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Smoothness and Analyticity of Free Boundaries
in Variational Inequalities.

L. A. CAFFARELLI (*) (**) - N. M. RIVIÈRE (*) (***)

dedicated to Hans Lewy

The study of free boundary problems consists basically of two parts;
the study of the topological structure and the study of the differentiable
structure.

The techniques for the study of the differentiable structure were laid
down by H. Lewy in a series of papers [8], [9], [10] and applied later by
H. Lewy and G. Stampacchia [11] in the linear case and by D. Kinderlehrer [6]
in the minimal surface case. In brief, such techniques were based on the
analytic continuation of a conformal mapping, requiring some a priori
topological knowledge of the free boundary and analyticity of the data.
To obtain the necessary topological structure conditions of geometric type,
such as convexity of the boundary and concavity of the obstacle, were
imposed.

In this paper we localize the analysis of the free boundary and remove
the artifically imposed, geometric conditions. Moreover a more flexible use
of quasi-conformal extensions of conformal mappings yields regularity of
the free boundary according to the smoothness of the data. The use of

quasi-conformal extensions was already considered by D. Kinderlehrer [7],
where he obtains the character of the free boundary when assuming
a priori topological behaviour.

The paper is organized as follows. In the first paragraph we prove a
series of lemmas which allows the local study of the free boundary.

(*) School of Mathematics, University of Minnesota.
(**) The author was supported by Consejo de Investigaciones Cientificas y

T6cnicas, Argentina.
(***) The author was partially supported by NSF giant G.P. 43212.
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In the second paragraph we study specifically the two dimensional free
boundary problem arising from the variational inequality that solves the
minimal energy problem (Laplace’s equation) above a given obstacle.

In the third paragraph we study the nonlinear case as considered in [1],
and we extend the regularity results of the linear case; in particular we obtain
the regularity of the free boundary of a minimal surface above a given
obstacle.

In the fourth paragraph we study the nowhere dense part of the set of
coincidence considered in the previous paragraphs.

Finally, in the last paragraph we give a brief application of the techniques
of the first paragraph to the Stefan problem and a number of examples are
constructed to exhibit the topological behavior of the free boundary of the
problems considered in paragraphs 2 and 3.

1. - Density properties of the free boundary.

In this paragraph we show some elementary properties of a free boundary.
Although the lemmas of this section are valid for quasilinear elliptic operators
of second order, as we will see in Section 3, in this first paragraph we will
limit ourselves to the Laplace equation.

Lemma 1.1 shows a density property of the set of non-coincidence at
its boundary points, Lemma 1.2 estimates the area of a sequence of surfaces
approximating the free boundary, and Lemma 1.3 shows that the solu-
tion u can be extended in a C2 way across the non-dense parts of the coin-
cidence set. Finally, Lemma 1.4 shows how a local construction of a mapping
considered by Lewy and Stampacchia [9], preserves, in some weak form,
the property of mapping the non-coincidence set into the coincidence set.

LEMMA. 1.1. Let D be a bounded, connected, open set of Rn and u a real
valued function defined in 17 satisfying:

Consider an open set, 0, and assume that u(x) = 0, ’ou(x) = 0 when
x E 8Q r) 0. Then for each x E 0 n 8Q there exists y = y(x) E 30 n f? such
that

PROOF. For x c- 0 r) 3D set qz(z) = Clearly
n it is superharmonic in .~ and = 0, = 0.
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Assume first that there exists a ball, B, B c S2 and such that x E aB
(such x’s are dense in aS~ since Q is open); then, in virtue of the strict
maximum principle, must be negative at some point y, y E t’) 0).
On the other hand observe that &#x3E; 0 when z E 0 n aS2. Hence  0

for some y E a 0 n Q and the lemma follows for such x.
When x is not in the boundary of a ball contained in Q, there exists a

sequence, {x.1, for which the property holds and Xm -+ x as m - 00. Since

converges uniformly in SZ to can not be strictly positive in
aO () lJ and the lemma follows

LEMMA 1.2. Under the assumptions of Lemma 1.1, if further u E 01.1(,Q);
then:

(i ) Given and a ball, B(x, e), B(x, ~O ) c 0 ; there exists 6

(b fixed) and y = y(x) E aB(x, e) such that B(y, be) () 0 c Q.

