Tautological relations and the r-spin Witten conjecture
[Relations tautologiques et la conjecture de Witten sur l’espace des structures r-spin]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 43 (2010) no. 4, pp. 621-658.

Dans [11], A. Givental a introduit une action de groupe sur l’espace des potentiels de Gromov-Witten et a prouvé sa transitivité sur les potentiels semi-simples. Dans [24, 25], Y.-P. Lee a montré, modulo certains résultats annoncés par C. Teleman, que cette action préserve les relations tautologiques dans l’anneau de cohomologie de l’espace des modules ¯g,n des courbes stables épointées. Ici nous donnons une démonstration plus simple de ce résultat. Il en découle, entre autres, que si dans une théorie de Gromov-Witten semi-simple on peut exprimer n’importe quel corrélateur en fonction des corrélateurs de genre 0 en utilisant uniquement des relations tautologiques, alors le potentiel de Gromov-Witten géométrique coïncide avec le potentiel construit via l’action du groupe de Givental. Ces résultats suffisent pour démontrer une conjecture de Witten de 1991 qui relie la hiérarchie r-KdV à la théorie de l’intersection sur l’espace des structures r-spin sur les courbes stables. Nous utilisons pour cela la compatibilité entre la construction de Givental dans ce cas et la conjecture de Witten, compatibilité établie dans [10] par Givental lui-même.

In [11], A. Givental introduced a group action on the space of Gromov-Witten potentials and proved its transitivity on the semi-simple potentials. In [24, 25], Y.-P. Lee showed, modulo certain results announced by C. Teleman, that this action respects the tautological relations in the cohomology ring of the moduli space ¯g,n of stable pointed curves. Here we give a simpler proof of this result. In particular, it implies that in any semi-simple Gromov-Witten theory where arbitrary correlators can be expressed in genus 0 correlators using only tautological relations, the geometric Gromov-Witten potential coincides with the potential constructed via Givental’s group action. As the most important application we show that our results suffice to deduce the statement of a 1991 Witten conjecture relating the r-KdV hierarchy to the intersection theory on the space of r-spin structures on stable curves. We use the fact that Givental’s construction is, in this case, compatible with Witten’s conjecture, as Givental himself showed in [10].

DOI : 10.24033/asens.2130
Classification : 14H10, 14N35, 53D45, 53D50
Keywords: quantization of Frobenius manifolds, Gromov-Witten potential, moduli of curves, r-spin structures, Witten’s conjecture
Mot clés : quantification des variétés de Frobenius, potentiel de Gromov-Witten, modules des courbes, structures r-spin, conjecture de Witten
@article{ASENS_2010_4_43_4_621_0,
     author = {Faber, Carel and Shadrin, Sergey and Zvonkine, Dimitri},
     title = {Tautological relations and the $r$-spin {Witten} conjecture},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {621--658},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {Ser. 4, 43},
     number = {4},
     year = {2010},
     doi = {10.24033/asens.2130},
     mrnumber = {2722511},
     zbl = {1203.53090},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/asens.2130/}
}
TY  - JOUR
AU  - Faber, Carel
AU  - Shadrin, Sergey
AU  - Zvonkine, Dimitri
TI  - Tautological relations and the $r$-spin Witten conjecture
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2010
SP  - 621
EP  - 658
VL  - 43
IS  - 4
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/asens.2130/
DO  - 10.24033/asens.2130
LA  - en
ID  - ASENS_2010_4_43_4_621_0
ER  - 
%0 Journal Article
%A Faber, Carel
%A Shadrin, Sergey
%A Zvonkine, Dimitri
%T Tautological relations and the $r$-spin Witten conjecture
%J Annales scientifiques de l'École Normale Supérieure
%D 2010
%P 621-658
%V 43
%N 4
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/asens.2130/
%R 10.24033/asens.2130
%G en
%F ASENS_2010_4_43_4_621_0
Faber, Carel; Shadrin, Sergey; Zvonkine, Dimitri. Tautological relations and the $r$-spin Witten conjecture. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 43 (2010) no. 4, pp. 621-658. doi : 10.24033/asens.2130. https://www.numdam.org/articles/10.24033/asens.2130/

[1] D. Abramovich & T. J. Jarvis, Moduli of twisted spin curves, Proc. Amer. Math. Soc. 131 (2003), 685-699 (electronic). | MR | Zbl

[2] L. Caporaso, C. Casagrande & M. Cornalba, Moduli of roots of line bundles on curves, Trans. Amer. Math. Soc. 359 (2007), 3733-3768 (electronic). | MR | Zbl

[3] A. Chiodo, The Witten top Chern class via K-theory, J. Algebraic Geom. 15 (2006), 681-707. | MR | Zbl

