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DUALITY OF SCHRAMM-LOEWNER EVOLUTIONS

 J DUBÉDAT

A. – In this note, we prove a version of the conjectured duality for Schramm-Loewner
Evolutions, by establishing exact identities in distribution between some boundary arcs of chordal
SLEκ, κ > 4, and appropriate versions of SLEκ̂, κ̂ = 16/κ.

R. – On démontre dans cette note une version de la dualité conjecturée pour les évolutions
de Schramm-Loewner, en établissant des identités en distribution exactes entre certains arcs de SLEκ

chordal, κ > 4, et des versions appropriées de SLEκ̂, κ̂ = 16/κ.

1. Introduction

Schramm-Loewner Evolutions (or SLE), introduced by Schramm in 1999, are probability
distributions, parameterized by κ > 0, on non-self traversing curves (the trace) connecting
two boundary points in a planar, simply connected domain. They are characterized by a
conformal invariance condition and a domain Markov property. See [7, 12, 16] for general
SLE background.

The geometric properties of the trace vary with the parameter κ. In particular, when
κ ≤ 4, the trace is a.s. a simple curve; this is no longer the case if κ > 4 ([12]). The trace
stopped at some finite time is then distinct from its boundary. The duality conjecture for
SLE, roughly stated, is that a boundary arc of SLEκ is locally absolutely continuous w.r.t.
to (some version) of SLEκ̂, κ̂ = 16/κ. This was suggested by Duplantier. In the case
(κ, κ̂) = (8, 2), this follows from the exact combinatorial relation between Loop-Erased
Random Walks and Uniform Spanning Trees and the identification of their scaling limits
in terms of SLE ([8]). In the case (κ, κ̂) = (6, 8/3), it follows from the locality/restriction
framework ([6]). An approach based on a relation with the free field has been proposed
by Sheffield. A precise duality conjecture is stated in [1] and elaborated on in [3]; we prove
slightly different versions here.
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698 J. DUBÉDAT

In [3], it is shown that duality shares common features with reversibility and the ques-
tion of defining multiple SLE strands in a common domain. This local commutation prop-
erty states that two SLE strands can be grown in a domain to a positive size, in a way that
does not depend on the order in which the SLE’s are growing. Such systems of commuting
SLE’s are classified in [3]; in particular, two versions of SLEκ, SLEκ̂ can commute only if
κ̂ ∈ {κ, 16/κ}.

While it is rather easy to check directly the local commutation identities implied by re-
versibility and some duality conjectures, the crucial difficulty consists in working backward
and proving reversibility or duality from these local identities. One may think of this as a
“local to global” problem.

Decisive progress was achieved by Zhan in [18], where he proves reversibility of chordal
SLEκ, κ ≤ 4, i.e. that the range of the trace of an SLEκ in D going from x to y has the
same distribution as the range of the trace of SLE going from y to x in D. This was previ-
ously known for κ ∈ {2, 8/3, 4, 6, 8}. The argument involves a sequence of couplings of an
SLEκ(D,x, y) with an SLEκ(D, y, x), such that each coupling in the sequence is absolutely
continuous w.r.t. the trivial (independent) coupling, and the limiting coupling is exact (the
ranges of the two traces are identical). The fact that similar techniques may be used to prove
duality is also mentioned in [18]. The present article stems in part from an effort to clarify
and extend this “local to global” argument.

After the present work appeared as a preprint, the manuscript [17] was brought to our
attention. There, as here, ideas and techniques from [3, 18] are combined to obtain a certain
number of duality identities, with some overlap with those stated here (in Proposition 10).
Subsequently, a different construction of duality identities was given in [4], via the free field;
this allows to establish “strong duality” identities, in which the conditional law of an SLE

given a boundary arc is also specified. Such identities were first conjectured in [1].

Let γ, γ̂ be traces of two SLE’s satisfying the local commutation condition. Then, forU, V
disjoint open subsets of the domain, one has a coupling of (γ, γ̂) which is “correct” on the
time set {(s, t) : s ≤ τ, t ≤ τ̂}, where τ , τ̂ are stopping times for the two SLE’s, such that
γτ ⊂ U , γ̂ τ̂ ⊂ V . We construct a coupling of (γ, γ̂), which is “correct” on the time set
{(s, t) : γ[0,s] ∩ γ̂[0,t] = ∅}. See Theorem 6 for a precise statement.

The duality identities follow from applying Theorem 6 to appropriate pairs of commut-
ing SLE’s, together with some a priori geometric information on the traces. Plainly, many
identities may be generated in this fashion.

The identities considered here involve variants of SLEκ: the SLEκ(ρ) processes
(ρ = ρ1, . . . , ρn). They satisfy a domain Markov property when keeping track of n marked
points z1, . . . , zn (in addition of the origin and the target of chordal SLE). The influence
of zi on the SLE trace is quantified by the real parameter ρi; this influence is attractive for
ρi < 0 and repulsive for ρi > 0.

Let us consider a chordal SLE in the upper half-plane H, going from 0 to infinity. In the
phase 4 < κ < 8, a boundary point, say 1, is “swallowed”, i.e. gets disconnected from infinity
by the trace at a random time τ1 when the trace hits some point in (1,∞). The boundary arc
straddling 1 is the boundary arc seen by 1 at time τ−1 .
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T 1. – Consider a chordal SLEκ in (H, 0,∞), 4 < κ < 8; let D be the leftmost
visited point on (1,∞). Conditionally on D, the boundary arc straddling 1 is distributed as an
SLEκ̂(− κ̂2 , κ̂− 4, κ̂− 2) in (H, D,∞, 0, 1, D+), stopped when it hits (0, 1).

In the phase κ ≥ 8, a.s. every point in H is visited by the trace. We isolate a boundary
arc in a different way. Let G be the leftmost point on (−∞, 0) visited by the trace before τ1.
We consider the boundary of KτG , the hull of the SLE stopped when it first visits G; this
boundary is an arc between G and a point in (0, 1).

T 2. – Consider a chordal SLEκ in (H, 0,∞), κ ≥ 8. Let G be the leftmost vis-
ited point on (−∞, 0) before τ1. Conditionally on G, the boundary of KτG is distributed as an
SLEκ̂( κ̂2 ,

κ̂
2 − 2,− κ̂2 , κ̂− 4) in (H, G,∞, G−, G+, 0, 1), stopped when it hits (0, 1).

The distributions of D and G are well known and easy to derive.

