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Euler-Poincaré Index Theory on Banach Manifolds.

A. J. TROMBA (*)

In this paper we introduce the notion of a Fredholm vector field on

Banach manifolds (modelled on a real Banach space) with 8-structures

(see below). We define an equivalence relation between vector fields with
a finite number of isolated zeros. For a special class of Fredholm vector
fields X we define the Euler-characteristic X(X) and show that it depends
only on the equivalence class of X. For Hilbert manifolds fl of finite

codimension and of finite type X(X) for all X. This theorem gives
a new proof of the Euler-Hopf theorem in finite dimensions.

In section VI we mention some direct generalizations of the theory of
vector fields presented in the first five sections. The reader wishing to see
the most general results should read the first two short sections and then
proceed directly to the principal results in VI. In § VII we show how the
theory could apply to the problem of geodesics on closed finite dimensional
Riemannian manifolds.

I. - Fredholm structures, layer structures and 8-structures.

Let G.L(E) be the general linear group of a real Banach space E and
GLC(E) the Lie subgroup of invertible linear transformations of the form
I + .K, where .K is completely continuous. It is shown in [1] that G.LC(E)
has the homotopy type of in particular 

Let A be a paracompact Cr (r&#x3E;3) Banach manifold (possibly with
boundary) admitting Cr partitions of unity. A Fredholm for A

is a collection of Cr charts (ggi, Uz)aEI covering ~ with the property that
GLC(E) for all x E Ui r1 Uj, where D(99, - denotes the Fre-

chet derivative of qJi o ggj 1 at x. We assume Y to be maximal with respect
to this property. Such structures were first defined in [1] and [2].

(*) University of California, Santa Cruz, Cal.
Pervenuto alla Redazione il 25 Gennaio 1973.
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A layer structure £ for JL is a maximal atlas of charts with

= x + where is finite dimensional; i.e., n is

contained in a finite dimensional subspace of E. From [1] we have the following

PROPOSITION 1. Let A be as above. Then given any Cr Fredholm struc-
ture Y for A there is a unique layer structure E c Y.

It is also shown in [1~ that if admits a reduction to GLC(E) {in par-
ticular if GL(E) is contractible} then JC admits an Y structure, and con-
sequently a layer structure.

It turns out that Fredholm structures are too large a class of coordinate
charts for vector fields, and layer structures are somewhat more restrictive.
We shall introduce the notion of an 8-structure for a Banach manifold which

is somewhere in between these two structures.

An 8-structure for A is a maximal atlas of charts (ggi, covering ~
with (qJi = x + where .K is compact. Layer structures are

8-structures and 8-structures are Fredholm structures; moreover given an
S-structure S there is a unique layer structure E and a unique Fredholm
structure :F with E c 8 c F. Consequently if TA admits a reduction to

GLC(E), ~ admits an 8-structure. In order to define Fredholm section of

the tangent bundle we shall need to develop a few facts about 8-structures.

DEFINITION. Let K: Q -~ E be a Cr compact mapping of an open region
Q c E into E. We say that K is 81-compact if DK: is also com-

pact ; i.e., the map (p, h) takes Q x (bounded sets) into a com-

pact set.

Similarly ,.K is Sr-compact if (p, h,, ..., hr) ..., ho) is com-

pact, where the hi are all in some fixed bounded set in is

locally Sr-compact if each has a neighborhood V with respect to
which DrK: is compact.

PROPOSITION 2. If .K is and compact then .K is locally S’-compact.
If max sup 1/  oo then .K’ is S"-compact.

r 

PROOF. We do only the local case when r = -1. Let Vs be a ball of
radius 8 on which sup and so that V2scQ. Then on Ys, .K is

P6F

uniformly Frechet differentiable. Assume that DK : is not com-

pact. Therefore for some ball of radius 1, say Bi c E there does not exist a
finite e-net for for every 8. Thus for some E &#x3E; 0 there exist

sequences with

for all pairs (pi, vi) ~ (pj, 
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Since .K is uniformly C1 on Vs, h) - .K( p ) _ h)
where 11w(p, h) BI  (ell) Ilhll if 11 h  ð for some 6 &#x3E; 0. Let 5 = min (6, s).
Then

This contradicts the compactness of K.

