Quantitative stochastic homogenization of convex integral functionals
[Homogénéisation stochastique quantitative de fonctionnelles intégrales convexes]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 2, pp. 423-481.

Nous présentons des résultats quantitatifs pour l'homogénéisation de fonctionnelles intégrales uniformément convexes avec coefficients aléatoires sous hypothèses d'indépendance. Le résultat principal est une estimation d'erreur pour le problème de Dirichlet qui est algébrique (mais sous-optimale) en la taille de l'erreur, mais optimale en intégrabilité stochastique. Comme application, nous obtenons des estimées C0,1 pour les minimiseurs locaux de telles fonctionnelles d'énergie.

We present quantitative results for the homogenization of uniformly convex integral functionals with random coefficients under independence assumptions. The main result is an error estimate for the Dirichlet problem which is algebraic (but sub-optimal) in the size of the error, but optimal in stochastic integrability. As an application, we obtain quenched C0,1 estimates for local minimizers of such energy functionals.

DOI : 10.24033/asens.2287
Classification : 35B27, 60H25, 35J20, 35J62
Keywords: Stochastic homogenization, error estimates, calculus of variations, quenched Lipschitz estimate.
Mot clés : Homogénéisation stochastique, estimations d'erreur, calcul des variations, estimées Lipschitz.
@article{ASENS_2016__49_2_423_0,
     author = {Armstrong, Scott N. and Smart, Charles K.},
     title = {Quantitative stochastic homogenization of convex integral functionals},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {423--481},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 49},
     number = {2},
     year = {2016},
     doi = {10.24033/asens.2287},
     mrnumber = {3481355},
     zbl = {1344.49014},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2287/}
}
TY  - JOUR
AU  - Armstrong, Scott N.
AU  - Smart, Charles K.
TI  - Quantitative stochastic homogenization of convex integral functionals
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2016
SP  - 423
EP  - 481
VL  - 49
IS  - 2
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2287/
DO  - 10.24033/asens.2287
LA  - en
ID  - ASENS_2016__49_2_423_0
ER  - 
%0 Journal Article
%A Armstrong, Scott N.
%A Smart, Charles K.
%T Quantitative stochastic homogenization of convex integral functionals
%J Annales scientifiques de l'École Normale Supérieure
%D 2016
%P 423-481
%V 49
%N 2
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2287/
%R 10.24033/asens.2287
%G en
%F ASENS_2016__49_2_423_0
Armstrong, Scott N.; Smart, Charles K. Quantitative stochastic homogenization of convex integral functionals. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 2, pp. 423-481. doi : 10.24033/asens.2287. http://www.numdam.org/articles/10.24033/asens.2287/

Avellaneda, M.; Lin, F.-H. Compactness methods in the theory of homogenization, Comm. Pure Appl. Math., Volume 40 (1987), pp. 803-847 (ISSN: 0010-3640) | DOI | MR | Zbl

Avellaneda, M.; Lin, F.-H. Lp bounds on singular integrals in homogenization, Comm. Pure Appl. Math., Volume 44 (1991), pp. 897-910 (ISSN: 0010-3640) | DOI | MR | Zbl

Armstrong, S. N.; Smart, C. K. Quantitative stochastic homogenization of elliptic equations in nondivergence form, Arch. Ration. Mech. Anal., Volume 214 (2014), pp. 867-911 | DOI | MR | Zbl

Boivin, D. Tail estimates for homogenization theorems in random media, ESAIM Probab. Stat., Volume 13 (2009), pp. 51-69 (ISSN: 1292-8100) | DOI | Numdam | MR | Zbl

Bourgeat, A.; Piatnitski, A. Approximations of effective coefficients in stochastic homogenization, Ann. Inst. H. Poincaré Probab. Statist., Volume 40 (2004), pp. 153-165 (ISSN: 0246-0203) | DOI | Numdam | MR | Zbl

Biskup, M.; Salvi, M.; Wolff, T. A central limit theorem for the effective conductance: linear boundary data and small ellipticity contrasts, Comm. Math. Phys., Volume 328 (2014), pp. 701-731 (ISSN: 0010-3616) | DOI | MR | Zbl