The article is organized as follows. Section 2 recalls some absolute continuity properties
of chordal SLE. Local commutation is discussed in Section 3. Maximal couplings of com-
muting SLE’s are constructed in Section 4. Geometric consequences (in particular duality)
are drawn in Section 5. Some technical lemmas are postponed to Section 6.

Acknowledgments
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2. Absolute continuity for chordal SLE

In this section we consider some absolute continuity properties of chordal SLE, mostly
based on [6]. Chordal SLE will also serve as a reference measure for variants we will study
later; some familiarity with chordal SLE is assumed (see, e.g., [7, 12, 16]).

We adopt the following notation: c = (D,x, y) is a configuration where D is a simply
connected domain and x, y are distinct boundary points. Unless there is an ambiguity, the
configuration is simply denoted byD. The chordal SLEκ measure on c = (D,x, y) is denoted
by µc (κ is fixed). It is seen as a measure on Loewner chains up to increasing time change; or
as a configuration-valued continuous process (up to time change); or as a measure on non
self-traversing paths ([12]). This path (the SLE “trace”) is denoted by γ, while the hull it
generates is denoted by K (D \Kt is the connected component of D \ γ[0,t] having y on its
boundary). Let U be a subdomain of D, agreeing with D in a neighborhood of x, and not
containing y on its boundary. Then µUc denotes the measure on paths induced by chordal
SLE starting from x and stopped on exiting U ; this happens at a random time τ , at which
the hull is Kτ , the tip of the trace is γτ , and the configuration cτ is (Dτ = D \ Kτ , γτ , y).
More generally, for τ a stopping time, γτ denotes the trace stopped at τ (i.e. the process up
to time τ ), µτc the measure induced by stopping at τ . We will use γ to denote both the trace
as a process and as a subset of D (the range of the process).
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For some computations, it is convenient to fix a particular time parameterization, typ-
ically half-plane capacity of the hull (mapping conformally the domain to the upper half-
plane). Otherwise we will reason up to bicontinuous (progressive, increasing) change of time.
The class of stopping times is invariant under such time reparameterizations.

Later on, we will use tightness conditions, so we shall review some technical points
now. Let (D,x, y) be a configuration, K a hull such that (D \ K,x′, y) is a configuration
for some x′ ∈ ∂K. By the Riemann mapping theorem, there is a conformal equivalence
φK : D \ K → D; one can specify it uniquely by requiring its 2-jet at y to be trivial
(φK(y) = y, φ′K(y) = 1, φ′′K(y) = 0 if φK extends smoothly at y; this condition is coordi-
nate independent, so one can first “straighten” the boundary at y). One defines a topology
on hulls as follows: (Kn) converges toK if φ−1

Kn
converges to φ−1

K uniformly on compact sets
ofD. This is a version of Carathéodory convergence. A topology on chains (Kt)t≥0 is given
by the condition: (Kn

t )t converges to (Kt)t if (t, w) 7→ φ−1
Kn
t

(w) converges uniformly on
compact sets of [0, T ]×D. Then the Loewner equation maps continuously C(R+,R) (with
the usual topology of uniform convergence on compact sets) to the space of chains endowed
with this topology. Thus the induced measure on chains is a Radon measure. From [12], we
know that the chain is a.s. generated by a continuous non self-traversing path γ. For clarity,
we will think of SLE as a measure on such paths, with the topology on chains described
above.

To express densities, we need to define some conformal invariants. Let (D,x, y) be a con-
figuration, zx, zy analytic local coordinates at the boundary (zx mapping a neighborhood
of x in D to the neighborhood of 0 in the upper semidisk). The Poisson excursion kernel is
defined as

HD(x, y) = lim
X→x,Y→y

GD(X,Y )

=(zx(X))=(zy(Y ))

where GD is the Green function in D (with Dirichlet boundary conditions); this depends
on the choice of zx (or zy) as a 1-form. (If z′x is another local coordinate at x, dz′x/dzx is
positive). IfD andD′ agree in a neighborhood of x, we choose the same local coordinate zx,
so that HD′(x, y

′)/HD(x, y) does not depend on a choice of local coordinate at x. Similarly
for i, j = 1, 2, consider configurations (Dij , xi, yj) such that Dij agrees with Di,3−j in a
neighborhood of xi and with D3−i,j in a neighborhood of yj . Then the ratio:

HD11
(x1, y1)HD22

(x2, y2)

HD12(x1, y2)HD21(x2, y1)

is defined independently of any (coherent) choice of local coordinates at xi, yj . To simplify
the notation, if c = (D,x, y) is a configuration, we set H(c) = HD(x, y).

There is a σ-finite measure µloop on unrooted loops in C, the Brownian loop measure
([6, 9]). As in [5], let us denote

m(D;K,K ′) = µloop{δ : δ ⊂ D, δ ∩K 6= ∅, δ ∩K ′ 6= ∅}.

In accordance with [6], set α = ακ = 6−κ
2κ , λ = λκ = (6−κ)(8−3κ)

2κ .

P 3. – Assume that c = (D,x, y) and c′ = (D′, x, y′) are configurations
agreeing in a neighborhood U of x such that U is compact and at positive distance to the
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symmetric difference D∆D′, and ∂U ∩ ∂D = ∂U ∩ ∂D′ is a connected arc containing x at
positive distance of y, y′. Then µUc and µUc′ are mutually absolutely continuous, with density

dµUc′

dµUc
(γ) =

Å
H(c′τ )H(c)

H(cτ )H(c′)

ãα
exp(−λm(D;Kτ , D \D′) + λm(D′;Kτ , D

′ \D))

uniformly bounded above and below.

Proof. – The bound on densities can be derived as in Lemma 14 (or actually seen as a
particular case of Lemma 14, when D and D′ can be obtained by removing two different
hulls from a common larger domain D′′). We will reduce the statement to two known cases.