[4] A. Chiodo, Stable twisted curves and their r-spin structures, preprint arXiv:math.AG/0603687. | Numdam | MR | Zbl

[5] B. Dubrovin & Y. Zhang, Bi-Hamiltonian hierarchies in 2D topological field theory at one-loop approximation, Comm. Math. Phys. 198 (1998), 311-361. | MR | Zbl

[6] C. Faber & R. Pandharipande, Logarithmic series and Hodge integrals in the tautological ring, Michigan Math. J. 48 (2000), 215-252. | MR | Zbl

[7] C. Faber & R. Pandharipande, Relative maps and tautological classes, J. Eur. Math. Soc. (JEMS) 7 (2005), 13-49. | MR | Zbl

[8] A. B. Givental, Semisimple Frobenius structures at higher genus, Int. Math. Res. Not. 2001 (2001), 1265-1286. | MR | Zbl

[9] A. B. Givental, Symplectic geometry of Frobenius structures, Mosc. Math. J. 1 (2001), 551-568. | Zbl

[10] A. B. Givental, An-1 singularities and nKdV hierarchies, Mosc. Math. J. 3 (2003), 475-505, 743. | MR | Zbl

[11] A. B. Givental, Gromov-Witten invariants and quantization of quadratic hamiltonians, in Frobenius manifolds, Aspects Math. E36, Vieweg, 2004, 91-112. | Zbl

[12] T. Graber & R. Pandharipande, Constructions of nontautological classes on moduli spaces of curves, Michigan Math. J. 51 (2003), 93-109. | MR | Zbl

[13] T. Graber & R. Vakil, On the tautological ring of ¯g,n, Turkish J. Math. 25 (2001), 237-243. | MR | Zbl

[14] R. Hain & E. Looijenga, Mapping class groups and moduli spaces of curves, in Algebraic geometry-Santa Cruz 1995, Proc. Sympos. Pure Math. 62, Amer. Math. Soc., 1997, 97-142. | MR | Zbl

[15] E.-N. Ionel, Topological recursive relations in H2g(g,n), Invent. Math. 148 (2002), 627-658. | MR | Zbl

[16] T. J. Jarvis, Geometry of the moduli of higher spin curves, Internat. J. Math. 11 (2000), 637-663. | MR | Zbl

[17] T. J. Jarvis, T. Kimura & A. Vaintrob, Tensor products of Frobenius manifolds and moduli spaces of higher spin curves, in Conférence Moshé Flato 1999, Vol. II (Dijon), Math. Phys. Stud. 22, Kluwer Acad. Publ., 2000, 145-166. | MR | Zbl

[18] T. J. Jarvis, T. Kimura & A. Vaintrob, Gravitational descendants and the moduli space of higher spin curves, in Advances in algebraic geometry motivated by physics (Lowell, MA, 2000), Contemp. Math. 276, Amer. Math. Soc., 2001, 167-177. | MR | Zbl

[19] T. J. Jarvis, T. Kimura & A. Vaintrob, Moduli spaces of higher spin curves and integrable hierarchies, Compositio Math. 126 (2001), 157-212. | MR | Zbl

[20] T. J. Jarvis, T. Kimura & A. Vaintrob, Spin Gromov-Witten invariants, Comm. Math. Phys. 259 (2005), 511-543. | MR | Zbl

[21] M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992), 1-23. | MR | Zbl

[22] M. Kontsevich & Y. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994), 525-562. | MR | Zbl

[23] Y.-P. Lee, Witten's conjecture and the Virasoro conjecture for genus up to two, in Gromov-Witten theory of spin curves and orbifolds, Contemp. Math. 403, Amer. Math. Soc., 2006, 31-42. | MR | Zbl

[24] Y.-P. Lee, Invariance of tautological equations. I. Conjectures and applications, J. Eur. Math. Soc. (JEMS) 10 (2008), 399-413. | MR | Zbl

[25] Y.-P. Lee, Invariance of tautological equations. II. Gromov-Witten theory, J. Amer. Math. Soc. 22 (2009), 331-352. | MR | Zbl

[26] Y.-P. Lee, Witten's conjecture, Virasoro conjecture, and invariance of tautological equations, preprint arXiv:math.AG/0311100. | MR | Zbl

[27] Y.-P. Lee & R. Pandharipande, Frobenius manifolds, Gromov-Witten theory, and Virasoro constraints, preprint http://www.math.princeton.edu/~rahulp/Part1.ps and http://www.math.princeton.edu/~rahulp/Part2.ps.

