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Exact Solutions of the Magneto-Fluid Dynamics:
a Contributtion.

VINCENZO MILLUCCI (*)

Summary. - Applying the indirect method of hydrodynamics to the equations of Magneto-
Fluid Dynamics (MFD) of an incompressible, viscous and electrically-conducting
fluid, we give firstly the exact indefinite solutions for the steady-motion of revolution
for parallel straight lines under certain hypotheses for the magnetic field. With
such indefinite solutions we treat a particular boundary problem. Secondly we examine
the same motion taking also in account the Hall effect. Finally we give a bibliographical
appendix concerning papers dealing with the search of solutions of the MFD equations.

1. - Introduction.

The purpose of this paper is the search of classes of exact solutions for

the non-linear, stationary equations of the Magneto-Fuid Dynamics (MFD)
describing an incompressible, viscous and electrically-conducting fluid.

We recall such equations in Sect. 2, and in Sect. 3 we discuss the meaning
of exact solution and also a method which makes it possible to resolve the
problem for certain classes of motions.

In Sect. 4 we first determine a class of exact indefinite solutions, relative
to an MFD motion of revolution for parallel straight lines, y under certain
hypotheses for the magnetic field; then, with such indefinite solutions, we
treat a specific boundary problem.

In Sect. 5 we study the MFD motion of Sect. 4, taking also in account the
Hall effect. The result is that, in this case, the class of solutions given
in Sect. 4 is reduced.

In Sect. 6, choosing for the magnetic field other hypotheses than those of
Sect. 4, we briefly discuss the same MFD motion.

Finally we present a bibliographical appendix concerning papers dealing
with the search of solutions of the MFD equations.

(*) Istituto Matematico defl’UniversitK di Siena.
Pervenuto alia Redazione il 20 Aprile 1973.
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2. - The MFD equations for the stationary case.

For the steady-motion of an homogeneous, viscous, incompressible, elec-
trically-conducting fluid, the non-linear MFD equations, without Hall effect,
are (Gaussian units):

Where v is the velocity field, U the potential of non-electromagnetic
body forces, p the pressure, g the density (constant), p the magnetic per-
meability (constant), B the magnetic induction vector, v the kinematic

viscosity (constant), a the electrical conductivity (constant), c the speed
of light in vacuum and vm is the magnetic difhisivity.

Then, the basic equations for the unknown v, B and p are (2.1), (2.2)
and (2.3) with the condition (2.4) for B.

When v and B are known, we can have, if it is of interest, the current
density J and the electric field E immediately from:

3. - The indirect method.

Let us now examine the method by which we shall search the exact
solutions of the equations written in Sect. 2.

Let us at first discuss the concept of exact solution. Practically we assume
the definition given in [1] (p. 11 ), relatively to the hydrodynamical equations
for an incompressible, stokesian, viscous fluid.

An exact indefinite solution must satisfy the complete system of equa-
tions of Sect. 2, containing therefore also the non-linear terms. Now, if we
want the solution to satisfy also the boundary conditions of a real physical
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problem, the problem becomes, in general, very complicated. If we consider

only hydrodynamical problems there are not many of such exact solutions
and they are even fewer for MFD problems. Moreover it is necessary to

note that an indefinite solution is useful also if at present we do not know
a particular problem completely described by such a solution. For instance
it could be useful, in the future, for new problems.

Therefore, in agreement with [1], we shall consider as exact solutions,
the solutions, also indefinite, satisfying (2.1)-(2.4).

We shall use, in the search of such solutions, the so called indirect method,
already known in hydrodynamics (see [I], p. 13).

Namely, we assume certain functional dependence on coordinates for the
unknowns v and B, in order these fields have given symmetries, without
particular hypotheses on the boundary containing the fluid. After this, the
complete determination of the unknown functions will can follows from (2.1)
and (2.4) if the basic system of MFD equations allows such hypothetical
solutions. Finally p will be given by integration of (2.1).

In this way we will have a class of exact indefinite solutions. They give
some information on the interaction between the magnetic field and the
fluid in motion with certain symmetries.

The next step is, clearly, to characterize, if possible, the indefinite solu-
tions applying boundary conditions.

4. - MFD steady-motion of revolution for parallel straight lines.

(a) Indefinite solutions.

In a system fi of orthogonal cylindrical coordinates z, r, 99 and unit vectors
ex, en e~ let vx, vr, Bx, I B,,7 B~ be the physical components of v and B.
The steady-motion of revolution for parallel straight lines is characterized
in T by the following velocity field (see [1], p. 47):

It follows then from (4.1) that:

and from the continuity eq. (2.2):
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As for the vector B, in agreement with the indirect method previously
exposed, we assume:

From (2.4) it follows:

where Ai is an arbitrary constant of integration.
We may note that such a magnetic field is practically obtainable; for

instance it is used in electrodynamic loud-speakers as it has been observed
in [2], p. 353.

Owing to the singularity of B,. on the z axis, our solution will be of in-
terest only for problems concerning a fluid lying in the region outside a cylinder
with axis z and given radius. Furthermore the boundary conditions shall
determine the constant A,, as we shall see in Sect. 4(b).

From the projection of (2.3) on T axis, an identity follows for the e~
component whereas along ez we have:

and along e~:

On account of (4.5), this last equation is identically satisfied, whereas (4.6)
becomes:

Let us now consider the equation obtained applying the curl operator
to (2.1). In analogy with the similar hydrodynamical situation, (see [1], p. 3),
we shall call this further equation compatibility equation.

