, = 1*(po)
(3.16) h52 (Do) = R z,.(Do) = B2(pe) = hZi(py) = O
(3.17) I (po) = 0.
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The connection I" defines a covariant derivative V. If X and Y are vector
fields on M, if ¥ has class C* and if 3: U; — Usl is a chart, then in the nota-
tion of (3.4) we have

0

(3.18) VxY = (YhX* 4+ YAXF + T, XY P

+ (YA X" 4+ YALX* 4 % X7 Y) aa

In particular if Y is of type (1, 0) and holomorphic and if X is of type (0, 1),
then Vz;Y =

Assume that — co<a < f<+ c0. A map ¢: R(e, ) -~ M of class O!
is called a curve and

0 =d<p( at)ETw(t)( )

is called the tangent vector at ¢(?) for each ¢ € R(a, 8). The curve is said to
be smooth if ¢(¢) %= 0 for all t € R(x, ). Let ¢: R(a, f) — M be a smooth
curve. Take a << a'<< f'<< f such that @|R[«,f'] is injective. A vector
field X of class C' on M exists such that Xop = ¢ on R[a/,f’]. Then
(VzX)op is independent of the choice of X on R[e', f']. The curve ¢ is
said to be geodesic if (VxX)op = 0 on R[a’, §'] for any such choice. A geo-
desic is of class C~.

Let @: R(a, B) — M be a smooth curve. Take a chart 3: U, — U3 and
an interval R(a, f,) With & <ay < < such that ¢(t) € U, for all t € R(oo, fo)-
Define 3op = (¢, ..., ¢™) and

(3.19) Ju = it + I

on R(ey, fo). Then ¢ is geodesic if and only if J# = 0 for u =1, ..., m and
all possible choices of «,, f§, and 3.

If —oco<d<a<y<p<f if p:R(a, ) - M and y: R(& f) — M are
geodesics with ¢@(p) = p(y) and ¢(y) = ¥(y), then p|R(e, f) = ¢ and p is
called an extension of ¢. There exists one and only one maximal extension.
Take pe M and 0% X € T,(M). Then one and only one maximal geodesic

Pxpt R(otxy fxs) > M with 0 € R(otx,, Bx»)
exists such that ¢g,(0) =p and ¢,(0) = X. A geodesic ¢: R(«, ) > M

is said to be complete if « = — oo and f = -+ co. The Kaehler manifold M
is said to be complete if every maximal geodesic is complete, which is the
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case if and only if p € M exists such that 8y, = + oo for all X € T (M).
If X =0, define By, = 4 oo and oy, = — co.

Take p € M. Then E = {X € T,(M)|fx,, > 1} is an open neighborhood
of 0 T,(M). The exponential map exp,: B — M is defined by exp, X =
= @x,(1) if 052 X € F and exp, (0) = p. Then exp, (tX) = gyx,(t) for all
XeE and all te R(ox,, fxy).- Open neighborhoods U of 0 in E and N
of p in M exist such that exp,: U — N is a diffeomorphism. Also exp,:
E — M is of class C°. If M is complete, then exp,: T,(M) — M is surjective.

Let N be a connected, complex submanifold of dimension n of M. This
means that N is a connected, complex manifold and a subset of N not
necessarily carrying the induced topology and that the inclusion map
t: N > M is differentiable and that the differential di(x): T (N) — T, (M)
is injective. The normal bundles T(N)t, T¢(N)* and I(N)' are defined
such that

T,(N)t = {zeT,(M)g(X,Y)=0 VY e T,(N)}
TyN)* = {we T(M)|g(X, Y) = 0 VY € T(N)}

TN): ={zeT,(M)x(X,Y)=0 VY eI, (N)} -

T(M)|N =T(N)D T(N)* T«(M)|N =T(N)D T(N)*
M|V =TN)D TN no(T(N)Y) = T(N)*.

The Kaehler metric x on M restricts to a Kaehler metric # on N. Let

I” and V, be the Riemannian connection and the covariant derivative asso-
ciated to #. Let B be the associated second fundamental form. If X and ¥
are vector fields of class C® on N, then B(X, Y) = B(Y, X) is a section of
class C° of T°(N)‘ which is in T'(N)* if X and Y are real and in (N)tif ¥
is of type (1,0). Also B is bilinear over C for complex vector fields and
bilinear over R for real vector fields and B(fX, Y) = B(X,fY) = fB(X, Y)
if f is a function of class C*. If U is open in M with NN U=~ 0 and if X
and Y are vector fields of class C° on N and if X, ¥ are vector fields of class
0° on M with XSINNU=X|NNU and YINN U= Y|NN U, then
B(X,Y) = V;(Y——\,GY on NN U. If X is a vector field of type (0,1)
on N and if Y is a holomorphic vector field on N, then B(X, Y) = 0.

The submanifold N is said to be totally geodesic, if each geodesic
@: R(x, f) — M such that there exists y € R(x, f) with ¢(y) e N and ¢(y) e
€ T,,)(N)is a curvein N. A submanifold ¥ is totally geodesic if B(X, ¥) = 0
for all vector fields of class C* on N. If there exist holomorphic vector fields
Z,y...;Z, on N such that Z,(p), ..., Z,(p) are linearly independent over C
for at least one point p € N and such that B(Z,, Z,) =0 forall y,» =1, ..., n,
then N is totally geodesic.
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b) The complex gradient vector field.

Let M be a connected complex manifold of dimension m. Let 7 be a
strictly parabolic function on M. Let » be the Kaehler metric defined by
dder > 0. Then there exists one and only one vector field f of type (1, 0)
and class C° on M such that x»(f, X) = 97(X) for every vector field X of
type (1, 0) and class C* on M. The vector field f is said to be the complex
gradient vector field of 7. If 3: U, — U, is a chart, then

(3.20) f=1 52—1‘ on Uj;.

If X is any vector field of type (1, 0) on M, then
f“t”;X’ = x(f, X) = 01(X) = ‘r;X"

on U,. Therefore we have

(3.21) f/‘-r:”; =17 ff=r17

[a3)

(3.22) f= 7,7 —

on U; and (2.20) implies

(3.23) T=frry =Pr; = frowf = x(f, f) .

.

Therefore v/7 is the length of f and f(p)+« 0 if p € M,.

Let g be the Riemannian metric associated to x». A real vector field
field grad v of class C* called the gradient of T is defined by ¢(X, grad 7) =
= dv(X) for all real vector fields X. Then (3.5) implies

Re #(1o(X), no(grad 7)) = g(X, grad 7) = dv(X)
= 2 Re 07(1y(X)) = 2 Re x(no(X), 1) -
Hence 2f = n,(grad v) and grad v = 2f + 2f. Take X = grad 7, then
(3.24) dr(grad ) = g(grad 7, grad 7) = 4x(f, f) = 47.
Now some local properties of the vector field f shall be proven. If X
is a vector field of type (1,0) and class C* on M, then 0X is a section of

FT(M)* @ T(M). The Kaehler metric » is an hermitian metric along the
fibers of T(M). Let #* be the conjugate dual hermitian metric along the
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fibers of T(M)*. The tensor product hermitian metric #*® » along the
fibers of T(M)*® T(M) shall be denoted by » again. Then the length
|0X]|, is defined. Let o be the Ricci form associated to the Kaehler metric x.

THEOREM 3.1.

ol P =5 13113

Proor. Take any chart 3: U, — U;. For any differentiable function ¢
use the convention (2.9). Then

(3.25) Ta”'it'“-ﬁ- + Ta”‘['uﬁ =0 y TM‘Z = - z‘ﬁl"tvﬂ‘[""' .

Hence (3.21) implies

(3.26) =t — T tw-ﬁ-rﬁ”

(3.27) i =T — T

(3.28) = T T T T — T, T — f”rvﬁatﬁl‘ —fra 7

(329) M =TTt =0, + 5.

The identity (3.23) implies

(3.30) 73 = TP + ol + gl

331) 7, =14uaP + vl + Bk + fingP + g + Pk

+ sty + Pty + Prrf,

Take p, € M. Then there exists a chart 3: U; — U; at p, which is normal

at po for ». Hence (3.15)-(3.17) hold for 7,; = h; and 7 = k™. At p, we

have the following identities.

(3.32) =1 f=< f=t; k=<

(3.33) f4=29,= }4;.

(3.34) gﬂ = fytvﬂa fi‘a = fer'g'via
m
(3:35) B =g B =2 g,

(836) b, =— Pl + Bl + gl + 0, — PR,
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which implies

(3.37) 1l = Fy751
We obtain
(3.38) 2mo(f, f) = iR, fofr = i Ef Tl
(3.38) =1 Zfl Tl = ifjT R
— i3 ged.

Hence f is holomorphic if and only if o(f, f) = 0 on M.

LeMMA 3.2. Let V be the covariant differentiation defined by x. Then
(3.39) Vif=f.

Proor. Take any chart 3. Then

f = (fﬁfz" + f’sf"‘l’,,,,e) Fw
5 2 7 s ©
2 VA * A
= (fﬁTFﬂT * + ;/51’7'525 - fﬂ‘rﬁt" Tia'rzp) (@)
= + P — P 5 =) =1 qed.
Let y be a differential form of bidegree (1,1) on M. Take p € M. Then
w )

(3.40) Uy(p) = {X e T,M)|p(X,Y) =0 VY € T,(M)}

is called the annihilator of v of type (1,0) at p. Clearly ,(y) is a linear
subspace of T,(M) over C. If y>0, then

(3.41) Wy (y) = {X e TL(M)|p(X, X) =0 VX € T,(M)}.

LEmMA 3.3. If pe My, then A, (ddelog v) = Cf(p).

PrOOF. Abbreviate w = dd°log v. Let 3: U; — U3 be a chart at p.
Then (2.3) and (3.23) imply

2ntto(f, f) = i(tf"rl‘;f’ — i) = i(v?—7?) = 0.



106 WILHELM STOLL

Hence f(p) eA,(w). In fact 3 can be taken such that

n

2n7(p)*o(p) = 1 3, eudet(p) \d24(p) .

n=1
Here n < m since w™ = 0. Also (2.4) and (2.5) imply

(3.42) 0 < (dde7)™ = mrmtdrAdev ) (dde log 7)1 .

Hence w(p)”—1s 0. Therefore n>>m —1. Hence n = m —1 with ¢,> 0
for y =1,...,m — 1. Consequently 2,(w) has complex dimension 1. Since
f(p) %= 0, we conclude that A, (w) = Cf(p), q.e.d.

¢) The complex gradient foliation.

Let M be a connected, differentiable manifold of dimension m with
real tangent bundle T'(M). A subset D of T(M) is said to be a distribution
on Mif®D,=DN T,(M)=~ 0 is a linear subspace of T,(M) for each p € M.
If D, is r-dimensional for each p € M, then r is called the rank of ®. The
distribution D is said to be differentiable, if D has rank r for some r € Z[0, n]
and if D is a subbundle of class C® of T(M). A vector field X on M belongs
to D if X(p)eD, for all p e M. A distribution is involutive if [X, Y] belongs
to ® for all vector fields X and Y of class O! which belong to D.

Let N be a submanifold of M. This means that N is a subset of M and N
is a differentiable manifold of class C® and of pure dimension not neces-
sarily with the induced topology and that the inclusion map ¢: N - M
is of class ¢ and such that du(p): T,(N) — T,(M) is injective; then di(p)
is considered an inclusion such that T(N) is a subbundle of T(M)|N. If N
carries the induced topology, N is said to be a proper submanifold, which
is the case, if and only if there exists an open neighborhood U of N such
that ¢: N — U is proper. Let ® be a distribution of rank » on M. A con-
nected submanifold N of M is said to be an integral manifold of D if
T,N)=2D, for all pe N. An integral manifold N of D is an extension of
an integral manifold N of ® if N is open in the manifold N. An integral
manifold N of D is said to be mawximal if N is the only extension of N.

A differentiable distribution ® of rank r is said to be completely integrable
if for each p € M there exists an open neighborhood p of U and a map
F:U—R"" of class 0° and rank dF(p)=m—r for each pe U such
that F-'(F(p)) is an integral manifold of ® for each peU. By Fro-
benius, a differentiable distribution is completely integrable if and only
if ® is involutive. If D is a completely integrable, differentiable distribu-
tion on M and if p € M, then one and only one maximal integral manifold L,
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of ® with p € L, exists. If p £ ¢, then L, L,. Here L, is called the leaf
of ® through p and & = {L,},., is called the foliation defined by ®. The
leaf space A = {Ly|p € M} carries the quotient topology and the residual
map A: N — A is defined by A(p) = L,.

Let £2 be a differential form of degree 2 and class C* on M. The anni-
hilator A[Q] is a distribution on M defined by

(3.43) W,[Q] = {u e T,(M)|Q(u, v) = 0 Yve T,(M)} .

LeEMMA 3.4. If dQ = 0, then UA[2] is involutive.

ProoF. Let X and Y be vector fields of class €' which belong to A[£2].
If peM and veT,(M), then (X, Y](p),v)=0 has to be shown. Since for
each ve T (M), there exists a vector field V of class C*on M with V(p)=v,
only Q([X, Y], Z) = 0 for all vector fields Z of class €' on M has to be
demonstrated. Because X and Y belong to A[2] the function Q(Y, Z),
X, 2), 2X,Y), 2(X, Y, Z]) and (Y, [X, Z]) vanish identically on M.
We have

0=d2(X,Y,2)=XQY,2)— YQX, Z) + ZQX, Y)

- Q([Xy Y]’ Z) + 'Q(X7 [Yy Z]) - ‘Q(Y7 [X’ Z]) .

Hence Q([X, Y],Z) =0 on M; q.e.d.

Now let M be a connected complex manifold of complex dimension m.
Let 2 be a real form of bidegree (1,1) on M. Take p € M. Then #,: T, (M) —
— T ,(M) is a linear isomorphism over R. Define 2,(2) by (3.40) and [ 2]
by (3.43). Then we see easily that
(3.44) 70(Ws[£2]) = A(L2) .