[28] T. Mochizuki, The virtual class of the moduli stack of stable r-spin curves, Comm. Math. Phys. 264 (2006), 1-40. | MR | Zbl

[29] D. Mumford, Towards an enumerative geometry of the moduli space of curves, in Arithmetic and geometry, Vol. II, Progr. Math. 36, Birkhäuser, 1983, 271-328. | MR | Zbl

[30] A. Polishchuk, Witten's top Chern class on the moduli space of higher spin curves, in Frobenius manifolds, Aspects Math., E36, Vieweg, 2004, 253-264. | MR | Zbl

[31] A. Polishchuk & A. Vaintrob, Algebraic construction of Witten's top Chern class, in Advances in algebraic geometry motivated by physics (Lowell, MA, 2000), Contemp. Math. 276, Amer. Math. Soc., 2001, 229-249. | MR | Zbl

[32] S. Shadrin, Geometry of meromorphic functions and intersections on moduli spaces of curves, Int. Math. Res. Not. 2003 (2003), 2051-2094. | MR | Zbl

[33] S. Shadrin, Intersections in genus 3 and the Boussinesq hierarchy, Lett. Math. Phys. 65 (2003), 125-131. | MR | Zbl

[34] S. Shadrin & D. Zvonkine, Intersection numbers with Witten's top Chern class, Geom. Topol. 12 (2008), 713-745. | MR | Zbl

[35] E. Witten, Algebraic geometry associated with matrix models of two-dimensional gravity, in Topological methods in modern mathematics (Stony Brook, NY, 1991), Publish or Perish, 1993, 235-269. | MR | Zbl

