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Approximation of Smooth Functions
and Covering Properties of Sets.

ROBERT KAUFMAN (*)

1. - Let Q be a closed cube in Euclidean space using various

spaces of differentiable functions on Q, one obtains corresponding classes of
massive or negligible sets F CQ. The space CII(Q) is well known; for a

number 1  a  2 we define the space Ca(Q) to contain functions whose partial
derivatives satisfy a uniform Lipschitz condition with exponent a -1.
A closed set F 9 Q is called N1 if f (F) has linear Lebesgue measure 0 for
all f in except at most a set of first category. Let C"n be the Banach

space of mappings into En, whose co-ordinates are of class Ca.

THEOREM 1. There is a closed Nl-set F in Q, and an open set U in 
such that contains a ball in En, for every f in U.
Let us say that a subset S in has uniform rank n if all tangent

(Jacobian) mappings transform the unit ball in En+l

onto the unit ball in En (or a larger set). If a ball B(r, xo) is contained in Q,
then B(r, f (x,,)); this can be seen by a variant of the Cauchy-Peano
method in ordinary differential equations [1, pp. 1-7].

THEOREM 1’. Let Qo be a compact set interior to Q and S a bounded subset
of the space Can, of uniform rank n. Then there is an N1-set such

that for all f in S.

2. - Let T be a bounded subset of the Banach space Ca[O, 1], defined
similarly to C"(Q). For small numbers r &#x3E; 0, T is contained in exp [Ar-1//%]
ball of radius r in the uniform metric-a theorem of Kolmogorov [3, p. 153].
It is essential that the domain of the functions be a linear set, but the same
bound holds for bounded subsets of 
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3. - Let g be a compact subset of Q, and let W be a neighborhood of .g,
interior to Q. For some 8 &#x3E; 0 every point of K has distance &#x3E; 28 from
the boundary of W. Let T be the set of all level curves .1~(t), of

functions f in S, meeting K. We choose arc-length as the parameter of each
curve T, that is, ~) = 1. This condition on r, together with the

boundedness of S in and the uniform rank n of S, implies that the
set T is bounded in 8]. Therefore Kolmogorov’s estimate is valid
for small r &#x3E; 0.

The curves have length 8 and have equicontinuous tangent vectors
.1~’ (t), so their diameters exceed some cl &#x3E; o. Let rll be the set of vectors

(rul’ ..., ru,+l), where each ui is an integer. Since a curve .r has diameter

&#x3E; cl, some co-ordinate, say zi , increases &#x3E; cln-1 along when r is small r,
then values ru along .1~. Taking a point (ru~, x~, ... , 
on T, we observe that some element ru2, ..., rUn+l) of rll has distance
 nr from .T’. Thus at least c2r-1 elements A of have distance  nr

from the curve r. For small r, all these elements ~, belong to Q.
Now we form a random selection ll* from the set Q. To define

the distribution of this selection, we fix once and for all a number in the
interval 0  T  1- Then we select or reject the elements of rA r1 Q
independently of each other, with the probability of each selection exactly r’.
The probability that contains none of the elements A, found above,
is  c2rT-I (because 1- y  exp - y for y &#x3E; 0).

By Kolmogorov’s estimate, we can select at most curves.

jTi E T, so that every curve T is within r of some in the uniform metric
on [0, e]. The probability that every curve 1’~ has distance C nr from 
element of A*, exceeds 1- exp c, e-1 exp - 1, because r  1- oc-1.

But then the same is true for all curves T, and a distance (n -}-1).
Suppose now that x E g and f E ~’. Then, considering the level curve r"

of f through x, we see that ~(~)2013/(~ for some element of A*.

If r is small enough, then the ball B(A, csr)-of center A and radius car-
is contained in Wand f (x) E 

4. - To construct Nl-sets by the random method, we require another
property of A*. We choose in succession an integer k &#x3E; 1 and a number 7r
in (o, 1) so that Consider the event 

contains some k distinct elements Å1, ..., Åk with all distances 11 Ai - Ai II  3r’~.

To estimate P(M) we bound the number J of the k-tuples : rA r1 Q hash
cc r-("+’) elements; and each ball of radius 3r’ contains ~: elements

of rA. Hence where ~=2013(~+1)+(~20131)(~+1)(~20131). But,

P(M)  - 0 because kí + a &#x3E; 0.
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For small r we can choose l~.* to have the covering property found in 3,
while avoiding the event M. We write Wi for the union of balls

and Yl for U B(A, car). Then for all f in S,
and 9’W for small r.

Now we can repeat this process, using Vi for .g and Wl r1 lY in place
of W. Then we find a small r2, and corresponding sets TT2 and W2 so that

etc. Moreover, and a are uncharged in the successive
0*

applications of the basic construction. The set F then has the
i

property and we prove finally that .F’ is an Ni-set.

5. - To each g in and each E &#x3E; 0, we construct gl in so

that 1/ g - g1 II  8 in and has measure  8. This shows that the

elements of 7~ transforming F onto a null set, are a dense We begin
with a partition of the centers Âq, that is, the elements of A*, corresponding
to a small value of the radius r. Let 1’~ be a maximal selection of centers Âq,
having distances at least r"‘; let Y, be a maximal selection from the remaining
centers, etc. If A belongs to Y~ then J) ~, - centers ~,~, ~ A.
But then we have k centers with distances a contradiction. There-

fore Y1 U ... U exhausts A*.

Let and observe that every real number has distance  rs-k

from some multiple of rs-k. Hence we can define hi in GI(Q) so that
each number g(~,) -~- with A in Yl, is a multiple of rs-k. In view of

the distance r’ between the members of Y1, we can take h, to have norm
as in [2]. Then we construct h2 so that each number (g -)-~i +~2)~?

with A in Y2, is a multiple of rsl-k. The norm of h2 is again  and

moreover Jh2J  rsl-k. By this process we construct gl = g + hi +... --~- hk-l I
and 11 is small because s-krl-n--70. Moreover, Ig -E- hl +... 

so for each A in When r is

small, the partial derivatives of gl are bounded by some B = B(g) ; thus
B(A, car) is mapped inside a ball of radius « r + centered at

ursi-k-l. Since the set gl(Q) remains within some finite interval, the union
U B(A, is mapped onto a set of measure ~~ and this completes the proof.
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