(ii) I f Q is a cube of side I contained in 0, there exist constants M and a;
.M an integer, 0  a  1; such that if we decompose Q into Mkn cubes, 
of side lM-k where k is an arbitrary positive integer, and form

then has at most cubes. In particular the area of verifies

and

PROOF. To prove (i) we apply Lemma 1.1 to B(x, e) instead of 0. Hence,
there exists such that therefore,
since Vu is Lipchitz continuous in S~, there exists 6, depending on the Lipchitz
constant only, such that u(z) and Vu(z) can not vanish simultaneously when
z E B(y, that is B(y, be) c Q.

Given a cube, Q, we partition it into Mn subcubes, of side ?/if;
to prove part (ii) it suffices to show that for M large, but independent of Q,
at least one of the cubes of the partition does not intersect The result

would then follow by induction with respect to k.

Let Qo be one of the central cubes of the partition and assume that
In virtue of (i) there exists y(xo) E oB(xl, l/2) such that

B(y, 8, If M is chosen large enough, there must exist Qi c
c B(y, 6, and the lemma follows.

LEMMA 1.3. Under the hypothesis of .Lemma 1.2 assume further that d u = g,
with g Holder continuous in S2 r’10. Then du = g in r) 0.
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PROOF. It suffices to show that, given zo E r1 e(92), 4u = g in the
sense of distributions in a neighborhood of xo.

Let Q be a small cube centered at x, Q c 0 and a 0’ (Rm) function with
support contained in Q. Following the notation of Lemma 1.2

In virtue of the fact that m( I7k) --~ 0 as k -~ oo, 1 (II) tends to zero.
On the other hand

Since, for and

it follows that P tends to zero as k tends to infinity.
Also 

I- I-

and the lemma follows.

Finally, in this first paragraph we want to study a « reflexion » function
that will provide us with the local topological behavior needed to obtain
the smoothness of the boundary. Assume the hypothesis of Lemma 1.3,
and let the coordinates be fixed at a point xo of 

Suppose also that g has a Lipschitz extension g, to a neighborhood of xo .
Under such assumptions, using standard arguments, we may construct

a function, y, solution of the equation in a neighborhood of xo,
and such that

11 and

In a small neighborhood, Uo, of xo, Vy is a diffeomorphism of the form

Hence, there exists a well defined function ~(x), ~ verifying

when
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Clearly, We want to prove the following

LEMMA 1.4. If x E Z7o r1 D, and there exists a ball B, B c C(Q), x E aB,
then there exists a sequence ~xn~, Xn E S~, Xn --~ x, such that E(xn) E e(Q).

PROOF. Assume that the coordinate axes have been chosen so that in a

small neighborhood of x,

and l a linear function.

We may assume that Uo is so small that ai  0 for every i.

Let us consider the ellipsoid

We can choose s( ) ~ 0 with e - 0, such that, by the argument of Lemma 1.1,
the function h(y) = u(y) + (1- 8(e)) ICXi(yi- xi)2 is subharmonic in 
and hence has a positive maximum at a point z E ~O  eo.

The gradient of h verifies, by the strict maximum principle,

with ~, &#x3E; 0 (Vh(z) is normal to at z).
We recall that by the Lipschitz character of Vu, there is a ball B* (z, S~.
Since B* cannot intersect the ball lying in and tangent to x,

the point z must lay in a cone C, with vertex at x and whose axis is the
prolongation of the radius of Bl passing through x (C = ~y : (y - x, v) ~

where v is the exterior normal to Bl at x).
On the other hand, by definition

By the above formula, we get

That is
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To complete the proof we will show that A remains larger than a fixed
number ~,o &#x3E; 0 - 0. The conclusion will then follow since z lies in

the cone C mentioned above.

LEMMA 1.5. With the hypothesis of the preceeding lemma, let A be defined
as before (See (*)).

A remains larger than a fixed positive constant ~,o as e tends to zero.