  • Alexandrov, Alexander; Dhara, Saswati On Higher Brézin–Gross–Witten Tau Functions, International Mathematics Research Notices, Volume 2025 (2025) no. 2 | DOI:10.1093/imrn/rnae286
  • Liu, Xiaobo; Yang, Chenglang Action of WW‐type operators on Schur functions and Schur Q‐functions, Journal of the London Mathematical Society, Volume 111 (2025) no. 2 | DOI:10.1112/jlms.70080
  • Borot, Gaëtan; Bouchard, Vincent; Chidambaram, Nitin; Creutzig, Thomas; Noshchenko, Dmitry Higher Airy Structures, 𝒲 Algebras and Topological Recursion, Memoirs of the American Mathematical Society, Volume 296 (2024) no. 1476 | DOI:10.1090/memo/1476
  • Buryak, A. Yu. DR Hierarchies: From the Moduli Spaces of Curves to Integrable Systems, Proceedings of the Steklov Institute of Mathematics, Volume 325 (2024) no. 1, p. 21 | DOI:10.1134/s0081543824020020
  • Hock, Alexander x-y duality in topological recursion for exponential variables via quantum dilogarithm, SciPost Physics, Volume 17 (2024) no. 2 | DOI:10.21468/scipostphys.17.2.065
  • Borot, Gaëtan; Giacchetto, Alessandro; Umer, Giacomo Symmetries of F-cohomological field theories and F-topological recursion, arXiv (2024) | DOI:10.48550/arxiv.2406.06304 | arXiv:2406.06304
  • Giacchetto, Alessandro; Lewański, Danilo Les Houches lecture notes on moduli spaces of Riemann surfaces, arXiv (2024) | DOI:10.48550/arxiv.2410.13273 | arXiv:2410.13273
  • Bouchard, Vincent Les Houches lecture notes on topological recursion, arXiv (2024) | DOI:10.48550/arxiv.2409.06657 | arXiv:2409.06657
  • Dubrovin, Boris; Yang, Di; Zagier, Don Geometry and arithmetic of integrable hierarchies of KdV type. I. Integrality, Advances in Mathematics, Volume 433 (2023), p. 109311 | DOI:10.1016/j.aim.2023.109311
  • Chen, Qile; Janda, Felix; Ruan, Yongbin; Sauvaget, Adrien Towards logarithmic GLSM : the r–spin case, Geometry Topology, Volume 26 (2023) no. 7, p. 2855 | DOI:10.2140/gt.2022.26.2855
  • Li, Jun; Shen, Yefeng; Zhou, Jie Higher genus FJRW invariants of a Fermat cubic, Geometry Topology, Volume 27 (2023) no. 5, p. 1845 | DOI:10.2140/gt.2023.27.1845
  • Buryak, Alexandr; Clader, Emily; Tessler, Ran J. Open r-spin theory III: A prediction for higher genus, Journal of Geometry and Physics, Volume 192 (2023), p. 104960 | DOI:10.1016/j.geomphys.2023.104960
  • Buryak, Alexandr; Gubarevich, Danil Integrable Systems of Finite Type from F-Cohomological Field Theories Without Unit, Mathematical Physics, Analysis and Geometry, Volume 26 (2023) no. 3 | DOI:10.1007/s11040-023-09463-8
  • Troost, Jan Topological two-dimensional gravity on surfaces with boundary, Physics Letters B, Volume 838 (2023) | DOI:10.1016/j.physletb.2022.137665
  • Charbonnier, Séverin; Chidambaram, Nitin; Garcia-Failde, Elba; Giacchetto, Alessandro Shifted Witten classes and topological recursion, Transactions of the American Mathematical Society, Volume 377 (2023) no. 2, p. 1069 | DOI:10.1090/tran/9046
  • Borot, Gaëtan; Bouchard, Vincent; Chidambaram, Nitin Kumar; Kramer, Reinier; Shadrin, Sergey Taking limits in topological recursion, arXiv (2023) | DOI:10.48550/arxiv.2309.01654 | arXiv:2309.01654
  • Eynard, Bertrand; Garcia-Failde, Elba; Giacchetto, Alessandro; Gregori, Paolo; Lewański, Danilo Resurgent large genus asymptotics of intersection numbers, arXiv (2023) | DOI:10.48550/arxiv.2309.03143 | arXiv:2309.03143
  • Iglesias, Francisco Hernández; Shadrin, Sergey Bi-Hamiltonian Recursion, Liu–Pandharipande Relations, and Vanishing Terms of the Second Dubrovin–Zhang Bracket, Communications in Mathematical Physics, Volume 392 (2022) no. 1, p. 55 | DOI:10.1007/s00220-022-04341-w
  • Blot, Xavier The quantum Witten–Kontsevich series and one-part double Hurwitz numbers, Geometry Topology, Volume 26 (2022) no. 4, p. 1669 | DOI:10.2140/gt.2022.26.1669
  • Buryak, Alexandr; Clader, Emily; Tessler, Ran J Open 𝑟-Spin Theory I: Foundations, International Mathematics Research Notices, Volume 2022 (2022) no. 14, p. 10458 | DOI:10.1093/imrn/rnaa345