COROLLARY. If (99, U) and (y, TT) belong to some 8-structure 8 of A
then for all V), D2(99 - k) has the property that for each

fixed k E E, h -+ o k) is linear completely continuous.

II. - Fredholm vector fields.

One would like to define a er Fredholm vector field as a er section X

of TA so that, locally, the principal part 0l~ of a local representation X,,
of X with respect to a coordinate map 99 is Fredholm of index zero. It is

not difficult to see that in general this definition depends on the coordinate
chart ~.

However suppose now that ~ is endowed with a fixed 8-structure.

We say that X E = space of sections of is Fredholm

with respect to 8 if for each (ggi, Ui) E 8, 0l~ the principal part of X with
respect to g~ is Fredholm of index zero.

PROPOSITION 3. The notion of Fredholm section is well defined.

PROOF. Suppose Xgl : 0 -~..E is Fredholm of index zero, 0 = Let

1p, U) be another chart in 8 with P~V~0. then

The second term on the right is clearly, for each x, a Fredholm map of
index zero. The first term has the property (by the Corollary to Proposition 2)
that for each x, the linear map, h ---&#x3E;. D2 h) is completely con-
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tinuous. But if T is linear Fredholm and .I~ is completely continuous then
is Fredholm of the same index. This proves Proposition 3.

Let ~ be a manifold with an 8-structure. is an 8-submanifold
of M if for each x E N there is a chart U) e 8 and a closed subspace Eo
of E with cp( U n N) c Eo .

One can readily show that an 8-submanifold ~N’ inherits an 8-structure
from We have

PROPOSITION 4. Let JVCE be a Banach submanifold of finite codi-

mension in E. Then X is an 8-submanifold of .E (in fact a layer sub-
manifold), y where .E is given the natural 8-structure.

PROOF. This essentially is Corollary 2.18, page 69 of [1].
We say that a manifold A is of finite type with respect to a er 8-structure 8

if A can be covered by only finitely many coordinate neighborhoods of S.

The following is a partial converse to Proposition 4.

PROPOSITION 5. Let be a Cr (admitting Cr partitions of unity) com-
plete Finsler (e.g. see [5]) layer manifold modelled on E and of finite type;
i.e., 7 JY’ can be covered by finitely many charts ( Ui, qJi), i = 1, ..., N, with

99i 0 = x + KiAx) where n Uj)) is contained in a finite di-

mensional subspace Fii of E. Then JY’ can be embedded as a finite codimen-
sional submanifold of a Banach space F. If E is isomorphic to can

be taken to be E.

PROOF. Let i be a projection of E onto the span G of the Fii. Let 

be a partition of unity subordinate Then f (x) == is a

Fredholm map of index zero from JY’ to E. One readily checks that the

map defined by

is an embedding.

III. - The Euler characteristic.

Let GLC(E) denote the group of invertible linear operators of the form
Â1 + C, where C is completely continuous, I is the identity and £ &#x3E; 0.
It follows easily that Z2. If we write E = F X R,
the operators I and J, J given by J(y, r) = (y, - r) are in the two distinct
components of 

’
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A Fredholm vector field on an 8-manifold JY’ is admissible if given any
~ there is a coordinate neighborhood (cp, U) e 8 about zo so that the

principal part x 91 of X with respect to cp is bounded on and of the

local normal f orm X,(x) == ~,(x) x -f- where K is compact, 2 : 

is Cr and bounded with inf ~,(x) ~ ~ &#x3E; 0.

The following proposition shows that this notion is well defined; i.e., in-
dependent of the chart 99.

PROPOSITION 6. If (cp, U) and (1p, U) e 8 are two coordinate neighbor-
hoods of xo and is of the form = ~,(x) x -~ as described above,
then if U is sufficiently small, Xtp is of the same form.

