Annali della Scuola Normale Superiore di Pisa *Classe di Scienze*

ANDREW JOHN SOMMESE

Real algebraic spaces

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4^{*e*} *série*, tome 4, nº 4 (1977), p. 599-612

<http://www.numdam.org/item?id=ASNSP_1977_4_4_4_599_0>

© Scuola Normale Superiore, Pisa, 1977, tous droits réservés.

L'accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Real Algebraic Spaces.

ANDREW JOHN SOMMESE (*)

It is well-known [cf. § 1 for definitions] that if two holomorphic vector bundles on a complex manifold X are topologically equivalent on a submanifold \Re without complex tangents then there is a Stein neighborhood of \Re in X on which they are holomorphically equivalent. This article treats the algebraic analogue of this fact.

In §1 notation and background material are collected.

In § 2 it is shown that two algebraic vector bundles on a Zariski neighborhood U of the real points X_R of a projective analytic space X defined over \mathbf{R} , are algebraically equivalent on a possibly smaller Zariski open set $V \supseteq X_R$ if they are topologically equivalent on X_R . Various extensions of this result are given.

It is shown that the set of algebraic sections of an algebraic bundle E over a compact real algebraic space X is dense, for $1 \le k \le \infty$, in the space of C^k topology.

In §3 it is shown that given a compact Kaehler manifold X with an antiholomorphic involution and with a trivial canonical bundle, one has:

 $0 \to H^0(X, \Omega^q_X) \to H({}^{\mathfrak{a}}\mathbb{C}, \mathbb{C})$

where $0 \le q \le \dim_{\mathbf{C}} X$, C is any connected component of the real points of X, and Ω_X^q is the q-th exterior power of the holomorphic cotangent sheaf.

I would like to thank William Dwyer for some helpful conversations, and Manfred Knebusch for raising my interest in real algebraic manifolds and their K theory.

I would like to thank the Institute for Advanced Study at Princeton for their financial support.

(*) The Institute for Advanced Study, Princeton, New Jersey 08540 and Cornell University, Ithaca, New York.

Pervenuto alla Redazione il 29 Marzo 1976.

§ 1. – In this section background material is collected and notation fixed. All analytic spaces are assumed reduced.

If S is an analytic coherent sheaf on an analytic space X, then $\Gamma_h(X, S)$ the set of sections of S over X possesses a functorial Fréchét space structure that coincides with the compact-open topology when S is the locally free sheaf associated to a holomorphic vector bundle on X [cf. 4, Chapter 8]. If $f: Y \to X$ is a holomorphic map where Y is an analytic space, then the natural map $f^*: \Gamma_h(X, S) \to \Gamma_h(Y, f^*S)$ is continuous. If $\phi: S \to \mathfrak{C}$ is an \mathcal{O}_X linear sheaf map where \mathfrak{C} is an analytic coherent sheaf over X, then the natural map $\phi_*: \Gamma_h(X, S) \to \Gamma_h(X, \mathfrak{C})$ is continuous.

If X is a quasi-projective analytic space (i.e. a Zariski open set of a projective analytic space) and S is an algebraic coherent sheaf on X, then $\Gamma_a(X, S)$ denotes the space of sections of S on X. Regarding X as an analytic space and letting S_h be the analytic coherent sheaf associated to S one has the injective map:

$$i: \Gamma_a(X, \mathfrak{S}) \to \Gamma_h(X, \mathfrak{S}_h)$$
.

By an affine algebraic space X one will simply mean an algebraic subspace of \mathbb{C}^N with the induced reduced algebraic structure sheaf \mathcal{O}_X . The associated analytic space, also denoted X, with the analytic structure sheaf ${}_a\mathcal{O}_X$ is a Stein space.

One has the following useful lemma of Cornalba and Griffiths:

LEMMA I-A. Let X be an affine algebraic space and F an algebraic coherent sheaf on X. Then $\Gamma_a(X, \mathfrak{T})$ is dense in $\Gamma_b(X, \mathfrak{T}_b)$.

PROOF. – One has X algebraically embedded in \mathbb{C}^N . Let \mathcal{E} be a locally free algebraic coherent sheaf in \mathbb{C}^N and $\lambda \colon \mathcal{E} \to \mathcal{F}$ a $\mathcal{O}_{\mathbb{C}^N}$ linear surjective sheaf map where \mathcal{F} is regarded as a sheaf on \mathbb{C}^N . Consider the commutative diagram:

$$\begin{split} \Gamma_{a}(\mathbf{C}^{N},\, \mathbb{S}) & \stackrel{\lambda}{\to} \Gamma_{h}(\mathbf{C}^{N},\, \mathbb{S}_{h}) \\ & \downarrow & \downarrow^{r} \\ \Gamma_{a}(\mathbf{C}^{N},\, \mathcal{F}) & \to \Gamma_{h}(\mathbf{C}^{N},\, \mathcal{F}_{h}) \\ & \swarrow & & \swarrow \\ & & & \swarrow \\ \Gamma_{a}(X,\, \mathcal{F}) & \to \Gamma_{h}(X,\, \mathcal{F}_{h}) \,. \end{split}$$

Now $\lambda(\Gamma_a(\mathbb{C}^N, \mathfrak{E}))$ is dense in $\Gamma_h(\mathbb{C}^N, \mathfrak{E}_h)$ by [2, Prop. 17.1]. Now r is a surjection since \mathbb{C}^N is a Stein space, and thus the image of $r \circ \lambda$ is dense in $\Gamma_h(X, \mathcal{F}_h)$. Q.E.D.

