[Marches aléatoires sur des groupes fuchsiens co-compacts]
Considérons une marche aléatoire symétrique à support fini sur un groupe fuchsien co-compact. Nous montrons que la fonction de Green à son rayon de convergence décroît exponentiellement vite en fonction de la distance à l’origine. Nous montrons également que les inégalités d’Ancona s’étendent jusqu’au paramètre , et par conséquent que la frontière de Martin pour les -potentiels s’identifie avec la frontière géométrique . De plus, le noyau de Martin correspondant est höldérien. Ces résultats sont utilisés pour démontrer un théorème limite local pour les probabilités de transition : dans le cas apériodique, .
It is proved that the Green’s function of a symmetric finite range random walk on a co-compact Fuchsian group decays exponentially in distance at the radius of convergence . It is also shown that Ancona’s inequalities extend to , and therefore that the Martin boundary for -potentials coincides with the natural geometric boundary , and that the Martin kernel is uniformly Hölder continuous. Finally, this implies a local limit theorem for the transition probabilities: in the aperiodic case, .
Keywords: hyperbolic group, surface group, random walk, Green's function, Gromov boundary, Martin boundary, Ruelle operator theorem, Gibbs state, local limit theorem
Mot clés : groupe hyperbolique, groupe de surface, marche aléatoire, fonction de Green, frontière de Gromov, frontière de Martin, opérateur de Ruelle, états de Gibbs, théorème limite local
@article{ASENS_2013_4_46_1_131_0, author = {Gou\"ezel, S\'ebastien and Lalley, Steven P.}, title = {Random walks on co-compact fuchsian groups}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {131--175}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 46}, number = {1}, year = {2013}, doi = {10.24033/asens.2186}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2186/} }
TY - JOUR AU - Gouëzel, Sébastien AU - Lalley, Steven P. TI - Random walks on co-compact fuchsian groups JO - Annales scientifiques de l'École Normale Supérieure PY - 2013 SP - 131 EP - 175 VL - 46 IS - 1 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/asens.2186/ DO - 10.24033/asens.2186 LA - en ID - ASENS_2013_4_46_1_131_0 ER -
%0 Journal Article %A Gouëzel, Sébastien %A Lalley, Steven P. %T Random walks on co-compact fuchsian groups %J Annales scientifiques de l'École Normale Supérieure %D 2013 %P 131-175 %V 46 %N 1 %I Société mathématique de France %U http://www.numdam.org/articles/10.24033/asens.2186/ %R 10.24033/asens.2186 %G en %F ASENS_2013_4_46_1_131_0
Gouëzel, Sébastien; Lalley, Steven P. Random walks on co-compact fuchsian groups. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 46 (2013) no. 1, pp. 131-175. doi : 10.24033/asens.2186. http://www.numdam.org/articles/10.24033/asens.2186/
[1] Negatively curved manifolds, elliptic operators, and the Martin boundary, Ann. of Math. 125 (1987), 495-536. | MR
,[2] Positive harmonic functions and hyperbolicity, in Potential theory-surveys and problems (Prague, 1987), Lecture Notes in Math. 1344, Springer, 1988, 1-23. | MR
,[3] Positive harmonic functions on complete manifolds of negative curvature, Ann. of Math. 121 (1985), 429-461. | MR
& ,[4] Branching processes, Grundl. der math. Wiss. 196, Springer, 1972. | MR
& ,[5] Positive transfer operators and decay of correlations, Advanced Series in Nonlinear Dynamics 16, World Scientific Publishing Co. Inc., 2000. | MR
,[6] Regular variation, Encyclopedia of Math. and its Appl. 27, Cambridge Univ. Press, 1987. | MR
, & ,[7] Internal diffusion limited aggregation on discrete groups having exponential growth, Probab. Theory Related Fields 137 (2007), 323-343. | MR
& ,[8] Asymptotic entropy and Green speed for random walks on countable groups, Ann. Probab. 36 (2008), 1134-1152. | MR
, & ,[9] Harmonic measures versus quasiconformal measures for hyperbolic groups, Ann. Sci. Éc. Norm. Supér. 44 (2011), 683-721. | Numdam | MR