Let v be a strictly parabolic funetion on M. Define a real vector field

(3.45) F=f+f=14gradr

on M. Then n(F)=f. Abbreviate v = dd°log >0 on M,. Then Ulw]
is an involutive distribution on M,. Lemma 3.3 and (3.44) imply

(3.46) Alw] = RF® RIF

on M,. Hence UAlw] is an involutive, differentiable distribution of rank 2
on M, since F(p)+ 0 for each p € My. The foliation & = {L,},c,, and the
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leaf space A = {L,|p € My} defined by UA[w] on M, are called the foliation
and the leaf space associated to 7. Take p € My,. Then L, is a connected
submanifold of class C? of M,. If qe L,, then T,(L,) = A,[w] is invariant
under J: T,(M) - T, (M) by (3.46). Therefore J restricts to an almost
complex structure without torsion on L,. Hence J defines a complex struc-
ture on L,, such that L, is a complex submanifold of M, with

(3.47) T(L(p)) = Cf® Of  T(L(p)) = Cf
on L(p).

PrOPOSITION 3.5. If p € My, then f|L, is a holomorphic vector field on L,.
Also log ©|L, is harmonic on L,. (Compare Bedford and Kalka [4], The-
orem 2.4.)

Proor. Take qe L,. Let 3: U, — U; be a chart of L, at ¢q. Then
b =31 U; — Uj is biholomorphic and b: U; —> M, is holomorphic. Here
U, is open in C. If z € U,, then v'(2) € Ty, (L,). Because f|L, is a differen-
tiable frame of ¥(L,), a function h: U; — C of class C® exists such that
b'(2) = h(2)f(v(2)) # 0. Hence

dde log tod = v¥*(m) = — (/)(b V) deNdE = | 2)Polf, ldendz = 0

on U;. Hence log 7oy is harmonic on U,. Consequently, log 7|L, is harmonic.

Without loss of generality we can assume that U, CU,, where fv: Uy, U,
isa chart on M, . Then wob = (v,...,v™) and v’ = (v#)'(d/0w#) and f = f#(0/cw*).
Hence (v#)'= hfton on U,. Therefore

0 1
—a—zlog 7o = h(fton)(Tuob) i h

¢ 0
hz—a—za—zlogtob—ﬂ

since log rop is harmonic. Therefore % is holomorphic. Hence fop is holo-
morphic on U;. Consequently f|L, is holomorphic; q.e.d.

LeEMMA 3.6. Take pe My and qe L,. Take ac C. Then there ewists a
biholomorphic map v: U — U of an open neighborhood U' of a in C onto
an open neighborhood U of q in L, such that v(a) = q and v'= fov on U'.

Proor. Let 3: U, — U be a chart of L, at ¢ with 3(¢) = a. Then
) =31 U —- U, is blholomorphlc A holomorphic function % exists on U
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such that §’ = hfoy) on U,. Sinee ’(z) = 0, we have h(z) 5= 0 for all ze U,.
Without loss of generality we can assume that U; is convex. A holomorphic
function H exists on U, such that H'=1/h on U; and such that H(a) = a.
Open neighborhoods U’ and U” of a in U; exist such that H:U' - U" is
biholomorphic. Then U = y(U”) is open in L, and v = yoH: U' — U is
biholomorphic with v(a)=g¢. Also v'=(y)/oH)-H'= h(foyyoH)H' = fop on U’;

q.e.d.

Lemma 3.7. Let 3: U; — U; be a chart on M. Then f%,,fﬂ =0 on U,.

ProoF. Since f(p) = 0 for all p € M[0], we have f4f+ = 0 on M[0] N T,.
Take p € My N U;. A biholomorphic map v: U'— U of an open neigh-
borhood U’ of 0 in C onto an open neighborhood U of p in L, exists such
that v(0) =p and »'= fob on U’ and U CU; N My Define gob = (v!,...,v™)
where each v* is holomorphic on U’ with (v2)'= ffop on U’. Hence

0 = = (o0) = (Fhaov)o -+ (fhov)(#); = (fhov) conj ()" = (Fhiov) (¥ov)

Thus f4-f+ =0 at p;  q.e.d

If X is a real vector field on M, a curve ¢: R(x, f) — M is said to be an
integral curve of X, if ¢ = Xop on R(e, f).

THEOREM 3.8. The integral curves of the vector field grad V't on M, are
geodesic.

PrOOF. Abbreviate q = grad vz = (1/V7)(f + f). Let ¢: R(a, ) — My
be an integral curve of q. Then ¢ = qop on R(e, ). Because q(p)=0
for all p € M, the curve @ is smooth. Also ¢ is of class C®. Take y € R(«, )
and let 3: U; — U; be a chart of M, at ¢(y). Take o, and f, in R with
a<a<y<fy<p such that @(t)e U, for all te R(a, f,). Define gop =
= (g% ..., ¢™). Then ¢ = ¢4(3/d2*) + §*(0/0z*) on R(ay, fo) and q = ¢A(d/2z+) +
+ gX(0/0z#) on U, with ¢* = (1/v7) f* and ¢* = g*of. Define J» by (3.19).
We have to show J* = 0 on R, f,) for A =1, ..., m. Here ¢* = g*op and

§* = (ghop)§* + (dop)p* = (¢h.op)(g"09) + (¢hop)(@ o9) -
Define H = H*(9/d2*) on U, with

Hi=ghq# + ¢ho* + It q4q" .
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Then H?*op = J*. It suffices to show that H =0 on U,. Now, (3.23),
Lemma 3.7 and Lemma 3.2 imply

1 R )
o = (= P P = Pl )
=V;f—f=0. q.e.d.

ProposITION 3.9 (D. Burns). The leaves of the foliation associated to =
are totally geodesic.

Proor. Take p € My. Let L, be the leaf of & with p e L,. Then f|L,

is a holomorphic frame of T(L(p)) with V,f =f. Let V be the covariant
derivative of the restriction of » to L,. Let B be the second fundamental
form. Then B(f, f) = V,f — é,f =f— Véff is a section in T(L,) and in IT(L,)*.
Hence B(f, f) = 0. As mentioned at the end of section 3a, this shows that L,
is totally geodesic; q.e.d.

This result of D. Burns permits an essential improvement and a sub-
stantial simplification of the results as announced in [17]. "The intrinsic
proof given here differs from the proof provided by D. Burns. We shall
use Theorem 3.8 instead of Proposition 3.9 to obtain the afore-named im-
provement and simplification.

4. — The flow of the gradient vector field.

a) The foliation defined by a wvector field.

If not stated otherwise, differentiability means differentiability of class C=.
Let M be a connected, differentiable manifold of dimension m with real
tangent bundle T(M). A paich on M is a diffeomorphism x: Uy — U;E of
an open subset Uy of M onto an open subset Uy of R». Then x = («%, ..., 2™)
and 0/oxt, ..., 0/ox™ is a frame of T(M) over Uy. A differentiable curve
@: R(et, f) — M is said to be an integral curve of the differentiable vector
field ¥ on M if ¢ = Yop on R(a, ). If t, € R(x, B) and g = ¢(t), then ¢
is called an integral curve through q. If ¢: R(&, f) — M is an integral curve
through ¢ = §(t,) with t, € R(&, f), then ¢ = ¢ on R(x, f) N R(&, f). Given
g€ M and t,e R, there exists one and only one maximal interval R(e, f)
and one and only one integral curve ¢: R(«, §) — M of ¥ such that ¢, € R(«, 8)
and g(t,) = ¢. This curve ¢ is called the maximal integral curve of Y through ¢
for t,.

Again, let Y be a differentiable vector field on M. Then Y defines a
local ome parameter group of diffeomorphisms at any g € M, which means:
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An open neighborhood U of ¢ and 0 < e<oco and a map
o:R(—e,e)xU - M

of class 0% exist such that
10) @(0,p) = p and ¢(t, p) = Y(p(t,p)) Ype U and te R(— ¢, ¢).

20) The map ¢,: U — ¢,(U) defined by ¢,(p) = ¢(¢, p) is a diffeomor-
phism of U onto the open image ¢.(U).

30) If pe U, if t, s, t 4 s belong to R(— ¢, ¢) and if ¢,(p) € U, then

Peis(P) = @ul@s(p)) -

It @, U, & is another choice, then ¢(t,p) = ¢(t, p) for all te R(— ¢, &) N
NR(—E& & and pe UN U. Also ¢ is called a (global) one parameter group
of diffeomorphisms of Y if ¢ = + oo and U = M. If Y admits a global
one parameter group Y is said to be complete. If M is compact, then Y is
complete.

Let 6: M — R be a differentiable function. If — co<a<f< + oo define

Mo, Bl = {we Mla<d(x)<pf} M(a,p) = {re Mx< dx) < f}
Mo, B) = {re Mla<d(z) < f} M(x,f] = {wre Mx< d=)<p}
Mlay = Mlay o) = {we M|d(x) = af .

THEOREM 4.1. Let M be a connected, differentiable manifold of dimension m.
Take 0 < A< +o0o. Let 6: M — R(— oo, A) be a function of class C*. As-
sume that M[0, A) is not empty, not compact and connected. Suppose that
M0, t] is compact for each t € R[0, A). Then S = M{0) is not empty. Fur-
ther assume that a wvector field Y of class C° is given on M such that
dd(p, Y(p)) =1 for all p € M[0, A). Then there exists n> 0 and a map
(4.1) p: R(—n, ) x8 — M
of class C® such that

() If p e 8, then (0, p) = p.

(2) If pe 8 and te R(—n, 4), then 4(t, p) = Y ((t, p)).
(3) The map v: R[0, A) X8 — M[0, A) is a diffeomorphism.
(4) If pe 8 and t € R[0, 4), then (y(t, p)) = t.
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(5) If t=>0, define w,: 8 — M by w(p) = y(t,p) for all pe 8. Then
wi: S — M) is a diffeomorphism.

REMARK 1. If u is given, then vy is uniquely defined by (1) and (2).

REMARK 2. The number n > 0 can be taken so small that v in (4.1) is a
diffeomorphism onto its open image.

The proof is delegated to the appendix.
b) The double at a point.

Let N be a differentiable manifold of dimension m > 1. Let L be a
proper differentiable submanifold of dimension m —1. Take a€ L. Let
h: N — R be a function of class C* with h|L = 0. An open neighborhood U
of a and functions ¢: U — R and h,: U — R of class O® exist such that
t-1(0) = L N U, such that di(x) = 0 for all x € U and such that h = th,
on U. Then kis said to vanish of order p at a on L, if an open neighborhood U,
of @ in U and a function h,: U, — R of class O exist such that h = t*h,
on U, and h,(a) %= 0. Of course, h may not vanish of any order at a on L.

Let M be a differentiable manifold of dimension m. Let f: N — M be
a differentiable map. Assume that b e M exists such that f|[L = b. Take
a€ L. Let x: Uy — Ug and y: U, — U, be patches at a respectively b with
¥(a) = 0 and y(b) = 0. Then x = (2, ..., z™) and yof = (f1, ..., f*) and

dftA. Adfr = AdziA... Adaxm

with A|L = 0. Then f is said to branch of order p —m + 1 at a on L if A
vanishes of order p at a on L. Since f/|L = 0, we have f/ = ¢g’ in a neigh-
borhood U of a where g’ is of class C* on U. Hence A4 = t"'4, on U
where 4, is of class C° on U. Therefore p — m + 1>0. This definition is
independent of the choice of the patches x and Y.

Let 8§ = {xe R~| |t| =1} = R™(1) be the unit sphere in R”. Let M
be a connected, differentiable manifold of dimension m > 1. Assume that
a base point 0 =0, in M is given and define M, = M — {0}. Then (N, o)
is said to be a double of M at 0 (connected sum of M and M at 0) (Kervaire-
Milnor [13]) if and only if

(1) A connected differentiable manifold N of dimension m s given.
(2) The map o: N — M is proper, surjective and of class C*.

(3) The inverse image S, = ¢~1(0) is a proper, compact, differentiable
submanifold of dimension m —1 of N. Moreover S, is diffeomorphic to the
sphere 8.
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(4) The map o branches of order 0 at every point of S,.

(5) Open subsets N; = 0 of N exist for j =1,2 such that N = N, U
U N, U 8 is a disjoint union and such that

0; = o|N;: N; - M,
is a diffeomorphism.

Since N is connected, we conclude that §, = 0N, is the smooth boundary
of N; with N, = 8, U N,.

Let M and M be differentiable manifolds of dimension m > 1 with base
points 0 € M and 0 € M. Let ¢: M — I be a diffeomorphism with 0 = ¢(0).
Let (N, o) and (N, §) be doubles of M at 0 respectively M at 0. A dif-
feomorphism f: N — N is said to be an isomorphism of doubles over ¢ if and
only if gof = gop and f(N,) = N, for j =1,2. Then f: §, -8 is a diffeo-
morphism. If M = M and if ¢ is the identity, an isomorphism of doubles
over the identity is also called an isomorphism of doubles.

Define t: RxS — R™ by t(t, x) = txforall{e Rand x € 8. Then (Rx 8, 1)
is a double of R™ at 0 such that (Rx8),= R+x8.

The proofs of the following statements on doubles are found in the ap-
pendix. Here M and M denote connected differentiable manifolds of dimen-
sion m >1 with base points 0 M respectively 0 € M. Also (N, p) and
(N, g) are doubles of M at 0 respectively of M at 0.

(6) If U is open in M with 0 e U and if V = o~Y(U), then (V, o|V)
is a double of U with V; = N,N V. Denote (V,p|V)= (N, 0)|U.

(7) If 2: U, — U; 18 a patch of M at 0 with x(0) = 0, then there exists
one and only one isomorphism of doubles from (N, 0)|U, to(R x 8, t)| Uy over x.

(8) If p: M — M is a diffeomorphism with @(0) = 0, then there exists
one and only one isomorphism of doubles from (N,p) to (N, §) over ¢.

(9) There ewists one and up to isomorphism only one double of M at 0.

Now, the behavior of functions and vector fields lifted to the double
shall be studied.