PROOF. X.~(x) _ where oc and y = a-i(r). Sup-
pose U is small enough so that a(y) = y + K°(y) with .g°, S1-compact. Then

oc-i(x) = x --E- K2(r), .K2 Sl-compact. Hence

Now everything after the first term is a compact map which concludes the
proposition.

It is important to note that if .Kg; )is in the normal form above then
for 

In addition X,, is proper (by proper we mean the inverse image of a
compact set is relatively compact; e.g., see Smale [7]).

DEFINITION. A Fredholm vector field on K is said to be weakly admis-
sible if for each x E Jt, and some chart U) e 8 about E G.LC(E).

One can quickly check that this does depend on 99. Moreover it is im-

mediate that admissible implies weakly admissible.
From here through § IV all Fredholm vector fields on A will be weakly

admissible. Let X and Y be two such vector fields on A with finitely many
isolated zeros. We say that X is equivalent to Y (X- Y) if the path

+ (1- t) Y(x) between X and Y has the property that

F-1(3(TA)) is compact, where denotes the zero section of T~.

Let z be a zero of X, aA9 and let U) e 8 be a coordinate neigh-
borhood about z. Let W c W c 9?( U), n aM = 0 be a bounded open

neighborhood of cp(z) with W containing no other zero of .X and so that
-~ j~ is proper.
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Define the index of X at z to be deg the Leray-Schauder
degree of the principal part of X with respect to 99, W, and 0 (e.g. , 7 see [1]).

The fact that the index of X at z is independent of W is a standard
result in degree theory (again see [1]). The fact that it is also independent
of q is a consequence of the following.

LEMMA. Let a be a C2 origin preserving diffeomorphism of a bounded
convex neighborhood of 0 to a neighborhood of 0 with a of the form

= x -f- .K(x), Then a is isotopic to either I or J where J
is the operator introduced in the beginning of § III. Moreover the isotopy a~
can be chosen so that for each t, at(x) = x + where is $--compact.

PROOF. Write a(x) = x + where K is strongly compact. Define

1

H is smooth; moreover H(t, x) = x + K(tx)jt. But .K(tx) jt ==fDK,,,-(x) ds.
o

Consequently, x --&#x3E;. K(tx)jt is S1-compact. Now Dao is either in the component
of I or J. This concludes the proof of the lemma.

PROPOSITION 7. The index of X at z does not depend on the selection of
coordinate chart ~.

PROOF. Let y be another coordinate chart in 8 about z. We can assume,
without loss of generality that gg(z) = y(z) = 0. Then .X~(x) = 
y = a-’(x), where a = o 99-1 is an origin preserving diffeomorphism of a

neighborhood W of zero. Restricting a to a suitable bounded convex neigh-
borhood of zero, so that a(x) = z + K(r), where K is $2-CoMpaet2 we get
an isotopy at(x) between a and either I or J. If a° = I then from the

homotopy property of degree it follows that ,

If a° = J we get

Thus the proposition is proved.
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Let X be a (weakly admissible) Fredholm vector field with finitely many
zeros {~==1. We define the Euler characteristic of .X (X(X)) by the formula,

If X has no zeros its characteristic is zero.

THEOREM A. If X - Y, 0, then = x( Y) . If 0 and X
and Y both point outward or inward on the same components of 8JC then
we still have = x( Y) .

REMARK. If X ~ Y then it is generally not true that = v(Y). For

compact manifolds all vector fields with isolated zeros are equivalent and
so we obtain one number which is in fact the Euler characteristic of the

manifold. For example consider the constant vector field == (0, 1)
on R2, and the vector field Y = Vf, where y) = x2 + y2. == 0 ~

~ x( Y) = x(R2) = 1. One easily checks that X f’1J Y. In § V it will be

clear why = X(R2), and why this theory extends the finite dimen-

sional theory to non-compact finite dimensional manifolds.