1. Assume that D = D′. Then the statement follows from Lemma 3.2 in [3]; see also
[14]. More precisely, consider the following situation: H is the upper half-plane, three bound-
ary points x, y, y′ are marked; K is a hull around x, x′ its tip, φ a conformal equivalence
H \K → H. Then HH(x, y) = (x− y)−2, HH(x, y′) = (x− y′)−2, computing in the natural
local coordinate. It follows that HH\K(x′, y) = φ′(y)

(φ(y)−φ(x′))2 , HH\K(x′, y′) = φ′(y′)
(φ(y′)−φ(x′))2 ,

for an appropriate (common) local coordinate at x′. Then the ratio

HH\K(x′, y′)HH(x, y)

HH\K(x′, y)HH(x, y′)
= φ′(y′)

Å
y′ − x′

φ(y′)− φ(x′)

ã2

φ′(y)−1

Å
y′ − x′

φ(y′)− φ(x′)

ã−2

is independent of (coherent) choices. One concludes by identifying the density of an
SLEκ(H, x, y) and an SLEκ(H, x, y′) with respect to the common reference measure
SLEκ(H, x,∞).

2. Assume thatD′ ⊂ D,D′ andD agree in a neighborhood of y = y′. Then the statement
is essentially a consequence of Proposition 5.3 in [6] and results on loop measures in [9]. More
precisely, it is shown in [6] that

Mt =

Å
H(c′t)H(c)

H(ct)H(c′)

ãα
exp(−λm(D;Kt, D \D′))

is a (positive) local martingale under µc. If we stop the chain at τ (first exit of U ), then the
stopped process Mτ is a bounded martingale. The Girsanov transform of µτc by Mτ is then
µτc′ . See, e.g., Proposition 3.1 in [5] for a similar interpretation of the results in [6].

3. The general case reduces to 1,2 as follows. Let y′′ be a point on the connected
boundary arc of x in ∂D ∩ ∂D′, which is not on ∂U ; and V the connected component of
D ∩D′ having x on its boundary. Then apply 1 to go from (D,x, y) to (D,x, y′′); then 2 to
go from (D,x, y′′) to (V, x, y′′); then 2 to go from (V, x, y′′) to (D′, x, y′′); then 1 to go from
(D′, x, y′′) to (D′, x, y′). Cancellations occur due to the “inclusion exclusion” form of the
ratios (H(c′τ )H(c)/H(cτ )H(c′)) and the restriction property of the loop measure ([9]).

Explicitly, assume that the statement holds for two pairs of configurations (c1, c2) and
(c2, c3), ci = (Di, x, yi), all three configurations agreeing in a neighborhood U of x. We are
thus assuming:

dµUci+1

dµUci
(γ) =

Å
H(cτi+1)H(ci)

H(cτi )H(ci+1)

ãα
exp(−λm(Di;Kτ , Di\Di+1)+λm(Di+1;Kτ , Di+1\Di))

for i = 1, 2. Since trivially

dµUc3
dµUc1

(γ) =
dµUc3
dµUc2

(γ) ·
dµUc2
dµUc1

(γ)
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we need only show that Å
H(cτ3)H(c1)

H(cτ1)H(c3)

ã
=

Å
H(cτ2)H(c1)

H(cτ1)H(c2)

ã
·
Å
H(cτ3)H(c2)

H(cτ2)H(c3)

ã
m(D1;Kτ , D1 \D3)−m(D3;Kτ , D3 \D1)) = m(D1;Kτ , D1 \D2)−m(D2;Kτ , D2 \D1))

+m(D2;Kτ , D2 \D3)−m(D3;Kτ , D3 \D2)).

The first equation is clear, as one can evaluate these ratios with a common choice of local
coordinate for each of the marked points x, x′ = γτ , yi. For the second relation, consider
the set of loops that intersect Kτ and exactly one or two of the three sets Dc

1, D
c
2, D

c
3. Then

the measure of this set of loops under µloop can be expressed as

m(D1;Kτ , D1 \D3) +m(D2;Kτ , D2 \D1) +m(D3;Kτ , D3 \D2)

so that this quantity does not change under a permutation of the indices 1, 2, 3, which yields
the second relation.

3. Local commutation

3.1. Reversibility

Following the discussion in Section 2.1 of [3], we phrase and then check a necessary con-
dition for reversibility.

Consider a configuration c = c0,0 = (D,x, y), γ an SLE from x to y and γ̂ an SLE from y

to x. Denote cs,t = (D\(Ks∪K̂t), γs, γ̂t). LetU, Û be disjoint neighborhoods of x, y respec-
tively; τ, τ̂ denote first exits of U, Û by γ, γ̂ respectively. Assume that γ, γ̂ can be coupled so
that one is the reversal of the other. Then an application of the Markov property for γ̂ shows
that the distribution of γτ conditional on γ̂ τ̂ is (stopped) SLE in c0,τ̂ = (D \ K̂τ̂ , x, γ̂τ̂ ). In-
deed, the distribution of γ̂ after τ̂ conditional on γ̂ τ̂ is that of chordal SLE in c0,τ̂ (from γ̂τ̂
to x). Applying the (assumed) reversal coupling in c0,τ̂ , one obtains the conditional distri-
bution of γτ given γ̂ τ̂ . Symmetrically, the conditional distribution of γ̂ τ̂ given γτ is SLE in
cτ,0 = (D \ Kτ , γτ , y). (The identities in distribution considered here are up to time repa-
rameterization).

By integration, this gives the identity of measures:

(3.1)
∫
f̂(γ̂ τ̂ )(

∫
f(γτ )dµUc0,τ̂ (γτ ))dµ̂Ûc (γ̂ τ̂ ) =

∫
f(γτ )(

∫
f̂(γ̂ τ̂ )dµ̂Ûcτ,0(γ̂ τ̂ ))dµUc (γτ )

for arbitrary positive Borel functions f, f̂ . This is the local commutation condition studied
in [3]. Disintegrating and inserting densities (that exist from absolute continuity properties)
yields the condition:

(3.2)

Ç
dµUc0,τ̂
dµUc

å
(γτ ) =

(
dµ̂Ûcτ,0

dµ̂Ûc

)
(γ̂ τ̂ )

almost everywhere in γτ , γ̂ τ̂ . This is an identity between two (continuous) functions of the
paths γ, γ̂. From the above results on absolute continuity of SLE (Proposition 3), we see that
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both sides are indeed equal, and their common value is the explicit quantity:

(3.3) `D(γτ , γ̂ τ̂ ) =

Å
H(cτ,τ̂ )H(c)

H(cτ,0)H(c0,τ̂ )

ãα
exp(−λm(D;Kτ , K̂τ̂ ))

which is manifestly symmetric in γτ , γ̂ τ̂ . (We use ` for likelihood ratio, somewhat abusively.)
Using the expression of ` as Radon-Nikodym derivatives of probability measures, we see

that: ∫
`D(γτ , γ̂ τ̂ )dµ̂Ûc (γ̂ τ̂ ) =

∫
dµ̂cτ,0(γ̂ τ̂ ) = 1 ∀γτ∫

`D(γτ , γ̂ τ̂ )dµUc (γτ ) =

∫
dµc0,τ̂ (γτ ) = 1 ∀γ̂ τ̂(3.4)

This also applies to any pair of stopping times σ, σ̂ dominated by τ, τ̂ (i.e. σ is a stopping
time for γ such that σ ≤ τ a.s.).

