@article{ASNSP_1978_4_5_1_105_0, author = {Kato, Tosio}, title = {On some {Schr\"odinger} operators with a singular complex potential}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {105--114}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 5}, number = {1}, year = {1978}, mrnumber = {492961}, zbl = {0376.47021}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1978_4_5_1_105_0/} }
TY - JOUR AU - Kato, Tosio TI - On some Schrödinger operators with a singular complex potential JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1978 SP - 105 EP - 114 VL - 5 IS - 1 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1978_4_5_1_105_0/ LA - en ID - ASNSP_1978_4_5_1_105_0 ER -
%0 Journal Article %A Kato, Tosio %T On some Schrödinger operators with a singular complex potential %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1978 %P 105-114 %V 5 %N 1 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1978_4_5_1_105_0/ %G en %F ASNSP_1978_4_5_1_105_0
Kato, Tosio. On some Schrödinger operators with a singular complex potential. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 5 (1978) no. 1, pp. 105-114. http://www.numdam.org/item/ASNSP_1978_4_5_1_105_0/
[1] Feynman integrals and the Schrödinger equation, J. Mathematical Physics, 5 (1964), pp. 332-343. | MR | Zbl
,[2] Schrödinger operators with singular potentials, Israel J. Math., 13 (1972), pp. 135-148. | MR | Zbl
,[3] Sur la complétion par rapport à une intégrale de Dirichlet, Math. Scand., 4 (1956), pp. 259-270. | EuDML | MR | Zbl
- ,[4] Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15, fasc. 1 (1965), pp. 189-258. | EuDML | Numdam | MR | Zbl
,[5] Perturbation theory for linear operators, Second Edition, Springer, 1976 | MR | Zbl
,[6] Product formulas, nonlinear semigroups, and addition of unbounded operators, Mem. Amer. Math. Soc., 140 (1974). | MR | Zbl
,[7] Trotter's product formula for an arbitrary pair of selfadjoint contraction semigroups, Advances in Math. (to appear). | Zbl
,[8] A second look at the essential selfadjointness of the Schrödinger operators, Physical Reality and Mathematical Description, D. Reidel Publishing Co., 1974, pp. 193-201. | MR | Zbl
,