LEMMA 4.2. Let U be an open, connected neighborhood of 0 € R™. De-
fine V=13U) and Vi= (R x8)NV and V,= (Rt x8)NV. Define
Uy = U —{0}. Leth: U — R, be a function of class C° with h(0) = 0 < k()
for all xe€ Uyx. Assume that the Hessian H of h at 0 is positive definite.
Then there exist uniquely determined functions g: V — R and G: V — R of

8 - 4nn. Scuola Norm. Sup. Pisa Cl. Sci.
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class C® such that g* = hor on V with g|V,<< 0 and g|V,> 0 and such that
g(t, x) = tVH@) + ©2G(t,x) Vi, 2)eV.

Proor. A function R: U X R™ — R of class 0 exists such that R(z, ty) =
= *R(z,y) for all te R, xe U, and y € R™ such that

hz) — H(x) + R@, @) VzeU.
h(x(t, ) = t2H(x) + $*R(tz, v)

for all (¢, w) eV. Hence H(x) + tR(tx, x) > 0 for all (¢, #) eV. Also H|S > 0.
A function G,: V — R of class O® exists such that

Gy(t, @) = (H(w) + tR(tx, 2))} — (H(x))?.

Then G4(0, ) = 0 for all x € S. Therefore a function G: V— R of class C®
exists such that Gy(t,x) = tG(t,») for all (¢, z)eV. A function g: V— R
of class 0% is defined by

g(t, x) = t(H(w))? 4 t2G(t, ) = t(H(x) + tR(tx, x))*.

Hence ¢|V, <0 and ¢|V,> 0. Also ¢g*> = hor; q.e.d.
We obtain an immediate consequence:

COROLLARY 4.3. Let M be a connected differentiable manifold of dimension
m>1 with 0 € M. Let (N, p) be the double of M at 0. Let h: M — R be a
function of class C° such that h(0) = 0 < k(x) if 04 x € M. Assume that h
has a positive definite Hessian at zero. Then one and only one function g: N— R
of class O exists such that g*> = hog and such that g|N,<<0 and g|N,> 0
with g|8, = 0.

In order to study vector fields on (N, p), it suffices to investigate a neigh-
borhood of §. Hence we can restrict ourself to the double (R x 8, t) of R™
with ¢(t, ) = tx for all te R and # € 8. The tangent bundle splits

(4.1) T(Rx8) = T(R) ® T(8) = R% ® T(8)

where 0/0t is a frame of T(R) over R. Let {-,-> be the inner product on R™.
If ze€ 8, then

(4.2) T.(8) = {y € R*[(w,y> = 0} C R~
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we can consider T(8) as a subbundle of the trivial bundle T(R~)|S. Also
we can identify R(0/0tf) = R at any given point ¢ € R such that 9/c¢t = 1.
Then

(4.3) Tio(Rx8)=R® T.(8)c R

is a linear subspace of R=+!, If (¢, #) € Rx 8, then the linear map

(4.4) dr(t, @): Ty (R X 8)— Rm+1
is given by
(4.5) dax(t, z, u, y) = uxw + ty

for all (¢, z) e Rx S and, (4, y) e R® T,(8). If t 5= 0, (4.4) is an isomorphism,
the inverse map is given by

(4.6) de(t, @) (z) = (<m, o, §~ <w,tz> w) )

Now congider the complex case. We identify R?» = C™ such that

(4.7) (®1y Yy ooey By Ym) = (@1 + Way oeey T + W)
(4.8) (2lw) = 3 2,W, <z w) = Re (z]w) .
n=1

At each point p of R2*» = Cm, we identify tangent spaces
(4.9) T,(Cm™) = T,(C") = T,(C") = C™
such that 7, is the identity and such that J is multiplication with ¢ and
such that conjugation is obtained by conjugation of the coordinates. Then

?
(4.10) 2 = By eeey ) = €€ Cm

defines an orthogonal base over C with 1, =e,.
Now, 8 is the unit sphere in C» with tangent space T,(S) C C™ for each
€ 8. The holomorphic tangent space at xe 8 is given by
(4.11) To(8) = {y € T(8) iy € T(8)}
= {y € T.(8)Ky, izd> = 0}
= {y e C|(zly) = 0} .
(4.12) T.(8) = Riz + T.(8) C" = Cx® <T.(8)
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are direct sums. If € R and ve R and w € T,(S), then
(4.13) ax(t, z, w, ivx + w) = (v + itv)x + tw

reflects the splitting (4.12). Hence

(4.14) dx(t, x)~(2) ( (lx),%}m( 2) 7 (z_tlx) w)

t

with (¢ — (2|x)») € T.(8). Define Ry, = R — {0}. The surjective local dif-
feomorphism t: R, X8 — C™ — {0} define a complex structure on Ry x 8.
Let J be the associated almost complex structure. Then

(4.15) Jip = dr(t, 2)"1od Lodx(t, 7)

(4.16) Joalu, ivw + w) = (~ w,’t—‘ iz m) .

The almost complex structure breaks down if ¢ — 0.
¢) The gradient vector field near the center.

Let (M, 7) be a strictly parabolic manifold of dimension m. The center
M[0] consists of one and only one point 0 = O,. Let (N, o) be the double
of M at 0. By Corollary 4.3, there exists one and only one function é: N — R
of class C* such that 42 = vog and such that 6|N¥, < 0 and §|N, > 0. Also
the vector fields f and q = grad /7 lift to vector fields f and g on N — 8,
by o;': My — N, for j =1,2. In order to study the behavior at 0 respec-
tively §,, local coordinates at 0 are chosen.

Let 3: U, — U; be a chart at 0 € M such that 3(0) =0. We can as-
sume that U, is connected and that 3 is normal at 0 in respect to the Kaehler
metric » defined by dd°r. Then

(4.17) 7,:0) = 8, = 7(0)

(4.18) 7,52(0) = 7,5;(0) = T4(0) = T3(0) = 0.

A number f,> 0 exists such that the closure of the ball B = Cm(t,) of
radius ¢, and center 0 is contained in U;; We identify U, = U; such that 3
becomes the identity. A number r,> 0 exists such that v(x) > »Z if x € 0B.
Because M[r,] is connected and contains 0, we have

(4.19) M(r) c M[r,JcBcBcU,=T,.
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There exists one and only one isomorphism of doubles from (¥, 0)|U; to
(RxS8, r)iU; over 3. This isomorphism is used as identification map such
that (N, o) |B identifies with (R(— ty, %) xS, 1). On C™ we define

(4.20) To(2) = (2[2) = <2, 2) = %,(2, 2) .

According to Proposition 2.2, the function z has the Hessian 7, at 0. By
Lemma 4.2, there exist functions d, d, on R(— ¢,, t,) X § of class C® such that
02= 1710t and

(4.21) O(t, @) =t -+ 128,(¢, @)

if —t,<t<t, and z€8. By (4.18) and (4.19) there exists a holomor-
phic, homogeneous polynomial P: C™ — C of degree 3 and a function
R: BxCm — R of class C® such that ‘

(4.22) Rz, tw) = t* R(z, w) if (t,2, w)e RxBxCr
(4.23) t=1+P+P+R with Riz) = B(z,2).
Define P, = P, and @ = (P, ..., P,). Also define

(4.24) W = {(t,2) e RxCr|tz € B} .

The vector field f= f#(0/oz#) can be considered as a vector function
f=(4Y...,f™: B —>Cm

LEMMA 4.4. There exists a vector function K: W — G of class C* such that
f(te) =tz + 12Q(2) + 1*K(t,2) V(t,2)e W.

PrOOF. Define R: W — R by R(t, 2) = R(tz,2). Use the convention (4.9)
for v, P and R. Then

T(tz) = 12|z + 13 P(2) + 13P(2) + t* R(¢, 2)
7;(te) = 12" + 12 P;(2) + t* Ri(t, )
7,;(2) = 8,, + 1B ;(t,2) .

w

Function B*: W — C of class C* exist such that

TH(te) = 6, + R, 2) .
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Define K,: W — C by

Ku(ty2) = Bi(ty2) + 3 (2 + tPo(2) + 12 Bo(t, 2) B(t, 2) .
v=1

Then K = (K,,..., K,): W — C is of class 0° with

fu(te) = w5(te) ¥ (t2) = tex + 12 Pu(2) + B Ku(t, 2)
f(tz) =ta + t2Q(2) + t3K(t,2),  q.e.d.

Therefore, (4.5) implies

it ) = (Re (f) ), 77— Re ()1 )

for —t,<t<t, and € 8. Functions ‘of class C° are defined by

Qu(®) = Re(Q@)z) eR

Q@) =Im(Q@)lz) eR

Q:(®) = Q@) — Qu@)we To(8)C Cr
Ky(t,v) = Re (K(t, z)|lz) e R

K,(¢, ) = Im (K(t,2)|z) e R

K,(t, ) = K(t,x) — Kot, ®)x € T,(8)c C™.

If —ty<t<t, and xe 8, then

(4.25) (ftm) o) =1t + (@) |2) + t3(K(1, 2)|w)
(4.26) Re (f(tx)[v) =t + 12Qq(2) + t3K,(t, ) = tFy(t, x)
(4.27) Im (f(tz)|x) = t2Q,(2) + 3K (t, x) = 2Fy(t, ®)
(4.28) f(tz) — Re (f(tz)|w) @ = 12Q,(x) + *K,(2, @) -

A vector field F of class C° on R(— t,,1,) x8 is defined by

(4.29)  F(t,2) = (1 + 1Qu(@) + 1 Kq(t, @), @Qu(2) + tKs(2, )
such that

(4.30) ft,2) = tF@,x) if (¢, ) € R(— to, to) XS .
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We see that the vector field f originally only defined on N — §, extends
to a vector field of class O® on N by (4.29) and (4.30). The vector field
f; = if lifts to a vector field f; of class 0 on N — S. Also this vector field
will extend over S,. By (4.14), we have

ft,) = (Re (1, 0)a), T (16, 0)e) T+~ (jear ) ).

Define functions of class C* by

Q@) =Q) — (Q@@)e eTS)
(4.31) Ky(t, ) = K(t, ®) — (K(t, ) )@ € TL(8S)
[ Fy(t, ) = Qs(2) + 1Ks(t, @) € T.(8).

Then
(4.32) f(t, m) = t(Fy(t, @), Fa(t, @)iw + Fu(t, @) = tF(t, o)
(4.33) Qo(w) = Qy(x)ix 4 Qs(w) .

Since f,-(t, x) = ft,xf(t, x), the identity (4.16) implies
(4.34) Jilty @) = (— 2 Fy(t,0), Fy(t, w)iz + itFy(t, )

for (t,2) € R(— 1o, %) X8 if = 0. However (4.34) extends the vector field f;
to a vector field of class C° on N with

(4.38) fi(0, ) = (0, Fy(0, x)ix) = (0,iz) VweS.

Now consider the real vector fields of class C°

(4.36) q = grad V7 =—;—; G+ on M,
(4.37) g:(l-s(f+’) on N — 8.
Then

(4.38) do(p, 8(p)) = — a(e(p)) for pe N,

(4.39) do(p,8(p)) = aq(e(p)) for pel,.
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By (4.21), (4.29) and (4.30), the vector field g extends across S, to a vector
field g of class C° on M, such that

(4.40) M(8(0, ) = F(0,x) = (1, Q) = (1, @y(@)ix + Qs(2)) .
Since 7,(Jg) = (1/9)f:, the identities (4.21), (4.26), (4.31) and (4.34) imply
(4.41) n0(J(t, @) — (1/1)(0, i) —> Qo(@) iz + iQy()

for t >0 if xe 8.
For each z€ M, we have

(@V7) (2, q(2)) = (1/47(2)) dv(2, grad 7(2)) =1.
If p e N,, abbreviate 2 = p(p). Then

dd(p, g(p)) = dV'7(z, do(p, g(p))) = AVT(, q(z)) =1.

If p e N,, abbreviate 2 = p(p). Then

as(p, g(p)) = — AVT (2, do(p, g(p))) = — dV7 (2, — q(2)) =1.
Hence dé(p,g(p)) =1 for all pe N — 8,. Also
sup {(p)|p € N.} = sup {(Vr(2)|ee My} = 4
is the maximal radius of the exhaustion 7. We have
N[0, 4) = {x e N0<d(x) < 4} = N, .

If ¢t e R[0, A), then
N[0, t] = Q—I(M[t]) NN,

is compact since p is proper. The assumptions of Theorem 4.1 are satisfied.
d) The gradient lines.

Again let (M, 7) be a strictly parabolic manifold of dimension m. The
center M[0] consists of one and only one point 0 = 0y: Let (N, o) be the
double of M at 0. We use the same notation as in the previous section ¢).
The results obtained in ¢) show that the assumptions of Theorem 4.1 are
satisfied, which gives the following result:
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THEOREM 4.5. There exists a number n > 0 and a map

(4.42) p:R(—n, A)x8 - N

of class C such that

(1) If E€ 8, then y(0, &) = &.
(2) If £€8 and t e R(—n, A), then $(t, &) = g(p(1, &)).

(3) The map v: R[0, A)x8 — N[0, A) is a diffeomorphism.

(4) If €€ 8 and te R0, A), then 8(yp(1, &) = t.

(5) If 10, define p;: 8 — N by p(&) = p(t, &). Then p,;: 8 — N

is a diffeomorphism.

Observe that § = 8§, is the unit sphere in C™. Also 5 can be taken so
small that 0 < n < r, and that the map p in (4.42) is a diffeomorphism onto
the image and that o(N[— #,%]) c B. Also observe that N[0, 4) = N, =
= N,US8. If te R(0, 4) then

(4.43) o(N<ty) = Mty o(N[0,1) = M(1)
and the maps
(4.44) 0: N({t) — Mty  p: N(O,t) — M(t) N\ M,

are diffeomorphic.
Now, we define a map ¢ of class C* called the flow of 7 by

(4.45) @ = poy: R(—n, 4)x8 — M .
Then ¢ satisfies the following conditions.

(1) If £€8, then @(0,&) = 0.

(2") If £€8 and t e R(0, A), then ¢(t, &) = q(p(, £))-
(3") The map @: R(0, 4) X8 — My is a diffeomorphism.
(4') If €8 and te R[0, A), then 7(p(t, £)) = 2.