PROOF. The ellipsoid E(e) contains a ball Be’ tangent from inside to E(e)
at the point z, with e’ = Ce and satisfying that 

In order to prove our lemma we make the following claim

with C positive independent of e.
We postpone the proof of the claim and proceed with the lemma.
Observe that the Lipschitz character of the derivatives of u imply that

h(w) - h(z) is less than - lOe2, as a function of w, over a subset of 
proportional to its total area. This can be shown noticing that, if 
= inf h(w) the tangent derivatives of h vanish at w° and therefore the

property follows integrating the derivatives of h along meridians passing
through wo.

Finally, observe that the harmonic function g(w) whose value on 8Be’
is h(w) - h(z), bounds h(w) - h(z) from above in (Be)O. But, since g(w) is

less than or equal to - °e2 on a proportional part of o"g(z)  - CQ
(8v denotes the normal derivative) and the lemma follows.

PROOF OF CLAIM: Notice that for [jE7(p)~-E7(~/2)]n3(~)~0y
since by hypothesis there exists a ball contained in and tangent to x.

An elementary geometric construction provides us with a chain of balls,
~m)~m=°, where k depends only on n, and such Bo =Be’,

and Therefore h(w) - h(z) 
since u(w) = 0, and h(z) &#x3E; 0.

Proceeding inductively, h(x,) - h(z)  and the claim follows.

2. - The topological behaviour of the free boundary.

We now turn our attention to the free boundary problem arising from
variational inequalities.
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Let D be a bounded connected open set of .Rn ; p, the obstacle, a real
valued function defined on .Rn satisfying

do not vanish simultaneously.

Let v be the least superharmonic vanishing at aD and verifying 
This function can be obtained, for instance, by minimizing

on the convex set of H~(D) defined by

and it is known that v has Lipschitz first derivatives in any compact sub-
set of D (see Frehse [3], Brezis-Kinderlehrer [1]).

The function v, defines two sets

and

Observe that for

LEMMA 2.1. Under the preceeding conditions has a f inite number of
connected eomponents and Agg  0 on A.

PROOF. j!2 contains a neighborhood of aD and hence we can chose a
compact set g (a finite union of cubes) such that A c K, K c D and CK has
finitely many connected components.

On the other hand, since 4q do not vanish simultaneously
and v is superharmonic we have

have a finite number of

components that intersect K;

is a component
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By b ) and c) there are at most as many components of S~ contained in K
as those of Vi and this proves the first part of the lemma.

To obtain the second part, consider in virtue of our assump-
tions (4q do not vanish simultaneously), the cone

satisfies Cs c VI for small values of 8, 8&#x3E; 0. On such cone, v - 99 is super-
harmonic and strictly positive, and is Lipschitz hence 

The preceeding lemma shows that we are in the conditions of the first
paragraph of this work. That is, Jgg C E  0 in a neighborhood flL, of A

and hence, if we consider u = v - 99, we have the following situation

b) 4u has a Lipschitz extension from Q n’B1 to D r1 U.

c) u has Lipschitz first derivatives on ‘l~.

d) u and Vu vanish in n’11.

Lemmas 1.1 to 1.3 show that the free boundary of Q, aQ, has measure
zero and that in S~* _ (D)°, dv = 0. Hence it is natural to redefine D* as
the non coincidence set, and A* = D - S~* as the coincidence set (see also § 4).

We recall that H. Brezis and D. Kinderlehrer [1, Theorem 3] show that 11u
is locally of bounded variation. They also observe that, if 4q is negative
then a.e.) is of bounded variation. has finite perimeter
in the sense of De Giorgi). The same argument shows in our case that A*
has finite perimeter.

In the n-dimensional case each connected component of (~l.*)° has finite
perimeter [2, Lemma IV]. (Notice that (8Q*) nD = 8[(A*)°] and its measure
is zero).

For the remaining part of this paragraph we will restrict our analysis
to the two dimensional case.

In such case, applying Theorem I of [2] it follows that the boundary of
each connected component of (A *)° is formed of a finite number of recti-
fiable Jordan curves.

In order to apply the reflection techniques of H. Lewy, we will prove
that, once a finite nunber of points is deleted from each Jordan curve in a
neighborhood of any other point of the curve, the only boundary of D* is
the curve itself.