Such local commutation identities (without relying on explicit densities) are proved
in greater generality in [3] under an infinitesimal commutation condition, which is easily
checked in the present case. In the next subsection, we include a simple construction for the
cases needed in this article.

Let us also point out a (deterministic) tower property, dictated by compatibility with
the SLE Markov property. Let (D,x, y) be a domain, (Ks) a Loewner chain grow-
ing at x (with trace γs), and (K̂t) a Loewner chain growing at x (with trace γ̂t). Let
cs,t = (D \ (Ks ∪ K̂t), γs, γ̂t). Let us denote, for 0 ≤ s1 ≤ s2, 0 ≤ t1 ≤ t2:

`s2,t2s1,t1 = `cs1,t1 (γs2 , γ̂t2).

Then, for 0 ≤ s1 ≤ s2 ≤ s3, 0 ≤ t1 ≤ t2 ≤ t3:

(3.5) `s2,t2s1,t1`
s3,t2
s2,t1 = `s3,t2s1,t1 , `s2,t2s1,t1`

s2,t3
s1,t2 = `s2,t3s1,t1 .

For fixed γ, the first relation has to hold a.e. in γ to ensure compatibility of (3.4) with the
Markov property of γ; the second relation corresponds to the Markov property of γ̂. Alter-
natively, this can be checked directly from the explicit expression (3.3), by telescopic cancel-
lations and the restriction property of the loop measure µloop ([9]).

3.2. The general case

We now move to the general case (in simply connected domains) of local commutation,
following Theorem 7.1 of [3], which we rephrase in the present context. For now we think
of local commutation as a condition on pairs of (collections of) measures on paths. In Sec-
tion 4, we will use this condition to construct pairings, i.e. (collections of) measures on pairs
of paths.

A configuration consists of a simply connected domain D with marked points:
c = (D, z0, z1, . . . , zn, zn+1); the marked points are distinct and in some prescribed or-
der on the boundary. The question is to classify pairs of SLE measures that satisfy local
commutation (3.1), (3.2). The first measure is on paths growing at z0 (hulls (Ks), trace γ);
the second measure is on paths growing at zn+1 (hulls (K̂t), trace γ̂). We assume that, at least
up to a positive stopping time, the first (resp. second) SLE is absolutely continuous w.r.t.
the reference measure SLEκ(D, z0, z) (resp. SLEκ̂(D, zn+1, z) ); here z is another marked
boundary point, used solely for normalization, and chains are considered up to time change.
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We also require conformal invariance and the Markov property (for configurations with
n + 2 marked points) for each SLE. In the upper half-plane model, the driving process of
each SLE differs from a Brownian motion by a drift term which is a function of the position
of the marked points; we assume that this dependence is smooth.

As before, we denote cs,t = (Ds,t = D \ (Ks ∪ K̂t), γs, z1, . . . , zn, γ̂t) when this is still a
configuration (i.e. before swallowing of any marked point). Let σ be a stopping time for the
first SLE such that Kσ is in a fixed compact set at positive distance of a boundary arc con-
taining z1, . . . , zn+1, z. Consider the measures induced on (Ku)u≤s∧σ by a) the SLE under
consideration and b) the reference SLEκ(D, z0, z). The Radon-Nikodym derivative, denoted
by Ms, is a measurable function of (Ku)u≤s∧σ. It is also a martingale under the reference
measure. We define similarly (M̂t), the density of the second SLE w.r.t. its reference mea-
sure SLEκ̂(D, zn+1, z).

Then:

T 4 ([3]). – Local commutation (3.1), (3.2) is satisfied iff the following properties
hold:

1. κ̂ ∈ {κ, 16/κ} , and
2. There exist a conformally invariant function ψ on the configuration space and exponents
νij satisfying

∑n+1
j=1 ν0,j = ακ,

∑n
i=0 νi,n+1 = ακ̂ such that if we define

Z(c) = ψ(c)
∏

0≤i<j≤n+1

HD(zi, zj)
νij

then, up to multiplicative constants and before some positive stopping times, the densities
Ms, M̂t can be expressed as:

Ms = Hcs,0(γs, z)
−ακZ(cs,0)

M̂t = Hc0,t(γ̂t, z)
−ακ̂Z(c0,t).

In the theorem, notice that Ms = Hcs,0(γs, z)
−ακZ(cs,0) is defined via a choice of local

coordinates at z, z1, . . . , zn+1, but not at γt, where the evolution occurs (the choice of local
coordinates is arbitrary but fixed under evolution, and contributes a multiplicative constant
to the martingales).

Proof. – The delicate part is necessity, for which we refer to [3]. However, in this article
we shall need only sufficiency, which is rather straightforward. A proof is included for the
sake of self-containedness.

Assume 1,2. Let µc be the measure on the first SLE in the configuration c, and µ̄c the
associated reference measure, viz. chordal SLEκ(D, z0, z). Consider τ, τ̂ stopping times such
that γτ (resp. γ̂ τ̂ ) are in compact neighborhoods of z0, zn+1 at positive distance of each other
and all other marked points. We can assume that the two SLE’s are defined at least up to τ, τ̂ .
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We compute the density:Å
dµc0,τ̂
dµc

ã
(γτ ) =

Ç
dµc0,τ̂
dµ̄c0,τ̂

å
·
Å
dµ̄c0,τ̂
dµ̄c

ã
·
Å
dµ̄c
dµc

ã
(γτ )

=

Ç
Hcτ,τ̂ (γτ , z)

−ακZ(cτ,τ̂ )

Hc0,τ̂ (z0, z)−ακZ(c0,τ̂ )

å
·
ÇÇ

Hcτ,τ̂ (γτ , z)Hc0,0(z0, z)

Hcτ,0(γτ , z)Hc0,τ̂ (z0, z)

åακ

exp(−λκm(D;Kτ , K̂τ̂ ))

å
·
Ç
Hc0,0(z0, z)

−ακZ(c0,0)

Hcτ,0(γτ , z)−ακZ(cτ,0)

å
=

Å
Z(cτ,τ̂ )Z(c0,0)

Z(cτ,0)Z(c0,τ̂ )

ã
exp(−λκm(D;Kτ , K̂τ̂ )).