The following is quite useful in conjunction with the above:

RUNGE'S THEOREM. Let X be a Stein space and let $\varphi: X \to \mathbf{R}$ be an at least C² strictly plurisubharmonic exhaustion function [4, pg. 273 ff]. The restriction map $r: \Gamma_h(X, S) \to \Gamma_h(X_c, S|_{X_c})$ has a dense image where S is an analytic coherent sheaf on X and $X_c = \{x \in X | \varphi(x) < c\}$ for a real number c.

PROOF. Let *d* be a real number $c < d < \infty$. X_d is relatively compact in *X* and by basic Stein space theory one can choose global sections $\{s_1, \ldots, s_N\}$ of S such that they span $S|_{x_d}$ over the structure sheaf \mathcal{O}_{x_d} of X_d . Now let \mathcal{F} be the rank *N* free sheaf on *X*; one the above has an \mathcal{O}_X linear sheaf map $\mathcal{F} \to S$ which is surjective on X_d . One has the commutative diagram

Now the lower two horizontal arrows are surjective since X_d and X_c are Stein spaces [4, pgs. 275-276] and higher cohomology groups of coherent sheaves vanish. Further r_1 has dense image by [4, pg. 275]. Thus if one shows that r_2 has dense image then since r_1 and r_2 are continuous $r_1 \circ r_2$ will have dense image and the theorem will follow.

Since \mathcal{F} is a direct sum of trivial line bundles it suffices to prove this for holomorphic functions. Let $\{d_i\}$ for i = 1, 2, 3, ... be a sequence of real numbers such that $c < d_1 < d_2 < ...$ and $d_i \to \infty$. Now given an $\varepsilon > 0$, a holomorphic function f on X_c and a compact set $K < X_c$ one can find a holomorphic function f_1 on X_{d_1} such that $\sup_K |f - f_1| < \varepsilon/2$ [4, pg. 275]. Similarly one can find a sequence $\{f_i\}$ with f_i holomorphic on X_{d_j} and $\sup_{X_{d_j-1}} |f_j - f_{j+1}| < \varepsilon/2$ $< \varepsilon/2^{j+1}$. Thus f_j converges to a global holomorphic function g on X. Note $\sup_r |f - g| < \varepsilon$. Q.E.D.

The following is one of Grauert's theorems on holomorphic vector bundles on Stein spaces [cf. 2, :19-20 for a nice summary with proofs]. GRAUERT'S THEOREM. Let X be a Stein space and let E be a holomorphic vector bundle on X. If E is topologically trivial then E is holomorphically trivial. Given any differentiable complex vector bundle F on X, then there is a holomorphic bundle on X with the underlying differentiable vector bundle structure of F.

I need the concept of a submanifold without complex tangents of a complex manifold and a theorem about it due to Range and Siu[7]. The implications of the result for algebraic geometry will become clear in the next section.

Recall [6, II-9.2], that given a complex manifold X one has an associated almost complex structure J on T_x , the real tangent bundle of X. J is a fiberwise linear map of T_x to itself such that $J^2 = -I$ where I is the identity on T_x .

DEFINITION. Let X be a complex manifold and M a C^k submanifold where $1 < k < \infty$. M is said to be without complex tangents if given $m \in M$, then $J(T_{M|m}) \cap (T_{M|m}) = \{m\}$ where $\{m\}$ is identified with the origin of $T_{M|m}$, the real tangent space of M at m.

PROPOSITION [Range-Siu]: Let $1 \le k \le \infty$ and let M be a C^k submanifold without complex tangents in a complex manifold X. Then there exists a Stein open neighborhood U of M in X such that the restrictions to M of all holomorphic sections of any holomorphic vector bundle E on U are dense in the Frechet space of all C^k sections of $E|_M$.

PROOF. Range and Siu prove this for the trivial bundle but the above extension is easy.

First note that one can find a holomorphic vector bundle F on U such that $E \otimes F'$ is topologically trivial and then use Grauert's theorem above.

Next note given any section of E on M one can lift it to $E \oplus F$, use [7] to approximate and then project down to E. Q.E.D.

Associated to any analytic space X is an analytic space X'', the conjugate analytic space. The topological space of X'' is the same as X and the holomorphic structure sheaf of X'' consists of the conjugates of the elements of the holomorphic structure sheaf of X. If X is a complex manifold, then the holomorphic transition functions of X'' are simply the conjugates of the holomorphic transition functions of X. A conjugation $\sigma: X \to X$ is an antiholomorphic involution, i.e. a map σ , whose square is the identity and which is holomorphic when considered as a map from X to X''.

LEMMA I-B. Let $\sigma: X \to X$ be a conjugation of a connected complex manifold X, with fixed point set X_R . If X_R is non-empty, then each connected component is a submanifold of X without complex tangents with real dimension equal to $\dim_{\mathbf{C}} X$.

PROOF. $X_{\mathbf{R}}$ is a manifold since it is the fixed point set of the finite group $\{1, \sigma\}$ where $1: X \to X$ is the identity transformation.

Associated to the complex structure on X one has an almost complex structure J. J is a fiberwise linear C^{∞} transformation $J: T_x \to T_x$ with $J^2 = -I$ where T_x is the real tangent bundle of X. To say σ is antiholomorphic is equivalent to saying $d\sigma \circ J = -J \circ d\sigma$. At a point $x \in C$, a connected component of X_R , this implies that J interchanges the plus and minus one eigenspace of $d\sigma|_x$. Thus $\dim_R C = \dim_C X$, and further $(J|_x)(T_C|_x) \cap (T_C|_x) = \{x\}$ for each $x \in C$. This is equivalent to C and hence X_R being totally real submanifolds of X, i.e. having no complex tangents. Q.E.D.

It follows trivially from the last paragraph that $J|_{x_R}$ gives an isomorphism between T_{x_R} , the real tangent bundle of X_R , and N_{x_R} , the normal bundle of X_R in X.