  • He, Weiqiang; Polishchuk, Alexander; Shen, Yefeng; Vaintrob, Arkady A Landau–Ginzburg mirror theorem via matrix factorizations, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 0 (2022) no. 0 | DOI:10.1515/crelle-2022-0057
  • Chidambaram, Nitin Kumar; Garcia-Failde, Elba; Giacchetto, Alessandro Relations on Mg,n and the negative r-spin Witten conjecture, arXiv (2022) | DOI:10.48550/arxiv.2205.15621 | arXiv:2205.15621
  • Charbonnier, Séverin; Chidambaram, Nitin Kumar; Garcia-Failde, Elba; Giacchetto, Alessandro Shifted Witten classes and topological recursion, arXiv (2022) | DOI:10.48550/arxiv.2203.16523 | arXiv:2203.16523
  • Buryak, Alexandr; Rossi, Paolo Extended r-spin theory in all genera and the discrete KdV hierarchy, Advances in Mathematics, Volume 386 (2021), p. 107794 | DOI:10.1016/j.aim.2021.107794
  • Alexandrov, Alexander KP integrability of triple Hodge integrals. II. Generalized Kontsevich matrix model, Analysis and Mathematical Physics, Volume 11 (2021) no. 1 | DOI:10.1007/s13324-020-00451-7
  • Brauer, O.; Buryak, A. Yu. The Bi-Hamiltonian Structures of the DR and DZ Hierarchies in the Approximation up to Genus One, Functional Analysis and Its Applications, Volume 55 (2021) no. 4, p. 272 | DOI:10.1134/s001626632104002x
  • Gomez, Oscar Brauer; Buryak, Alexandr Open topological recursion relations in genus 1 and integrable systems, Journal of High Energy Physics, Volume 2021 (2021) no. 1 | DOI:10.1007/jhep01(2021)048
  • Basalaev, Alexey; Dunin-Barkowski, Petr; Natanzon, Sergey Integrable hierarchies associated to infinite families of Frobenius manifolds, Journal of Physics A: Mathematical and Theoretical, Volume 54 (2021) no. 11, p. 115201 | DOI:10.1088/1751-8121/abdd79
  • Buryak, Alexandr; Rossi, Paolo; Shadrin, Sergey Towards a bihamiltonian structure for the double ramification hierarchy, Letters in Mathematical Physics, Volume 111 (2021) no. 1 | DOI:10.1007/s11005-020-01341-6
  • He, Weiqiang; Ke, Hua-Zhong; Wu, Chao-Zhong On the Drinfeld-Sokolov hierarchy of type E6(1) and its topological solution, Science China Mathematics, Volume 64 (2021) no. 6, p. 1245 | DOI:10.1007/s11425-018-9568-x
  • Borot, Gaëtan; Charbonnier, Séverin; Garcia-Failde, Elba Topological recursion for fully simple maps from ciliated maps, arXiv (2021) | DOI:10.48550/arxiv.2106.09002 | arXiv:2106.09002
  • Belliard, Raphaël; Charbonnier, Séverin; Eynard, Bertrand; Garcia-Failde, Elba Topological recursion for generalised Kontsevich graphs and r-spin intersection numbers, arXiv (2021) | DOI:10.48550/arxiv.2105.08035 | arXiv:2105.08035
  • Brauer, Oscar; Buryak, Aleksandr Yurjevich Бигамильтонова структура в иерархиях DR и DZ в приближении до рода один, Функциональный анализ и его приложения, Volume 55 (2021) no. 4, p. 22 | DOI:10.4213/faa3933
  • Borot, Gaëtan Topological recursion and geometry, Reviews in Mathematical Physics, Volume 32 (2020) no. 10, p. 2030007 | DOI:10.1142/s0129055x20300071
  • Buryak, Alexandr; Clader, Emily; Tessler, Ran J. Closed extended r-spin theory and the Gelfand–Dickey wave function, Journal of Geometry and Physics, Volume 137 (2019), p. 132 | DOI:10.1016/j.geomphys.2018.11.007
  • Ashok, Sujay K.; Troost, Jan Topological open/closed string dualities: matrix models and wave functions, Journal of High Energy Physics, Volume 2019 (2019) no. 9 | DOI:10.1007/jhep09(2019)064
  • Dotsenko, Vladimir; Shadrin, Sergey; Vallette, Bruno Toric varieties of Loday's associahedra and noncommutative cohomological field theories, Journal of Topology, Volume 12 (2019) no. 2, p. 463 | DOI:10.1112/topo.12091
  • Dunin-Barkowski, P.; Norbury, P.; Orantin, N.; Popolitov, A.; Shadrin, S. DUBROVIN’S SUPERPOTENTIAL AS A GLOBAL SPECTRAL CURVE, Journal of the Institute of Mathematics of Jussieu, Volume 18 (2019) no. 3, p. 449 | DOI:10.1017/s147474801700007x
  • Cafasso, Mattia; Wu, Chao-Zhong Borodin–Okounkov formula, string equation and topological solutions of Drinfeld–Sokolov hierarchies, Letters in Mathematical Physics, Volume 109 (2019) no. 12, p. 2681 | DOI:10.1007/s11005-019-01205-8