(3") If 0 <t <A, define ,: 8—M by (&) = @(t,£). Then @,: 8— M)
is a diffeomorphism.
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(6') If £€8 and t € R(0, 4), then tn((t, &) = f(p(t, £)).

(7') If E€ 8, the curve (L, &): R(0, A) — My is geodesic in respect to
the Kaehler metric . (See Theorem 3.8, and (4.36)).

Define 7, as in (4.20).

THEOREM 4.6. A homeomorphism h: C™(A) — M is defined by h(0) = 0 and
h(z) = (p(lzl,I%l) if 05£2eCn(4).

Moreover h: C™ — {0} — M, is a diffeomorphism. Moreover T, = Toh on C™(A).

Proor. The map 1,: R(0, 4) X8 — C™(A) defined by r,(t, &) = t& is a
diffeomorphism with r;'(z) = (||, 2/[2]). Hence

h = @orz': C™(4) — {0} — M,

is a diffeomorphism. If 05 zeCr, define & =z/lz|]. Then 7(h(z)) =
= 7(p(|2], &) = |2]* = 74(2). Hence h(z) -0 for z -0 and h~'(p) — 0 for
p — 0. Therefore h: C* — M is a homeomorphism, q.e.d.

Later we shall show, that h is biholomorphic.

5. — The leaf space of a strictly parabolic exhaustion.

a) A parameterization of the leaf space.

Let (M, T) be a strietly parabolic manifold of dimension m with maximal
exhaustion radius 4 and with center M[0] = {0}. Then 7 is a strictly para-
bolic function on M, which determines a foliation & = {L,},c,, With leaf
space A = {L,|p € My} on M, as described in (3.45) to (3.47) and Propo-
sitions 3.5 to 3.9. We will show that the unit sphere S in C™ provides a
natural parameter space for 4. First some preparations are needed.

REMARK 1. Let g: R(— 5, 4) X8 — M be the flow of T as defined in (4.45).
Put Ay =log A and I, = R(— oo, A,). Define a diffeomorphism

(5.1) 2: Lex8S — M, Dby x(t, &) = p(e, £) .
Then (1')-(7') in section 4d) imply

(1°) If £€ 8 and t< I, then no(%(t, &) = f(x(¢, £))-
(20) If £€ 8 and t€ I, then T(x(t, &) = e
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(3°) Iftel,, define y,: 8 — My by x:(&) = %(t,&). Then x,: S — M{et)
is a diffeomorphism.

REMARK 2. Let U be an open subset of C with a = « + i € U where «
and B are real. Let v: U — M be a holomorphic map. Define b = v(a).
The differential dv(a) is a C-linear map of T:(C) into T5(M) which maps
T.(C), T.(C), T.(C) into T,(M), T,(M), T,(M) respectively. Denote

v'(a) = db (a, 2 <a)) € 3,(M)
0
b.(a) = dv (a, 2 <a)) & T,()

b,(a) = do (a, % (a))eT,,(M).
Then
Mo(02(a)) = 0'(@)  70(v,(a)) = iv'(a)
o,(a) = J,0,(a) v'(a) = dv (a,g—2 (a)).
The sets I(8) = {tc R|t + if € U} and I[x] = {t€ R|x + ite U} are open
with « € I(f) and f € I[x]. Define {: I() - M and A: I[a] — M by [(t) =

= v(t + if) for t e I(f) and A(t) = v(« + it) for t€ I[x]. Then {(x)= v,(a)
and A(B) = v,(a). Therefore, we also write

. 0
b(a) = (—a—; n) (a) = v.(a)
Jo(a) = (—a~ n) = v,(a)
(@ =(5,7) @ =vufa) -
LEMMA 5.1. For each &€ 8, there exists one and only one leaf L(§)eA

of & such that x(t, &) € L(&) for all te I,. Moreover, A = {L(&)|€ € 8}.

ProoF. Take rel,: For £ 8 define L(§) = L,,,. For each LeA
define

I(L, &) = {te Ljx(t, &) e L} .

If seI(L, &), then p = x(s, §) e L. Hence L = L,. By Lemma 3.6 there
exists a rectangle

(5.1) Q(s, §) = R(a,, b)) X R(— ¢4, 0,)
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with a, < s< b, < 4, and ¢,> 0 and a biholomorphic map
(5.2) w(l, 5, £):Q(s, &) - U,

onto an open subset U, of L, such that

(5.3) w(s, s, &) = x(s,6) =p

(5.4) w'(2, 8, &) = f(w(2,8,&) VeeQ(s, &).
Now, (5.4) gives

(6.5) No(W(t, 8, &) = f(w(ty s, &) Vte R(a,,b,) .
Hence (5.3), (5.5) and (1°) imply

(5.6) 2ty &) = w(t,s,&)e L,=L Vie R(a,,b,) .

Therefore s e R(a,, b,) C I(L,&). The set I(L, &) is open.

If tel,, define p = y(¢,&). Then peL,ecA. Hence tel(L,,§&). If
te (L, §)NI(L', ), then L = L,= L' with p = y(¢,&). The open con-
nected interval I, is the disjoint union of the open set I(L, &) with Le A
where r € I(L(§), £). Hence I, = I(L(£),&). Consequently yx(t, &) € L(&) for
all tel,. If x(t,&) e LeAd for all t € I,, then L = L(&) trivially. If Le A,
then L = L, for some pe M,. Then sel, and &€ 8 exist such that
p = x(s,&). Then pe L&) N L,. Hence L(¢) = L, = L; q.e.d.

By (3.23) we have 07(f) = 0t(f) = . Define F = f -+ f as in (3.45). Then
dv(JF) = dr(if — if) = i 0v(f) —i0v(f) =iv — it = 0.

Take te R(0, 4). Then M{t) is a proper, compact submanifold of real
dimension 2m — 1 of M,. Moreover v € T,(M) belongs to T,,(M(t}) if and
only if dv(p,v) = 0. Hence JF(p)e T,(Mt)) and JF|Mt) is a differen-
tiable vector field on the compact manifold M{t>. Therefore there exists
one and only one parameter group

o=oc,t): Rx M) — MG
of diffeomorphisms such that

(8.7) o(0,p,t) =p Vpe M)
(5.8) 6y, pyt) = JF(o(y, py 1))  V(y, p) € RX M)
(5.9) oY1 + Y2, Py 1) = 0'(?/1, (Y2 Ps 1)y t)
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for all y,e R, y,€ R and p € M<{). If y € R, the map
(5.10) oy, L, 1): Mty — M)

is a diffeomorphism. Consider D = I, x R as an open subset of C. Define

(5.11) : D X8 — My
by
(5.12) (@ + iy, &) = o(y, x(x, &), ¢*) .

LEMMA 5.2. The map w: DX8S — My is of class C™.

Proor. Clearly, v is of class C® on {#} xRx 8 for every fixed z eI,
but we have to prove more. Take x, € I, and define ¢, = ¢™. Then t, € R(0, A).

The real vector field JF defines a local one parameter group of diffeo-
morphisms at every g € My. An open neighborhood W, of ¢ and a number
g, > 0 and a differentiable map

00t R(— &4y &) X W, - M,

exist such that g,(0, p) = p and g,(y, p) = JF(0.(y, p)) for all y € R(— &,, &,)
and p € W,. Finitely many points ¢,, ..., ¢, exist in Mt,> such that

Mty CWo U U W, = W.

Define ¢ = Min (e, ..., &). Then o,(y, p) = 0, (¥, p) if |y|<e and pe
€ W, W,. Therefore a map

o: R(— & &) X W — My

of class C% exists such that o(y, p) = g, (y, p) if |y|<e and pe W,. In
particular o(0,p) = p and §(y, p) = JF(o(y,p)) for all y e R(—e¢,¢) and
peW.

Since y(xy, &) € Mt,) c W for all £€ 8. A number 7, > 0 exists such
that z, + n < 4, and such that y(x, ) e W if |x — 2| < 5, and £ € 8. Then
M=y c Wit |v — xy| < mp. Take p e M{e*). Then

9(07 p) =p = 0'(071)7 e)
o(y, p) = JF(Q(?/: P)) (Y, p, €*) = JF(O'(?/’ P, em))
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for all y € R(— ¢, ¢). Therefore o(y, p) = o(y, p, €*) if pe M{e*) and |y|< e
and | — x| <mo. If &8, if [ — x| < and |y| < &, then y(x, &) € M{e=).
Hence

w(@ + iy, &) = o(y, 2(2; &), €) = o(y, 2(x, §)) .

Therefore v is of class C° on R(— #n, + @, @ + 7o) X R(— &, £) X 8. There
exists a maximal r with ¢ <r< - oo, such that iv is of class C® on

R(— 50 + @0, 20 + 1o) XR(— 1, 7) X 8.
Assume that r < co: Take s€ R(0,7) with 0 <7 — s<<e. The maps

10, R(— 1o + @0, @+ 10) X8 — W  with t,(z, &) = (x4 s, §)
10, R(— 1o + @0, %o+ 10) X8 — W  with o,(x, &) = w(x — is, &)
o:R(—e +s, s +6) XW—>M, with o(y,p)=e(y—s,p)
0 R(—e —s8,—s+2¢) XW—>My with o,(y,p)=e(y+s,p)

are of class O®. If | — xy|<n and £€ 8 and |y — s| < ¢, then

w(r 4 iy, & = (7(?/’ Z(“% &), em) = U(y — 8, 0'(37 X(wa &), ez)’ ex)
= Q(y — 8, (@ + is, 5)) = @1(:'/7 10,(, 5)) .

If v —ax|<nand £€8 and |y 4 s|<e¢, then
w(@ + iy, §) = o(y, x(x, &), e7) = oy + s, a(— 8, x(, &), %), €7)
= o(y + s, (@ — 18, £)) = 0s(y, W2, §)) .
Thus v is of class C® on
R(— 7o + @0, % + 10) X R(— 5 — &, 5 + &) X 8.

The maximality of r implies s + e<r which contradicts r — s < e. There-
fore r = co. Hence v is of class C° on R(— 5, + @, % + 7o) X R XS for
each x, e I,. Consequently tv is of class C® on Dx8; q.e.d.

Lemma 5.3. For every &€ 8 there exists an open neighborhood U, of 1,
in G of the form

U.={&+iyeClrel, and —e(, &) <y<e(x,&}CD
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where 0 < ¢(x, &) <+ oo for all x € I, such that there exists a locally biholo-
morphic map w(, &): U, — L(E) such that

w(ty &) = x(t, &) Vt eI,
w'(z, &) = f(w(z, £)) VeeU,.
If U, is given, then w(l], &) is unique.

Proor. Take £e 8. Take se€l,. Then x(s, &) e L(§) by Lemma 5.1.
Construct the rectangle Q(s, &) of (5.1) and the map w(0, s, £) of (5.2) and
(5.3) to (5.6) where U, C L(&). For x € I, define ¢(x, &) = sup {c¢,|r € R(a,, b;)
and s e I,}. Then

U, = UQ(s, &) ={w+iylre I, and |y|< e(w, £)} CD

sel,
is an open, connected neighborhood of I, in C.

Take s, €1, and s,e I, with Q(s,, &) N Q(s:, &) ~ O, which is convex.
Then R(a,, b,,) N R(a, , b, )# @ with

w(t, 81, &) = x(t, &) = w(t, s, &)
for all t € R(a, , b;)) N R(a,, b,) by (5.6). Analytic continuation shows that
w(2, 81, &) = w(?, 85, &) Ve € Q(s1, &) N Q(ss, §) .
Hence a locally biholomorphic map w(L,&): U, — L(§) is defined by
w(z, &) = w(z,s, &) for all zeQ(s, &) and sel,. If tel,, then w(t,§) =
= w(t,t, &) = x(t,§). If ze U,, then z€Q(s, &) for some se€I,. Then
w'(z, ) = w'(z, 5, ) = f(w(z, 3, ) = f(w(z, &)  q.ed..
LemMA 5.4. If ze U,, then w(z, &) = w(z, &).

PrOOF. Take £€ 8 and xze€I,. Then
w(e, §) = 6(07 1, &), ez) = x(@, §) = w(x, £).
If |y| < (=, &), then we have

w,(x + iy, &) = 6'(?/’ 2@, f)’ 9”) = JF(“((’/’ x(@, &), ez))
= JF(w(z + iy, £))
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No(wy(@ + iy, &) = iw' (@ + iy, &) = if(w(x + iy, £))
= no(JF(w(@ + iy, £))) .

Since 7, is injective, we obtain w,(z + iy, &) = JF(w(x + iy, £)). There-
fore w(z + iy, &) = w(z + iy, &) for all y € R(— e(x, §), oz, &)); q.e.d.

Consequently (L], &) is locally biholomorphic on U, and maps U,
into L(&).

LemMMA 5.5. If §€ 8 and z€ D, then (z, &) € L(§).

Proor. Take &£ € 8 and x € I, and keep fixed. For each leaf L € A define
I(L) = {y e Rlw(x + iy, &) e L} .

Take be I(L). Then p = to(x + @b, &) e L. The vector field JF restricts
to a vector field JF|L along L. Hence there exists a curve y: R(e, f) — L
of class O® with o < b < § such that y(b) = p and y(y) = JF(y(y)) for all
¥ € R(a, ). As before w,(z + iy, &) = JF(w(x + iy, &) for all y € R. There-
fore w(x + iy, &) = y(y) € L for all y € R(«, ). Hence R(a, ) C I(L). The
set I(L) is open in R.

If ye R, then p =w(x + iy, &) e M. Hence w(r + iy, &) e L, and
yel(L,). If ye I(L) N I(L'), then tv(x + iy, &) € LN L'. Therefore L = L'.
Since fo(w, &) = g(, &) € L(£), we have 0eI(L(&)). Therefore R is the
disjoint union of the open sets I(L) with L e/ where I(L(&)) # 0. Con-
sequently, I(L(¢)) = R and w(z + iy, &) e L(&) for all yeR; q.e.d.

LeMMA 5.6, If x€I, and y€ R and &€ 8, then
(5.13) log T(w(x + iy, &) = 2z .