It should be noted that if X is singular then X_R might have components of different dimensions. For example C with the conjugation $\sigma(z) = \overline{z}$ has the real line as fixed pointset. Now consider the analytic space C^* gotten from C by identifying $\sqrt{-1}$ and $-\sqrt{-1}$ defining a germ of a function at the new point $\{\sqrt{-1}, -\sqrt{-1}\}$ as germs of functions f and g at $\sqrt{-1}$ and $-\sqrt{-1}$ respectively such that $f(\sqrt{-1}) = g(-\sqrt{-1})$. The involution σ descends to the analytic space C^* but C_R^* the fixed point set is the real line and the point $\{\sqrt{-1}, -\sqrt{-1}\}$.

 $X_{\mathbf{R}}$ can be empty as the conjugation on $\mathbb{C}P^{1}$ given by $\sigma(z) = -1/\bar{z}$ shows.

If X is a compact connected complex manifold with conjugation σ , then [1, pg. 64] $X_{\mathbf{R}} \times X_{\mathbf{R}}$ is unoriented cobordant to X. This implies that $X_{\mathbf{R}}$ is non-empty if some Pontryagin number of X is odd. For example if $\dim_{\mathbf{C}} X = 2n$, then $\dim_{\mathbf{C}} H^n(X, \Lambda^n \mathcal{Q}_X^1)$ being odd implies by means of the Hodge decomposition that the Euler characteristic of X is odd and hence by the above that $X_{\mathbf{R}}$ is non-empty for any conjugation of X.

If X is quasi-projective it is not hard to see (cf. Lemma I-C' below) that X" has a quasi-projective structure also. A holomorphic conjugation σ on a quasi-projective analytic space is said to be algebraic if $\sigma: X \to X"$ is algebraic. If X is a projective analytic space one can see from Chow's lemma that every holomorphic conjugation is algebraic.

LEMMA I-C. Let σ be an algebraic conjugation of a quasi-projective analytic space X with fixed point set X_R . There exists an algebraic embedding Φ from X into $\mathbb{C}P^{N}$ for some N such that:

a)
$$\Phi \circ \sigma = \tau \circ \Phi$$
 where $\tau : \mathbb{C}P^{N} \to \mathbb{C}P^{N}$ is the conjugation

$$(z_0,\ldots,z_N) \rightarrow (\overline{z}_0,\ldots,\overline{z}_N)$$

b) a hyperplane H invariant under τ can be chosen so that

$$X_{\mathbf{R}} \subseteq X - \Phi^{-1}(H);$$

c) if X is a projective manifold, then the non-primitive cohomology of $H^*(X, \mathbb{C})$ with respect to the Kaehler class that is Poincaré dual to H, is in the kernel of the restriction map $r: H^*(X, \mathbb{C}) \to H^*(X_R, \mathbb{C})$.

PROOF. $\sigma: X \to X''$ is algebraic and thus one has an algebraic embedding $\varphi = (1, \sigma): X \to X \times X''$ where 1 is the identity on X. On noting that $\varphi \circ \sigma = \sigma' \circ \varphi$ where $\sigma'(x, y) = (y, x)$, and that $\varphi^{-1}(\Delta \cap \varphi(X)) = X_{\mathbf{R}}$ where Δ is the diagonal of $X \times X''$ and $X_{\mathbf{R}}$ are the fixed points of σ , one sees that parts a) and b) of the lemma follow from:

LEMMA I-C'. If X be a quasi-projective analytic space, then so is X". Further there exists an algebraic embedding $\Phi: X \times X^{"} \to \mathbb{C}P^{N}$ for some N such that $\Phi(x, y) = \tau \circ \Phi(y, x)$ and where there is some hyperplane H of $\mathbb{C}P^{N}$ such that $\Phi^{-1}(H)$ is disjoint from the diagonal of $X \times X^{"}$.

PROOF. Let L be a very ample line bundle on X, e.g. the pullback to Xof the hyperplane section bundle of the $\mathbb{C}P^n$ in which it is assumed that Xis embedded; i.e. $\varphi: X \to \mathbb{C}P^n$. Now let $\{s_0, ..., s_n\}$ be the sections of Lthat give the homogeneous coordinates of $\mathbb{C}P^n$ restricted to X. Now \overline{L} is the holomorphic line bundle on X'' with transition functions that are conjugate to those of L. $\{\overline{s}_0, ..., \overline{s}_n\}$ are sections of \overline{L} that give rise to a holomorphic map $\overline{\varphi}: X'' \to \mathbb{C}P^n$. The image of $\overline{\varphi}$ is the conjugate of the image of X under φ . The closure $\overline{\overline{\varphi}(X'')}$ of $\overline{\overline{\varphi}(X'')}$ is the conjugate of the closure of $\varphi(X)$. Thus $\overline{\overline{\varphi}(X'')}$ is a projective analytic space and so is $\overline{\overline{\varphi}(X'')} - \overline{\varphi}(X'')$ since $\overline{\varphi(X)} - \varphi(X)$ is. This implies X'' is quasi-projective.,

Consider the map $\Phi: X \times X'' \to \mathbb{C}P^{n^2+2n}$ given by

$$egin{aligned} & \varPhi(x,y) = \ &= \left(\ldots, s_i(x) \otimes ar{s}_j(y) + s_j(x) \otimes ar{s}_i(y), \ldots, \sqrt{-1} ig(s_i(x) \otimes ar{s}_j(y) - s_j(x) \otimes ar{s}_i(y) ig), \ldots ig) \end{aligned}
ight.$$

It is clearly an embedding since it is a composition of the embedding

$$B = (\varphi, \bar{\varphi}) \colon X \times X'' \to \mathbb{C}P^n \times \mathbb{C}P^n$$
,

the Segre embedding of $CP^n \times CP^n \to CP^{n^2+2n}$, and an automorphism of CP^{n^2+2n} . Note that $\overline{\Phi(x, y)} = \Phi(y, x)$. The set

$$\mathfrak{K} = \left\{ (x, y) \in X imes X'' \Big| \sum_i s_i(x) \otimes \overline{s}_i(y) = 0
ight\}$$

is the pullback of a hyperplane H of $\mathbb{C}P^{n^{2}+2n}$ to $X \times X''$. $\mathcal{K} \cap \Delta = \phi$ where Δ is the diagonal of $X \times X''$. Q.E.D.