  • Córdova, Clay; Heidenreich, Ben; Popolitov, Alexandr; Shakirov, Shamil Orbifolds and Exact Solutions of Strongly-Coupled Matrix Models, Communications in Mathematical Physics, Volume 361 (2018) no. 3, pp. 1235-1274 | DOI:10.1007/s00220-017-3072-x
  • Buryak, Alexandr; Dubrovin, Boris; Guéré, Jérémy; Rossi, Paolo Tau-Structure for the Double Ramification Hierarchies, Communications in Mathematical Physics, Volume 363 (2018) no. 1, p. 191 | DOI:10.1007/s00220-018-3235-4
  • Tian, Gang; Xu, Guangbo Analysis of gauged Witten equation, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2018 (2018) no. 740, p. 187 | DOI:10.1515/crelle-2015-0066
  • Coates, Tom; Iritani, Hiroshi A Fock sheaf for Givental quantization, Kyoto Journal of Mathematics, Volume 58 (2018) no. 4 | DOI:10.1215/21562261-2017-0036
  • Borot, Gaëtan; Bouchard, Vincent; Chidambaram, Nitin K.; Creutzig, Thomas; Noshchenko, Dmitry Higher Airy structures, W algebras and topological recursion, arXiv (2018) | DOI:10.48550/arxiv.1812.08738 | arXiv:1812.08738
  • Wu, Chao-Zhong Tau functions and Virasoro symmetries for Drinfeld–Sokolov hierarchies, Advances in Mathematics, Volume 306 (2017), p. 603 | DOI:10.1016/j.aim.2016.10.028
  • Fan, Huijun; Jarvis, Tyler; Ruan, Yongbin A mathematical theory of the gauged linear sigma model, Geometry Topology, Volume 22 (2017) no. 1, p. 235 | DOI:10.2140/gt.2018.22.235
  • Bouchard, Vincent; Eynard, Bertrand Reconstructing WKB from topological recursion, Journal de l’École polytechnique — Mathématiques, Volume 4 (2017), p. 845 | DOI:10.5802/jep.58
  • Liu, Kefeng; Vakil, Ravi; Xu, Hao Formal pseudodifferential operators and Witten’s r-spin numbers, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2017 (2017) no. 728, p. 1 | DOI:10.1515/crelle-2014-0102
  • Guéré, Jérémy Hodge Integrals in FJRW Theory, Michigan Mathematical Journal, Volume 66 (2017) no. 4 | DOI:10.1307/mmj/1508810817
  • Rossi, Paolo Integrability, Quantization and Moduli Spaces of Curves, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, Volume 13 (2017) | DOI:10.3842/sigma.2017.060
  • Ellegaard Andersen, Jørgen; Borot, Gaëtan; Orantin, Nicolas Geometric recursion, arXiv (2017) | DOI:10.48550/arxiv.1711.04729 | arXiv:1711.04729
  • Buryak, Aleksandr Yurjevich Новые подходы к иерархиям топологического типа, Успехи математических наук, Volume 72 (2017) no. 5(437), p. 63 | DOI:10.4213/rm9777
  • Dubrovin, Boris; Liu, Si-Qi; Yang, Di; Zhang, Youjin Hodge integrals and tau-symmetric integrable hierarchies of Hamiltonian evolutionary PDEs, Advances in Mathematics, Volume 293 (2016), p. 382 | DOI:10.1016/j.aim.2016.01.018
  • Fan, Huijun; Francis, Amanda; Jarvis, Tyler; Merrell, Evan; Ruan, Yongbin Witten’s D 4 integrable hierarchies conjecture, Chinese Annals of Mathematics, Series B, Volume 37 (2016) no. 2, p. 175 | DOI:10.1007/s11401-016-0944-x
  • Buryak, Alexandr; Rossi, Paolo Recursion Relations for Double Ramification Hierarchies, Communications in Mathematical Physics, Volume 342 (2016) no. 2, p. 533 | DOI:10.1007/s00220-015-2535-1
  • Guéré, Jérémy A Landau–Ginzburg mirror theorem without concavity, Duke Mathematical Journal, Volume 165 (2016) no. 13 | DOI:10.1215/00127094-3477235
  • Bertola, Marco; Dubrovin, Boris; Yang, Di Simple Lie Algebras and Topological ODEs, International Mathematics Research Notices (2016), p. rnw285 | DOI:10.1093/imrn/rnw285
  • Buryak, Alexandr; Guéré, Jérémy Towards a description of the double ramification hierarchy for Witten's r-spin class, Journal de Mathématiques Pures et Appliquées, Volume 106 (2016) no. 5, p. 837 | DOI:10.1016/j.matpur.2016.03.013
  • Ding, Xiang-Mao; Li, Yuping; Meng, Lingxian From r-spin intersection numbers to Hodge integrals, Journal of High Energy Physics, Volume 2016 (2016) no. 1 | DOI:10.1007/jhep01(2016)015
  • Bouchard, Vincent; Eynard, Bertrand Reconstructing WKB from topological recursion, arXiv (2016) | DOI:10.48550/arxiv.1606.04498 | arXiv:1606.04498
  • Buryak, A. Double Ramification Cycles and Integrable Hierarchies, Communications in Mathematical Physics, Volume 336 (2015) no. 3, p. 1085 | DOI:10.1007/s00220-014-2235-2