Let C be a connected component of (1J.*)°, Xo E aC, and also B(x°, 
small ball where Jgg  0. We may assume that C ~ CB(xo, ro) ~ 0. Let ~C~~
the connected components of such that Xo E Notice that



297

there are a finite number of them (at most, as many as connected com-
ponents has Q*).

Let us fix one of them, Ci, whose boundary is composed of a Jordan
curve .1~, passing through xo . ( C1 is again of finite perimeter and Theorem 1
of [2] applies). Observe that any component of Q* r1 B(xo, ro) must inter-
sect aB(xo, ro).

Let y and ~ be as in Lemma 1.4. Choose r1, such that the

Hessian H(u + ~) ~= 0 (V(u + y) is analytic) in oB(xo, rl) n Sz*. Let a be

small enough such that ~(B(xo, aro)) c B(xo, ro/2).
In the next two lemmas we look at the local behaviour of the mappings

in B(xo, and show that except for a finite number of exceptional points
maps the non-coincidence set into the coincidence set.

We have already shown, Lemma 1.4, that ~ crosses the boundary near

any point of ro). In the first lemma we will show that the number
of components that ~ maps into 01 is finite. In the second we prove that

each of these components attaches to h and the exceptional points will be
those where two of such components meet.

LEMMA 2.2. Let G = ~-1(01) n B(xo, rl), G = U Gi (Gi connected compo-
nents of G); then, the number of components Gi, such that Gi i (’) oB(xo, aro) -=1= ø,
is finite. Moreover, i f cu, is a connected component of Sz* ~ G, and

‘lb r1 B(xo, aro) ~ ~ then U r1 [aB(xo, rl) ~ G] # 0.

PROOF. Since 11q&#x3E;O, Q*Ue(B(xo,r)) is connected, 0 C r C ro .
Assume that 91 c B(xo, r1) U 0. Since 8 is open c and

r1 [Q* u e(B(xo, r1))] = 0 (since c ( 8G) ~.J ( aS2*)) .
On the other hand,

In fact, if ara) and ( C2 a component of ro/2))
we can construct a bundle of disjoint paths in with a fixed point
of G. The images of this paths join ~(x) with a point of C; since, 01
has at most a finite number of points (see [2]) and ~ restricted to any
compact subset of ,S~ has finite multiplicity, there exists a path 6 such that ~(6)
intersects aC,, strictly before than 001. Being open, (1) follows, but then
8(flL) D S~* u e(B(xo, and that is impossible.

Let us see now that there are finitely many sets Gi .
If Gz is compactly contained in B(xo, in virtue of the fact that $ is

open, $(Gi) :) 0 moreover, since $ is Lipschitz (p(C) denotes
the Lebesgue measure of C). Therefore, there are only a finite number of Gs i
compactly contained in B(xo, ri).
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On the other hand if infinitely many components Gi reach the boundary
of B(xo, let y be a limit poi.n.t of them. Clearly y 0 since

~(G) n B(xo, ro/2) ~ ~ and therefore it would be &#x3E; ao for infinitely many i.
Hence the Jacobian of $ does not vanish in a neighborhood B(y, e)

of y, and ~) is a diffeomorphism that maps G onto Cl r1 ~(B).
Observe that 8-1(T) intersects infinitely many times aB(y, e/4) and aB(y, 
alternatively, contradicting the fact that 3Ci is a Jordan Curve (Ci has
finite perimeter and hence its boundary is a rectifiable Jordan Curve.)

We recall that, by Lemma 1.4, any point y of 7~, not belonging to
aB (xo , ro/2), verifies y E G.

Let .r* (t ), (a c t ~ b ), be a portion of r1 aB (xo , ocro) 0.
If z(ti), x(t2) E F*, they divide F in two open arcs, h1 and Fa.

Let F7 = F2 

LEMMA 2.3. I f x(tl), x(t2) E Go then for r: or it follows. that: for any
there exists verifying (B (x, ~ (x) ~ c Go.

PROOF. Let an, 7 bnEGo, an bn -&#x3E; x(t,), and 11n a poligonal arc,
11 n c Go, joining an with 

If we consider the Jordan curves (Xn, formed by Fi, 11 n and two small
segments; and fln, formed by 4n and two small segments, then either
any compact subarc of lies in the interior of ~8n for infinitely many n’s,
or any compact subarc of .I’2 lies in the interior of an for infinitely many n’s.