The outer densities are obtained by applying 2 in c0,τ̂ and in c0,0, while the inner density
follows from Proposition 3. Notice that when κ̂ ∈ {κ, 16/κ}, λκ = λκ̂. The final expression
is plainly symmetric, which yields (3.2):Ç
dµτc0,τ̂
dµτc

å
(γτ ) =

Ç
dµ̂τ̂cτ,0
dµ̂τ̂c

å
(γ̂ τ̂ ) =

Å
Z(cτ,τ̂ )Z(c0,0)

Z(cτ,0)Z(c0,τ̂ )

ã
exp(−λκm(D;Kτ , K̂τ̂ ))

def
= `c(γ

τ , γ̂ τ̂ ),

and by integration (3.1).

A good example of the situation is the following: κ̂ = κ = 6, with four marked points
(z0, z1, z2, z3), Z the probability that there is a percolation crossing from (z0z3) to (z1z2).

The definition of Z involves 1-jets of local coordinates at marked points; one could imag-
ine more complicate dependences, say on k-jets at marked points; this is ruled out by the
theorem. We refer to such functions, defined on the space of simply connected domains with
marked boundary points and 1-jets of local coordinates at the marked points, as partition
functions. (For other purposes, it is convenient to allow a dependence on the metric, see [4].)

The theorem gives a recipe to construct pairs of SLE satisfying local commutation: we
simply have to find Z such that the associated processes M, M̂ are (positive, local) martin-
gales under the respective reference measures. Taking the Girsanov transform of the first
reference measure by M , we obtain an SLE distribution that satisfies the Markov property
w.r.t. configurations with n+2 marked points (up to a stopping time); one proceeds similarly
for the second measure. This yields two collections of measures (indexed by configurations)
satisfying the commutation identity (3.2).

An easy way to generate systems of commuting SLE’s is to look for partition functions
in the simple form Z(c) =

∏
i<j HD(zi, zj)

νij . (This situation is studied in [3], Section 3.2.)
To get a system of commuting SLE’s, we simply need to find a choice of exponents νij for
which the processes (Ms), (M̂t) defined from Z are (local) martingales under the respective
reference measures, and thus can be used as densities to define a probability measure on
(stopped) chains. Then the martingale transform of the first measure is an SLEκ(ρ, ρ) in
(H, z0, . . . , zn+1) with ρi = −2κν0,i, i = 1 . . . n, and ρ = ρn+1 = −2κν0,n+1, as is easily
seen from Girsanov’s theorem (see Lemma 12). Similarly, the other SLE is an SLEκ̂(ρ̂, ρ̂)

with ρ̂ = ρ̂0 = −2κ̂ν0,n+1, and ρ̂i = −2κ̂νi,n+1. The following systems are found to solve
the local commutation condition:
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1. κ = κ̂; ρ = ρ̂ = κ − 6; ρi = ρ̂i = 0 (two chordal SLE’s aiming at each other, the
reversibility setup)

2. κ = κ̂; ρ = ρ̂ = 2; ρi = ρ̂i, ρ+
∑
i ρi = κ− 6 (n− 1 arbitrary parameters)

3. κκ̂ = 16, ρ = −κ/2, ρ̂ = − κ̂2 , ρ̂i = −(κ̂/4)ρi = −(4/κ)ρi, ρ +
∑
i ρi = κ − 6

(n− 1 arbitrary parameters).

In these cases, we have the following expressions for the common partition function:

Z(c) = H(z0, zn+1)
6−κ
2κ

Z(c) = H(z0, zn+1)−
1
κ

∏
i

H(z0, zi)
− ρi

2κH(zn+1, zi)
− ρi

2κ

∏
i<j

H(zi, zj)
−
ρiρj
4κ

Z(c) = H(z0, zn+1)−
1
4

∏
i

H(z0, zi)
− ρi

2κH(zn+1, zi)
ρi
8

∏
i<j

H(zi, zj)
−
ρiρj
4κ .

In the third case (κκ̂ = 16), notice that − ρi
2κ = ρ̂i

8 , −ρiρj4κ = − ρ̂iρ̂j4κ̂ .

Another explicit situation is when four points are marked, so that there is a single cross-
ratio. Consider a configuration c = (D,x, y, z1, z2), the marked points in some prescribed
order. Let ν be a parameter and β a solution of the quadratic equation κ

2β(β−1)+2β = 2ν.
Define a partition function

Z(c) = HD(x, y)
6−κ
2κ HD(z1, z2)νψ(u)

where u is the cross-ratio u = (z1−x)(z2−y)
(y−x)(z2−z1) (in the upper half-plane) and

ψ(u) = (u(1− u))β2F1

Å
2β, 2β +

8

κ
− 1; 2β +

4

κ
;u

ã
where 2F1 designates a solution of the hypergeometric equation with parameters 2β, . . . (this
equation is invariant under u↔ 1− u). If the solution is chosen so that it is positive on the
configuration space, then a computation shows that Z satisfies the condition of the theo-
rem and drives two locally commuting SLE’s starting from x, y. This covers for instance the
following situations: a chordal SLEκ from x to y conditioned not to intersect the interval
[z1, z2], 4 < κ < 8; a chordal SLE8/3 from x to y conditioned not to intersect a restriction
measure (with exponent ν) from z1 to z2; and the marginal of a system of two SLE strands
x↔ y, z1 ↔ z2 ([2], Section 4.1; this corresponds to ν = ακ).

The situation in other (non simply connected) topologies is quite involved, though an im-
portant part of the analysis carries through (see [3]). For n SLE’s in a simply connected do-
main, the local commutation relation for the system of n SLE’s reduces to n(n−1)

2 pairwise
commutation conditions.

4. Coupling

Let c = (D, z0, z1, . . . , zn, zn+1) be a configuration, where D is a simply connected,
bounded domain with n + 2 distinct marked points on the boundary in some prescribed
order. We consider a system of two SLE’s satisfying local commutation, one originating
at z0, the other at zn+1. These two SLE’s have the SLE Markov property for domains
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with n + 2 marked points. The first one is absolutely continuous (up to a disconnec-
tion event) w.r.t. SLEκ(D, z0, zn); the Loewner chain is (Ks), the trace γ, the mea-
sure µc. The second one is absolutely continuous (up to a disconnection event) w.r.t.
SLEκ̂(D, zn+1, zn); the Loewner chain is (K̂t), the trace γ̂, the measure µ̂c. We also denote
cs,t = (D \ (Ks ∪ K̂t), γs, z1, . . . , zn, γ̂t).