Part c) of Lemma I-C follows from part b) and the definition of the primitive decomposition [9, pg. 75]. Q.E.D.

Let me now justify the title of this paper. Usually by a quasi-projective analytic space X defined over **R** one means a quasi-projective analytic space and an algebraic embedding of X into $\mathbb{C}P^N$ such that the set X is invariant under the natural conjugation of $\mathbb{C}P^N$. Another way of saying this is there exists an algebraic embedding $\Phi: X \to \mathbb{C}P^N$ such that $\Phi(X)$ and $\overline{\Phi(X)} - \Phi(X)$ are defined by the vanishing of homogeneous polynomials with real coefficients. This former is precisely what was shown.

If E is a holomorphic vector bundle over an analytic space X with conjugation $\sigma: X \to X$, then E is said to have a conjugation \mathfrak{L} defined over (or simply over) σ if there exists a conjugation $\mathfrak{L}: E \to E$ of E as an analytic space such that the diagram:

$$E \xrightarrow{\mathfrak{C}} E$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$X \xrightarrow{\sigma} X$$

commutes where the vertical arrows are the bundle projections and \mathfrak{L} restricted to any fiber is conjugate linear.

Note the trivial bundle has a conjugation over σ .

If X is quasi-projective and σ is an algebraic conjugation then one says a pair (E, \mathfrak{L}) is an algebraic vector bundle on X defined over σ if E is an algebraic vector bundle and \mathfrak{L} is an algebraic conjugation of E defined over σ .

It is easily seen by the reader acquainted with quasi-projective spaces X defined over \mathbf{R} that every algebraic vector bundle on X defined over \mathbf{R} gives rise to such a pair. A slight extension of the reasoning of Lemma I-C shows the converse also holds. I will not use either of these facts and thus will not prove them.

Finally, let me describe the C^k topology $(1 \le k \le \infty)$ on C^k sections of a C^k differentiable vector bundle E over a compact real algebraic space X_R . The construction is entirely analogous to that of the topology of $\Gamma_h(X, S)$ mentioned in the second paragraph of this section. One can C^k embed X_R in a Grassmannian G such that E is the restriction of the universal bundle \mathcal{E} on G. The space of C^k sections of \mathcal{E} restrict to give the space of C^k sections of E on X_R : Put the quotient topology of the space of sections of \mathcal{E} . It is the usual argument to show this topology doesn't depend on the embedding and that it coincides with the usual C^k topology if X_R is a manifold.

§ 2. – In this section X will always denote a projective analytic space defined over **R** with conjugation σ and real points $X_{\mathbf{R}}$: All spaces are as always assumed reduced.

Let $\mathfrak{Z}(X_R)$ and $\mathfrak{Z}(X_R, \sigma)$ be the sets of Zariski open sets and σ invariant Zariski open sets of X respectively that contain X_R .

Let $\operatorname{Vect}(U)$ for $U \in \mathfrak{Z}(X_R)$ be the set of algebraic vector bundles on U. Let $\operatorname{Vect}(U, \sigma)$ for $U \in \mathfrak{Z}(X_R, \sigma)$ be the set of algebraic vector bundles defined over σ ; thus an element of $\operatorname{Vect}(U, \sigma)$ is a pair (E, \mathfrak{L}) as at the end of §1. Given such an (E, \mathfrak{L}) let E_R be the real vector bundle over X_R left fixed by \mathfrak{L} (note that $E_R \otimes_R C \approx E|x_R)$.

Now an algebraic section of $F|_{X_{\mathbf{R}}}$ for $F \in \operatorname{Vect}(U)$ is any section of $F|_{X_{\mathbf{R}}}$ that is the restriction of an algebraic section of $F|_{V}$ where $V \subseteq U$ and $V \in \mathfrak{Z}(X_{\mathbf{R}})$. Denote these sections by $\Gamma_{a}(X_{\mathbf{R}}, F|_{X_{\mathbf{R}}})$. Similarly an algebraic section of $E_{\mathbf{R}}$ for $(E, \mathfrak{L}) \in \operatorname{Vect}(U, \sigma)$ where $U \in \mathfrak{Z}(X_{\mathbf{R}}, \sigma)$ is a section of $E_{\mathbf{R}}$ that is the restriction of any section s of E over V where $V \subseteq U$, $V \in \mathfrak{Z}(X_{\mathbf{R}}, \sigma)$, and $\overline{\mathfrak{L}(s)} = s$; denote these sections by $\Gamma_{a}(X_{\mathbf{R}}, E_{\mathbf{R}})$.

PROPOSITION I If $F \in \text{Vect}(U)$ where $U \in \mathfrak{Z}(X_R)$ then $\Gamma_a(X_R, F|X_R)$ is dense in the C^k sections of $F|_{X_R}$. If $(E, \mathfrak{L}) \in \text{Vect}(U, \sigma)$ where $U \in \mathfrak{Z}(X_R, \sigma)$ then $\Gamma_a(X_R, E_R)$ is dense in the C^k sections of E_R .