It suffices to consider either possibility.
Assume the first possibility holds and We will argue by con-

tradiction. If the lemma were to fail we may find a sequence xn Go
and moreover Each zn can be joined to a point of (S~* ~ G) r1
r1 B(xo, by an arc By a similar argument to that in the preceeding
lemma we may construct n,, so that ~cn c C(C U Go).

It is, then, clear that we can extend to an arc nn joining xn with a
point of rl ) U Go ) .

Choosing adequate subsequences we may assume that xn lies in the in-
terior of fl, and, since n£ can intersect flm only in the small segments near

x(t2) we may therefore also assume that xn does not lie in the interior
of ( k ~ 1 ) and that n: intersects fIn for the first time always in the small
segment near x(tl).

Let us remove two small balls B(x(tl)) and B(x) and analyze the situation.
Between the portion of n£ and n:+1 from B(x) to B(x(tl)) there is an arc

of An9 hence Go- (B(x) u B(x(t,)) has infinitely many connected compo-
nents, Gn, each one containing an arc dn joining B(x) with B(x(t,,)).

To complete the lemma it suffices to show that $(G*) contains a fixed com-
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ponent of which is a contradiction since then

for every n.

To show this, we consider a « diameter » separating x from x(tl) (where
by a « diameter » we mean the image of a diameter by a conformal mapping
from the disk). The arcs of 11n above mentioned intersect this c diameter »
if B(x) and B(x(tl)) have been chosen small enough and that completes
the proof.

At this point of our work, we have shown that for each connected com-
ponent C of A*, its boundary, a C, is except for a finite number of points,
« clean &#x3E;&#x3E;, that is, if x e 3 C and is not an exceptional point there is a neigh-
borhood .~1 of x that is divided by a Jordan arc into two con-

nected, simply connected domains, D1 and D2 c Q. Hence on

the domain we are in the conditions of the theorem 1 of Kinderlehrer [7]
and therefore the curve .1~ has a parametrization (a  1). The results
in [7] that interest us can be resumed as follows:

be a conformal mapping from a portion, H, of the half plane
Rj = ~(x, y), y &#x3E; 0} onto D2 that carries a segment, (a, b) of the z.axis onto

in a one to one fashion. Then w E 01,«, a  1, up to (a, b) and at
any point b), either w (z) = a(z - zo) + or w (z)

boO.
In the second case, centering w at zo and letting &#x26; = 1, w(z) = Z2 +

+ = x2 - y2 + i2xy + 0 ((x2 + Y2)(2+a)/2 ) in a neighborhood of (0, 0),
that is, w(z) forms a quadratic cusp., D2 being the exterior of it. But, by the
properties of the reflexion mapping considered in Lemma 1.4; identity (1.41);
near (0, 0) ~ would not reflect the noncoincidence set D2 into the coincidence
set, property which must hold on D2. Therefore, 7" is differentiable and
has a nonzero tangent at each point.

The following lemma is a refinement of the result of D. Kinderlehrer [7].
We improve the reflexion mapping to obtain as much regularity of the free
boundary as that of Vq.

We will also keep track of the Ck continuity norms in order to prove
analyticity of the free boundary. We must point out that a simplier reflexion
argument yields the analyticity in the linear case (see [11]). However,
the estimates are needed in the nonlinear case where a direct reflexion ar- .

gument fails.
Let Zo E r and assume that for a fixed r.
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Let us fix r’ r, depending only on C, r, q, such that (r¡ to be
chosen later). We will prove :

LEMMA. Let w be a conformal mapping from the half circle into

D c B (zo , r’) n f2*, mapping the segment (-1, 1 ) (boundary diameter o f the half
circle) onto a segment of F (.1~ is known to be 01,(/,), z,v(o) = zo.

Assume that w is Lipschitz with constant A in such domain and that for
toE(-1, 1)

Then, under hypothesis (a) and (b), w(t) verifies

where

M a universal constant, A depending only on the second derivatives

PROOF. Suppose that 0 = w(to) and define

Then ‘

since

choosmg q = r (E, C) small enough

Furthermore, we can choose q so small that the implicit function problem:
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for z has a unique solution $ = 8(z) which is Lipschitz continuous with
constant A depending only on the second derivatives of 99.