PROOF oF THEOREM A. Assume that X - Y, and 0. Around each
zero of X, we may, using the Smale-Sard theorem perturb X locally (in a
neighborhood in which the principal parts are proper) obtaining a new vector
field t - X which has non-degenerate zeros (i.e., 7 X r~ ~(T~), .~ is trans-

verse to the zero section), which agrees with X outside a neighborhood of
its zeros and with = 

Similarly we can do the same for Y and obtain a new vector field Y
with and = x(Y). Now consider F;(r) = -E- (1- t) Y(x).
T’-1 ( ~(T~!~) ) is compact (recall X and Y agree with X and Y outside neigh-
borhoods in which the respective principal parts are proper).

Notice that ~ T~ are transverse to 3(TA), since X and Y have
non-degenerate zeros. By the Thom transversality theorem we can modify F
to a map which agrees with F and so that Ft
is a weakly admissible vector field for each t, 5(Tfl) and 
is compact and thus a 1-dimensional submanifold of A x I with 

equal to the union of the zeros of X and the zeros of Y. F-1 then yields a
cobordism between the zeros of t and the zeros of Y. Let 5’ be a com-

ponent of and let and denote the zeros of X and Y

7 - Annali della Scuola Norm. Sup. di Pisa
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respectively. From standard and well used techniques in elementary dif-
ferential topology it follows that if 85 = U {z,} then (index at zi) _
- - (index 3 at z,) _ ~ 1. If a J = (z,) U then (index 8 at z,) =

= (index I at w;) . Thus = z(k) = = x( Y) and Theorem A is

proved in the case 8fl = 0. If 0, and X and Y both point outward
(or inward) along the boundary, we observe that has no zeros on a for

any t. Consequently the cobordism affected by F does not intersect the
boundary and the same proof works.

IV. - The vector field characteristic of a manifold (the intrinsic theory).

The question now naturally arises as to when z(X) does not depend on X
and can be described by topological data alone. We answer the first part
of the question below and the second part in § V.

DEFINITION. Suppose A is a manifold with an 8-structure of finite

type (cf. § II). An admissible vector field X is of finite type if vi(, is the finite
union of closed coordinate neighborhoods with respect to which
the principal parts of X, X., are in normal form; i.e., of the form r - +
-]- Ki(x), Åi&#x3E;0153&#x3E;O and K compact.

PROPOSITION 8. If A is a complete Finsler manifold (e.g., see [5]) of

finite type and X and Y are also of finite type and have isolated zeros then
X~Y

PROOF. Cover A by finitely many neighborhoods (Ui, ggi) with respect
to which !,,,(x) = Âi(x)x + Ki(x) and = vi(x) x + Ci(x). The map

(t, x) is proper on Thus the closure of the

set of zeros of .Z’, F(x, t) = tX(x) + (1- t) Y(x), in Ui X I is compact. But
and therefore .F’w~~(T~N~)) is compact and X - Y.

If u1t is of finite type, then by the last proposition all vector fields of
finite type are equivalent. Thus by Theorem A, x = does not depend
on X, if we restrict X to be of finite type and to point outward along the
boundary. Therefore y should be describable in terms of topological data.
In the next section we define the notion of compact vector field on manifolds
of finite codimension in some Banach space. All compact vector fields are

equivalent; thus depends on We show that z(X) = xCvi(,) for any
compact X.
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V. - Relation between X (M) and X (the extrinsic theory - compact vector
fields).

Let ~ c E be a submanifold of the Banach space E of finite codimension.

Then A inherits a natural 8-structure 8 from E. A Cr vector field

can then be identified as a map X is compact
if X(x) = 1(x) x -+- K(x), where K(A) is compact and inf ,(x) &#x3E; a &#x3E; 0. It is

easy to see that the set of zeros of X is a compact set and moreover that

compact vector fields are admissible with respect to 8 and are all equivalent.
In the remainder of this section we shall study only the extrinsic theory
of vector fields, namely, we shall consider only finite codimensional mani-
folds ~ embedded in an ambient space E and compact vector fields X on 

