@article{ASNSP_1978_4_5_3_567_0, author = {Littman, Walter}, title = {Boundary control theory for hyperbolic and parabolic partial differential equations with constant coefficients}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {567--580}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 5}, number = {3}, year = {1978}, mrnumber = {507002}, zbl = {0395.35007}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1978_4_5_3_567_0/} }
TY - JOUR AU - Littman, Walter TI - Boundary control theory for hyperbolic and parabolic partial differential equations with constant coefficients JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1978 SP - 567 EP - 580 VL - 5 IS - 3 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1978_4_5_3_567_0/ LA - en ID - ASNSP_1978_4_5_3_567_0 ER -
%0 Journal Article %A Littman, Walter %T Boundary control theory for hyperbolic and parabolic partial differential equations with constant coefficients %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1978 %P 567-580 %V 5 %N 3 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1978_4_5_3_567_0/ %G en %F ASNSP_1978_4_5_3_567_0
Littman, Walter. Boundary control theory for hyperbolic and parabolic partial differential equations with constant coefficients. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 5 (1978) no. 3, pp. 567-580. http://www.numdam.org/item/ASNSP_1978_4_5_3_567_0/
[1] Fourier analysis in several complex variables, New York, N. Y. (1970). | MR | Zbl
,[2] Exact controllability theorems for linear parabolic equations in one space dimension, Archive Rat. Mech. Anal., 4 (1971), pp. 272-292. | MR | Zbl
- ,[3] Generalized functions and partial differential equations, Englewood Cliffs, N. J. (1963). | MR | Zbl
,[4] Generalized Functions, vol. 3, Moscow (1958).
- ,[5] Sur l'équation de la propagation de la chaleur, Ark. Mat. Astr. Physik, 4 (1908), pp. 1-4. | JFM
,[6] Linear partial differential operators, Academic Press Inc., New York, N. Y. (1963). | MR
,[7] A fundamental solution for the heat equation which is supported in a strip, J. Math. Analysis and Applications, 60 (1977), pp. 314-324. | MR | Zbl
,[8] The Radon transform on Euclidean spaces, Communications in Pure and Applied Math., 19 (1966), pp. 49-81. | MR | Zbl
,[9] A unified boundary controllability theory for hyperbolic and parabolic equations, Studies in Applied Math., 52 (1973), pp. 189-211. | MR | Zbl
,[10] Boundary observation and control for the heat equation: Differential games and control theory, Marcel Dekker, New York, N. Y. (1974), pp. 321-351. | MR
,