Hence

Now, we proceed to extend the conformal mapping quasi-conformally to
the whole disk; set

(Remember that Q depends on to. To construct ~ we develope around

o = w(to)) . k

In virtue of Green’s identity

and is the value of the above integrals for t = to, we obtain the
desired bound for and the required estimate for

As an immediate consequence of the lemma we have the following:

THEOREM I. E and G is a connected component of A*, then aG
is composed of a f inite number of Jordan arcs with a Ck+I’a nondegenerated
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parametrization. Moreover, if is real analytic, the Jordan arcs are real

analytic,.

Observe that the argument actually shows that there is a virtual extension,
across the free boundary, of the solution, u, which is in the class C11+2,a.

In the case studied by H. Lewy and G. Stampacchia (D convex and q
concave) where it is known that (ll*)° has only one component and S~* is
mapped into (~.*) by ~, the boundary of (~1.*)° is a Jordan curve, with

no exceptional points.

3. - The non-linear case.

In this section we want to show how the preceeding methods apply also
to the non-linear case treated by H. Brezis and D. Kinderlehrer [1], in

particular to the minimal surface equation.
In this case we study the regularity of the solution u to a variational

problem of the form

on the convex set of functions (q the obstale), v e Ho(D). (a, is locally
a strictly coercitive, C~, vector field, and C 0 on 9j9);
such that and Scp do not vanish simultaneously.

As before, we have two sets,

and

Brezis and Kinderlehrer [1] prove that u e in a neighborhood of A.
the system being

"i

uniformly elliptic for bounded Du.
By exactly the same reasoning as in Lemma 2.1, using now, instead of

the strict maximum principle, Lemma 2, of MacNabb [12], we prove the
following lemma.

LEMMA 3.1.

b) Q has a finite n2cmber of connected components.



303

To apply the results of Lemmas 1.1 to 1.4 to this case we begin linearizing
the problem.

LEMMA 3.2. For x E S2, let g be

1 f we extend g by = 0, g is Lipschitz in a neighborhood of A.

PROOF. The Lipschitz character of g in the interior of S2 follows from
the interior Schauder estimates of the second derivatives of u. The

Lipschitz constant being fixed whenever the distance between the points is

But near the boundary of A

and that completes the proof.
For the linearized problem it is easy to obtain the equivalents of

Lemmas 1.1 to 1.3.

LEMMA 3.3. Under the same hypothesis as Lemma 1.1, but now, S(u) 
instead of 

Then, u(y) &#x3E; Oly - xol2 for some p oint y on 00, the constant 0 depending
on the modulus of elliplicity of SV.

LEMMA 3.4. Under the same hypothesis of Lemma 1.2, with S~ instead
o f LI, the same conclusions hold.

LEMMA 3.5. Under the same hypothesis o f Lemma 3.4. Assume further
that S(u) = f on Q, where f has a Lipschitz extension to (we keep the
notation of Lemma 1.3). Then u is a solution of S(u) = f in (D)O r’~ 0.

PROOF. As in Lemma 1.3, we can show that

and therefore the extension of u to (5)° follows.
We define S~* and 11.* as in Section 2.
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To prove the equivalent of Lemma 1.4 we can reduce our situation

pointwise to that of the lemma. However, since in this paper we apply it
to the two dimensional case only, by means of a Beltrami transformation
we can reduce

(g a Lipschitz function different from 0 in a neighborhood of the free boundary)
to (o denotes composition) where h is again Lipschitz,
h # 0 in a neighborhood of and

vu v -B VoL.1 ).

The mapping w being a diffeomorphism, the results of Theorem 1 apply
to our new 11.* and hence it remains valid for the general, non-linear case:

THEOREM 3. I f connected component of A*, 00 is composed by a
finite of parametrizable arcs, ri, each one of which is locally
the only boundary between A* and Q*.

From now on we restrict our attention to one of the C’,’ arcs, r, separating
a portion, of SZ* from a component, C, of A*.

