@article{ASNSP_1977_4_4_4_637_0, author = {Rota, Gian-Carlo and Smith, David A.}, title = {Enumeration under group action}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {637--646}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 4}, number = {4}, year = {1977}, mrnumber = {498171}, zbl = {0367.05008}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1977_4_4_4_637_0/} }
TY - JOUR AU - Rota, Gian-Carlo AU - Smith, David A. TI - Enumeration under group action JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1977 SP - 637 EP - 646 VL - 4 IS - 4 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1977_4_4_4_637_0/ LA - en ID - ASNSP_1977_4_4_4_637_0 ER -
%0 Journal Article %A Rota, Gian-Carlo %A Smith, David A. %T Enumeration under group action %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1977 %P 637-646 %V 4 %N 4 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1977_4_4_4_637_0/ %G en %F ASNSP_1977_4_4_4_637_0
Rota, Gian-Carlo; Smith, David A. Enumeration under group action. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 4 (1977) no. 4, pp. 637-646. http://www.numdam.org/item/ASNSP_1977_4_4_4_637_0/
[1] Polya's theory of counting, in Applied Combinatorial Mathematics, ed. by E. F. BECKENBACH, Wiley, 1964, pp. 144-184. | Zbl
,[2] Colour patterns which are invariant under a given permutation of the colours, J. Combinatorial Theory, 2 (1967), pp. 418-421. | MR | Zbl
,[3] On the foundations of combinatorial theory, I : Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie, 2 (1964), pp. 340-368. | MR | Zbl
,[4] Baxter algebras and combinatorial identities, II, Bull. Amer. Math. Soc., 75 (1969), pp. 330-334. | MR | Zbl
,[5] Incidence functions as generalized arithmetic functions, I, Duke Math. J., 34 (1967), pp. 617-634. | MR | Zbl
,[6] Incidence functions as generalized arithmetic functions, II, Duke Math. J., 36 (1969), pp. 15-30. | MR | Zbl
,[7] Multiplication operators on incidence algebras, Indiana Univ. Math. J., 20 (1970), pp. 369-383. | MR | Zbl
,