[Axiome A versus phénomène de Newhouse pour les modèles jouets de Benedicks-Carleson]
Nous considérons une famille de systèmes introduite en 1991 par Benedicks et Carleson comme un modèle jouet pour la dynamique des applications d’Hénon. Nous montrons que l’axiome A de Smale est une propriété -dense parmi les systèmes dans cette famille, même si nous trouvons aussi des ensembles -ouverts (liés au phénomène de Newhouse) où l’axiome A de Smale n’est pas satisfait. En particulier, notre résultat soutient la conjecture de Smale selon laquelle l’axiome A est une propriété -dense parmi les difféomorphismes de surfaces. Les outils utilisés dans la preuve de notre résultat sont : (1) un théorème récent de Moreira qui dit que les intersections stables des ensembles de Cantor dynamiques (une des obstructions majeures à l’axiome A pour les difféomorphismes de surfaces) peuvent être enlevées par des perturbations -petites ; (2) la bonne géométrie de l’ensemble de points critiques dynamiques (au sens de Rodriguez-Hertz et Pujals) due à la forme particulière des modèles jouets de Benedicks-Carleson.
We consider a family of planar systems introduced in 1991 by Benedicks and Carleson as a toy model for the dynamics of the so-called Hénon maps. We show that Smale’s Axiom A property is -dense among the systems in this family, despite the existence of -open subsets (closely related to the so-called Newhouse phenomena) where Smale’s Axiom A is violated. In particular, this provides some evidence towards Smale’s conjecture that Axiom A is a -dense property among surface diffeomorphisms. The basic tools in the proof of this result are: (1) a recent theorem of Moreira saying that stable intersections of dynamical Cantor sets (one of the main obstructions to Axiom A property for surface diffeomorphisms) can be destroyed by -perturbations; (2) the good geometry of the dynamical critical set (in the sense of Rodriguez-Hertz and Pujals) thanks to the particular form of Benedicks-Carleson toy models.
Keywords: axiom a, Newhouse phenomena, Benedicks-Carleson toy models, hénon maps, dynamical critical points, stable intersections of dynamical Cantor sets, two-dimensional dynamical systems
Mot clés : axiome A, phénomène de Newhouse, modèles jouets de Benedicks-Carleson, applications d'Hénon, points critiques dynamiques, intersections stables des ensembles de Cantor dynamiques, systèmes dynamiques en dimension deux
@article{ASENS_2013_4_46_6_857_0, author = {Matheus, Carlos and Moreira, Carlos G. and Pujals, Enrique R.}, title = {Axiom~A versus {Newhouse} phenomena for {Benedicks-Carleson} toy models}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {857--878}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 46}, number = {6}, year = {2013}, doi = {10.24033/asens.2204}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2204/} }
TY - JOUR AU - Matheus, Carlos AU - Moreira, Carlos G. AU - Pujals, Enrique R. TI - Axiom A versus Newhouse phenomena for Benedicks-Carleson toy models JO - Annales scientifiques de l'École Normale Supérieure PY - 2013 SP - 857 EP - 878 VL - 46 IS - 6 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/asens.2204/ DO - 10.24033/asens.2204 LA - en ID - ASENS_2013_4_46_6_857_0 ER -
%0 Journal Article %A Matheus, Carlos %A Moreira, Carlos G. %A Pujals, Enrique R. %T Axiom A versus Newhouse phenomena for Benedicks-Carleson toy models %J Annales scientifiques de l'École Normale Supérieure %D 2013 %P 857-878 %V 46 %N 6 %I Société mathématique de France %U http://www.numdam.org/articles/10.24033/asens.2204/ %R 10.24033/asens.2204 %G en %F ASENS_2013_4_46_6_857_0
Matheus, Carlos; Moreira, Carlos G.; Pujals, Enrique R. Axiom A versus Newhouse phenomena for Benedicks-Carleson toy models. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 46 (2013) no. 6, pp. 857-878. doi : 10.24033/asens.2204. http://www.numdam.org/articles/10.24033/asens.2204/
[1] Generic diffeomorphisms on compact surfaces, Fund. Math. 187 (2005), 127-159. | MR
, , & ,[2] Extension of zero-dimensional hyperbolic sets to locally maximal ones, Sb. Math. 201 (2010), 935-946. | MR
,[3] The dynamics of the Hénon map, Ann. of Math. 133 (1991), 73-169. | MR
& ,[4] Smooth mappings of the circle into itself, Mat. Sb. (N.S.) 85 (127) (1971), 163-188. | MR
,[5] Hyperbolicity, sinks and measure in one-dimensional dynamics, Comm. Math. Phys. 100 (1985), 495-524. | MR
,[6] Ergodic theory and differentiable dynamics, Ergebnisse Math. Grenzg. (3) 8, Springer, 1987. | MR
,[7] One-dimensional dynamics, Ergebnisse Math. Grenzg. (3) 25, Springer, 1993. | MR
& ,[8] There are no -stable intersections of regular Cantor sets, Acta Math. 206 (2011), 311-323. | MR
,[9] Nondensity of axiom on , in Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., 1970, 191-202. | MR
,[10] Hyperbolic limit sets, Trans. Amer. Math. Soc. 167 (1972), 125-150. | MR | Zbl
,[11] Diffeomorphisms with infinitely many sinks, Topology 13 (1974), 9-18. | MR | Zbl
,[12] The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Publ. Math. I.H.É.S. 50 (1979), 101-151. | EuDML | Numdam | MR | Zbl
,[13] Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, Cambridge Studies in Advanced Math. 35, Cambridge Univ. Press, 1993, Fractal dimensions and infinitely many attractors. | MR | Zbl
& ,[14] On a conjecture of Smale, Differencialʼnye Uravnenija 8 (1972), 268-282. | MR
,[15] Critical points for surface diffeomorphisms, J. Mod. Dyn. 1 (2007), 615-648. | MR | Zbl
& ,[16] Homoclinic tangencies and hyperbolicity for surface diffeomorphisms, Ann. of Math. 151 (2000), 961-1023. | EuDML | MR | Zbl
& ,[17] Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. | MR | Zbl
,[18] Abundance of hyperbolicity in the topology, Ann. Sci. École Norm. Sup. 28 (1995), 747-760. | EuDML | Numdam | MR | Zbl
,[19] On the approximation of Hénon-like attractors by homoclinic tangencies, Ergodic Theory Dynam. Systems 15 (1995), 1223-1229. | MR | Zbl
,Cité par Sources :