PROOF. - I will prove the latter statement since the proof of the former is exactly the same but with a few steps less. By Lemma I-B there exists an embedding Φ of a σ invariant affine $V \supseteq X_R$ into \mathbb{C}^N such that $\Phi \circ \sigma = \overline{\Phi}$ and thus $\Phi(X_R) \subseteq \mathbb{R}^N$. Let $z_i = x_i + (\sqrt{-1})y_i$ with i = 1, ..., N be the usual coordinates on \mathbb{C}^N ; with $\mathbb{R}^N = \{p \in \mathbb{C}^N | y_i(p) = 0, \forall i\}$. Note $\mathbb{C}^N \subseteq \mathbb{C}P^N$ where $\{w_0, ..., w_n\}$ are homogeneous coordinates on $\mathbb{C}P^N$, $\mathbb{C}^N = \{p \in \mathbb{C}P^N | w_0 \neq 0\}$, and $z_i = w_i/w_0$: Now $\varphi = \sum_{i=1}^N y_i^2$ defines a strongly pseudoconvex function on \mathbb{C}^N and $\tilde{\varphi} = \varphi \circ \Phi$ on V. $\tilde{\varphi}$ is actually a non-negative exhaustion function on V that vanishes precisely on X_R . To see it is an exhaustion function it suffices to show there is no closed set $\{p_n \in V | n = 1, 2, 3, ...\}$ with $\tilde{\varphi}(p_n) \leq C$ for some C independent of n but where $|x_i(p_n)| \to \infty$ for some index i. If this happened it is easily seen that there is some index j and infinitely many p'_n such that $|x_i(p'_n)| \geq |x_i(p'_n)| \geq 0$ for all λ . Thus by rearranging the coordinates and renumbering the $\{p'_n\}$ one has that there exists a sequence $\{p_n\} \subseteq V$ such that $\tilde{\varphi}(p_n) \leq C$ independently of n and $|x_i(p_n)| \to \infty$ where $|x_i(p_n)| \geq |x_\lambda(p_n)| > 0$ for all λ and n. Now in homogeneous coordinates in $\mathbb{C}P^N$, p_n is

$$\left(1/x_1(p_n), 1+(\sqrt{-1})(y_1(p_n)/x_1(p_n)), ..., (x_N(p_n)+\sqrt{-1}y_N(p_n))/x_1(p_n)\right)$$

The imaginary parts of these coordinates go to 0 since $\tilde{\varphi}(p_n) \leq C$ and for some subsequence q_n of the $\{p_n\}$ the real parts converge since they are bounded. This gives the absurd conclusion that $\overline{V} \cap \mathbb{R}P^N = X \cap \mathbb{R}P^N = X_{\mathbb{R}}$ contains a point in $\mathbb{R}P^N - \mathbb{R}^N$ and hence not in $X_{\mathbb{R}}$.

Now let B be a Stein neighborhood of \mathbb{R}^{N} in \mathbb{C}^{N} such that the Range-Siu theorem holds. Assume B is chosen so that $V \cap B \subseteq U$ and $\tilde{\varphi}(B \cap V)$ is bounded. Now let G be a holomorphic bundle on $B \cap X$ such that $F \oplus G$ is holomorphically trivial. This is clear differentiably-now use Grauert's theorem. Now $E \oplus G$ is the restriction of the trivial bundle G on B. Let s be a C^{k} section of $E|_{X_{\mathbf{R}}}$, then s has a C^{k} extension \tilde{s} as a section of G on \mathbb{R}^{N} . Apply Range-Siu to get a holomorphic section of G on B that is C^{k} close to \tilde{s} . Thus by restriction to $B \cap X$ and projection to $E|_{B \cap X}$ one has a section of E that is C^{k} close to s on $X_{\mathbf{R}}$, i.e. the image of $\Gamma_{h}(B \cap V, \mathcal{E}_{h|B \cap V})$ is dense in $C^{k}(X_{\mathbf{R}}, E|_{X_{\mathbf{R}}})$ where \mathcal{E}_{h} is the analytic coherent sheaf on V associated to the algebraic coherent sheaf \mathcal{E}_{a} on V induced by algebraic sections of E and $C^{k}(X_{\mathbf{R}}, E|_{X_{\mathbf{R}}})$ is the C^{k} sections of $E|_{X_{\mathbf{R}}}$.

Now choose a $c \in \mathbf{R}$ such that $V_c = \{x \in V | \tilde{\varphi}(x) < c\} \subseteq B \wedge V$. Then Runge's theorem says $\Gamma_h(V, \delta_h)$ is dense in $\Gamma_h(V_c, \delta_{h|V_c})$ and hence by the last paragraph in $C^k(X_R, E|X_R)$. Now by Lemma I-A, $\Gamma_a(V, \delta)$ is dense in $\Gamma_h(V, \delta_h)$ and hence in $C^k(X_R, E|X_R)$.

Now there is a natural continuous map from $\Gamma_a(V, \delta)$ into $C^k(X_R, E_R)$. Namely $f \to [f + \overline{\mathfrak{L}(f)}]/2$. This factors through the surjective $C^k(X_R, E|\mathbf{x}_R) \to C^k(X_R, E_R)$ given by the same formula. But $\Gamma_a(V, \delta)$ was just shown to be dense in $C^k(X_R, E|\mathbf{x}_R)$ and hence in $C^k(X_R, E_R)$. Q.E.D.

Now for $U \in \mathfrak{Z}(X_R, \sigma)$ let $(L, \tau) \in \operatorname{Vect}(U, \sigma)$. Define $\operatorname{Vect}(U, \sigma, L, \tau)$ as the set of triples (E, \mathfrak{L}, q) where $(E, \mathfrak{L}) \in \operatorname{Vect}(U, \sigma)$ and q is a non-degenerate symmetric bilinear pairing $q: E \otimes E \to L$ such that $q \circ (\mathfrak{L} \otimes \mathfrak{L}) = \tau \circ q$.

