Pointwise convergence of singular convolution integrals
Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche, Série 3, Tome 20 (1966) no. 1, pp. 45-61.
@article{ASNSP_1966_3_20_1_45_0,
     author = {Peetre, Jaak},
     title = {Pointwise convergence of singular convolution integrals},
     journal = {Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche},
     pages = {45--61},
     publisher = {Scuola normale superiore},
     volume = {Ser. 3, 20},
     number = {1},
     year = {1966},
     mrnumber = {230168},
     zbl = {0178.15302},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_1966_3_20_1_45_0/}
}
TY  - JOUR
AU  - Peetre, Jaak
TI  - Pointwise convergence of singular convolution integrals
JO  - Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche
PY  - 1966
SP  - 45
EP  - 61
VL  - 20
IS  - 1
PB  - Scuola normale superiore
UR  - http://www.numdam.org/item/ASNSP_1966_3_20_1_45_0/
LA  - en
ID  - ASNSP_1966_3_20_1_45_0
ER  - 
%0 Journal Article
%A Peetre, Jaak
%T Pointwise convergence of singular convolution integrals
%J Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche
%D 1966
%P 45-61
%V 20
%N 1
%I Scuola normale superiore
%U http://www.numdam.org/item/ASNSP_1966_3_20_1_45_0/
%G en
%F ASNSP_1966_3_20_1_45_0
Peetre, Jaak. Pointwise convergence of singular convolution integrals. Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche, Série 3, Tome 20 (1966) no. 1, pp. 45-61. http://www.numdam.org/item/ASNSP_1966_3_20_1_45_0/

[1] G. Alexits, Konvergenzprobleme der Orthogonalreihen. Berlin, 1960, | MR | Zbl

[2] A. Benedek - A.P. Calderón - R. Panzone, Convolution operators on Banach space valued functions. Proc. Amer. Math. Soc. 48 (1962), 356-365. | MR | Zbl

[3] A.P. Calderón - A. Zygmund, On the existence of certain singular integrals. Acta Math. 88 (1952), 85-139. | MR | Zbl

[4] A.P. Calderón - A. Zygmund, On singular integrals. Amer. J. Math. 78 (1956), 289-309. | MR | Zbl

[5] M. Cotlar, Condiciones de continuidad de operadores potentiales y de Hilbert. Cursos y seminarios de matemática, Fasciculo 2, Universidade de Buenos Aires, 1959. | MR | Zbl

[6] M. Cotlar, A unified theory of Hilbert transforms and ergodic theorems. Revista Mat. Cuyana 1 (1955), 105-167. | MR | Zbl

[7] L. Hörmander, Estimates for translation invariant operaters in Lp spaces. Acta. Math. 104 (1960), 93-140. | MR | Zbl

[8] W. Littman, Multipliers in Lp and interpolation. Bull. Amer. Math. Soc. 77 (1965), 764-766. | MR | Zbl

[9] L. Loomis, A note on the Hilbert transform. Bull. Amer. Math. Soc. 52 (1946), 1082-1086. | MR | Zbl

[10] S.G. Michlin, On the multipliers of Fourier integrals. Dokl. Akad. Nauk. SSSR 109 (1956), 701-703. (Russian.) | MR | Zbl

[11] S.G. Michlin, Fourier integrals and multiple singular integrals. Vestnik Leningrad. Univ. Ser. Mat. Mech. Astr. 12 (1957), 143-155. (Russian) | MR | Zbl

[12] R. O' Neil - G. Weiss, The Hilbert transform, and rearrangement of functions. Studia Math. 23 (1963), 189-198. | MR | Zbl

[13] J. Peetre, Espaces d'interpolation, généralisations, applications, Rend. Sem. Mat. Fis. Milano 34 (1964), 133-164. | MR | Zbl

[14] J. Peetre, Applications de la théorie des espaces d'interpolation dans l'analyse harmonique. To appear. in Riceeche Mat. | Zbl

[15] J. Peetre, Espaces d'interpolation et théorème de Soboleff. To appear in Ann. Inst. Fourien. | Numdam | Zbl

[16] J. Sckw Artz, A remark on inequalities of Calderòn - Zygmund type for vector-valued functions. Comm. Pure Appl. Math. 14 (1961), 785-799. | MR | Zbl

[17] E.M. Stein. G. Weiss, An extension of a theorem of Marcinkiewicz and some of its applications. J. Math. Mech. 8 (1959), 263-284. | MR | Zbl

[18] G. Weiss, Analisis armonico en varias variables. Teoria de los espacios Hp Cursos y seminarios de matemátua, Fasciculo 9, Universidade de Buenos Aires, 1960. | MR | Zbl

[19] A. Zygmund, Trigonometrical series. Cambridge, 1959.

[20] A. Zygmund, On singular integrals. Rend. Mat. 16 (1957), 468-505. | MR | Zbl