From Theorem 4, we know that κ̂ ∈ {κ, 16/κ} and there is a positive conformally in-
variant function ψ on configurations, weights νij , such that for τ, τ̂ a pair of stopping times
(before disconnection events)

`c(γ
τ , γ̂ τ̂ ) =

Å
Z(cτ,τ̂ )Z(c0,0)

Z(cτ,0)Z(c0,τ̂ )

ã
exp(−λm(D;Kτ , K̂τ̂ ))

=

Ç
dµτc0,τ̂
dµτc

å
(γτ ) =

Ç
dµ̂τ̂cτ,0
dµ̂τ̂c

å
(γ̂ τ̂ )(4.6)

where Z(c) = ψ(c)
∏
i<j HD(zi, zj)

νij .
Let γ̂ τ̂ be a fixed stopped path. Let τ be a stopping time for γ such that a.s. γτ is at distance

at least η > 0 from (γ̂ τ̂ ∪ ∂), where ∂ is a connected boundary arc of D containing marked
points other than z0. Then we deduce immediately from (4.6) that:∫

`c(γ
τ , γ̂ τ̂ )dµτc (γτ ) =

∫
dµτc0,τ̂ (γτ ) = 1 ∀γ̂ τ̂ .(4.7)

The symmetric statement holds for the same reason.
Define:

`s2,t2s1,t1 = `cs1,t1 (γs2 , γ̂t2) =

Å
Z(cs2,t2)Z(cs1,t1)

Z(cs2,t1)Z(cs1,t2)

ã
exp(−λm(D \ (Ks1 ∪ K̂t1);Ks2 , K̂t2)).

We recall the (deterministic) tower property: for 0 ≤ s1 ≤ s2 ≤ s3, 0 ≤ t1 ≤ t2 ≤ t3 such
that cs3,t3 is a configuration

(4.8) `s2,t2s1,t1`
s3,t2
s2,t1 = `s3,t2s1,t1 , `s2,t2s1,t1`

s2,t3
s1,t2 = `s2,t3s1,t1 .

The goal of this section is to use these properties to extend a local coupling of µc, µ̂c, that
exists from local commutation, to a maximal coupling “up to disconnection”. The idea, in-
troduced in [18] in the case of reversibility, is to consider a sequence of couplings absolutely
continuous w.r.t. the independent coupling µc ⊗ µ̂c that converges to a maximal coupling.
The construction of the coupling presented here somewhat differs from that in [18]. The exis-
tence of such a maximal coupling relies solely on (4.7), (4.8), and the SLE Markov property.

4.1. Local coupling

We briefly discuss here the interpretation of local commutation (4.6) in terms of couplings.
A coupling of µc, µ̂c is a measure on pairs of paths (γ, γ̂) (or chains (K, K̂)) such that the

first marginal is µc, the second marginal is µ̂c. The trivial (independent) coupling is µc⊗ µ̂c.
For simplicity, consider U, Û neighborhoods of x, y respectively in D with disjoint clo-

sures. Assume thatU is at positive distance of a boundary arc ofD containing marked points
other than x, and the symmetric condition holds for Û . Let τ, τ̂ be the first exit of U, Û by
γ, γ̂. Then we can consider the measure on pairs of stopped paths (γτ , γ̂ τ̂ ) given by:

`c(γ
τ , γ̂ τ̂ )dµτc (γτ )dµ̂τ̂c (γ̂ τ̂ )
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From (4.7), we know that this is a coupling of the stopped measures µτc , µ̂
τ̂
c . One can extend

it to a coupling of µc, µ̂c as follows: after τ , γ is continued as an SLE in cτ,0 (that is, fol-
lowing µcτ,0 ) independent of the rest conditionally on cτ,0; γ̂ is continued in a similar way.
This describes a coupling of µc, µ̂c, using the (strong) Markov property. It is clear that this
procedure describes the measure:

`c(γ
τ , γ̂ τ̂ )dµc(γ)dµ̂c(γ̂)

on pairs of paths (γ, γ̂). This coupling is local in the sense that the interaction is restricted
to the time set [0, τ ] × [0, τ̂ ]. In the next subsection, we will extend the interaction to the
(random) time set {(s, t) : Ks ∩ K̂t = ∅}, to obtain “maximal couplings”.

4.2. Maximal coupling

The goal here is to construct explicit couplings of µc, µ̂c parameterized by a small param-
eter η > 0 such that any subsequential limit as η ↘ 0 is a maximal coupling. As in the local
case, we start from the independent coupling µc ⊗ µ̂c and introduce a density that preserves
the marginal distributions.

We assume η � dist(z0, zn+1) ≤ diam(D) < ∞. (The domain D is embedded in the
plane and distances are measured in the ambient plane.)

Define by induction the stopping times: τ0 = 0;

τi+1 = inf{t ≥ 0 : γt /∈ (Kτi)
η}

where Aη = {x ∈ D : dist(x,A) < η}. Then τi is a function of the path γ (taking a modi-
fication where traces exist and are continuous). The sequence τi is strictly increasing until it
reaches∞.

If τn < ∞, then for all i < j ≤ n, dist(γτi , γτj ) ≥ η, since γτj is outside of (Kτj−1
)η.

Thus nπ(η2 )2 ≤ area(D + B(0, η)). This gives a fixed N = b4area(D + B(0, η))/πc such
that τN =∞.

Similarly, define τ̂ = 0, and by induction:

τ̂j+1 = inf{t ≥ 0 : γ̂t /∈ (K̂τ̂j )
η}.

We now introduce a dependence on the other path. Let ∂ be the smallest connected bound-
ary arc of D containing all marked points except z0; symmetrically, let ∂̂ be the smallest
connected boundary arc ofD containing all marked points except zn+1. These two arcs over-
lap in general.

We define a (random) set G ⊂ N2 of good pairs of indices as follows:

{(i, j) ∈ G} = {dist(Kτi , K̂τ̂j ) > 3η} ∩ {dist(Kτi , ∂) > 2η} ∩ {dist(K̂τ̂j , ∂̂) > 2η}.

