[À propos des Schrödinger maps de
Nous obtenons une estimation de la différence entre deux solutions de l’équation des Schrödinger maps de
We prove an estimate for the difference of two solutions of the Schrödinger map equation for maps from
Keywords: schrödinger maps, binormal curvature flow
Mot clés : Équation des schrödinger maps, flot par courbure binormale
@article{ASENS_2012_4_45_4_637_0, author = {Jerrard, Robert L. and Smets, Didier}, title = {On {Schr\"odinger} maps from $T^1$ to~$S^2$}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {637--680}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 45}, number = {4}, year = {2012}, doi = {10.24033/asens.2175}, mrnumber = {3059243}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2175/} }
TY - JOUR AU - Jerrard, Robert L. AU - Smets, Didier TI - On Schrödinger maps from $T^1$ to $S^2$ JO - Annales scientifiques de l'École Normale Supérieure PY - 2012 SP - 637 EP - 680 VL - 45 IS - 4 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/asens.2175/ DO - 10.24033/asens.2175 LA - en ID - ASENS_2012_4_45_4_637_0 ER -
%0 Journal Article %A Jerrard, Robert L. %A Smets, Didier %T On Schrödinger maps from $T^1$ to $S^2$ %J Annales scientifiques de l'École Normale Supérieure %D 2012 %P 637-680 %V 45 %N 4 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/asens.2175/ %R 10.24033/asens.2175 %G en %F ASENS_2012_4_45_4_637_0
Jerrard, Robert L.; Smets, Didier. On Schrödinger maps from $T^1$ to $S^2$. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 45 (2012) no. 4, pp. 637-680. doi : 10.24033/asens.2175. https://www.numdam.org/articles/10.24033/asens.2175/
[1] Gagliardo-Nirenberg inequalities involving the gradient
[2] Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), 107-156. | MR | Zbl
,[3] Periodic Korteweg-de Vries equation with measures as initial data, Selecta Math. (N.S.) 3 (1997), 115-159. | MR | Zbl
,
[4] An instability property of the nonlinear Schrödinger equation on
[5] Schrödinger maps, Comm. Pure Appl. Math. 53 (2000), 590-602. | MR | Zbl
, & ,[6] Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math. 125 (2003), 1235-1293. | MR | Zbl
, & ,[7] Local Schrödinger flow into Kähler manifolds, Sci. China Ser. A 44 (2001), 1446-1464. | MR | Zbl
& ,[8] Sur quelques applications de l'indice de Kronecker, in Introduction à la théorie des fonctions d'une variable (J. Tannery, éd.), Hermann, 1910.
,[9] A soliton on a vortex filament, J. Fluid. Mech. 51 (1972), 477-485. | Zbl
,[10] Vortex filament dynamics for Gross-Pitaevsky type equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. 1 (2002), 733-768. | Numdam | MR | Zbl
,[11] On the motion of a curve by its binormal curvature, preprint arXiv:1109.5483.
& ,[12] On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106 (2001), 617-633. | MR | Zbl
, & ,[13] A vortex filament moving without change of form, J. Fluid Mech. 112 (1981), 397-409. | MR | Zbl
,[14] The periodic cubic Schrödinger equation, Stud. Appl. Math. 65 (1981), 113-158. | MR | Zbl
& ,[15] Some existence and uniqueness results for Schroedinger maps and Landau-Lifshitz-Maxwell equations, Thèse, New York University, 2004. | MR
,[16] An approximation scheme for Schrödinger maps, Comm. Partial Differential Equations 32 (2007), 375-400. | MR | Zbl
,[17] On ill-posedness for the one-dimensional periodic cubic Schrödinger equation, Math. Res. Lett. 16 (2009), 111-120. | MR | Zbl
,[18] Schrödinger maps and their associated frame systems, Int. Math. Res. Not. 2007 (2007), Art. ID rnm088, 1-29. | Zbl
, , & ,[19] Regularity results for semilinear and geometric wave equations, in Mathematics of gravitation, Part I (Warsaw, 1996), Banach Center Publ. 41, Polish Acad. Sci., 1997, 69-90. | MR | Zbl
,[20] On the continuous limit for a system of classical spins, Comm. Math. Phys. 107 (1986), 431-454. | MR | Zbl
, & ,[21] Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Ž. Èksper. Teoret. Fiz. 61 (1971), 118-134; English translation: Soviet Physics JETP 34 (1972), 62-69. | MR
& ,[22] Existence of weak solution for boundary problems of systems of ferro-magnetic chain, Sci. Sinica Ser. A 27 (1984), 799-811. | MR | Zbl
& ,[23] Existence and uniqueness of smooth solution for system of ferro-magnetic chain, Sci. China Ser. A 34 (1991), 257-266. | MR | Zbl
, & ,Cité par Sources :