In particular we shall take A to be a Or closed and bounded Hilbert
submanifold of a real Hilbert space H with inner product ~ , ~, with AO
(A interior) is an open submanifold of H. We shall show that if ~ admits
a bounded er outward normal vector field V : [i. e., V admits a Cr
extension to a neighborhood of every point p E of the form V(p) ==

p + K(p), ,g compact, then is defined (Hi(JK,) = 0, i &#x3E; No, for some No,
where Hi denotes the i-th singular cohomology group with real coefficients
and is a finite dimensional vector space for all i and moreover, = 

for any admissible vector field X which points outward on 8fl.
Since by Propositions 7 and 8, is independent of X all we need

to do is construct one admissible vector field X with X(X) = We

shall construct a smooth real valued function f : fl - R with non-degenerate
critical points and with Vf compact, and therefore having finitely many
zeros. The from standard results in Morse theory (see e.g., Palais [4]), it

follows that is defined and = 

PROPOSITION 9 (Collar Neighborhood Theorem). Let 6 be any positive
real number and let V: be a er vector field which is transverse

to 8JC of the form V(p) = p + K(p) with K compact. Then 8JC has a

neighborhood in H, Cr diffeoinorphic to a~ X (- ~, 6).

PROOF. Define the Cr endpoint map E: by E(p, A) = p +
+ 2(p + .g(p)). Then for (h, v) E DE(v.O)(h, v) = h + v(p + .K(p)).
Since V ~ 8fl, is isomorphism, and therefore by the inverse func-
tion theorem, E is a local diffeomorphism. Since K is compact and V # 8JC
we have that inf which guarantees that E is uniformly a

peaa

local diffeomorphism in the sense that there exists an 71 &#x3E; 0 so that given
any p E r1 B,,(p)) X (- r~, ~ ) is a diffeomorphism, where B (p) de-
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notes the ball of radius q about p. If we can show that for some 8&#x3E; 0,
is injective the proof of Proposition 8 will be complete

[3~X(2013~s) is clearly Cr diffeomorphic to a~ X (- ~, ~)].
Assume that the injectivity assertion on E is false. Then there exist

sequences (pn, (pn, 2() , with Ån --~ 0, ~,~ -~0 and with E(pn, ~,~) =

= E(p[ , 2[) . Thus

Since ~tL is bounded and K compact we may conclude that p~ - p~ con-
verges to zero. Therefore f or n sufficiently large ( pn , ~,~ ) E ~ X t~ where 0
and 5 are open sets in 8fl and R about pn and 0 respectively with

whence is a diffeomorphism.
This implies that (Pn, ~,n) (p’, ~,n) a contradiction, and the proof of

Proposition 8 is complete.
The next proposition is the crucial step in the construction of the map

PROPOSITION 10. Let A and V be as before with V = I+ K, outward
and normal along Moreover assume that the map DK* : 

defined by (p, h) -7-DK;(h) is compact (restricted to bounded sets) where

Dgp denotes the Hilbert space adjoint of Then there exists a closed

collar neighborhood W = E(8flX [-s, s]), of in H and a Cr

map, g : with g-1(2 ) = Vg compact and with 8fl (in fact Vg
will point outward along 8fl).

REMARK. If K is Sl-compact with DK, self adjoint for each p then
the compactness condition on D.K’~ above automatically follows.

PROOF. Let E : ð) -7- U be a diffeomorphism where U is a
collar neighborhood of given by Proposition 9. Define g : V -R by
g(E(p, 2)) = A + 2. Clearly g-1(2) = a.4t. By the chain rule we have that

Denote Vg(E(p, Z)) by L( p, A).
Therefore for all (h, v) E X R

or
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This implies that

and

is normal to 8JL at p. denotes the adjoint of D.Kp.)
Thus

~ == ~(p, ~.) a real number.
Before proceeding we shall need the next lemma.

LEMMA 1. There exists positive numbers m1, and an s&#x3E; 0 depending
only on K so that for ~~, ~ c ~, 2.1111 &#x3E; ~( p, ~,) ~ m1/2 &#x3E; 0 for all pEov1L.

PROOF. First note that

From the fact that it follows that there is a 9i&#x3E;0
and positive numbers mo, M,, with

This together with the relation ~L(p, 2), DE(p.Â)(h, v)~ = v implies that there
exist positive ml, with 0  m1  IIL(p, 1)))2Mi for all (p, Â) E aA X
X[20139~ 6,.] - Using (*) we see that we can find with

which concludes the lemma.

