Scuola Normale Superiore di Pisa

Classe di Scienze

Robert Kaufman
 Approximation of smooth functions and covering properties of sets

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4^{e} série, tome 2, no 3 (1975), p. 479-481
http://www.numdam.org/item?id=ASNSP_1975_4_2_3_479_0

L'accès aux archives de la revue «Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Approximation of Smooth Functions and Covering Properties of Sets.

ROBERT KAUFMAN (*)

1. - Let Q be a closed cube in Euclidean space $E^{n+1}(n \geqslant 1)$; using various spaces of differentiable functions on Q, one obtains corresponding classes of massive or negligible sets $F \subseteq Q$. The space $C^{1}(Q)$ is well known; for a number $1<\alpha<2$ we define the space $C^{\alpha}(Q)$ to contain functions whose partial derivatives satisfy a uniform Lipschitz condition with exponent $\alpha-1$. A closed set $F \subseteq Q$ is called N_{1} if $f(F)$ has linear Lebesgue measure 0 for all f in $C^{1}(Q)$ except at most a set of first category. Let $C^{\alpha n}$ be the Banach space of mappings into E^{n}, whose co-ordinates are of class C^{α}.

Theorem 1. There is a closed N_{1}-set F in Q, and an open set U in $C^{\alpha n}(Q)$, such that $f(F)$ contains a ball in E^{n}, for every f in U.

Let us say that a subset S in $C^{1 n}$ has uniform rank n if all tangent (Jacobian) mappings $J(f, x)(f \in S, x \in Q)$ transform the unit ball in E^{n+1} onto the unit ball in E^{n} (or a larger set). If a ball $B\left(r, x_{0}\right)$ is contained in Q, then $f(B) \supseteq B\left(r, f\left(x_{0}\right)\right)$; this can be seen by a variant of the Cauchy-Peano method in ordinary differential equations [1, pp. 1-7].

Theorem 1^{\prime}. Let Q_{0} be a compact set interior to Q and S a bounded subset of the space $C^{\alpha n}$, of uniform rank n. Then there is an N_{1}-set $F \subseteq Q$, such that $f(F) \supseteq f\left(Q_{0}\right)$ for all f in S.
2. - Let T be a bounded subset of the Banach space $C^{\alpha}[0,1]$, defined similarly to $C^{\alpha}(Q)$. For small numbers $r>0, T$ is contained in $\exp \left[A r^{-1 / \alpha}\right]$ ball of radius r in the uniform metric-a theorem of Kolmogorov [3, p. 153]. It is essential that the domain of the functions be a linear set, but the same bound holds for bounded subsets of $C^{\alpha n}[0,1]$.
(*) University of Illinois - Urbana, Ill.
Pervenuto alla Redazione il 23 Gennaio 1974.
3. - Let K be a compact subset of Q, and let W be a neighborhood of K, interior to Q. For some $\varepsilon>0$ every point of K has distance $>2 \varepsilon$ from the boundary of W. Let T be the set of all level curves $\Gamma(t), 0 \leqslant t \leqslant \varepsilon$, of functions f in S, meeting K. We choose arc-length as the parameter of each curve Γ, that is, $\left\|\Gamma^{\prime}(t)\right\|=1$. This condition on Γ, together with the boundedness of S in $C^{\alpha n}(Q)$ and the uniform rank n of S, implies that the set T is bounded in $C^{\alpha, n+1}[0, \varepsilon]$. Therefore Kolmogorov's estimate is valid for small $r>0$.

The curves $\Gamma(t)$ have length ε and have equicontinuous tangent vectors $\Gamma^{\prime}(t)$, so their diameters exceed some $c_{1}>0$. Let $r \Lambda$ be the set of vectors ($r u_{1}, \ldots, r u_{n+1}$), where each u_{i} is an integer. Since a curve Γ has diameter $>c_{1}$, some co-ordinate, say x_{1}, increases $>c_{1} n^{-1}$ along Γ; when r is small x_{1} then assumes $>c_{2} r^{-1}$ values $r u$ along Γ. Taking a point ($r u_{1}^{0}, x_{2}, \ldots, x_{n+1}$) on Γ, we observe that some element ($r u_{1}^{0}, r u_{2}, \ldots, r u_{n+1}$) of $r \Lambda$ has distance $<n r$ from Γ. Thus at least $c_{2} r^{-1}$ elements λ of $r \Lambda$ have distance $<n r$ from the curve Γ. For small r, all these elements λ belong to Q.

Now we form a random selection Λ^{*} from the set $r \Lambda \cap Q$. To define the distribution of this selection, we fix once and for all a number τ in the interval $0<\tau<1-\alpha^{-1}$. Then we select or reject the elements of $r \Lambda \cap Q$ independently of each other, with the probability of each selection exactly r^{τ}. The probability that Λ^{*} contains none of the $c_{2} r^{-1}$ elements λ, found above, is $<\exp -c_{2} r^{r-1}$ (because $1-y<\exp -y$ for $y>0$).

By Kolmogorov's estimate, we can select at most $\exp A r^{-1 / \alpha}$ curves $\Gamma_{1} \in T$, so that every curve Γ is within r of some Γ_{1} in the uniform metric on $[0, \varepsilon]$. The probability that every curve Γ_{1} has distance $<n r$ from some element of Λ^{*}, exceeds $1-\exp c_{2} r^{\tau-1} \exp A r^{-1 / \alpha} \rightarrow 1$, because $\tau<1-\alpha^{-1}$. But then the same is true for all curves Γ, and a distance $(n+1) r$.