Conlon, J. G.; Spencer, T. Strong convergence to the homogenized limit of elliptic equations with random coefficients, Trans. Amer. Math. Soc., Volume 366 (2014), pp. 1257-1288 (ISSN: 0002-9947) | DOI | MR | Zbl

Dal Maso, G.; Modica, L. Nonlinear stochastic homogenization and ergodic theory, J. reine angew. Math., Volume 368 (1986), pp. 28-42 (ISSN: 0075-4102) | MR | Zbl

Dal Maso, G.; Modica, L. Nonlinear stochastic homogenization, Ann. Mat. Pura Appl., Volume 144 (1986), pp. 347-389 (ISSN: 0003-4622) | DOI | MR | Zbl

Giaquinta, M., Annals of Math. Studies, 105, Princeton Univ. Press, 1983, 297 pages (ISBN: 0-691-08330-4; 0-691-08331-2) | MR | Zbl

Giusti, E., World Scientific Publishing Co., Inc., River Edge, NJ, 2003, 403 pages (ISBN: 981-238-043-4) | DOI | MR | Zbl

Gloria, A.; Marahrens, D. Improved De Giorgi-Nash-Moser theory in the large and annealed estimates on the Green function (preprint)

Gloria, A.; Neukamm, S.; Otto, F. An optimal quantitative two-scale expansion in stochastic homogenization of discrete elliptic equations, ESAIM Math. Model. Numer. Anal., Volume 48 (2014), pp. 325-346 (ISSN: 0764-583X) | DOI | Numdam | MR | Zbl

Gloria, A.; Neukamm, S.; Otto, F. Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics, Invent. Math., Volume 199 (2015), pp. 455-515 | DOI | MR | Zbl

Gloria, A.; Otto, F. Quantitative results on the corrector equation in stochastic homogenization (preprint arXiv:1409.0801 ) | MR

Gloria, A.; Otto, F. An optimal variance estimate in stochastic homogenization of discrete elliptic equations, Ann. Probab., Volume 39 (2011), pp. 779-856 (ISSN: 0091-1798) | DOI | MR | Zbl

Gloria, A.; Otto, F. An optimal error estimate in stochastic homogenization of discrete elliptic equations, Ann. Appl. Probab., Volume 22 (2012), pp. 1-28 (ISSN: 1050-5164) | DOI | MR | Zbl

Kozlov, S. M. The averaging of random operators, Mat. Sb. (N.S.), Volume 109(151) (1979), p. 188-202, 327 (ISSN: 0368-8666) | MR | Zbl

Mourrat, J.-C.; Nolen, J. A CLT for linear functionals of the stationary corrector (in preparation)

Marahrens, D.; Otto, F. Annealed estimates on the Green's function (preprint arXiv:1304.4408 ) | MR

Mourrat, J.-C.; Otto, F. Correlation structure of the corrector in stochastic homogenization (preprint arXiv:1402.1924 ) | MR

Mourrat, J.-C. Variance decay for functionals of the environment viewed by the particle, Ann. Inst. Henri Poincaré Probab. Stat., Volume 47 (2011), pp. 294-327 (ISSN: 0246-0203) | DOI | Numdam | MR | Zbl

Mourrat, J.-C. Kantorovich distance in the martingale CLT and quantitative homogenization of parabolic equations with random coefficients, Probab. Theory Related Fields, Volume 160 (2014), pp. 279-314 | DOI | MR | Zbl

Nolen, J. Normal approximation for a random elliptic equation, Probab. Theory Related Fields, Volume 159 (2014), pp. 661-700 (ISSN: 0178-8051) | DOI | MR | Zbl

Naddaf, A.; Spencer, T. Estimates on the variance of some homogenization problems (1998) (preprint)

Papanicolaou, G. C.; Varadhan, S. R. S., Random fields, Vol. I, II (Esztergom, 1979) (Colloq. Math. Soc. János Bolyai), Volume 27, North-Holland, 1981, pp. 835-873 | MR | Zbl

Rossignol, R. Noise-stability and central limit theorems for effective resistance of random electric networks (Preprint, arXiv:1206.3856) | DOI | MR | Zbl

Yurinskiĭ, V. V. Averaging of symmetric diffusion in a random medium, Sibirsk. Mat. Zh., Volume 27 (1986), p. 167-180, 215 (ISSN: 0037-4474) | MR | Zbl

Cité par Sources :