Returning to the proof of Proposition 10 we see that since
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By the compactness assumptions on K it follows that

is also a compact map, say C(p, 2). Consequently

or

Therefore Vg is compact on Moreover 

Thus 8fl and points outward. This finishes the proof of Proposition 10.
In the preceding proposition we constructed a Cr mapping g : W ~.

-+ [2 - s, 2 + s]. We would like to extend g to a er map f : ~ 2013x l~ with Vf
compact and having non-degenerate zeros. We shall do this in a couple
of steps.

Let be a C°°-map which is 1 on [2013s/2y 8/2] and zero outside
[- E, E] with for all Define Cr maps W -+R by

9901 qi clearly extend to Cr maps on all of H.

LEMMA 2. = n (q) - q + Cl(q), where q (q) &#x3E; 0 for q E A, 01 compact,
and sup = oo.

aEW

PROOF. The proof is essentially a minor modification of Proposition 9.
Recall that the real valued function $ of Proposition 9 had the bounds

(by Lemma 1 of this section), Let F===sup lip 112, w 812r,

and g be the map constructed in 9. Define by g.(q) 
by f (q) = f/Jo(q)y(q) + We shall show that vï is

compact 8fl and pointing outward.
Surely ~7f points outward along 8fl (and is in fact normal to 8fl)

since V/(p) = Vg(p) for p E aA. Recall further that Vg(q) = ~(q) ~ q -~-- C(q),
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q = E(p, /)y 03BE(q) = $(q) j(1 + Â)2. The restriction |03BB| c 2 implies that 4M1&#x3E;
&#x3E; 1( q) &#x3E; nli J8 for all q E W. Now 2 - s  g(q)  2 + s, and 0  ~i(~)  e/2. Com-
puting V( we get

The sum of the first two terms is of the form

whereas the sum of the last terms is of the form

Therefore

Let {3 = min w). Then for q = .E( p, 1), g(q) = 2 + A, and 
c s/2 (o C ~ C §1 ’ + 
Whence y (q ) &#x3E; ~ &#x3E; 0, and C2 compact. VI is therefore compact.

The last remaining road block to applying the results of Morse theory
to I is that I may have degenerate critical points. However V/ is Fredholm
of index 0 and consequently by the Smale-Sard theorem [7] VI has a regular
value v where Ilv II may be chosen arbitrarily small. Pick v so close to 0 E H

so that 8JC points outward. has zero as a

regular value. Define f : fl - R by f (q) = + q, v. Then V/ = 
and so Vf has only non-degenerate zeros, is transverse to 8fl and points
outward.

In addition f is bounded on jKj and satisfies condition C. Therefore t
has only finitely many critical points in f1°. Since f is admissible each cri-
tical point is of finite index. This implies (using Morse theory) that ~ has
a handle body decomposition where there are only finitely many handles.
Thus = 0 if i is sufficiently large, and dim H4  oo for all i. The

ex&#x3E;

Morse equality says that (20131)*C~ where C, = number of critical
i=O

points of index i. If z is a critical point of index i of X, then index X at z
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is equal to (-1 )’. Thus the Morse equality says that By
our earlier remarks it follows that = X.

We finalize our results as a theorem.

THEOREM B. Let ~ be a closed (as a subset) bounded Cr submanifold
of H of codimension 0. Suppose aA admits a bounded Cr, outward normal
vector field V : of the form p --* p + K(p), K and D.K* compact.
Then = 0 (the i-th singular cohomology group with real coefficients)
for i sufficiently large, and dim H4  oo for all i. Thus is defined.

Finally for any compact vector field X which points outward on 8JC,
x(X) == 

REMARK. Theorem B above immediately generalizes to the case where A
is a closed (as a subset) Cr finite codimensional submanifold of H with the
property that the map x --~ Px(x) from A to H, where Px is the ortho-

gonal proejction of H onto TAI, is compact.