Suppose now that $x \in K$ and $f \in S$. Then, considering the level curve Γ of f through x, we see that $\|f(\lambda)-f(x)\|<c_{3} r$ for some element λ of Λ^{*}. If r is small enough, then the ball $B\left(\lambda, c_{3} r\right)$-of center λ and radius $c_{3} r$ is contained in W and $f(x) \in f(B)$.
4. - To construct N_{1}-sets by the random method, we require another property of Λ^{*}. We choose in succession an integer $k>1$ and a number π in $(0,1)$ so that $k \tau+(\pi-1) k(n+1)>n+1$. Consider the event $M: \Lambda^{*}$ contains some k distinct elements $\lambda_{1}, \ldots, \lambda_{k}$ with all distances $\left\|\lambda_{i}-\lambda_{j}\right\| \leqslant 3 r^{r}$. To estimate $P(M)$ we bound the number J of the k-tuples: $r \Lambda \cap Q$ has. $\ll r^{-(n+1)}$ elements; and each ball of radius $3 r^{\pi}$ contains $\ll r^{(n-1)(n+1)}$ elements of $r \Lambda$. Hence $J \ll r^{-a}$, where $a=-(n+1)+(\pi-1)(n+1)(k-1)$. But $\boldsymbol{P}(\boldsymbol{M}) \leqslant J r^{k \tau} \rightarrow 0$ because $k \tau+a>0$.

For small r we can choose Λ^{*} to have the covering property found in 3 , while avoiding the event M. We write W_{1} for the union of balls $B\left(\lambda, 2 c_{3} r\right), \lambda \in \Lambda^{*}$, and V_{1} for $\cup B\left(\lambda, c_{3} r\right)$. Then $f\left(\nabla_{1}\right) \supseteq f(K)$ for all f in S, and $W_{1} \subseteq W$ for small r.

Now we can repeat this process, using V_{1}^{-}for K and $W_{1} \cap W$ in place of W. Then we find a small r_{2}, and corresponding sets V_{2} and W_{2} so that $f\left(V_{2}\right) \supseteq f\left(V_{1}\right) \supseteq f(K)$, etc. Moreover, c_{3} and π are uncharged in the successive applications of the basic construction. The set $F=\bigcap_{1}^{\infty} W_{m}^{-}$then has the property $f(F) \supseteq f(K)$, and we prove finally that F is an N_{1}-set.
5. - To each g in $C^{1}(Q)$, and each $\varepsilon>0$, we construct g_{1} in $C^{1}(Q)$ so that $\left\|g-g_{1}\right\|<\varepsilon$ in $C^{1}(Q)$ and $g_{1}(F)$ has measure $<\varepsilon$. This shows that the elements of C^{1}, transforming F onto a null set, are a dense G_{δ}. We begin with a partition of the centers λ_{q}, that is, the elements of Λ^{*}, corresponding to a small value of the radius r. Let Y_{1} be a maximal selection of centers λ_{q}, having distances at least $r^{\boldsymbol{r}}$; let Y_{2} be a maximal selection from the remaining centers, etc. If λ belongs to Y_{k}, then $\left\|\lambda-\lambda_{q}\right\|<r^{\pi}$ for $k-1$ centers $\lambda_{q} \neq \lambda$. But then we have k centers with distances $<2 r^{\pi}$ a contradiction. Therefore $Y_{1} \cup \ldots \cup Y_{k-1}$ exhausts Λ^{*}.

Let $s^{k+1}=r^{1-\pi}$, and observe that every real number has distance $<r s^{-k}$ from some multiple urs ${ }^{-k}$ of $r s^{-k}$. Hence we can define h_{1} in $C^{1}(Q)$ so that each number $g(\lambda)+h_{1}(\lambda)$, with λ in Y_{1}, is a multiple of $r s^{-k}$. In view of the distance r^{π} between the members of Y_{1}, we can take h_{1} to have norm $s^{-k} r\left(1+r^{-\pi}\right)$, as in [2]. Then we construct h_{2} so that each number $\left(g+h_{1}+h_{2}\right) \lambda$, with λ in \boldsymbol{Y}_{2}, is a multiple of $r s^{1-k}$. The norm of h_{2} is again $\ll s^{-k} r^{1-\pi}$, and moreover $\left|h_{2}\right|<r s^{1-k}$. By this process we construct $g_{1}=g+h_{1}+\ldots+h_{k-1}$, and $\left\|g-g_{1}\right\|$ is small because $s^{-k} r^{1-\pi} \rightarrow 0$. Moreover, $\left|g+h_{1}+\ldots+h_{j}-g_{1}\right| \ll$ $\ll r s^{j-k}(1 \leqslant j<k)$, so $\left|g_{1}(\lambda)-u r s^{j-k-1}\right| \ll r s^{j-k}$ for each λ in \boldsymbol{Y}_{j}. When r is small, the partial derivatives of g_{1} are bounded by some $B=B(g)$; thus $B\left(\lambda, c_{3} r\right)$ is mapped inside a ball of radius $\ll r+r s^{j-k} \leqslant 2 r s^{j-k}$, centered at urs ${ }^{j-k-1}$. Since the set $g_{1}(Q)$ remains within some finite interval, the union $\cup B\left(\lambda, c_{3} r\right)$ is mapped onto a set of measure $\ll s$, and this completes the proof.

REFERENCES

[1] E. A. Coddington - N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.
[2] R. Kaufman, Metric properties of some planar sets, Colloq. Math., 23 (1971), pp. 117-120.
[3] G. G. Lorentz, Approximation of Functions, Holt, New York, 1966.