We recall that, by construction (see the linear case) such arcs have a
continuous tangent. Therefore, a conformal mapping, t(z), from D, into
a portion of the half plane, {(.r, y), y &#x3E; 0}, carrying r into a segment (a, b)
of the real line is on any compact subarc of h (understood as a uni-
form interior estimate (i)) . Let us fix, as in the linear case, a point zo 
and such that

Also, assume that

for

) See 0. D. KELLOG, On the derivatives of harmonic function on the boundary,
TAMS, 33 (1931), pp. 486-510.
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(1 the Lipschitz constant of Vu, V92 in Br(zo). Let us choose a 

with ~O, small, to be chosen later.
Finally let z(t) be a Lipschitz conformal mapping from the half circle

into mapping (-1, 1 ) into

F, (z(O) = zo).
We are going to prove, inductively, that if and 

then z(t) E up to Im(t) = 0, (k &#x3E; 1). Moreover, we will keep track of

the constants in order to obtain analyticity whenever Vgg and q) are
analytic.

Let us first observe for any oc I up to h. To prove it,
observe that is bounded and hence is also bounded. Com-

posing Duow with a conformal mapping, we reduce the problem to a
half space problem where the Laplacian of the composition is bounded, the
composition takes Dqowol boundary values on (a, b ) and therefore Ck°«

up to 7~. Therefore Vu has a C~°« extension, Vu, to a neighborhood of any
compact subarc of .I’.

Let us assume that on Br, Vu has norm smaller than C.

LEMMA 3.6. Assume, inductively, that for

and

(where fl is a large constant and

where

where d = 1- it,, 1, A is the Lipschitz constant of z(t) on A and Co an absolute
constant. Also,

PROOF. Since 0 = z(to), then

20 - Annati detla Scuola Norm. Sup. di Pisa
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Let

Set

if e is chosen small enough depending on 0, Â and the modulus of ellipticity
of then S* remains strictly elliptic on Let p be the Beltrami

coefficient associated to ~S*.

Clearly ,u is a real analytic function

(T an absolute constant depending only on the definition of p as a rational
function, in particular as a series, on l,ul  1- 6 with 6 depending
only on that is on C, and A. Therefore, there is a unique real
analytic Beltrami transformation f =I biizizi verifying bko = and such

that if f-- = ~ bîi, as well as b’, verify

C’ again an absolute constant.
On the new coordinate system, and V(u - q) vanish on 

Moreover, around 0 = f (o), they verify

where and T(/) depend only on the Beltrami transformation, are analytic,
and with bounds for its coefficients for the same type as before.

Let us now consider a conformal mapping C(i?) of the half circle, ~. onto

Then 77i = with í1 = p(z(t)). Hence, í1 is of class Ck~«, with the same
type of constants as those and z and therefore q(t) is a function

on to, with an asymptotic development n(t)
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(This can be easily checked writing q as the composition of a particular
solution with a conformal mapping.) The constants 7~ are bounded by

Applying Lemma 3.6, C(r¡) has a asymptotic development, and hence
so does z(~(r~)(t)) around to. The estimate for Vzu as a func-
tion of 27, provided is chosen large enough to absorve the constants that
appear in standard a priori estimates.

4. - The non-dense part of the free boundary.

We would like now to discuss the remaining part of A.

First, we notice that A-A* is a false coincidence set in the sense

that can be replaced by another (h c- Co’ (92)) still satis-

fying our hypothesis and such that u is still the solution of the variational
problem, but = A*.

To construct h, we consider a Co function g such that

(where .H~ is a suitable neighborhood of aA) and g = 0 on the rest of D.
Set h = yg. For y small enough the condition that S(q; - h) and VS(99 - h)
do not vanish simultaneously is still fulfilled.

On the other hand, the fact that S(u) = 0 across A -A* shows that
locally is contained in an arc of a differentiable curve.

If the a~’s are real analytic functions of Du and is also real analytic,
the set A -A* is locally an analytic arc or an isolated point (Notice that
if there exists a sequence of points xn of d. ~ ~1.* accumulating on a point x
not in A*, they must lay in an analytic arc, T, near ~; then (u - q) ow has
to be the solution to the Cauchy problem Vv = 0 on r, 11v = 4 [(u - q)ow],
once the problem has been linearized by means of the Beltrami transfor-
mation, w).