This equation has only one component different from zero, that is the
projection along e~; hence we have:

where Â2 is an arbitrary constant of integration.
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The problem is now reduced to the determination of the unknown func-
tions v and Bx, satisfying the system of differential eqs. (4.7) and (4.8).
We can rewrite these in the form:

where:

Once v and B,, will be determined from (4.9), the pressure will be obtained
integrating ( 2 .1 ) .

Eliminating dv/dr from the first and the second equation in (4.9) it follows:

whose solution, if yh =1= 4, is:

with A, P and C arbitrary constants and
Hence for v we have:

where D is an arbitrary constant.
Solutions similar to (4.12) and (4.13) are indicated also in the paper [2]

devoted to the study of particular cylindrical waves in MFD.
For the pressure, from (2.1) it follows:
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The term containing Bz is not present in the analogous expression for a
purely hydrodynamical problem; it is an effect of the fluid-field interaction.

If yh = 4 the solutions for v and Bx are:

with A*, P*, C* and D* arbitrary constants. The pressure is given, also
in this case, by (4.14) with Bx by (4.15).

(b) Boundary conditions.

Let the fluid be in the region delimitated by two indefinite cylindrical
surfaces, of z axis, inner radius a and outer radius b. If the inner surface

is fixed and the outer is moving with velocity:

u = uez (u given constant)

the boundary conditions for v are:

In the case yh:A 4 the indefinite solutions for v and Bx can be written:

with ci, C27 C37 c~ and C5 arbitrary constants.
Applying the condition (4.17) to (4.18) it follows:

Let us now consider the electromagnetic boundary-conditions.
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Suppose that the applied magnetic field is:

where ot is a given constant (we have already see such a field in Sect. 4(a) ).
The continuity condition for the normal component of B across the

boundary containing the fluid, is then satisfied, by the solution given in
Sect. 4(a), assuming a.

We note that, in this problem, the applied field is not modified by the
interaction with the electrically-conducting fluid; that is, the induced mag-
netic field is only along the z axis.

For the axial component of B the boundary condition, in the present
case, is (see [3], p. 352):

Introducing (4.22) in (4.19) we can determine c,:

Having no other conditions for v and B, the constants c, and c3 remain
undetermined. On the other hand Cg is connected to the pressure gradient;
in effect from (4.14), (4.13) and (4.18) it follows:

Finally the last arbitrary constant el can be useful to satisfy the boundary
conditions, if any, for the electric field.

Similar observations can be done for the case yh = 4; for instance the
expression of v which satisfies the (4.17) is:

with ci and 0: arbitrary constants.
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5. - MFD motion of revolution for parallel straight lines with Hall effect.

In Sect. 2 we have assumed the following form of the Ohm’s Law

(see (2.6)):

However it is well-known that in case where to is the cyclo-
tron frequency of the charged particles and z is the mean time between par-
ticle collisions, the Hall effect is also important. This implies an anisotropic
electrical conductivity and, in most MFD problems, (5.1) is suitably sub-
stituted by (see [4] and Bibliography there mentioned):

where#,, is the Hall coefficient. It is easy to verify that only (2.3) must
be replaced with the following (see [4], eq. (4.7)):

where fl = 
(4.5) remain unaltered and the components of (5.3) are:

and we will still have the compatibility equation:

It follows from (4.5) that (5.5) is identically satisfied, whereas (5.6)
gives:
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with ci arbitrary constant and also:

Therefore in the presence of the Hall effect, Bx will have solutions of
parabolic type.

Using (4.5) and (5.8), from (5.4) it follows:

that is:

Then, from (5.6) and (5.9), the compatibility eq. (5.7) is satisfied.
For the pressure, finally, in the usual way, we have:

where

In conclusion, the solution for the MFD steady-motion of revolution for
parallel straight lines of an homogeneous, incompressible, viscous and elec-
trically conducting fluid in the presence of the Hall effect are:

where A1 and ci are arbitrary constants and is given by (5.11).
We note that the solutions (5.12) are different from the solutions given

in Sect. 4, in absence of the Hall effect.
Now we no longer have either the terms like rki and rk, nor the distinc-

tion between the case yh = 4 and the case yh =1= 4.
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The pressure dependence is like that founded in absence of the Hall effect.
We can now treat, using (5.12), the same boundary conditions given in

Sect. 4(b).
Here it is Al = a, with oc arbitrary constant. From (4.17) it follows

for v :

Therefore B~ will be:

and from (4.22):

for arb.
The pressure, finally, is still given by (5.10) with

6. - Different hypotheses on B.

Without changing the velocity field (4.1), we can now assume:

In this case from (2.4) follows:

This implies v X B = 0. Motions with such conditions have already been
studied (see [5] and [6] ), but without taking in account a viscous fluid with
a finite conductivity. In this case and under our hypotheses, we have from
the basic equations of Sect. 2:



109

with ci, c2 , c4 and C5 arbitrary constants. Moreover:

If we consider also the Hall effect, with the conditions (4.1) and (6.1),
it follows from the equations of Sect. 5 that v and B are still given by (6.2),
(6.3) and (6.4).

Therefore, in this case, solutions of the steady-motion are not modified
by the Hall effect.

Even further hypotheses are possible for B; for instance if we take

or

it is easy to verify that, considering or not the Hall effect, the solutions
for v and B are of no interest; in effect either they do not exist, or they
describe a purely hydrodynamical situation.

7. - Bibliographical appendix.

The papers from [7] to [45], as well as [2], [5] and [6], regard the search
of solutions of the MFD equations.
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