Proor. By (5.12) and (5.10) we have t(x 4 iy, ) € M{e*), which im-
plies (5.13); q.c.d.

LemMMA 5.7. For each &€ 8, the Map w(, £): D — L(§) is surjective.

Proor. Take £e8 and ze€l,. Define L(§ x) = L(&) N M{e*). Then
L(&, x) is a closed subset of L(£). Moreover p € L(£) belongs to L(&, x) if
and only if 7(p) =e*. Let j: L(§) -~ M, be the inclusion map. Take
p € L(&,x). Then F(p)e T,(L(£)) and

d(voj)(p, F(p)) = dz(s(p), d:(p, F(p))) = dz(p, F(p)) =
= 0t(p, f(p)) + 0r(p, f(p)) = 27(p) = 2e>* 5 0 .
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Hence L(&, x) is a proper, differentiable submanifold of dimension 1 of L(£).

We claim that L(&, ) is connected. Define ¢ = y(w, £) € L(&, ). Pick
any point p € L(&, #). Because L(§) is a connected manifold there exists
a continuous curve y: R[0,1] — L(§) with y(0) = ¢ and y(1) = p. The
map x: Iy X8 — M, is a diffeomorphism. Therefore

B = (Biy B:) = xtoy: R[0,1] - I, X8

is a continuous curve in I,x8 with f(0) = (x,&). Hence f,(0) =« and
Ba(0) = &. Also x(Bi(1),B.(1)) = y(1) = p € M{e*). Hence f,(1) = z. Ab-
breviate ¢ = R[0, 1] X R[0,1]. A continuous map B: @ — M* is defined by

By, A) = x(1— M By) + A, Ba(y)) -

Keep y € R[0, 1] fixed. Then B(y, 1) € L(B,(y)) for all 1€ R[0,1]. If 1 =0,
then

B(y, 0) = x(B:(%), B(%)) = y(y) € L(&) N L(By(y)) -

Therefore L(B,(y)) = L(£). Hence B maps into L(£). Define a continuous
curve a: R[0,1] — L(§) by «(y) = B(y, 1) for all y €[0,1]. Then

a(y) = z(x, Baly)) € M 6= N L(§) = L(§, @)

with «(0) = g(, &) = q and «(1) = %(B:(1), f=(1)) = (1) = p. Consequently
L(&, x) is connected.

Since L(, x) is a connected, differentiable submanifold of dimension 1,
there exists a surjective map u: R(—1, 1) — L(, z) of class C® with u(0) = ¢
and 0~ ‘d(t)eT”(,)(L(E)). Because F' and JF are a frame of the bundle
T(L(&)), there exist real differentiable functions a and b on R(— 1, 1) such that

A1) = at) F (u(2) + b(t)TF (u(?))

for all t € R(—1,1). By replacing ¢t by — ¢, if needed, we can assume w.l.o.g.
that b(0)>0. Since Tou = ¢** is constant on R(—1,1) we have

0 = dr(u(t), at) = a(t)27(u(t)) = a(t)2e=.

Therefore a(f) = 0 and b(t) = 0 for all te R(—1,1). Hence b(¢) > 0 for all
te R(—1,1). A function »: R(—1,1) - R of class C® exists such that
2(0) = 0 and v'(f) = b(¢) > 0. Then real numbers v, and v, with v, << 0 < v,
exist such that v: R(—1,1) - R(v,, v,) is a diffeomorphism. Define u = v-1.

9 - Ann. Scuola Norm. Sup. Pisa Cl. Sci.
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Then p = pou: R(v,, v,) - L(x, &) is a surjective map of class C° with
0(0) = u(0) = ¢.

0(y) = f(u(y)) w(y) = b(u(y)) @(y) JF(u(u(y))) = JF(o(y))
for all y € R(v,, v,). Consequently, (5.7) and (5.8) imply
o(y) = o(y, ¢, €) = a(y, x(@, &), €) = w(@ + iy, ).

For all y € R(v,,v,). Since p is surjective, we have L(§, x)Cio(D, &) for
all xeI,. Hence L(&)C (D, &)< L(§); q.e.d.

LEMMA 5.8. For each £ € 8, the map w(, &): D — L(&) is locally biholo-
morphic. If ze L(&), then w'(z, &) = f(w(z, £)).

Proor. According to Proposition 3.5, the funection « = log 7|L(§) is
harmonic on L(£). Hence A = 0w is a holomorphic form on L(£). Also
fIL(&) is a holomorphic vector field on L(§). Hence a holomorphic funec-
tion @: L(£) — C is defined by D(p) = A(p, f(p)). For all ze I, and ye R
Lemma 5.6 implies u(io(x -+ iy, £)) = 2z. Abbreviate p = w(x + iy, &).
Then

du(py mw(w + @yy 5)) = 2 du(p7 mu(w + 1 ] E)) =0.

By Lemma 5.3 and Lemma 5.4 to(LJ, £) is locally biholomorphic on U,:
Hence V, = w(U;, §) is open in L(§). If 2 = o + iy € U;, then

ou(p, w'(2, £)) + Ju(p, w'(2, 8),= 2

i ou(p, 0'(2, &) — iou(p, w'(2, £)) = 0

where w'(2, &) = f(p) by Lemma 5.3. Hence P(p)= du(p, f(p)) =1 for
all pe V,. By analytic continuation @ =1 on L(£).

Let m: N — L(£) be the universal covering space of L(§). Take a,€ I,
and define p, = x(x, &) € L(£). Pick ¢, N with n(g,) = p,. Because z is
locally biholomorphie, the form z*(4) is holomorphic on N and nowhere
zero. Hence one and only one locally biholomorphic function H: N — C
exists such that dH = z*(1) and H(q,) = w,. Observe that w(x,,§) =
= y(%, &) = p, and that D is simple connected. Hence one and only one
.differentiable map W: D — N exists such that W(z,) = ¢, and z(W(2)) =
=1(z, &) for all ze D. For zel, abbreviate W(z) =¢ and y(=,§&) =
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= o(x, &) = p. Then =(q) = p and

2 H(W) = aH(g, W.) = =*2)(g, W.(a)
= A(p, dn(gq, Wa(w))) = A(p, W.(, £))
= M(p, #(®, &) = A(p, nol#(, §)))
= Ap, f(x(x, §)) = A(p, f(p)) =1.

Since H(W(x,)) = H(qo) = %, We obtain H(W(x)) = « for all z € I,.
Fix z e I,. For any y € R, denote p = tw(x + iy, &) and ¢ = W(z + iy).
Then (5.12) and (5.8) imply w,(z + ¢y, §&) = JF(p). Therefore

a—ayH (W(@ + iy)) = dH(q, W, (@ + iy)) = a*(A)(q, W.(x + iy))

= l(pa dn(p, W,(x + @?/))) = A(py ,(x + iy, 5))
= }“(p’ JF(p)) = }‘(p’ no(JF(p)))
= A(pfbﬂp)) = i}'(py f(P)) =1.

Therefore H(W(z + iy)) = H(W(z)) + 4y = # + iy. Themap HoW: D — D
is the identity.

Take a € D. Define b = W(a) and ¢ e n(b). Open connected neighbor-
hoods U, of ¢ in D and U, of b in N and U, of ¢ in L(§) exist such that
W(U,)c U, and such that H: U, — U, and n: U, — U, are biholomorphiec.
Then W|U, = (H|U,)"*maps U, biholomorphically onto U, and (L], &)|U, =
= moW|U, maps U, biholomorphically onto U,. The map tv([J, £): D — L,
is locally biholomorphiec.

Also we have

' (@ + iy, &) = — ine(0,(@ + iy, §)) = — ino(JF(1w(x + iy, &)))
= f(w(x + iy, £))
for all # + iy €D; q.e.d.
Below we will see that to(L], £): D — L(£) is the universal covering space

of L(¢). Hence W: D — N is biholomorphic. Take x, € I, and keep x, fixed.
According to (3°) the map

(5.14) Aa, = A0, L)) 8 — Me™)
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is a diffeomorphism. Since to(x, + iy, &) € M{e™)> for all ye R and &€ 8,
a map

(5.15) C:Rx8 —8

of class C® is defined by

(5.16) Ly, &) = ¥z, (w(@o + iy, £)  V(y, &) e RxS.
LEMMA 5.9. If xeI, and y € R and £€ 8, then

t(x + iy, &) = x(z, Ly, &) .

Proor. Take y € R and & € § and keep fixed. For all # € I, Lemma 5.8
implies

o(0a(x + iy, &)) = '@ + iy, §) = f(w(@ + iy, §) = no(F(r(z + iy, £))) .
Since 7, is injective, we obtain

(@, C(y, €)) = F(x(w, {9, )
X(a’o’ Ly, 5)) = Xxo(c(?h 5)) = w(x, + 1y, £) .

Therefore w(z + iy, &) = x(x, {(y, £)); q.e.d.

LEMMA 5.10. For each &€ 8, the map w(0J, &): D —> L(§) is the universal
covering space of L(&).

Proor. Take £e 8§ and keep fixed. We distinguish two cases.

1. Case: The map &(, £): R — 8 is injective. We claim that w({J, &)
is injective. Assume that x;,€I, and y,e R for j =1,2 are given with
(e, + iy, &) = w(r, + ty,, &) = p. Then 2, = }log 7(p) = x,. Also

1@, L1y 8) = p = x(a1, (¥, 8)) -

Because y is injective, we have ((y,, &) = {(y,, §). Hence y, = v,; there-
fore (0], &) is injective. Now Lemma 5.7 and Lemma 5.8 imply that
(0, &): D — L(&) is biholomorphie, which proves the Lemma in the 1. Case.

2. Case: The map (0, &): R — 8 is not injective. We claim that
([, £) is periodic in the direction of the imaginary axis. Define p, =
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= x(@, &). Then w(x, 4+ iy) = o(y, po, €%). Abbreviate
o(y, p) = o(y, p, €%) V(y, p) € R X M<e%) .

By assumption y, € R and y, € R with y, > y, exist such that {(y,, &) =
= {(yay &). Hence w(xy + iy, &) = W(@ + Y5, §) which means o(y;, po) =
= 0(Yay Po). Therefore

(Y1 — Y2y Po) = 0(— Ya, 3(Y1, Po))

= U(_ Y2y 0'(?/2’?0)) = a(0, po) = P

with y, —4,> 0. Define « = inf {y € R*|a(y, p,) = Po}- Since ¢(0, p,) =
= JF(p,) # 0, we have o« > 0. By continuity o(e«, ps) = po. If y € R, then

o(y + o Po) = 0(y, o(x, Po)) = (Y, Po)

LY + o &) = 22, (0(y + @ po)) = 12 (0(y, po)) = L(y, &)
(@ + iy + «), &) = 2(® Ly + «, §))
= X(xv &(y, 'S)) =w( + iy, §)

for all x€ I, and y € R. Therefore if ze D and n € Z, then
w(z 4 ina, &) = (2, &).

Assume that ¢; € I, and y; € R are given for j = 1, 2 such thatto(z, + iy,, §) =
= 10(x, + ., £) = p. Then @, = 1log 7(p) = x, and

X(xu $(Yrs 5)) = X(wu {(Yas E)) .

Hence {(y,, &) = {(y,, &) which implies

(Y1s Po) = 0(Y2y Do)  OF  0(Y1 — Yy Po) = Do -

An integer n € Z and r € R[0,1) exist such that y, — y, = no + ra. Then
Po = o(na + ra, Po) = o(re, po). The definition of o« implies r = 0. Hence
@y + 1y = @, + iy, + inx. Let D, = DfixZ be the quotient space. The
residual map «: D — D, is locally biholomorphic and in fact, the universal
covering space of D, . Also (], &): D — L(&) factors to a biholomorphic
map 1y: D, — L(£) such that moiw, = ([, ). Hence (L], &): D — L(&)
is the universal covering of L(§); q.e.d.
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LEMMA 5.11. If E€ 8, then (0, &) = &.

PrOOF. We have £(0,&) = 2. (0(%, §) = 22, (1.,(5) = &;  q.e.d.

LeMMA 5.12. If €8 and & €8, then L(§) = L(&,) if and only if there
exists y € R such that &, = C(y, &).

Proor. If L(&) = L(&,), then yx(x, &) € L(£). Hence xe€l, and ye R
exist such that y(x,, &) =w(x + iy, &) =p. Then x, = Llogr(p) ==.
Hence (5.14) and (5.16) imply &, = {(y, &). If & = {(y, &) for some y € R,
then y(xo, &) = t(wy + 1y, &) = ¢ with qe L(§) N L(&,). Hence L&) =
= L(&,); q.e.d.

b) The determination of the leaf space.

In section a) the parameterization v of the foliation associated to 7 was
constructed and a parameterization of the leaf space A4 by § was provided.
The orbit of the curves (L, £): R — § determines exactly one leaf. Hence
the orbit space is the leaf space. Local consideration at the center, i.e. the
limit # — — oo, will enable us to determine these orbits. In order to carry
out these asymptotic considerations at the center, we revert to the special
coordinates introduced in section 4¢). In particular we identify U, = U;
such that 3 is the identity. For the tangent spaces at points of U, we use
also the identifications explained in (4.8)-(4.16). In particular, the unit
sphere 8 is considered as the unit sphere in T,(M) = I,(M) = C™. Hence
& € 8 can be considered as a real tangent vector at 0 and as a tangent vector
of type (1,0) at 0 with #,(&) = & as need may be. Also let (N, o) be the
double of M at 0. As in section 4¢) (N, o)|U, is identified with (R x 8, 1)|T,
and (N, g)|B with (R(— t,, %) X8, t). Recall also the maps y of Theorem 4.5
and ¢ of (4.45). It is important, not to mix up the parameter ¢ in y(t, &)
and ¢(¢, §) with the parameter ¢ in t(¢, £). The notation Cm(t) refers to the
exhaustion 7, of C™ defined by (4.20) where upon M(¢) refers to the strictly
parabolic exhaustion 7 given on M even if M[t]c U; which is the case for
0<t <7, (see (4.19)). Similarly the notations N[a, b] etc. are determined
by §. Observe g: N(t) — M<t) forallt € R[0, 4). Because of Theorem 4.5 (4),
v maps R[0,r]x8 into N[0,r,] with o(N[0,r,]) = M[re]JC B. Also we
can take 1> 0 so small that o(y(¢, &) € B if —y<t< 0. In view of our
identification we have

(5.17) Wty &) € R(— by, to) X8 if —n<t<ry
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and £e8. Therefore these are functions
(5.18) Y1t R(— 9, 79) X8 — R(— ty, 1)
(5.19) Ya: R(— 1, 1) X8 — 8
of class C® such that y = (y,, ¢,) on R(—n, 7). We have y,(t, &) > 0 if
0<t<r and (&) <0 if —y<it<r, and 9,(0,&) =0 for all £€8.
Also the map ¢ = poy of (4.45) is given by
(5.20) @ty &) = pa(ty E)pa(t, &)

for all te R(—n,7,) and &€ 8.