Furthermore, since the ball property of Lemma 1.2 (resp. 3.4) has to
hold at both sides of the curve 1~, we have two possibilities: either 1~’ is a

closed analytic curve or its closure, P, is a new arc, 7~*y eventually closed,
with its end points (point) laying in 11* (Precisely 1~* ~ r consists of these
end points (end point)).
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In the linear case, this second possibility can also be excluded.

THEOREM 5. In the linear case with a real analytic obstacle, is

composed of isolated points plus a f inite number of closed analytic curves.

PROOF. The Lewy-Stampacchia [11], reflection function, let us call it w,
is defined in a uniform neighborhood of all.

Let us choose a neighborhood H in such a way that, if w(x) 0 A, w(w(x))
is again defined, and let zo be an end point of F, xo e A*. Then there are

two components, and 82, of Q n B(x°, eo) that have P as common

boundary.
If (11.*)° has a finite number of connected components in a neighborhood

of by means of the reflection w it follows that is an analytically
parametrizable arc, part of which is .1~. Hence, the arc is the same for 81
and S2 and that is not possible. Therefore, one of them, let us say Si has to
have boundary points in common with infinitely many components of 
in any neighborhood of a?o-

On the other hand, near 1’, w maps S, into S2, and w(w(x)) = x (wow is
analytic and w(x) = x on 7~). Hence in a subneighborhood of a?o? w(Si) c B2
and w(w(x)) = x which means that c oB2 but that is not possible

5. - On the Stefan problem and other remarks.

In this last section we will make a few remarks that we postponed for
the purpose of continuity. Let us first mention the Stefan problem as
treated by Friedman and Kinderlehrer [4].

There, we have two domains S~ and 11. in Dx[O, oo]. (D a domain in l~n)
and a function, u, verifying

a) u E in the variable x for fixed t. (Personal communication of
David Kinderlehrer.)

e)  cxJ , 0 (T denotes the De Georgi n-dimensional
perimeter).

Hence Lemmas 1.1 and 1.2 apply for each fixed t and we obtain

for every
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2) Since ut is bounded, there is a « parabolic ball condition » : if

(x, to) E 8A r1 and B(x, e) is a ball (in Rn) with ~o small enough, there
is a cylinder verifying with 

It is worth noting that this cylinder goes backwards in time, which in
some sense bounds the «velocity» of melting of the ice.

3) As a consequence of the results of [2], for each fixed time, n = 2,
if we consider A* = (1°), each connected component of lJ.* being simply
connected, has a boundary composed of a rectifiable Jordan curve.

Our next remark is about the number and shape of the components of A*
in the two dimensional elliptic case. First let us show an example in which
the number of components is as large as we please.

Consider the periodic analytic curve

The Cauchy problem 11u = 1 with the initial data u = 0, Vu = 0 on 1-’
can be solved in the exterior side of 1~. To construct our obstacle, we con-
sider a curve h’ enclosing F and such that u is defined and positive between 1~
and .1~’. We then solve the Dirichlet problem Z)~==20131, ~/1~’’ _ - ~c.
Then 99 is our obstacle, v = cp + u our solution and the interior of is the

set of coincidence, .

If we now consider the obstaole p - 8

and v~_~ &#x3E; v - e. Hence for e small, has at least n-different non-tangent
connected components.

The second example shows how a curve of A-A* can appear. Con-

sider a sixth degree polynomial P(t) such that P is symmetric has an
absolute maximum at 0 and two relative maxima at 1 and -1.

Also suppose that verifies the nondegeneracy condition above
imposed (11P(lxB)) and don’t vanish simultaneously and P(O) =1.
If we solve now the minimum energy problem for and D 

the disc of radius .R, for the coincidence set is a circle, for Ro it
is a circle and a circumference (A -A*) and for R  Ro it is a circle and
a ring.

Finally let us notice that the fact that the boundary of each component C,
of (11.*)~ is formed by a finite number of Jordan curves can also be obtained
from Lemma 1.1 under the weaker assumption, 99 c- C2+a.

First we prove that each two points of C can be joined by a curve on C,
laying in a square proportional to the distance between the points, and
then the result follows using accessibility of the boundary.
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