VI. - Generalizations of the theory.

In Section V we introduced the notion of admissible vector field X. We

shall now considerably extend this notion.
Let E be a Banach space and C a convex set of invertible linear oper-

ators containing the identity (e.g., if E = H, C could be taken to be the
linear space of strongly positive operators). A vector field X on an 8-mani-
fold ~ is admissible if locally the principal part 0l~ of X with respect to q
is bounded and in the normal form = Tx(x) + .g(x), where Tx is
a compact map of into ~(J~), the linear operators on E, .K compact,
T,, c C and 11 for all h where inf 

06"(U)
The notion can again be seen to be independent of 99. If we denote

by CK the set of linear invertible operators of the form {T -]- K, 
.K’ linear completely continuous}. Then no(Ox) = 2 not necessarily a

group so 7r,,(CK) is just the number of path components). Clearly E CK
for each We can then define the notion of the index of X at an

isolated zero z. If z is such a zero with e 8 a chart about z with

we define (index X at 1 W, 0] where the

degree is the Brouwer degree introduced by Elworthy and the author [1].
If .X has only finitely many zeros we define x(X ) _ ~ (index X at z).

zeros z

If both X and Y have finitely many zeros we say X is equivalent to Y,
X - Y7 T~ defined by t) = + (1 - t) Y(x) has the
property that .F’-~( ~(T~(,)~ is compact, the zero section of So

we have
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THEOREM A’. If X - Y, 8fl = 0, then = X(Y). If 8fl # 0 and X
and Y both point outward or inward along the same components of 8JC
then we still have X(X) = X(Y).

If ~ is of finite type and X and Y are of finite type and either both

point inward or outward on 3~ then X- Y. Thus we get a vector field

characteristic X of a manifold A of finite type by defining = X(X) for any
admissible X of finite type which points out ward along 8fl.

The proof of the following theorem is essentially a minor modification of
that of Theorem B.

THEOREM B’. Let ~ be a closed bounded er submanifold of a Hilbert

space H of codimension 0. Suppose 8fl admits a bounded Cr outward non
zero normal vector field V: of the form p --&#x3E;. T,,(p) + K(p), K7

and (p, h, k) compact where D means derivative
with respect to the subscript variable. In addition suppose that for each p,
T e C, and 11 where inf ~O(p) &#x3E; ~ &#x3E; 0.

p 

Then the i-th singular cohomology group with integer or real
coefficients is zero for i sufficiently large, and dim H’  oo for all i. Thus

is defined. Finally for any compact vector field X which points out-
ward on = 

REMARK 1. By altering the Riemannian structure of H in a neigh-
borhood of M the transversality assumption on V in B’ can probably be
weakened to V being uniformly transverse to By uniformly transverse
to aA we mean that there is a ð, 1 &#x3E; 6 &#x3E; 0 with

REMARK 2. Theorem B’ can be generalized to bounded closed submani-
folds of finite codimension in H for which the from A to H

is compact where P~ is the orthogonal projection of H onto 

REMARK 3. Let A be a submanifold of H as in Theorem B’ and let

V(p) = Tv(p) + .K(p) be a normal vector field with T, positive defi.n.ite for

each p. Then if f : is a function constructed as in Section V, Vf is
compact with critical points of finite index. Then - f is a smooth map
satisfying condition C in the sense of Palais and Smale and has only critical
points of infinite index. Applying the Morse deformation theorem to - f
we can conclude that 8fl has the same homotopy type of A.
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VII. - A conjecture on the problem of geodesics on closed finite dimensional
Riemannian manifolds.

In the following paragraphs we see how the problem of existence of

geodesics can be put in the framework of Section V. Unfortunately there
is a certain gap which we shall leave in the form of a conjecture.