Note that elements of $Vect(U, \sigma)$ for $U \in \mathfrak{Z}(X_R, \sigma)$ give rise to well defined elements of $Vect_R(X_R)$ the differentiable real vector bundles on X_R .

To see this simply note that given $(E, \mathfrak{L}) \in \operatorname{Vect}(U, \sigma)$ and any $x \in X_R$, then $\mathfrak{L}: E|_X \to E|_X$ is a conjugation and thus the fixed points E_R over X_R are well defined. Note $E_R \otimes_R C = E|_{X_R}$. Thus letting $\operatorname{Vect}_C(X_R)$ denote the differential complex vector bundles in X- one has the commutative diagram

$$Vect(U, \sigma) \longrightarrow Vect(U)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Vect_{\mathbf{R}}(X_{\mathbf{R}}) \xrightarrow{\otimes_{\mathbf{R}} \mathbf{C}} Vect_{\mathbf{C}}(X_{\mathbf{R}})$$

where the vertical arrow on the right is restriction. Now if $\operatorname{Vect}_{\mathbf{R}}(X_{\mathbf{R}}, L_{\mathbf{R}})$ denotes the set of differentiable real vector bundles $E_{\mathbf{R}}$ on $X_{\mathbf{R}}$ with symmetric bilinear pairings $q: E_{\mathbf{R}} \otimes E_{\mathbf{R}} \to L_{\mathbf{R}}$ nondegenerate then one has a natural map from

$$\operatorname{Vect}'(U, \sigma, L, \tau) \to \operatorname{Vect}_{R}(X_{R}, L_{R})$$
.

These give rise to various maps in the limit over $U \in \mathfrak{Z}(X_R)$ and $U \in \mathfrak{Z}(X_R, \sigma)$. For simplicity let $V(X_R) = \lim_{U \in \mathfrak{Z}(X_R)} \operatorname{Vect}(U)$, $V(X_R, \sigma) = \lim_{U \in \mathfrak{Z}(X_R, \sigma)} \operatorname{Vect}(U, m)$ and $V(X_R, \sigma, L_R) = \lim_{U \in \mathfrak{Z}(X_R, \sigma)} \operatorname{Vect}(U, \sigma, L|_U, \tau)$ where one has but an element $(L, \tau) \in \operatorname{Vect}(U', g)$ and one takes the limit only over $U \in \mathfrak{Z}(X_R, \sigma)$ such that $U' \subset U$.

Evans [3] did proposition I with k = 0.

COROLLARY I. With $X, \sigma X_{\mathbf{R}}$ -as above and for (L, τ) a line bundle in $\operatorname{Vect}(U, \sigma)$ one has the following diagrams:

$$\begin{array}{ccc} 0 \to V(X_{R}) & \longrightarrow \operatorname{Vect}_{\boldsymbol{C}}(X_{R}) \\ 0 \to V(X_{R}, \, \sigma, \, L_{R}) \to \operatorname{Vect}_{\boldsymbol{R}}(X_{R}, \, L_{R}) \\ & & & \downarrow \\ 0 \to V(X_{R}, \, \sigma) & \longrightarrow \operatorname{Vect}_{\boldsymbol{R}}(X_{R}) \end{array}$$

with exact rows. The above square expresses $V(X_{\mathbf{R}}, \sigma, L_{\mathbf{R}})$ as a fiber product of the two diagonal groups over $\operatorname{Vect}_{\mathbf{R}}(X_{\mathbf{R}})$, i.e. given $y \in V(X_{\mathbf{R}}, \sigma)$ and $z \in \operatorname{Vect}_{\mathbf{R}}(X_{\mathbf{R}}, L_{\mathbf{R}})$ that have the same image in $\operatorname{Vect}_{\mathbf{R}}(X_{\mathbf{R}})$, then there exists a unique element $\mu \in V(X_{\mathbf{R}}, \sigma, L_{\mathbf{R}})$ that goes into y and z.

PROOF. Let *E* and *F* be elements of $V(X_R)$ that are the same over X_R . Then one has a section *s* of $Hom(E, F)|_{X_R}$ that gives an isomorphism of $E|_{X_{\mathbf{R}}}$ and $F|_{X_{\mathbf{R}}}$. There exists a $U \in \mathfrak{Z}(X_{\mathbf{R}})$ on which both E and F are defined and by proposition I, there exists an algebraic section s of $\operatorname{Hom}(E, F)$ on U that is C^{k} close to s in $X_{\mathbf{R}}$ for any k one wants. Thus \tilde{s} is an isomorphism in a Zariski neighborhood of $X_{\mathbf{R}}$.

Now assume $(E, \mathfrak{L}) \in V(X_R, \sigma)$ and that one has a nondegenerate symmetric bilinear pairing $q: E_R \otimes E_R \to L_R$. Regard q as a linear map $q': E_R \to E_R^* \otimes L_R$. Now regard $E^* \otimes L$ with the involution $\mathfrak{L}^* \otimes \tau$ as an element of $V(X_R, \sigma)$. By the above one has a $U \in \mathfrak{Z}(X_R, \sigma)$ on which E and $E^* \otimes L$ are defined and on which there is an algebraic map λ' defined over σ between E and $E^* \otimes L$. $\lambda'|_{X_R}$ is C^k close to q' on X_R , when considered as a map from E_R to $E_R^* \otimes L_R$. Associated to λ' one has a not necessarily symmetric pairing $\lambda: E \otimes F \to L$ which when restricted to X_R gives a not necessarily symmetric pairing λ the theorem is proved. Q.E.D.

