@article{ASNSP_1971_3_25_4_649_0, author = {Cellucci, Carlo}, title = {Operazioni di {Brouwer} e realizzabilit\`a formalizzata}, journal = {Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche}, pages = {649--682}, publisher = {Scuola normale superiore}, volume = {Ser. 3, 25}, number = {4}, year = {1971}, mrnumber = {376309}, zbl = {0242.02037}, language = {it}, url = {http://www.numdam.org/item/ASNSP_1971_3_25_4_649_0/} }
TY - JOUR AU - Cellucci, Carlo TI - Operazioni di Brouwer e realizzabilità formalizzata JO - Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche PY - 1971 SP - 649 EP - 682 VL - 25 IS - 4 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1971_3_25_4_649_0/ LA - it ID - ASNSP_1971_3_25_4_649_0 ER -
%0 Journal Article %A Cellucci, Carlo %T Operazioni di Brouwer e realizzabilità formalizzata %J Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche %D 1971 %P 649-682 %V 25 %N 4 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1971_3_25_4_649_0/ %G it %F ASNSP_1971_3_25_4_649_0
Cellucci, Carlo. Operazioni di Brouwer e realizzabilità formalizzata. Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche, Série 3, Tome 25 (1971) no. 4, pp. 649-682. http://www.numdam.org/item/ASNSP_1971_3_25_4_649_0/
[1] Sur le platonisme dans les mathématiques, L'Enseignement Mathématique, vol. 34 (1935), pp. 52-69. | JFM | Zbl
,[2] Foundations of mathematical logic, New York (Mc Graw-Hill) 1963, pp. xii + 408. | MR | Zbl
,[3] Intuitionistic arithmetic as a theory of constructions, tesi, Stanford University, 1968, pp. v + 111.
,[4] Blick von der intuitionistischen Warte, Dialectica, vol.12 (1958), pp. 332-345. | MR | Zbl
,[5] On, the interpretation of intuitionistic number theory, The Journal of Symbolic Logic, vol. 10 (1945), pp. 109-124. | MR | Zbl
,[6] Introduction to metamathematics, Amsterdam (North-Holland) e Groningen (Noordhoff) 1952, pp. x + 550. | MR | Zbl
,[7] Realizability and Shanin's algorithm for the constructive deciphering of mathematical sentences, Logique et Analyse, vol. 3 (1960), pp. 154-165. | MR
,[8] Classical extensions of intuitionistic mathematics, in Logic, methodology and philosophy of science II, Proceedings of the 1964 international congress, a cura, di Y. BAR-HILLEL, Amsterdam (North-Holland) 1965, pp. 31-44. | MR | Zbl
,[9] Formalized recursive functionals and formalized realizability, Memoirs of the American Mathematical Society, N. 89, Providence, R. I. (American Mathematical Society) 1969, pp. 106. | MR | Zbl
,[10] The foundations of intuitionistic mathematics, especially in relation to recursive functions, Amsterdam (North-Holland) 1965, pp. viii+ 206. | MR | Zbl
,[11] Mathematical logic, in Lectures on modern mathematics, a cura di T. L. SAATY, vol. III, New York (Wiley) 1965, pp. 95-195. | MR | Zbl
,[12] Lawless sequences of natural numbers. Compositio Mathematica, vol. 20 (1968), pp. 222-248. | Numdam | MR | Zbl
,[13] Church's thesis : a kind of reducibility axiom for constructive mathematics, in Intuitionism and proof theory, Proceedings of the summer conference at Buffalo N. Y. 1968, a cura di , e , Amsterdam (North-Holland) 1970, pp. viii + 516. | MR | Zbl
,[14] Formal Systems for some branches of intuitionistic analysis, Annals of Mathematical Logic, vol. 1 (1970), pp. 229-387. | MR | Zbl
,[15] Natural deduction. A proof-theoretical study, Stockholm (Almqvist & Wiksell) 1965, pp. 113. | MR | Zbl
,[16] Provably recursive functionals of analysis: a consistency proof of analysis by an extension of principles formulated in current intuitioniatics mathematics, in Recursive function theory, Proceedings of symposia in pure mathematics, vol. 5, a cura di , Providence, R. I. (American Mathematical Society) 1962, pp. 1-27. | MR | Zbl
,[17] The theory of choice sequences, in Logic, methodology and philosophy of science III, Proceedings of the third international congress, a cura di B. VAN ROOTSELAAR e J. F. STAAL, Amsterdam (North-Holland) 1968, pp. 201-223. | MR | Zbl
,[18] Notions of realizability for intuitionistic arithmetic in all finite types, in Proceedings of the Second Scandinavian Logic Symposium, a cura di , in corso di pubblicazione. | Zbl
,