  • Tarasca, Nicola Double Total Ramifications for Curves of Genus 2, International Mathematics Research Notices, Volume 2015 (2015) no. 19, p. 9569 | DOI:10.1093/imrn/rnu228
  • Chang, Huai-Liang; Li, Jun; Li, Wei-Ping Witten’s top Chern class via cosection localization, Inventiones mathematicae, Volume 200 (2015) no. 3, p. 1015 | DOI:10.1007/s00222-014-0549-5
  • Bertola, Marco; Yang, Di The partition function of the extendedr-reduced Kadomtsev–Petviashvili hierarchy, Journal of Physics A: Mathematical and Theoretical, Volume 48 (2015) no. 19, p. 195205 | DOI:10.1088/1751-8113/48/19/195205
  • Li, Si A mirror theorem between Landau–Ginzburg models, Nuclear Physics B, Volume 898 (2015), p. 707 | DOI:10.1016/j.nuclphysb.2015.04.002
  • Carlet, G.; van de Leur, J.; Posthuma, H.; Shadrin, S. Towards Lax Formulation of Integrable Hierarchies of Topological Type, Communications in Mathematical Physics, Volume 326 (2014) no. 3, p. 815 | DOI:10.1007/s00220-014-1898-z
  • Dunin-Barkowski, P.; Orantin, N.; Shadrin, S.; Spitz, L. Identification of the Givental Formula with the Spectral Curve Topological Recursion Procedure, Communications in Mathematical Physics, Volume 328 (2014) no. 2, pp. 669-700 | DOI:10.1007/s00220-014-1887-2
  • Grushevsky, Samuel; Zakharov, Dmitry The zero section of the universal semiabelian variety and the double ramification cycle, Duke Mathematical Journal, Volume 163 (2014) no. 5 | DOI:10.1215/00127094-26444575
  • Petersen, Dan; Tommasi, Orsola The Gorenstein conjecture fails for the tautological ring of M2,n, Inventiones mathematicae, Volume 196 (2014) no. 1, p. 139 | DOI:10.1007/s00222-013-0466-z
  • Fu, Yulong; Liu, Si-Qi; Zhang, Youjin; Zhou, Chunhui Proof of a conjecture on the genus two free energy associated to the An singularity, Journal of Geometry and Physics, Volume 76 (2014), p. 10 | DOI:10.1016/j.geomphys.2013.10.013
  • Dotsenko, Vladimir; Shadrin, Sergey; Vallette, Bruno Givental group action on topological field theories and homotopy Batalin–Vilkovisky algebras, Advances in Mathematics, Volume 236 (2013), p. 224 | DOI:10.1016/j.aim.2013.01.003
  • Fan, Huijun; Jarvis, Tyler; Ruan, Yongbin The Witten equation, mirror symmetry, and quantum singularity theory, Annals of Mathematics, Volume 178 (2013) no. 1, p. 1 | DOI:10.4007/annals.2013.178.1.1
  • Bakalov, Bojko; Milanov, Todor -constraints for the total descendant potential of a simple singularity, Compositio Mathematica, Volume 149 (2013) no. 5, p. 840 | DOI:10.1112/s0010437x12000668
  • Brézin, E.; Hikami, S. The intersection numbers of the p-spin curves from random matrix theory, Journal of High Energy Physics, Volume 2013 (2013) | DOI:10.1007/jhep02(2013)035
  • Liu, Si-Qi; Yang, Di; Zhang, Youjin Uniqueness Theorem of W W -Constraints for Simple Singularities, Letters in Mathematical Physics, Volume 103 (2013) no. 12, p. 1329 | DOI:10.1007/s11005-013-0643-4
  • Dunin-Barkowski, Petr; Shadrin, Sergey; Spitz, Loek Givental Graphs and Inversion Symmetry, Letters in Mathematical Physics, Volume 103 (2013) no. 5, pp. 533-557 | DOI:10.1007/s11005-013-0606-9
  • Dunin-Barkowski, Petr; Kazarian, Maxim; Orantin, Nicolas; Shadrin, Sergey; Spitz, Loek Polynomiality of Hurwitz numbers, Bouchard-Mariño conjecture, and a new proof of the ELSV formula, arXiv (2013) | DOI:10.48550/arxiv.1307.4729 | arXiv:1307.4729
  • Shadrin, S.; Spitz, L.; Zvonkine, D. Equivalence of ELSV and Bouchard-Mariño conjectures for r-spin Hurwitz numbers, arXiv (2013) | DOI:10.48550/arxiv.1306.6226 | arXiv:1306.6226
  • Clader, Emily; Priddis, Nathan; Shoemaker, Mark Geometric Quantization with Applications to Gromov-Witten Theory, arXiv (2013) | DOI:10.48550/arxiv.1309.1150 | arXiv:1309.1150
  • Chiodo, Alessandro; Ruan, Yongbin A global mirror symmetry framework for the Landau-Ginzburg/Calabi-Yau correspondence, arXiv (2013) | DOI:10.48550/arxiv.1307.0939 | arXiv:1307.0939
  • Randal-Williams, Oscar The Picard group of the moduli space of r-Spin Riemann surfaces, Advances in Mathematics, Volume 231 (2012) no. 1, p. 482 | DOI:10.1016/j.aim.2012.04.027