COROLLARY II. Let X be a connected irreducible projective analytic space with conjugation σ and fixed points $X_{\mathbf{R}}$. Let $(E, \mathfrak{L}) \in V(X_{\mathbf{R}}, \sigma)$. Let Y be a C^* submanifold $(k \ge 2)$ of $X_{\mathbf{R}}$ that is disjoint from the singular set of $X_{\mathbf{R}}$. Assume $\dim_{\mathbf{R}} Y_i = \dim_{\mathbf{R}} C_i$ -rank $E_{\mathbf{R}}$ where $\{C_i\}$ are the connected components of $X_{\mathbf{R}}$ and $Y_i = C_i \cap Y$. Further assume Y is defined by the vanishing of a C^* section f of $E_{\mathbf{R}}$ that vanishes to the first order on Y. Then there exists an embedding ϕ of Y into $X_{\mathbf{R}}$ that is as close to the original embedding as one wants in the C^* topology and where $\phi(Y)$ is real algebraic.

PROOF. One notes that the algebraic sections of E_R are dense in $C^k(X_R, E_R)$ so it suffices to show for all sections \tilde{f} of E_R that are sufficiently close to fit follows that the zero set of \tilde{f} is C^k diffeomorphic to Y. This is easily seen to be purely local around any components of Y. Note f has no other critical points that Y is a small neighborhood of Y since it vanishes to the first order there. Thus one is reduced to the following lemma.

LEMMA. Let T be a connected n real-dimensional C^{∞} manifold and let E be a rank r real C^k vector bundle on T. Let s be a C^k section with $k \ge 2$ of E on T that vanishes to the first order on a compact connected submanifold Y with $\dim_{\mathbf{R}} Y = n$ -rank where s has no other critical points on T. Then any C^k section of E that is near enough in the C^2 topology vanishes to the first order on a submanifold diffeomorphic to Y.

PROOF. Choose any section f near enough to s such that $s_{\lambda}^{-1}(0)$ is compact for $\lambda \in [-\varepsilon, 1+\varepsilon]$ for some $\varepsilon > 0$ and where $s_{\lambda} = (1-\lambda)s + \lambda f$ and where s_{λ} has no critical points other than $s_{\lambda}^{-1}(0)$ where s_{λ} vanishes to the

first order. $\bigcup_{\lambda \in [-\epsilon, 1+\epsilon]} s_{\lambda}^{-1}(0) = X \text{ is clearly a } C^{k} \text{ submanifold of } [-\epsilon, 1+\epsilon] \times T.$ By construction the projection $p: X \to [-\epsilon, 1+\epsilon]$ is of maximal rank. Q.E.D.

This has as a consequence the classical result [5; 16.5.4] of Hilbert that any finite disjoint union of C^2 circles in \mathbb{R}^2 can be approximated by an algebraic curve—it was this result that suggested the above; [cf. 8].

§3. – PROPOSITION II. Let X be a compact Kaehler manifold with a conjugation σ with non-empty fixed point set X_R . If K_X , the canonical bundle is holomorphically trivial, then given any connected component C of X_R one has an injection:

$$0 \to H^0(X, \Omega^q_X) \xrightarrow{r} H'(X, \mathbf{C})$$

where Ω_X^q is the q-th exterior power of the holomorphic cotangent sheaf of X and $0 < q < \dim_{\mathbf{C}} X$. In particular $X_{\mathbf{R}}$ is orientable.

PROOF. The restriction map r makes sense since all holomorphic forms on X are closed. Note that if $p + q = \dim_{\mathbf{C}} X$, then exterior multiplication gives a perfect pairing:

(*)
$$H^0(X, \Omega^q_X) \otimes H^0(X, \Omega^p_X) \to H^0(X, K_X).$$

To see this note that by basic Hodge theory one has a perfect pairing:

$$(**) H^0(X, \Omega^p_X) \otimes H^n(X, \Omega^q_X) \to H^n(X, K_X)$$

where $n = \dim_{\mathbf{C}} X$. Now to see that (*) and (**) are equivalent it suffices to construct an isomorphism from $H^0(X, \Omega_X^q)$ to $H^n(X, \Omega_X^q)$ and an isomorphism from $H^0(X, K_X)$ to $H^n(X, K_X)$ that are both compatible with the pairing. Let η be a non-vanishing section of K_X and note that exterior multiplying with $\bar{\eta}$ is compatible with the pairing. Since $\eta \wedge \bar{\eta}$ is some constant multiple of a volume form it is clear that this mapping gives an isomorphism of $H_0(X, K_X)$ with $H^n(X, K_X)$. To see the latter isomorphism note that since X is Kaehler one can by Hodge theory use conjugation of harmonic forms to reduce to the question whether exterior multiplying with η gives an isomorphism of $H^q(X, \mathcal{O}_X)$ and $H^q(X, K_X)$ where \mathcal{O}_X is the holomorphic structure sheaf of X. This is a trivial consequence of the long exact cohomology sequence associated to the short exact sequence:

$$0 \to 0 \to \mathcal{O}_X \xrightarrow{\eta} K_X \to 0.$$

610

Now note that if w is a holomorphic section of K_x over U then $\overline{\sigma^*} w$ is a holomorphic section of K_x over $\sigma^{-1}(U)$. Thus σ gives rise to a conjugation of $H_0(X, K_x)$. Let η be a holomorphic section invariant under this conjugation. Now one can choose a neighborhood U of a point $x \in C$ with coordinates $\{z_1, ..., z_n\}$ such that $z_i(x) = 0$ and $\sigma(z_1, ..., z_n) = (\overline{z}_1, ..., z_n)$ for example use lemma I-C. Now $\eta|_U$ is of the form $a dz_1 ... dz_n$ where $a(\overline{z}_1, ..., \overline{z}_n) =$ $= \overline{a(z_1, ..., z_n)}$ and thus $\eta|_{C \cap U} = a dx_1 \wedge ... \wedge dx_n$ with a real. Since η is nowhere zero on X, it follows that a is nowhere zero on U and thus that $\eta|_{C \cap U}$ is nowhere zero. Thus since a is real one has a nowhere vanishing section $\eta|_C$ of $\Lambda^n T_C^*$ where T_C^* is the real cotangent bundle of C. Thus $\eta|_C$ or its opposite is a volume form and represents a nontrivial element of $H^n(C, \mathbf{R})$ and thus of $H^n(C, \mathbf{C})$.