LEMMA 5.13. There exist functions
ps: R(—m, 1) xS — R and  y,: R(—n, 7)) X8 — Cm
of class C* such that
(5.21) ity &) =1 + t2ys(t, &)
(5.22) va(ty &) = & 4 tya(, &)

for all te R(— n,7r,) and £€ 8.

ProoF. Recall that we identified § = 8, = {0} x8. By Theorem (4.5)
we have u(0,&) =& which reads w(0,&) = (0,§) with ,(0,&) =0 and
(0, &) = &forall& € 8. Therefore there are functions y,: R(— 7, r,) X8 — C=
and y;: R(— %, 7,) XS — R of class 0 such that

1I)1(t, & = tys(?, &) A2 §) = & + ty,(t, &)

for all te R(— #n,r,) and &€ 8 with ,(0, &) = 5(0, &). With our identifi-
cations we have 7,(¢)) = % and

B(t, &) = ($u(t, &), ¥alty £)) € RXT,(8) € Rx Cm
where p = y(t, £). Also

Pty &) = 8(p(t, &) = (it &), valt, &)
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By (4.40), this implies

"/:'(09 &) = g(wl(07 &), 'P2(09 5))
= g(0, &) = (1, Q:(&)i€ + Q4(&)) .

Therefore y;(0, &) = 4,(0,&) =1 for all £ 8. A function y;: R(— 7, r,) X
X8 — R of class C® exists such that

w5(t7 E) =1 + t’,%(t, 5)
wl(ty &) =1t + t2‘lp3(t, 5)

for all te€ R(— #n,7) and &€ 8; q.e.d.

Now we come to the determination of the orbit of & under {, which is
the fundament of the proof.

THEOREM 5.14. If ye R and &€ 8, then {(y, &) = ewé.

Proor. For t> 0 abbreviate [(f) = logt. Take £ § and ye R and
te R(0,7,). Then r,< 4 and [(t) < log 4 = 4,. Hence

o (U(t) + iy, &) = x(I(t), &y, &) = o(t, Ly, &) # 0 .

Observe that ¢(t, {(y, £)) € M{t) c B. Hence p,' =1t;' can be applied.
We have

oz ((X(t) + iy, £)) = o5 (@4, L(y, £))) = v(t, L(y, §) -
Abbreviate y(t,y) = o5 ' (0(L(¢) + iy, £)). Then
y(t,y) = (t -+ tzzpa(t, L(y, &), C(y, &) + t'/h(t’ {(y, 5))) .

Denote the partial differentiation 0/dy also by affixing the index y. Then

0 0
Yoty y ) = (tza—y w:;(ty Sy, 5))7 Culy, &) + tg?“/ "Pd(ty Ly, 5)))

for 0 <t<ry: The limit of p,(¢,y) for ¢ —0 exists and is denoted by
74(0, %) with

(5.23) 7t y) = (0,8, §) -
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Considering that #, is an identification map we have

1, (L) + iy, &) = ir'(((t) + iy, &) = if(w(L(2) + iy, &)) .
Therefore
Yulty y) = dry* (w(1(t) + iy, &), w,(I(t) + iy, £))
= ay (1, £, &), Filolt, L, 6))))
=f.(v(t, Ly, §))
= fulwi(t, 2y, ©), walt, (9, ) -

The limit ¢ — 0 and (4.35) imply

v4(0, ¥) =fi(1p1(07 &y, £)), "Pz(O’ Ly, S)))
Zf(((), C(?/, 5))
= (0, i(y, &)).

Comparison implies ,(y, &) = il(y, &) for all y € R. Hence

(e_“/C Y, ) = e-—w(é‘” Y, &) — (y, E)) =0

for all y € R. Hence
iy, &) = £(0,8) =&
for all y e R; q.e.d.

Hence ¢ determines the Hopf fiberation on §. According to Lemma 5.12,
we have L(&) = L(&,) if and only if & = eiv£ for some y € R. Let P(C™) =
= P,._, be the complex projective space of dimension m —1 and let
P: C~ — {0} — P,,_, be the projection. For each we P,,_,, there exists one
and only one leaf L{w]eA such that L{w] = L(§) for each &£e 8 with
P(¢) = w. Also L{w] = L[w,] if we P,,_, and w, € P,,_, with w = w,: More-
over for each leaf L €/, there exists one and only one w e P,,_, such that
L = L{w]. Hence P,_, provides a bijective parameterization of the leaf
space A.

Ifeecl,andy e R,if £ S and n € Z, Lemma 5.9 and Theorem 5.14 1mply

(5.24) w(x 4 iy, &) = x(x, &)
(5.25) (@ 4 iy + 2nin, £) = w(@ + iy, &).
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LemMA 5.15. If z2,€D and z,€ D and & are given such that tv(z,, &) =
= 10(2,, &), then n € Z exists such that z, = 2z, + 2nin.

PRrROOF. Let x; and y; be the real part and imaginary parts of 2, respec-
tively for j =1, 2. Then

(@1, € &) = (21, &) = 10(2,, §) = y(@y, €%E) .

Because y is injective, we have x, = x, and ¢, = e¢*.. Therefore an integer »
exists such that y, = y, + 22an. Hence 2, = 2, + 2min, q.e.d.

Consequently, the 1. Case in the proof Lemma 5.10 is impossible and
we have o = 2 in the second case.

6. — The parabolic mapping theorem.

Let (M, z) be a strictly parabolic manifold of dimension m. Then the
center M[0] consists of one and only one point denoted by 0 = 0,,. Let 4
be the maximal radius of the exhaustion 7. We continue the same assump-
tions, conventions and identifications as in section 5. In particular
Cr = T(M) = T\(M) are identified such that 7, is the identity. Also x,
is the hermitian metric on C”. The square length is given by 7, in (4.20).
As Dbefore Cm(r) denotes the open ball of radius » and center 0 in respect
to 7,. Abbreviate E = C(4) and Ey = F — {0}. Also § = Cm{1) is the
unit sphere in C™.

THEOREM 6.1. For each w € P,,_,, the leaf L{w] is a proper, closed, complex
submanifold of complex dimension 1 of My. The closure L[w] = L[w] U {0}
of L{w] in M is a proper, closed, complex submanifold of complex dimension 1
of M. There exists a proper, surjective, differentiable map v: E xS — M
satisfying the following conditions.

(1) The restriction v: By X8 — My is proper and surjective.

(2) If £€ 8, then v(0,&) = 0.

(3) If £€ 8 and w = P(&), the map (0, &): B — L{w] is biholomorphic.
(4) If z€ E and &€ 8, then 20'(2, &) = f(v(2, &)).

() If £€ SCTH(M), then v'(0, &) = &.

(6) If £€ 8 and 2€ B and x € R, then v(z, eE) = v(ze’*, &).

(7) If ze D and £€ 8, then (2, §) = v(e? &).

(8) Ifec B and & € 8, then T(0(2, £)) = |2[2, which means v(2, &) € M{|z]>
(9) If te R[0, A4) and &€ 8, then v(t, &) = ¢(t, £).
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Proor. The exponential function maps D onto E,. By (5.25) the surjec-
tive map w: D XS — M, of class O factors to a surjective differentiable
map 9: By X8 — My such that (7) holds. If £€ § and w = P(&), the map
w(d, &): D — L{w] is locally biholomorphic and surjective. Hence v([, £):
E, — L[w] is locally biholomorphic and surjective. By Lemma 5.15,
v(L, &) is injective. Hence v(0, &): By — L{w] is biholomorphic. For each
£e 8, define v(0,£) = 0 M. Then (6), (8) and (9) are trivially true for
2 = 0 respectively t = 0. If 0s£2€ F and £ 8, then e D exists such
that z = ¢“. Let x be the real part and y be the imaginary part of . Then

T(b(za 5)) == 7(m(u’ 5)) = e = lzl2 .
If a e R, then

b(2e’%, &) = 0(" T &) = w(x + i(y + 2)€) = y(w, €¥TVE)
= w(@ + iy, ¢*£) = v(e", ¢°€) = b(z, ¢*¢) .

If ¢ e R(0, A), define z = log{. Then
b(t, &) = o(x, E) = X(ZD, &) = (P(em’ E) = (P(ty &) .

Therefore (2), (6), (7), (8) and (9) are proved.

Let K be a compact subset of M, . Then K, =p"}(K) is a closed subset of
E, x 8. Let > 0 be the minimum of /7 on K and let § < A be the maxi-
mum of V7 on K. If (¢, &) € K,, then at<7(0(z, &) = |¢|2<f>. Hence K,
is contained in the compact subset (C[f] — C(x)) xS of ExS. Therefore
K, is compact. The map b: B, xS — M, is proper. Hence (1) is proved.

Let U be any open neighborhood of 0 € M. Take an open neighborhood V
of 06 M with 0 VcVcU such that V is compact. A number ¢> 0
exists such that z(p)> ¢ for all pedV. Since M(e) is connected with
0 € M(e), we conclude that M(s)C V. If (2, &) e C(e) xS, then |z]<e and
(2, &) € M{J2|> c M(e) c U. Hence v is continuous at every point of {0} x §.
The map v: Ex8 — M is continuous. Take a compact subset K of M.
Let < A be the maximum of vz on K. Then K, = p~*(K) is a closed
subset of Ex8. If (2, &) e K,, then 7(v(z &) <p2. Hence [¢|<f and K,
is contained in the compact subset C[f]1x 8 of E x 8. The set K, is compact.
The map v: ExX8S — M is proper.

Take £€ S and define w = P(£). Then v(0J, §): E — M is continuous
on ¥ and holomorphic on E,. Hence v(LJ, &): E — M is holomorphic. Take
z€ B. If 2 = 0, then f(v(0, &)) = f(0) = 0. Hence (4) holds. If z 3 0, then
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u € D exists with ¢ = 2. Also
v'(2, &)z = p'(e", )" = w'(u, §) = f(m(uy E)): f(b(z, ‘f)) .

Therefore (4) is proved.
If 0<t<r,and &€ 8, then Lemma 5.13 and 5.20 apply. Hence

b(t, €) = (1, &) = (t + t*wa(t, ) (€ + twa(t, §))

where v(t,&) € U; C C". Under the identification C" = To(M) = To(M) we
obtain
. b,(OyE):(p(O’E):E
which proves (5).
Take £€ 8 and define w = P(£). Because v: Ey X8 — M, is proper,
also v(1J, &): By — M, is proper where v(L], £): B, — L[w] is biholomorphic
with v'(z, &)« 0 for all ze By. Hence L[w] carries the induced topology
from M, as the manifold topology and is a closed subset of M,. Thus L[w]
is a proper, closed complex submanifold of dimension 1 of M, and v([], &):
Ey — L{w] is biholomorphic. Because 9(0,£) = 0 and because b(J, &):
E — M is continuous, L[w] = L[w] U {0} is the closure of L{w] in M. Also
L{w] continuous L[w] as an analytic set on M where v({J, &): E — L{w]
is bijective and holomorphic. Since v'(0, &) 5= 0, the point 0 is a simple point
of L{w] and L{w] is a proper, closed, complex submanifold of dimension 1
of M such that v(OJ, &): E — L[w] is biholomorphic. Therefore (3) is proved.

By (8) and (4.19) v maps C(r,) X8 into M(r,) c U;. Hence v can be
considered as a vector function v: C(r,) xS — Cm Take 0<r<r, and

(2, &) € C(r) x 8. Then
_ 1 [v&8)
u(z, &) = omi f T—2 dac.
C(ry
Therefore v is of class C® on C(r) xS. Consequently v: Ex8§ — M is a
map of class C%, q.e.d.

Again identify Cm = To(M) = T,(M). Then the ball C»(4) is an open
subset of the real tangent space of M at 0. Recall the homeomorphism
h: C™(4) — M defined in Theorem 4.6 with h(t, &) = ¢(¢, &) if ¢t e R[O0, 4)
and &€ 8.

THEOREM 6.2. (D. Burns) The homeomorphism h: Cm(A) — M is a dif-
feomorphism. In fact h = exp, is the exponential map at 0 € M. If A = oo,
then M 1is complete in respect to the Kaehler metric.
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Proor. Take 0 = X € To(M). Let @x: R(ax, fx) — M be the maximal
geodesic through 0 e M. Then oy < 0 < fy and @x(0) = 0 and @(0) = X.
Also a_y =— fix and f_y = — oy and @_x(t) = @x(— t). Define & = X/|X|
in 8 and ¢ = |X|> 0. According to (7’) section 4d) ¢(U, &): R(0, 4) - M
is a geodesic. Then y: R[0, Afc) - M is a geodesic where y(t) = @(ct, &)
with 9(0) = ¢(0, &) = 0 and (0) = ¢g(0, §) = ¢ = X. Hence [z > A/c and

Px(t) = (1) = @(et, &) = h(te§) = h(tX)

for all te R[0, Afc). Also ay =— pf_g<— Afe. If — Ale<t< 0, then
Px(t) = ¢_z(— 1) = h((— t)(— X)) = h(tX). Hence px(t) = h(tX)if |t| < A/|X]|.
If 0~ X € C(4), then 4/|X|>1 and

exp, (X) = ¢x(1) = MX).