, & ,[10] Théorème central limite local sur certains groupes de Lie, Ann. Sci. École Norm. Sup. 14 (1981), 403-432. | MR
,[11] Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Math. 470, Springer, 1975. | MR
,[12] The combinatorial structure of cocompact discrete hyperbolic groups, Geom. Dedicata 16 (1984), 123-148. | MR
,[13] Almost convex groups, Geom. Dedicata 22 (1987), 197-210. | MR
,[14] The theory of negatively curved spaces and groups, in Ergodic theory, symbolic dynamics, and hyperbolic spaces (Trieste, 1989), Oxford Sci. Publ., Oxford Univ. Press, 1991, 315-369. | MR
,[15] Singularities of the Green function of a random walk on a discrete group, Monatsh. Math. 113 (1992), 183-188. | MR
,[16] Some geometric groups with rapid decay, Geom. Funct. Anal. 15 (2005), 311-339. | MR
& ,[17] An introduction to probability theory and its applications. Vol. II., Second edition, John Wiley & Sons Inc., 1971. | MR
,[18] Local limits and harmonic functions for nonisotropic random walks on free groups, Probab. Theory Relat. Fields 71 (1986), 341-355. | MR
& ,[19] Espaces métriques hyperboliques, in Sur les groupes hyperboliques d'après Mikhael Gromov (Bern, 1988), Progr. Math. 83, Birkhäuser, 1990, 27-45. | MR
& ,[20] Hyperbolic groups, in Essays in group theory, Math. Sci. Res. Inst. Publ. 8, Springer, 1987, 75-263. | MR
,[21] Harmonic measures, Hausdorff measures and positive eigenfunctions, J. Differential Geom. 44 (1996), 1-31. | MR
,[22] The ratio set of the harmonic measure of a random walk on a hyperbolic group, Israel J. Math. 163 (2008), 285-316. | MR
, & ,[23] Boundaries of hyperbolic groups, in Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), Contemp. Math. 296, Amer. Math. Soc., 2002, 39-93. | MR
& ,[24] Fuchsian groups, Chicago Lectures in Mathematics, University of Chicago Press, 1992. | MR
,[25] Full Banach mean values on countable groups, Math. Scand. 7 (1959), 146-156. | MR
,[26] Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-Euclidean tessellations and their fractal limits, Acta Math. 163 (1989), 1-55. | MR
,[27] Finite range random walk on free groups and homogeneous trees, Ann. Probab. 21 (1993), 2087-2130. | MR
,[28] Random walks on regular languages and algebraic systems of generating functions, in Algebraic methods in statistics and probability (Notre Dame, IN, 2000), Contemp. Math. 287, Amer. Math. Soc., 2001, 201-230. | MR
,[29] A renewal theorem for the distance in negative curvature, in Stochastic analysis (Ithaca, NY, 1993), Proc. Sympos. Pure Math. 57, Amer. Math. Soc., 1995, 351-360. | MR
,[30] Some asymptotic properties of random walks on free groups, in Topics in probability and Lie groups: boundary theory, CRM Proc. Lecture Notes 28, Amer. Math. Soc., 2001, 117-152. | MR
,[31] Random walks on trees with finitely many cone types, J. Theoret. Probab. 15 (2002), 383-422. | MR
& ,[32] Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque 187-188 (1990). | MR
& ,[33] Examples of stable Martin boundaries of Markov chains, in Potential theory (Nagoya, 1990), de Gruyter, 1992, 261-270. | MR
& ,[34] The infinite word problem and limit sets in Fuchsian groups, Ergodic Theory Dynam. Systems 1 (1981), 337-360. | MR
,[35] Martin boundaries of random walks on Fuchsian groups, Israel J. Math. 44 (1983), 221-242. | MR
,[36] Analytic theory of continued fractions, D. Van Nostrand Company, Inc., New York, N. Y., 1948. | MR
,[37] A local limit theorem for random walks on certain discrete groups, in Probability measures on groups (Oberwolfach, 1981), Lecture Notes in Math. 928, Springer, 1982, 467-477. | MR
,[38] Nearest neighbour random walks on free products of discrete groups, Boll. Un. Mat. Ital. B 5 (1986), 961-982. | MR
,[39] Random walks on infinite graphs and groups, Cambridge Tracts in Mathematics 138, Cambridge Univ. Press, 2000. | MR
,[40] Context-free pairs of groups II-cuts, tree sets, and random walks, Discrete Math. 312 (2012), 157-173. | MR
,Cité par Sources :