Existence of embedded solutions of Plateau's problem
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 6 (1979) no. 3, pp. 447-495.
@article{ASNSP_1979_4_6_3_447_0,
     author = {Almgren, Frederick J. and Simon, Leon},
     title = {Existence of embedded solutions of {Plateau's} problem},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {447--495},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 6},
     number = {3},
     year = {1979},
     mrnumber = {553794},
     zbl = {0417.49051},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_1979_4_6_3_447_0/}
}
TY  - JOUR
AU  - Almgren, Frederick J.
AU  - Simon, Leon
TI  - Existence of embedded solutions of Plateau's problem
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 1979
SP  - 447
EP  - 495
VL  - 6
IS  - 3
PB  - Scuola normale superiore
UR  - http://www.numdam.org/item/ASNSP_1979_4_6_3_447_0/
LA  - en
ID  - ASNSP_1979_4_6_3_447_0
ER  - 
%0 Journal Article
%A Almgren, Frederick J.
%A Simon, Leon
%T Existence of embedded solutions of Plateau's problem
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1979
%P 447-495
%V 6
%N 3
%I Scuola normale superiore
%U http://www.numdam.org/item/ASNSP_1979_4_6_3_447_0/
%G en
%F ASNSP_1979_4_6_3_447_0
Almgren, Frederick J.; Simon, Leon. Existence of embedded solutions of Plateau's problem. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 6 (1979) no. 3, pp. 447-495. http://www.numdam.org/item/ASNSP_1979_4_6_3_447_0/

[AA] W.K. Allard - F.J. Almgren, Jr., The structure of stationary one dimensional manifolds with positive density, preprint.

[A1] H.W. Alt, Verzweigungspunkte von H-Flächen I, Math. Z., 127 (1972), pp. 333-362. | MR | Zbl

[A2] H.W. Alt, Verzweigungspunkte von H-Flächen II, Math. Ann., 201 (1973), pp. 33-55. | MR | Zbl

[AS] L.V. Ahlfors - L. Sario, Riemann Surfaces, Princeton University Press, 1960. | MR | Zbl

[AT] F.J. Almgren, Jr. - W.P. Thurston, Examples of unknotted curves which bound only surfaces of high genus with their convex hulls, Ann. of Math., 105 (1977), pp. 527-538. | MR | Zbl

[AW1] W.K. Allard, On the first variation of a varifold, Ann. of Math., 95 (1972), pp. 417-491. | MR | Zbl

[AW2] W.K. Allard, On the first variation of a varifold: boundary behaviour, Ann. of Math., 101 (1975), pp. 418-446. | MR | Zbl

[C] R. Courant, Dirichlet's Principle, Interscience, 1950. | MR

[D] J. Douglas, Solution of the problem of Plateau, Trans. Amer. Math. Soc., 33 (1931), pp. 263-321. | MR | Zbl

[FH] H. Federer, Geometric measure theory, Springer-Verlag, 1969. | MR | Zbl

[G] R. Gulliver, Regularity of minimizing surfaces of prescribed mean curvature, Ann. of Math. (1973), pp. 275-305. | MR | Zbl

[GOR] R. Gulliver - R. Osserman - H. Royden, A theory of branched immersions of surfaces, Amer. J. Math., 95 (1973), pp. 750-812. | MR | Zbl

[GS1] R. Gulliver - J. Spruck, On embedded minimal surfaces, Ann. of Math., 103 (1976), pp. 331-347. | MR | Zbl

[GS2] R. Gulliver - J. Spruck, Correction to « On embedded minimal surfaces», Ann. of Math., 109 (1979), pp. 407-412. | MR | Zbl

[M] F. Morgan, Almost every curve in R3 bounds a unique area minimizing surface, Invent. Math., 45 (1978), pp. 253-297. | MR | Zbl

[MY] W.H. Meeksiii - S.T. Yau, The classical Plateau problem and the topology of 3-manifolds, Arch. Rational Mech. Anal.

[N] J.C.C. Nitsche, Contours bounding at least three solutions of Plateau's problem, Arch. Rational Mech. Anal., 30 (1968), pp. 1-11. | MR | Zbl

[O] R. Osserman, A proof of the regularity everywhere of the classical solution of Plateau's problem, Ann. of Math., 91 (1970), pp. 550-569. | MR | Zbl

[P] J. Pitts, Existence and regularity of minimal surfaces in Riemannian manifolds, Bull. Amer. Math. Soc., 82 (1976), pp. 503-504. | MR | Zbl

[R] T. Rado, The problem of least area and the problem of Plateau, Math. Z., 32 (1930), pp. 763-796. | JFM | MR

[TT] F. Tomi - A.J. Tromba, Extreme curves bound embedded minimal surfaces of the type of disc, Math. Z., 158 (1978), pp. 137-145. | MR | Zbl