Also exp, (0) = 0 = h(0). Therefore h: C*(4) — M is the exponential map
and as such of class C° and locally diffeomorphic at 0. By Theorem 4.6
the map h: C"(4) — M is a homeomorphism and h: C"(4)— {0} — M, a
diffeomorphism. Therefore h: C*(4) — M is a diffeomorphism; q.e.d.

Daniel Burns pointed out to me that A is the exponential map. Using
a special coordinate system along L[w], he shows that L{w] is totally geodesic.
Trivially @(0, &): R[0, A) — L[w] is geodesic for each & € § with P(&§) = w.
Since L[w] is totally geodesic, (], &) is geodesic in M and Theorem 6.2
follows. Subsequently, I was able to prove Lemma 3.7 which yields The-
orem 3.8 and the result that L[w] is totally geodesic is not explicitly used
for the proof of Theorem 6.2 given here. Originally, I failed to establish
Lemma 3.7. Hence a term did not cancel in the proof of Theorem 3.8.

The Theorem of Burns will improve the result considerably as can be
seen from announcement [17].

LemMA 6.3. Take &€ 8. Define j:: E — Cn(A) by je(2) = 25. Then
hoje = v(1J, &): E — M is holomorphic.

Proor. Take £€ 8§ and z€ Ey. Define { = 2z/|2|. Then
h(je(®)) = h(z) = p(J2]; 6€) = v(Je], 6&) = v([z[¢, &) = 0(z, €) -

If £€ 8, then h(j:(0)) = h(0) = 0 = v(0,&). Hence hoj: = v(0,£), q.e.d.

LeMMmA 6.4. Let H: C» —C be a function of class C° with 0<peZ
such that H(wy) = w*H(3) for all we C and 3€ C». Then H is a homo-
geneous polynomial of degree p in 3 = (21, ..., 2,) over C.
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Proor. If p = 0, then H(wj) = H(3) for all we C and 3 e C". Take
w = 0. Then H(0) = H(3) for all 3 € C». Hence H is constant.

Take p > 0 and assume that the lemma is established for p — 1. Dif-
ferentiation for z, yields H, (w3) = wr'H,(3) for all weC and z;e C»
where qu has class C»-1. Hence qu is a homogeneous polynomial of degree
p —11in 3 = (21, ..., 2,) over C. Differentiation for w implies

H, (03)2 — pur—H(3)
=1

u

since (0/ow)(wz,) = 0. If we take w =1, we see that H is a homogeneous
polynomial of degree p in 3 = (24, ..., 2x) over C; q.e.d.

LeMMA 6.5. Take r > 0. For each 3 € C™ define j;: C — C™ by j,(w) = w3.
Let H: C™(r) — C be a function of class C° such that Hoje is holomorphic
on C(r) for each fixed &€ 8. Then H is holomorphic on C™(r).

PrOOF. An open neighborhood W of {0} xC™ in Cm*! is defined by

W = {(2,3) € CxXC"||eg| < 7} .

A function G: W — C of class O is defined by G(z,3) = H(z3). Take
3eCn. If 3 =0, then G(2,0) = H(0) is constant. Hence G(LJ,0): C - C
is holomorphic. Assume that 354 0 and define & = 3/[3|in 8. Then G(z,3) =
= Hoj:(z]3]) if |¢| <r/|3|. Hence G(LJ,3): C(r/[3]) — C is holomorphic. For
cach integer p >0, define a function G,: W — C of class C° by

1 a»
G,,(Z, 5) = 5“' d_zp G(z’5) J

A function H,: C™ — C of class C® is defined by H,(3) = G,(0,3). We have
the Hartogs series development

G(z,3) = 3 H,(3)2

»=0
for all (2,3) e W.
Take we C and 3eC™ If w=0 or 3 =0 or r = oo define s = oco.
If w0 and 35 0 and r < oo define s = r/(|wz|). Take any z € C(s). Then
(2, wz) e W and (2w, 3) € W. Therefore

[

> H,(wz)e? = G(z, w3) = H(zws) = G(ew, 3) = D Hy(3)w*z".

»=0 p=0
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Therefore H,(w3) = H,(3)w?. By Lemma 6.3 H, is a polynomial of degree p
over C in 3 = (#,...,2,). In particular H,: C» — C is holomorphic.

For each te R(0, r) define u(r) = Max {|H(g,)|| l5l<t}. Take 0 < t< s <r
and set 6 =1/s<<1. If |2|<1 and [3|<s, then (2,3)e W and |G(z,3)| =
= |H(23)|<u(s). Hence |H,(3)|<p(s). If jz|<t, then [f3|<s and |H,(3)|=
= 0-»|H,(03)|<0-?u(s). Therefore the series

(o]

H() = G(1,3) = > H,(3)

=0

converges uniformly for all 3 € C[t] for each ¢ R(0,r). The function H
is holomorphic on Cm(r); q.e.d.

THEOREM 6.6 (The parabolic mapping theorem). Let (M, T) be a strictly
parabolic manifold of dimension m. Let A > 0 be the maximal radius of the
exhaustion 7. On Cm», define 7,: C™ — R, by v(2) = |[2|>. Then there ewists
a biholomorphic map h: C(A) — M such that Toh = 7,.

ProOF. If 4 = oo, define ¢ =7. If 4 < oo, define ¢ = 7/(42— 7).
Then ¢ is an exhaustion of M with maximal radius co and with ddco > 0
on M. Therefore M is a Stein manifold. A proper, injective, smooth, holo-
morphic map k: M — C?*t1 exists such that N = k(M) is a proper, closed,
complex submanifold of C*»+:, The map k: M — N is biholomorphie. Define
k= (kyy... kamys) and Hy, = kyoh: G»(4) — C for each pu =1, ...,2m + 1.
For each £e€ 8, define j:: C — C™ by je(2) = 26. Then Hyoj:: C(4) -~ C
is holomorphic for each £ € §. By Lemma 6.5, H, is holomorphic on C™(A).
Hence H = koh: C*(A4) — N is a holomorphic diffeomorphism and con-
sequently H:Cm™(A4) - N is a biholomorphic map. Hence h = k~'oH:
Cm(A4) — M is biholomorphic with 7, = 7oh by Theorem 4.6, q.e.d.

REMARK 1. The biholomorphic map & is an isometry of exhaustions
7o, = toh and of Kaehler metrics h*(ddet) = dd°T,.

REMARK 2. The map k can be defined a priori. Let » be the Kaehler
metric on M with exterior form ddcz. The center M[0] consists of one
and only one point 0. Then x defines a hermitian metric », on the holo-
morphic tangent space To(M) at 0 € M. Define 74(2) = #,(2,2). Consider
Cn(A4) as the ball in T,(M) defined by 74(2) < 42. Identify the real tangent
space To(M) with (M) such that », is the identity. Then h = exp,:
C™(4) — M is the exponential map.

REMARK 3. A weaker version of Theorem 6.6 was announced in [17]
and Theorem 6.6 was obtained only for those exhaustions with holomorphic
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vector field f. D. Burns observed that the leaves L[w] are totally geodesic
and that therefore h is the exponential map. Once h is recognized to be
differentiable at 0 the biholomorphy of A follows easily. As a consequence f
is holomorphic. A wvariation of the proof of Burns was given here. His
contribution, which led to a considerable improvement, is gratefully acknow-
ledged here.

Appendix.

a) Proof of Theorem 4.1.

Take @, € M[0, A). Then d(x,) < A. Take r with d(x,) < r < 4. Since
MJ0, r] is compact, a point x, € M[0, r) exists such that §(x;) <d(x), for all
x € M[0,r]. Then d&(x,)<d(x,) < r. Hence x, € M[0,r). If x, € M(0,r), then
dd(x,, v) = 0 for all ve T, (M) which contradicts dd(x;, Y(z,)) = 1. Hence
x, € M{0> = 8. The set S is not empty.

A number 7, > 0 exists such that dd(«, Y(x)) # 0 for all @ € M(— n,, A).
Hence 6 has no critical point on M(— #5,, 4) and M{r) is a proper, compact
differentiable submanifold of M for each » € R(— 7,, 4).

1. Step. The construction of the flow ¢. For each ¢ € M select a local
one parameter group

o R(— e, 8) x Uy > M

of diffeomorphisms of Y such that 19, 20 and 3° hold and such that g e U,.
Then

Vo= U R(— ¢4, &) x U,

aEM

is an open neighborhood of {0} x M in Rx M. Therefore there exists a
positive continuous function g, on M such that

Vi={(t;p) e Rx M|[t| < ex(p)}
is contained in V,. Here V, is open with
{0} xMcV,CV,CRXM.

Take (t,, po) € V,. Then g€ M exists such that t, e R(—¢,,¢,) and
Po € U,. Define @(ty, po) = ¢*(ts, Po). If s € M and t, € R(— ¢, &,) and p, € U,.
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Then ¢*(L], p,) and ¢*(L], p,) are integral curves of ¥ with @40, pe) = p, =
= ¢*(0, po). Hence @(t,p,) = ¢*(t,p,) for all te R(— ¢, &) N R(— ¢, ¢,).
In particular, @(t,, po) = @*(ts, Ps). Therefore ¢: V, — M is well defined
and differentiable. We have

(1°) If p e M, then ¢(0,p) = p.
(20) If (t,p) € Vy, then ¢(t,p) = Y(‘P(ty p))
(3°) For each (ty,, po) € V,, there exists an open neighborhood U(ty, p,)
of po in M such that
@, = @(to, U): Ulto, po) — ‘Pto(U(to’ po))

is a diffeomorphism onto the open image.

(4°) If (s,p) eV, and (t, @.(p)) €V, and (t + s,p) € V,, then

®r10(P) = @ (@s(p)) -

Proof of (3°). Take ge M with (t,,p,) € R(— &,¢,)x U,. An open
neighborhood U(ty, p,) of p, exists such that U(t,, po) € U, and such that
— 0:1(p) < ty << o4(p) for all p e Ul(t,, p,). Hence ¢(ty, p) = ¢*(,, p) for all
p€ Ulty, po) and

@, = ‘Pg.,: Ulty, po) — ‘Pt.,(U(to, Po))

is a diffeomorphism onto the open image set, which proves (3°).

Proof of (4°). Fix pe M and se R with |s|<< g,(p). Then

I={teR||t+ s|<o(p) and |t|< o,(ps(p))}

is an open interval with 0 € I. Define A: I — M and u: I - M by A(t) =
= @(t + 8, p) and u(t) = @(t, p,(p)) for all e I. Then A and u are integral
curves of Y with A(0) = (s, p) = @(0, @,(p)) = w(0). Therefore A = u,
which proves (4°).

Take p € M. Then there exists one and only one differentiable extension
of (0, p) again called @(J,p) to a maximal interval R(— 04(p), 02(P))
such that

1*) If pe M, then ¢(0, p) = p.
(2*) If pe M and t € R(— 0i(p), 04(p)), then ¢(t, p) = Y (p(t,p))-
(3*) If pe M, then 0 < g,(p)<@2(p) <+ oo.

10 - Ann., Scuola Norm. Sup. Pisa Cl. Seci.
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Observe that — g,(p) was kept fixed. Define

Vo={(t,p) e RXM|— 0y(p) <1< 0u(p)} -
Then V,CV,. As above, the assertion (4*) is easily proved:
(4*) If (s,p) eV, and (¢, ¢(s,p)) €V, and (t + s,p) € V,, then
@t + s, p) = o(t, (s, p)) -

Let V; be the set of all interior points (¢, p) of V, such that ¢ is of class C*
on a neighborhood of (¢, p) and such that ¢, is a local diffeomorphism at p.
Then V, is an open subset of V,.

(5%) Vs =V,.
Proof of (5*%). For each p e M define
0s(p) = sup {t € R’R(_‘ 0:(p), t) X{p} < Va} .

Then o,(p) <0s(p)<g:(p). Take poe M. Assume that py(p,) < 02(po). De-
fine h: V, - R by

h(t, p) =t + oi(e(t, D)) -

Then h(t,p) >t. Take s€ R with g4(po) < s < h(gs(Po), ps). Then re R
exists such that

0 <7< 0s(Po) < 8 < h(r, o) -

" Because R[0, 7] X{p,} is a compact subset of V,, an open neighborhood U,
of p, exists such that R[0,7]x U,C V,. Then R(— oy(p),r] x{p} <V, for
all p e U,. Hence p4(p) > r for all p e U,. Since h(r,[]) is continuous on

U,, an open neighborhood U, of p, with U, C U, exists such that s < h(r, p)
for all pe U,. Then

W= {(typ) e Rx UII - 01(‘1’(7’,29)) +r<i< h(r’p)}
is open in Rx U,. A differentiable map y: W — M is defined by
x(E,r) = ‘P(t — 7, @(r, p))

because (¢ — 7, @.(p)) € V, if (1, p)e W.
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Take p € U,. Then x(r,p) = ¢(r, p) and

Z(t,P) = Y(X(t9 P)) it — Ql((p(ry p)) +r<t<<h(r,p)
@ty p) = X(p(t,p)) if —0u(p) <t < @ulp)-

Hence ¢(t, p) = (¢, p) in a neighborhood of r. The maximality of g,(p)
implies h(r, p) <0.(p) and ¢(¢, p) = x(t, p)if r < t << h(r, p). Because s << h(r,p)
for all p € U, we have ¢ = y on R(r,s)x U,. Hence R(r, s)x U,C Int V,
and ¢ is differentiable on R(r,s)x U, with

dg(p) = dp._.(p(r, ) odep,(p) .

Because (r, p) € V,, the differential do,(p): T,(M) — T\, (M) is a linear iso-
morphism. Since (¢ — 7, ¢,(p)) € V,, the differential dp,_,(¢(r, P)) : Tp(y (M) —
— Tp)(M) is a linear isomorphism. Hence d.(p): TH(M) — T,y (M) is
a linear isomorphism. Therefore R(r,s)x U,C V;. In particular g4(p)>s
for all p € U, which contradicts gs(p,) << s. This proves (5%).

(6%) If (t,p)€V, with t>0 and 6(p)>0, then &(¢p(t, p)) =1t + 6(p).

