[Flot de Ricci couplé avec le flot harmonique]
Nous étudions un système d’équations consistant en un couplage entre le flot de Ricci et le flot harmonique d’une fonction allant de dans une variété cible ,
We investigate a coupled system of the Ricci flow on a closed manifold with the harmonic map flow of a map from to some closed target manifold ,
Keywords: Ricci flow, harmonic map flow
Mot clés : flot de Ricci, flot harmonique
@article{ASENS_2012_4_45_1_101_0, author = {M\"uller, Reto}, title = {Ricci flow coupled with harmonic map flow}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {101--142}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 45}, number = {1}, year = {2012}, doi = {10.24033/asens.2161}, mrnumber = {2961788}, zbl = {1247.53082}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2161/} }
TY - JOUR AU - Müller, Reto TI - Ricci flow coupled with harmonic map flow JO - Annales scientifiques de l'École Normale Supérieure PY - 2012 SP - 101 EP - 142 VL - 45 IS - 1 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/asens.2161/ DO - 10.24033/asens.2161 LA - en ID - ASENS_2012_4_45_1_101_0 ER -
%0 Journal Article %A Müller, Reto %T Ricci flow coupled with harmonic map flow %J Annales scientifiques de l'École Normale Supérieure %D 2012 %P 101-142 %V 45 %N 1 %I Société mathématique de France %U http://www.numdam.org/articles/10.24033/asens.2161/ %R 10.24033/asens.2161 %G en %F ASENS_2012_4_45_1_101_0
Müller, Reto. Ricci flow coupled with harmonic map flow. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 45 (2012) no. 1, pp. 101-142. doi : 10.24033/asens.2161. http://www.numdam.org/articles/10.24033/asens.2161/
[1] Real analyticity of solutions of Hamilton's equation, Math. Z. 195 (1987), 93-97. | MR | Zbl
,[2] Sur la généralisation du problème de Dirichlet II, Math. Ann. 69 (1910), 82-136. | JFM | MR
,[3] A complete proof of the Poincaré and geometrization conjectures-application of the Hamilton-Perelman theory of the Ricci flow, Asian J. Math. 10 (2006), 165-492. | MR | Zbl
& ,[4] The Ricci flow: Techniques and applications: Part I: Geometric aspects, Mathematical Surveys and Monographs 135, Amer. Math. Soc., 2007. | MR | Zbl
, , , , , , , , & ,[5] The Ricci flow: Techniques and applications: Part II: Analytic aspects, Mathematical Surveys and Monographs 144, Amer. Math. Soc., 2008. | MR | Zbl
, , , , , , , , & ,[6] The Ricci flow: An introduction, Mathematical Surveys and Monographs 110, Amer. Math. Soc., 2004. | MR | Zbl
& ,[7] Hamilton's Ricci flow, Graduate Studies in Math. 77, Amer. Math. Soc., 2006. | MR | Zbl
, & ,[8] Estimates for the extinction time for the Ricci flow on certain 3-manifolds and a question of Perelman, J. Amer. Math. Soc. 18 (2005), 561-569. | MR | Zbl
& ,[9] Width and finite extinction time of Ricci flow, Geom. Topol. 12 (2008), 2537-2586. | MR | Zbl
& ,[10] Deforming metrics in the direction of their Ricci tensors, J. Differential Geom. 18 (1983), 157-162. | MR | Zbl
,[11] A report on harmonic maps, Bull. London Math. Soc. 10 (1978), 1-68. | MR | Zbl
& ,[12] Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), 385-524. | MR | Zbl
& ,[13] Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160. | MR | Zbl
& ,[14] Stability of the Ricci flow at Ricci-flat metrics, Comm. Anal. Geom. 10 (2002), 741-777. | MR | Zbl
, & ,[15] Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), 255-306. | MR | Zbl
,[16] The formation of singularities in the Ricci flow, in Surveys in differential geometry, Vol. II (Cambridge, MA, 1993), Int. Press, Cambridge, MA, 1995. | MR | Zbl
,[17] On the local behavior of solutions of non-parabolic partial differential equations, Amer. J. Math. 75 (1953), 449-476. | MR | Zbl
& ,[18] Riemannian geometry and geometric analysis, third éd., Universitext, Springer, 2002. | MR | Zbl
,[19] Notes on Perelman's papers, Geom. Topol. 12 (2008), 2587-2855. | MR | Zbl
& ,[20] Biharmonic maps, Thèse, Albert-Ludwig-Universität Freiburg im Breisgau, 2005. | Zbl
,[21] Propagateurs et commutateurs en relativité générale, Publ. Math. I.H.É.S. 10 (1961). | Numdam | Zbl
,[22] Evolution of an extended Ricci flow system, Thèse, Albert-Einstein-Institut, Berlin, 2005. | Zbl
,[23] On the long-time behavior of type-III Ricci flow solutions, Math. Ann. 339 (2007), 627-666. | MR | Zbl
,[24] A note on quasilinear parabolic equations on manifolds, to appear in Ann. Scuola Norm. Sup. Pisa Cl. Sci. | Numdam | MR | Zbl
& ,[25] Ricci flow and the Poincaré conjecture, Clay Mathematics Monographs 3, Amer. Math. Soc., 2007. | MR | Zbl
& ,[26] Completion of the proof of the geometrization conjecture, preprint arXiv:0809.4040.
& ,[27] Differential Harnack inequalities and the Ricci flow, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2006. | MR | Zbl
,[28] The Ricci flow coupled with harmonic map heat flow, Thèse, ETH Zürich, 2009.
,[29] Monotone volume formulas for geometric flows, J. reine angew. Math. 643 (2010), 39-57. | MR | Zbl
,[30] The imbedding problem for Riemannian manifolds, Ann. of Math. 63 (1956), 20-63. | MR | Zbl
,[31] The entropy formula for the Ricci flow and its geometric applications, preprint arXiv:math/0211159. | Zbl
,[32] Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, preprint arXiv:math/0307245. | Zbl
,[33] Ricci flow with surgery on three-manifolds, preprint arXiv:math/0303109. | Zbl
,[34] Cinquième complément à l'Analysis Situs, Rend. Circ. Mat. Palermo 18 (1904), 45-110. | JFM
,[35] Methods of modern mathematical physics. IV. Analysis of operators, Academic Press Inc., 1978. | MR | Zbl
& ,[36] Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators, J. Funct. Anal. 42 (1981), 110-120. | MR | Zbl
,[37] Stability of Euclidean space under Ricci flow, Comm. Anal. Geom. 16 (2008), 127-158. | MR | Zbl
, & ,[38] Deforming the metric on complete Riemannian manifolds, J. Differential Geom. 30 (1989), 223-301. | MR | Zbl
,[39] Deformation of Riemannian metrics in the direction of their Ricci curvature, Comm. Anal. Geom. 10 (2002), 1033-1074. | Zbl
,[40] Geometric evolution problems, in Nonlinear partial differential equations in differential geometry (Park City, UT, 1992), IAS/Park City Math. Ser. 2, Amer. Math. Soc., 1996, 257-339. | Zbl
,[41] Perelman's proof of the Poincaré conjecture: a nonlinear PDE perspective, preprint arXiv:math/0610903.
,[42] Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), 357-381. | Zbl
,[43] Lectures on the Ricci flow, London Math. Soc. Lecture Note Series 325, Cambridge Univ. Press, 2006. | Zbl
,[44] Results on coupled Ricci and harmonic map flows, preprint arXiv:1012.0291.
,Cité par Sources :