  • Dubrovin, Boris; Liu, Si-Qi; Zhang, Youjin On the genus two free energies for semisimple Frobenius manifolds, Russian Journal of Mathematical Physics, Volume 19 (2012) no. 3, pp. 273-298 | DOI:10.1134/s1061920812030028
  • Fan, Huijun Schrödinger equations, deformation theory and tt-geometry, arXiv (2011) | DOI:10.48550/arxiv.1107.1290 | arXiv:1107.1290
  • Chiodo, Alessandro; Ruan, Yongbin Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations, Inventiones mathematicae, Volume 182 (2010) no. 1, pp. 117-165 | DOI:10.1007/s00222-010-0260-0
  • Fan, Huijun; Jarvis, Tyler J.; Ruan, Yongbin Quantum Singularity Theory for A_r-1 and r-Spin Theory, arXiv (2010) | DOI:10.48550/arxiv.1012.0066 | arXiv:1012.0066
  • Feigin, Evgeny N=1 formal genus zero Gromov-Witten theories and Givental’s formalism, Journal of Geometry and Physics, Volume 59 (2009) no. 8, pp. 1127-1136 | DOI:10.1016/j.geomphys.2009.04.014
  • Chiodo, Alessandro; Ruan, Yongbin LG/CY correspondence: the state space isomorphism, arXiv (2009) | DOI:10.48550/arxiv.0908.0908 | arXiv:0908.0908
  • Shadrin, Sergey; Zvonkine, Dimitri A group action on Losev-Manin cohomological field theories, arXiv (2009) | DOI:10.48550/arxiv.0909.0800 | arXiv:0909.0800
  • Liu, Si-Qi; Wu, Chao-Zhong; Zhang, Youjin On the Drinfeld-Sokolov Hierarchies of D type, arXiv (2009) | DOI:10.48550/arxiv.0912.5273 | arXiv:0912.5273
  • Feigin, Evgeny; van de Leur, Johan; Shadrin, Sergey Givental symmetries of Frobenius manifolds and multi-component KP tau-functions, arXiv (2009) | DOI:10.48550/arxiv.0905.0795 | arXiv:0905.0795
  • Liu, Kefeng; Xu, Hao Descendent integrals and tautological rings of moduli spaces of curves, arXiv (2009) | DOI:10.48550/arxiv.0912.0584 | arXiv:0912.0584
  • Brézin, E.; Hikami, S. Intersection Theory from Duality and Replica, Communications in Mathematical Physics, Volume 283 (2008) no. 2, pp. 507-521 | DOI:10.1007/s00220-008-0519-0
  • Shadrin, S. BCOV theory via Givental group action on cohomological field theories, arXiv (2008) | DOI:10.48550/arxiv.0810.0725 | arXiv:0810.0725
  • Bakalov, Bojko; MIlanov, Todor W_N+1-constraints for singularities of type A_N, arXiv (2008) | DOI:10.48550/arxiv.0811.1965 | arXiv:0811.1965
  • Lee, Y. -P.; Vakil, R. Algebraic structures on the topology of moduli spaces of curves and maps, arXiv (2008) | DOI:10.48550/arxiv.0809.1879 | arXiv:0809.1879
  • Melo, Margarida Compactified Picard stacks over the moduli stack of stable curves with marked points, arXiv (2008) | DOI:10.48550/arxiv.0811.0763 | arXiv:0811.0763
  • Brézin, Edouard; Hikami, Shinobu Intersection numbers of Riemann surfaces from Gaussian matrix models, Volume 2007 (2007) no. 10 | DOI:10.1088/1126-6708/2007/10/096
  • Losev, A.; Shadrin, S.; Shneiberg, I. Tautological relations in Hodge field theory, Nuclear Physics, Section B, Volume 786 (2007) no. 3, pp. 267-296 | DOI:10.1016/j.nuclphysb.2007.07.003
  • Fan, Huijun; Jarvis, Tyler J.; Ruan, Yongbin The Witten equation and its virtual fundamental cycle, arXiv (2007) | DOI:10.48550/arxiv.0712.4025 | arXiv:0712.4025
  • Coates, Tom; Ruan, Yongbin Quantum Cohomology and Crepant Resolutions: A Conjecture, arXiv (2007) | DOI:10.48550/arxiv.0710.5901 | arXiv:0710.5901
  • Chiodo, Alessandro; Zvonkine, Dimitri Twisted Gromov-Witten r-spin potential and Givental's quantization, arXiv (2007) | DOI:10.48550/arxiv.0711.0339 | arXiv:0711.0339
  • Ludwig, Katharina On the geometry of the moduli space of spin curves, arXiv (2007) | DOI:10.48550/arxiv.0707.1831 | arXiv:0707.1831
  • Lee, Y. -P. Notes on axiomatic Gromov–Witten theory and applications, arXiv (2007) | DOI:10.48550/arxiv.0710.4349 | arXiv:0710.4349
  • Chiodo, Alessandro Towards an enumerative geometry of the moduli space of twisted curves and r-th roots, arXiv (2006) | DOI:10.48550/arxiv.math/0607324 | arXiv:math/0607324
  • Arcara, D.; Lee, Y. -P. On independence of generators of the tautological rings, arXiv (2006) | DOI:10.48550/arxiv.math/0605488 | arXiv:math/0605488

Cité par 105 documents. Sources : Crossref, NASA ADS