Proof of (6%). First assume that d(p) > 0. Since ¢(0, p) = p, a largest
number o,(p) € R(0, 5(p)) exists such that d(p(t, p)) > 0 if 0<t< pu(p).
Then ¢(t, p) € M(0, A) for all t e R[0, o4(p)). Therefore

d
d o(e(t, p) = do(g(t, p), §(t, p)) = ad(e(t, p), Y(tp(t,p))) =1
for 0<?<< g4(p). Therefore

O(@(t, p)) =t + 8(p(0,p)) =t + 8(p) Vi R[0, 0u(p)) -

Now consider the case d(p) = 0. Because ¢ has no critical points on
S = M{0) = 6 1(0), the set S has the structure of a proper, compact dif-
ferentiable submanifold of M bounding M(0, A). Hence a sequence {pi}cn
with 6(pi) > 0 converges to p. Take t with 0 <<t << g,(p). A number 4, N
exists such that 0 <t<< g, (ps) for all A>1,. Therefore d(p(t,ps) =1+
+ 8(ps). Now A —oo implies &(p(t,p)) = ¢ + (p) for all te R[0, o,(p)).
A largest number g,(p) € R(0, 0,(p)) exists such that é(g(t, p)) > 0if 0 <t <
< 04(p). As before we obtain §(p(t, p)) =t + 6(p) if 0<t < g4(p)-

Assume that g,(p) < ga(p). Then 6(<p(e4(p),p)) = 04(p) + 6(p) > 0. The-
refore s € R(04(p), 0s(p)) exists such that 6(p(t, p)) > 0 if ¢ € R(0,s) which
implies s <g4(p). Contradiction! Therefore p,(p) = 0.(p) which proves (6*).
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(7*%) If p e M[0, 4), then g,(p) = 4 — d(p).

Proof of (7*). Take p € M[0, 4) and assume that r = g,(p) + d(p) < 4.
Take ¢ € R(0, 0,(p)). Then &(gp(t, p)) =t + 6(p) and (¢, p) € M[0, r], which
is compact. A sequence {t,},.y With 0 < t, << g,(p) exists such that t, — g,(p)
and ¢(ty, p) > q € M[0,r] for v - co. Take v € N. Then

1(t, p) = @(t — tv, p(ty, D))

is defined for all t e R with
— o1(p(ts, p)) +hH<t< Qx(lP(tu p) + 1t

with x(ts, p) = @(ts, p) and j(¢, p) =Y (z(t, p)) and ¢(t, p) =¥ (p(t,p)). By
the maximality of g,(p) we have

01(p(ty, P)) + tr<0s(p) .

The limit » — co implies

0:(P) < 01(q) + 0:(p) < 0:(P)

which is impossible. Therefore g,(p) + d(p)>4. If 0<t< gs(p), then
t 4+ 6(p) = 6(p(t, p)) <4. Hence gy (p) + 8(p)<A. Together we obtain
0:(p) + 8(p) = A which proves [T*).

2. Step. The construction of y. Because S = @ is compact, a number
7 > 0 exists such that o,(p) > n and dd(p, Y(p)) # 0 if p € M[— 7, 0]. Then
Y(p)# 0 if p e M[— n, 0). A differentiable map

y: R(—n, A)x8 > M

is defined by y(t, p) = ¢(¢, p) for all t € R(— #n, 4) and p € 8. Step 1 implies
(1) If pe 8, then (0, p) = p.
(2') If pe 8 and te R(— n, A), then 4(t,p) =Y (y(t, p)).
(3") If pe 8 and te R[0, A), then 8(y(t, p)) =t.
Therefore points (1), (2) and (4) of Theorem 4.1 are proved.
4y If t, s and t + s belon‘g to R[O, 4) and if p € 8, then

p(t + s, p) = o(t, y(s,p)) .
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Proof of (4'). We have — g,(p) <8< 05(p) = 4 and — p,(p) <t +s<
< 0x(p) = 4. Also d(y(s,p)) =s>0. Hence g,(y(s,p)) = 4 —s. There-
fore — 0,(p(s, p)) <t < 4 —s = 0.((s, ). Hencep(t + s, p) =g@(t+s,p) =
= ¢(t, 9(s, p)) = @(¢, y(s, p)), which proves (4).

(8') The map v: R[0, A) X8 — M[0, A) is injective.

Proof of (5'). If te R[0, 4) and p e 8, then (¢, p) e M[0, A) by (3').
Assume that p(ty, po) = p(t,, p,) Where (¢,, p,) and (¢,, p,) belong to R[0, 4) x 8.
Then t, = 3(y(t, Po)) = 6(’/’“171’1)) =t,: Because y(U, p,) and y(LJ, p,) are
integral curves of Y with (4, p,) = v(t,, p,) We have y(t, p,) = w(¢, p1)
for all te R(— 5, 4). Hence p, = (0, py) = (0, p,) = p,. The map vy is
injective on R[O0, s) X 8, which proves (5).

(6") The map v is locally diffeomorphic at every point (t,, p,) € R[0, 4) x 8.

Proof of (6'). Define p, = y(t,, po) € M[0, A). Then (p,) =1t >0 and
dd(p,) # 0. The map do, (p,): T, (M) — T, (M) is a linear isomorphism. Now
@, = ¥, 8 — M) implies that

dy, (po): T, (8) — T, (M)
This injective linear map is an isomorphism since T, (S) and T, (M D))
have dimension m — 1. Identify the tangent space of R at f, with R such
that 0/ot =1 at t,. Then
R@ T,,n(S) S T(t,,Do)(RX S) .

Also dy(tey Po)|T5,(8) = dy, (po)|T,,(8). Hence the image of dy(t,, p,) con-
tains the linear subspace T, (M{%)). Here

Tn,(M<t0>) = {’U € Tvl(M)ldé(pn v) = 0} .

Therefore Y(p,) € T, (M) — T, (M<t,)) where
0
dy ((to, Do) a(to)) = 9(tyy Po) = Y('P(to’ Po)) = Y(p,).

Hence dy(to, po): T, ,,)(RX8) - T, (M) is surjective and for dimensions
reason a linear isomorphism, which proves (6').

(7Y The map y: R[0, A) x 8 — M[0, A) is a diffeomorphism.
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Proof of (7). Let ¢ be an accumulation point of y(R[0, 4) xS). A se-
quence {(ty, p»)},en of Points (&, p») € R[0, A) X 8 exists such that y(ty, p») — ¢
for v — oo. Since S is compact, we may assume that p, — p € § for v — oo.
Then

tr = 0(p(ts, P»)) — (q) for » - oo
p(8(q), p) = Lim y(ts, p») = ¢.

P—>00

Hence y(R[0, 4) x8) is closed in M[0, A). By (6'), p(R[0, A) x8) is not
empty and open in the connected space M[0, A). Hence

w: R[0, 4) x8 — M[0, A)

is a surjective map and consequently a diffeomorphism, which proves (7’)

If te R[0, 4), then u,: 8 — M{t> is an injective, local diffeomor-
phism. If ge M), then ¢ = y(s, p) for some (s, p) € R[0, A) xS. Hence
s = &(y(s, p)) = 8(¢q) =1¢. Therefore y,(p) = ¢. The map y,: § — M{t) is
also surjective and consequently a diffeomorphism; q.e.d.

Obviously, the number > 0 can be taken so small that
yp: R(—n, A)x8 - M
is a diffeomorphism onto the open image set.

b) Proofs of the properties of the double.

Proof of property (7): Define U= 0~}(U,) and U,= UAN,; for j = 1, 2.
Define U = t4(U,) and U, = (R-x8) N U and U, = (R*x8) N U. Then
8,CcU and 8, = {0} x8c U. Define Uy = U, — {0} and Us = U, — {0}.
The restrictions

szglﬁj: Uj—>U* rj:rlﬁj: UJ_‘>U’/'

are diffeomorphisms with

(1) =(— "’":ﬁ) () =(Inl,l%[)

for all h € U,. A diffeomorphism f: U — 8, — U — §, is defined by setting
f = 17ox0p; on U,: Then ;f(l?,-) = U, and tof = x0p.

We have to show that f extends to a diffeomorphism f: U — U. Take
a€8,. A patch 3: U, — U, at a exists satisfying the properties
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(x) We have ae U, C U and 3(a) =0¢€ U;QR’".

(B) Open connected subsets V of R with 0 € V and W of R™1 with 0 ¢ W
exist such that U; =VxW.

(y) Define V, = R- N Vand V,=R* NV, then 3(TU,N U,)) = V,x W
for j =1,2 and 3(8, N T;) = {0} x W.

Define b = x0po3~1: U;—>U;. If y eW, then h(t, y) = 0. Therefore a map

g: U, — R~ of class O exists such that h(t,y) = tg(, y) for all (¢,y)e V x
XW = U,. Then g= (g% ...,g") and h= (k% ..., hm). If yeW, write
Y = (Y2y ++-y Ym). The Jacobian determinant of ¢ in respect to these co-
ordinates is given by

A(t, y) = det (ht(ta Y), hv,(t, Y)yoees hvm(t7 ?/))
= tm1det (g(ty Y), g,,,(t, Y)y eens Yo, (b y))
+ tm det (gt(ty Y), gv,(t1 Y)yoens gv,,.(t9 ?/)) .

Because o branches of order 0, we conclude that

4

det (9(0, %), 9,(0, ), vy 9,,,(0,9)) =0 Vye W.

The vectors ¢(0,y), 9,,(0,%), ..., g,,(0,y) are linearly independent for each
y € W; in particular g(0, y)== 0 for all ye W.
A map F: U, -~ RXS8 of class C* is defined by

F(t,y) = (tlg(t, y)LI%: g)) |)

for all (t,y)€ VXW = U,. Let <-,-> be the inner product on R™. Then

t 0’ 0’ ) 0’
F(0,9) = (1000, |, LEL — SOIICIV 40, )
_ 9u,(0,¥)  <94,(0, %), g(0, ¥)>
Fu(0,9) _( O Wy wo,mp I y))'

Assume that 4, F,(0,y) + A, F,(0,y) 4 ... + 4. F, (0,y) = 0. Then 4, = 0.
Define a = 4,9, (0,y) + ... + Ang,,(0,%). Then

alg(0, y)[2 = <a, g(0, y)>9(0, y)

which implies A, = ... = 4, = 0. The map F is a local diffeomorphism at
every point of {0} x W. Hence f = Foz is a local diffeomorphis mat every
point of §,.
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If xeU,N U,, then 3(x) = (t,y) with 0>¢€eV and ye W. Therefore

) tg(tty) B — ht,y)
f@) = Ft,y) (“!tgt’-’/”’ [tg(t |)_( Db Tage ,wl)

= 17'(h(t, y)) = 17’ 0x00,057(t, y) = f().

If #e U, N U,, then 3(x) = (¢,y) with 0 <teV and ye W. Therefore

‘ . ht,
f(a;) = F(t, ?/) = (Itg(tyy) I’ lzgzta z; |) = (|h(t’ y) |’ #?//—)-i)

= 17" (h(t, y)) = t7'0x00,037Y(t, y) = f(w).

Hence f extends f onto U, with f(U, N 8,) ¢ S,. Hence f extends to a local
diffeomorphism j: U — U. Because f: U — 8, — U — 8§, is injective. Also
f: U — U is injective. Also f: S, — S, is a local diffeomorphism. Hence
f: 8 -8, is a diffeomorphism and f: U — U is surjective. Therefore
f: U— U is a diffeomorphism with rof = xop and f(O,;) = U, for j=1,2.
Consequently, f is an isomorphism of doubles over x; q.e.d.

Now, property (8) follows trivially.

Proof of Property (9): Take a patch x: U, > U, of M at 0 with
¥(0) = 0. Assume that U, is connected. Define

M, = YU, A= R xX8NM, Ap=Rx8NM
Ue=U,—{0} U.=U,— {0} M, =M,= M,

and regard M, and M, as disjoint copies. Also let 4,; equal U, as a subset
of M; for j =1,2. Define 4,, = 0 = A4,, and A;; = M, for § =1,2. Then
t; = t|d,, — Us is a diffeomorphism. Define the diffeomorphisms y,, =
= x7lot;: Ay — Ao; and yo; =yt for j =1,2. Define 4;; = M; and let
yiit A;; — A;; be the identity for j =1, 2. The assumptions of Theorem 17.1
in [1] are satisfied in the differentiable case. Therefore there exists a con-
nected, differentiable manifold N, open subsets N,; and diffeomorphisms
ys:t M; — N;such that N = N, U N, U N, and such that y,(4,;) = v:(4d,;:) =
=N,NN; if A;% 0 and such that y;%oy, =y, 4,; > A, if A;=0.
For j =1, 2, the map
=y N> M= My

is a diffeomorphism. The map

0o = ¥ loroy 't Ny — U,
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is of class C*. Observe N, N\ N, = 0. Take x€ NN N; with j =1 or 2.
Then & = y,(y) with y € 4,; and

Yo (@) = 7;1(71(?/)) = voi(y) = r5_1(3(?/)) .

Hence g,(®) = x lotoy, (#) = y = y; (@) = g4(@). One and only one map o
of class C® is defined such that ¢|N, = p, for j = 0,1,2. In particular
x00, = toy, . Hence

8y = 071(0) = 0;%(0) = yo0r7%(0) = ({0} x 8)

is a proper, compact, differentiable submanifold of N such that N = N, U
U N, U 8§, is a disjoint union. The restrictions

0; = Q|N5:N1—>M*

are diffeomorphisms. Hence g(N) = g,(S;) U 0,(N;) = 0:(N,;) = M. The
map p is surjective.

Let K be a compact subset of M. Let V be an open neighborhood of
0e M with VC ¥V c U, such that V is compact. Then K,= KN ¥V and
K'= K — V are compact subsets of N with K = K,U K'’. Here K,c U,
and K'c M,. Hence K, = 0; '(K') are compact. Since xog, = toy,*, the
map g,: M, — U, is proper. Hence K, = 0, 1(K,) is compact. Then o~} K) =
=K, UK UK, is compact. Therefore ¢ is proper. Because xog, = toy,?,
the map g, = ¢|N, branches of order 0 on 8,C N,. Therefore (N, p) is a
double of M at 0; qg.e.d.
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