(Here, dist(K, K̂) = infx∈K,x̂∈K̂(dist(x, x̂)).) This is a separation condition. If i′ ≤ i,
j′ ≤ j, (i, j) ∈ G, then a fortiori (i′, j′) ∈ G. We take η small enough so that (0, 0) ∈ G.

For conciseness, set
`i
′j′

ij = `
τi+1,τ̂j+1

τi,τ̂j
= `cτi,τ̂j (γτi′ , γ̂ τ̂j′ )

for i ≤ i′, j ≤ j′. If τi = τi′ , set `i
′j′

ij = 1 (this is the case if i = i′ or τi = τi′ =∞).

Let (i, j) ∈ G. Then Kτi is at distance at least 3η from K̂τ̂j and at least 2η from ∂. Thus
Kτi+1

⊂ (Kτi)
η is at distance at least 2η from K̂τ̂j , at least η from K̂τ̂j+1

, and at least η
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from ∂. Symmetric statements hold for K̂τ̂j . Thus `i+1,j+1
i,j is well defined and by Lemma 14

uniformly bounded by some C = C(D, η).

Define

I(j) = inf{i ∈ N : (i, j) /∈ G}
J(i) = inf{j ∈ N : (i, j) /∈ G}.

Plainly, I and J are non-increasing. If F (resp. F̂) is the filtration generated by γ (resp. γ̂),
τi is an F-stopping time. Also, the event {(i, j) ∈ G} is (Fτi ∨ F̂τ̂j )-measurable. It follows
that τI(j) is a stopping time in the enlarged filtration (Ft∨F̂τ̂j )t. Symmetric statements hold
for τ̂j , τ̂J(i).

Consider the measure Θη
c on pairs (γ, γ̂):

dΘη
c (γ, γ̂) =

 ∏
(i,j)∈G

`i+1,j+1
i,j

 dµc(γ)dµ̂ĉ(γ̂).

The density is a function on pairs of paths (γ, γ̂). From the tower property (3.5), one can
rewrite this density as:

L =
∏

(i,j)∈G

`i+1,j+1
i,j =

∏
0≤i≤N

`
i+1,J(i)
i,0 =

∏
0≤j≤N

`
I(j),j+1
0,j

showing in particular that L is bounded by CN . The last two expressions of L will behave
well in combination with the Markov property of γ, γ̂ respectively.

L 5. – The measure Θη
c = L(µc ⊗ µ̂c) is a coupling of µc, µ̂c.

Proof. – The statement can be rephrased as

∀γ̂,E(L) = 1 ∀γ, Ê(L) = 1

where E, Ê refer to integration w.r.t. dµc(γ), dµ̂ĉ(γ̂) respectively (in other terms
E(.) = E ⊗ Ê(.|F̂∞)). The situation is completely symmetric, so we shall consider only
the distribution of the second marginal; that is, we have to check that given any γ̂, E(L) = 1.

For this, the relevant expression of the density is: L =
∏

0≤i≤N `
i+1,J(i)
i,0 . Notice that

γ̂ τ̂J(i) is (Fτi ∨F̂∞)-measurable. This implies that a term `
i+1,J(i)
i,0 is (Fτn ∨F̂∞)-measurable

for any i < n. Thus for fixed n:

E

(
n∏
i=0

`
i+1,J(i)
i,0 |Fτn

)
=

[
n−1∏
i=0

`
i+1,J(i)
i,0

]
E(`

n+1,J(n)
n,0 |Fτn)

and E(`
n+1,J(n)
n,0 |Fτn) = 1 by (4.7); the point is that given (Fτn ∨ F̂∞), γτn and γ̂ τ̂J(n) are

fixed. This is saying that

Mn =
n−1∏
i=0

`
i+1,J(i)
i,0

is a (discrete time, bounded) martingale in the filtration (Fτn ∨ F̂∞)n≥0. In particular,
E(L) = E(MN ) = M0 = 1.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



710 J. DUBÉDAT

We can actually get a more precise statement. Let τ be an arbitrary F-stopping time; let
n = inf{i ∈ N : τi ≥ τ}, a random integer. We assume that dist(γτ , ∂) ≥ 3η a.s., so that
(n, 0) ∈ G. Then τn is a stopping time approximating τ (as η ↘ 0). Consider the joint
distribution of (γτn , γ̂ τ̂J(n)) under Θη. Then γτn has distribution µτnc . Moreover:

E⊗ Ê(L|Fτn ∨ F̂τ̂J(n)
) =

[ ∏
i<n

j<J(n)

`i+1,j+1
i,j

]

· E⊗ Ê

( ∏
i≥n
j<J(i)

`i+1,j+1
i,j

∏
j≥J(n)
i<I(j)

`i+1,j+1
i,j |Fτn ∨ F̂τ̂J(n)

)

=
î
`
n,J(n)
0,0

ó
E⊗ Ê

Ñ∏
i≥n

`
i+1,J(i)
i,0

∏
j≥J(n)

`
I(j),j+1
0,j |Fτn ∨ F̂τ̂J(n)

é
.

The term
∏
i≥n `

i+1,J(i)
i,0 involves γ after τn and γ̂ before τ̂J(n) (if i ≥ n, J(i) ≤ J(n)); the

other term,
∏
j≥J(n) `

I(j),j+1
0,j , involves γ̂ after τ̂J(n) and γ before τn. Hence these two terms

are independent conditionally on (Fτn ∨ F̂τ̂J(n)
) (under the independent measure µc ⊗ µ̂c).

Moreover

E(
∏
i≥n

`
i+1,J(i)
i,0 |Fτn) = E(

MN

Mn
|Fτn) = 1

where (M.) is the discrete-time, bounded martingale considered in the previous lemma, since
n is a stopping time for its discrete filtration. Similarly, Ê(

∏
j≥J(n) `

I(j),j+1
0,j |F̂τ̂J(n)

) = 1, and
consequently:

E⊗ Ê
Ä
L|Fτn ∨ F̂τ̂J(n)

ä
= (`

n,J(n)
0,0 )E⊗ Ê

Ñ∏
i≥n

`
i+1,J(i)
i,0 |Fτn ∨ F̂τ̂J(n)

é
E

⊗ Ê

Ñ ∏
j≥J(n)

`
I(j),j+1
0,j |Fτn ∨ F̂τ̂J(n)

é
= (`

n,J(n)
0,0 )Ê

E

∏
i≥n

`
i+1,J(i)
i,0 |Fτn

 |F̂τ̂J(n)


· E

Ê

 ∏
j≥J(n)

`
I(j),j+1
0,j |F̂τ̂J(n)

 |Fτn


= `
n,J(n)
0,0 =

dµ̂
τ̂J(n)
cτn,0

dµ̂
τ̂J(n)
c

(γ̂ τ̂J(n)).