Let .M" be a complete n-dimensional Riemannian manifold (~&#x3E;1).
By a celebrated theorem of John Nash, .M" can be isometrically embedded
in some Euclidean N-space, for N sufficiently large. Let Hi(I, RN) denote
the Hilbert space of functions from the unit interval I to RI which are

absolutely continuous with square integrable derivatives. The inner product
~ , ~ on this space is given by

where ( , denotes the canonical inner product on RN.
Let Hl(l, Mn) denote the smooth (Ck) Hilbert submanifold of RN)

consisting of those maps which take I into MI. For a more detailed discussion
of this Hilbert manifold see Palais [5]. Let P, Q be points in and let

42(1, P) c if") be the Hilbert submanifold consisting of maps or in

Hl(I, with = P and Q(I, P, Q) c D(I, P) the Hilbert submanifold
consisting of those maps or with J(0) = P and a(1 ) = Q. We shall give
Q(I, P) and Q(1, P, Q) the Riemannian structure induced from Hl(l, RN).

The tangent space Q(I, P, Q)~ to P, Q) at a can be characterized
as the subspace of Hl(1,RN) of maps with h(t)ETM:(t) and

= = 0. These are maps which « lift » over or.

The tangent space to Q(I, P) at a point a can be defined similarly. We
shall define the « energy » integral J: Q(I, by

and denote by J the restriciton of J to Q(I, P, Q). It is well known [5]
that the critical points of J are geodesics of .M’n joining P and Q parametrized
by arc length.

We will now show how Q(I, P, Q) can be embedded as a finite codimen-
sional submanifold of some Hilbert space. First we shall show that the

Hilbert manifold Q(I, P) is diffeomorphic to the Hilbert space 
bt, p(0 = 01. Let o e S2(I, P) and v e 
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Denote by ztv the parallel translation of v [here we are giving .lYln the

symmetric affine connection compatible with its metric and are defining
parallel translation with respect to this connection] along to = PM;.
Thus ri v E Now E PM;(t), and so t --¿. defines a path in 
The equation can be solved uniquely and the map J « o
determines a diffeomorphism between Q(I, P) and TM’) (e.g., see

Kobayashi and Nomizu [8], p. 130). This diffeomorphism is called the de-
velopment diffeomorphism. Denote this diffeomorphism by y : 

P). Thus Q(I, P) is diffeomorphic to the Hilbert space Hl(I, 
Define a map Q(I, P) --~ Mn by = a(l). The map 99 is a submersion
and = Q(I, P, Q). Consequently it follows that Q(I, P, Q) is an

n-codimensional submanifold of P) and therefore can also be embedded
as an n-codimensional submanifold of H1 (I, TM:). Denote by Q) the
inverse image y-l(Q(I, P, Q)).

1°(P, Q) has a Riemannian structure which it inherits as a submanifold
~of H1(I, TlVlp) with its natural inner product; i.e., if f12EH1(I, PM;)

1

then ~i~2)== ~i(~)?P2~)X~ where ,)" denotes the inner product
o

on Define

and

Therefore ~, is the gradient of E at e). Also (the
differential of E at operating on h E T.Mp)) is equal to 
Thus

and hence

where dy: denotes the adjoint of dye . In fact
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Whence y determines a bijection between the critical points of E (zeros of VE)
and the critical points of J (zeros of VJ which are geodesics parametrized
by arc length). Q). Then = Pe VE(e) = P,(Q), where Pe
is the orthogonal f in TM£)) projection of onto the tangent
space of T’(P, Q) at e. Therefore

where Pe = id - Pe is the orthogonal projection onto the complement of
the tangent space to Q) at ~O. Thus the range of P. is n-dimensional.

Let a &#x3E; 0 be a real number which is a regular value of E {i.e., no cri-
tical points in Denote by Q) the manifold Ew(- oo, a). This

is a bounded closed (as a subset) submanifold of with smooth

boundary E-l(a). If one can show that VE is a compact vector field

(or equivalently if e --&#x3E;. ll"(e) is compact) one would then be able to put
the theory of geodesics into the framework of § V (see remark following
Theorem B). We have no proof of this. The main difficulty seems to be
in the fact that the development diffeomorphism does not extend to a con-
tinuous map in the 00 topology.

In a later paper we hope to surmount this difficulty by using a somewhat
different approach to the theory of vector fields on Banach manifolds.
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