Now let $\alpha \in H^0(X, \Omega_X^p)$ and assume $\alpha|_{\mathcal{C}}$ gave a trivial element of $H^p(\mathcal{C}, \mathcal{C})$. One gets an immediate contradiction by noting that due to the perfect pairing there exists $\beta \in H^0(X, \Omega_X^{n-p})$ such that $\alpha \wedge \beta = \eta$. Thus $\beta|_{\mathcal{C}} \in H^{n-p}(\mathcal{C}, \mathcal{C})$ and thus $\eta|_{\mathcal{C}} = (\alpha|_{\mathcal{C}}) \wedge (\beta|_{\mathcal{C}})$ would be trivial but by the last paragraph it isn't. Q.E.D.

It is an interesting question whether the canonical bundle in some direct way controls the orientability of $X_{\mathbf{R}}$. One easy result is:

PROPOSITION III. Let X be a compact complex manifold with $H^1(X, \mathfrak{O}_X) = 0$ (e.g. X compact Kaehler and $H^1(X, \mathbb{C}) = 0$). If the first Chern class of K_X is 2a where $a \in H^2(X, \mathbb{Z})$ and if $H^2(X, \mathbb{Z})$ has no 2 torsion then X_R is orientable.

PROOF. Looking at the Kummer sequence

$$0 \to \mathbf{Z}_2 \to \mathcal{O}_X^* \xrightarrow{z^*} \mathcal{O}_X^* \to 0$$

one notes that the above conditions let us find a holomorphic line bundle Lon X such that $L^2 = K_x$. Further $\overline{\sigma L}$, the holomorphic line bundle on Xwith transition functions translated by σ and then conjugated, is isomorphic to L. This follows since $H^1(X, \mathcal{O}_x) = 0$ implies holomorphic line bundles are totally determined by their first integral Chern classes. Now $\overline{\sigma K_x} = K_x$ as we observed in the last proof. Thus if α is the class of $\overline{\sigma L}$ and a in the class of L one has $2a = 2\alpha$.

In particular this implies $K_x \approx L \otimes (\sigma L)$. Thus one can choose positive transition functions for K_x on X_R . Thus the real form of $K_x|_{xR}$ associated to the natural conjugation is the trivial bundle. But the same reasoning as in the last proof lets us identify this with $\Lambda^n T_{XR}^*$. Thus X_R has a nowhere vanishing volume form and is orientable. Q.E.D.

As a consequence of the theorem of Conner and Floyd (cf. § 1) that X is unoriented cobordant to $X_{\mathbb{R}} \times X_{\mathbb{R}}$ one sees that the restriction mod 2 of any Chern number of X gives the corresponding Stiefel-Whitney number of $X_{\mathbb{R}}$. Thus Dwyer pointed out to me that in particular $c_1^n[X]$, the first Chern class of X raised to the $n = \dim_{\mathbb{C}} X$ power and evaluated on X being odd implies that the first Stiefel-Whitney number of $X_{\mathbb{R}}$ is non-zero and thus $X_{\mathbb{R}}$ is non-orientable. Now if H_d is a non-singular hypersurface of degree d in $\mathbb{C}P^{n+1}$, then $c_1^n[H_d] = d(d-n-2)^n$. Thus by proposition III and the above remarks one sees for n > 1, if H_d has a conjugation then its real form is orientable if $d-\dim_{\mathbb{C}}H_d$ is 0 mod 2 and not orientable if d is odd and $\dim_{\mathbb{C}}H_d$ is even.

Note added in proof. It has been pointed out to me by S. Akbulut that Proposition I can be proved by reducing to the case of a Grassmannian and proving it there. The perfect pairing used in the proof of Proposition II is studied in Kähler manifolds with trivial canonical class, by F. BOGOMOLOV, Math. USSR Izv., 8 (1974), pp. 9-20 (= Izv. Akad. Nauk SSSR Ser. Math., 38 (1974), pp. 11-21).

BIBLIOGRAPHY

- [1] P. E. CONNER E. E. FLOYD, Differentiable Periodic Maps, Academic Press, New York (1964).
- [2] M. CORNALBA P. GRIFFITHS, Analytic cycles and vector bundles on noncompact algebraic varieties, Invent. Math., 28 (1975), pp. 1-106.
- [3] E. GRAHM EVANS, Projective modules as fiber bundles, Proc. Amer. Math. Soc., 27 (1971).
- [4] R. GUNNING H. ROSSI, Analytic functions of several complex variables, Prentice Hall, Englewood Cliffs, New Jersey (1965).
- [5] E. HILLE, Analytic function theory, vol. II, Ginn and Co., New York (1963).
- [6] S. KOBAYASHI K. NOMIZU, Foundations of differential geometry, vol. I and II, Interscience, New York (1969).
- [7] R. M. RANGE Y.-T. SIU, C^k approximation by holomorphic functions and ∂ closed forms on C^k submanifolds of a complex manifold, Math. Ann. (1974), pp. 105-122.
- [8] A. TOGNOLI, Su una congettura di Nash, Ann. Scuola Norm. Sup. Pisa, 27, fasc.
 1 (1973), pp. 167-185.
- [9] A. WEIL, Variétés Kähleriennes, Hermann, Paris (1971).