This proves that under Θη, the conditional distribution of γ̂ τ̂J(n) given γτn is µ̂
τ̂J(n)
cτn,0 , where

τ̂J(n) is a stopping time conditionally on γτn .
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To phrase the following theorem, it is convenient to introduce:

σ = sup{t ≥ 0 : Kt ∩ ∂ = ∅}

σ̂ = sup{t ≥ 0 : K̂t ∩ ∂̂ = ∅}.

The measures µc, µ̂c are defined on paths (γ, γ̂) up to σ, σ̂. Let Θ be a coupling of µc, µ̂c. If
τ is an F-stopping time, τ ≤ σ, define the (Fτ ∨ F̂t)t-stopping time τ̂ :

τ̂ = sup{t ≥ 0 : K̂t ∩ (Kτ ∪ ∂̂) = ∅}.

We say that the coupling Θ satisfies the property P (τ) if the conditional distribution of γ̂ τ̂

given γτ (under Θ) is µ̂τ̂cτ,0 . The symmetric property (starting from an F̂-stopping time τ̂ )

is denoted P̂ (τ̂). A coupling Θ is said to be maximal if P (τ) (resp. P̂ (τ̂)) is satisfied for any
F- stopping time τ ≤ σ (resp. for any F̂- stopping time τ̂ ≤ σ̂).

T 6. – Let µc, µ̂c be SLE measures in a configuration (D, z0, . . . , zn+1) satisfying
local commutation. Then there exists a maximal coupling Θ of µc, µ̂c.

Proof. – The two marginal distributions of Θη are the fixed (i.e. independent of η > 0)
Radon measures µσc and µσ̂c (in the topology of Carathéodory convergence of Loewner
chains). Thus the family (Θη)η>0 is tight, and Prokhorov’s theorem ensures existence
of subsequential limits. Let (ηk)k be a sequence ηk ↘ 0 along which Θηk has a weak
limit Θ. Then Θ is a coupling of µc and µ̂c. We can consider a probability space with
sample ((γ1, γ̂1), . . . , (γk, γ̂k), . . . ) such that the distribution of (γk, γ̂k) is Θηk and
(γk, γ̂k)→ (γ, γ̂) a.s., where the distribution of (γ, γ̂) is Θ.

Let τ be an F-stopping time; we approximate τ in a convenient way. Firstly, τ can
be approximated by τ ′ taking values in some discrete countable sequence (ti)i≥0 (e.g.,
dyadic times). Hence there are Borel sets Bi such that 1Bi is a Borel function of Kti and
τ ′ = inf{ti : Kti ∈ Bi}. Replace the Borel set Bi by a larger open set Ui such that the
measure of Ui \ Bi is very small. Then τ ′′ = inf{ti : Kti ∈ Ui} is a stopping time equal to
τ ′ with probability arbitrarily close to 1. Finally, let τ ′′′ = τ ′′ ∧ sup{t : dist(γt, ∂) ≥ ε′}
for some fixed ε′ > 0. Let us assume for now that τ is of type τ ′′′. This gives a common
stopping rule for all the chains Kk

. : stop the first time that Kk
ti is in Ui or at distance ε of ∂.

We denote τk this stopping time for the chain Kk
. . In particular, τk → τ a.s. (using that the

Ui’s are open).
For η > 0, τkn is an approximation of τk as above: τkn = inf{τi : τi ≥ τk}; then

Kk
τk
n−1
⊂ Kk

τk ⊂ K
k
τkn
⊂ (Kk

τk
n−1

)ηk .

It is easy to see that τkn → τ , τkn−1 → τ , Kk
τkn
→ Kτ and γkτkn → γτ (since γτ = ∩s>0Kτ+s \Kτ )

as k → ∞. We have seen that the conditional distribution of γ̂
τ̂J(n)

k is µ̂
τ̂J(n)
cτn,0 . Notice that

τ̂J(n) occurs after first entrance in (Kk
τkn

)3ηk and before entrance in (Kk
τkn

)ηk .

For fixed ε > 0, Kk
τkn
⊂ (Kτ )ε for k large enough. The configuration ĉkτkn ,0 converges in

the Carathéodory topology to cτ,0 (with also convergence of γkτkn to γτ ); this implies weak
convergence of the conditional distribution of γ̂k stopped when entering (Kτ )ε to the corre-
sponding stopped SLE in cτ,0. This gives the correct conditional distribution of γ̂ stopped
when entering (Kτ )ε, conditional on γτ . One concludes by taking ε↘ 0.
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This proves the result for a dense set of stopping times of type τ ′′′ as above (this will be
enough to draw geometric consequences). A general stopping time τ ≤ σ is the limit of a
sequence of stopping times τ ′′′m ; for each m, the conditional distribution of γ̂ stopped upon
entering (Kτ ′′′m

)ε is correct. One concludes by taking m→∞ and then ε↘ 0.

One may want to consider couplings that extend after collisions of the two SLE’s; this
requires additional arguments. Some examples are treated in [4].

There are some obvious extensions of this result. One involves radial SLE’s (not neces-
sarily aiming at the same bulk point). Another involves systems of n (pairwise) commuting
SLE’s. Let us discuss this case briefly.

Consider a configuration c = (D, z1, . . . , zn, zn+1, . . . , zn+m), with n SLE’s starting at
z1, . . . , zn, driven by the same partition function Z. One can reason as above (sampling the
SLE’s at discrete times τ1

i1
, . . . , τnin ). In a maximal coupling, one can stop the first SLE at a

stopping time τ1, the second at τ2 (first time it ceases to be defined or meets K1
τ1 ), .. . , the

n-th at τn (first time it ceases to be defined or meets ∪n−1
i=1 K

i
τ i ) and get the appropriate joint

distribution. This works for any permutation of indices.

Let us describe the local coupling in this case: let U1, . . . , Un be disjoint neighborhoods
of z1, . . . , zn, µ1

. , . . . , µ
n
. the commuting SLE measures, Z their common partition function.

Let Ki be the hull of the stopped i-th SLE; cε1...εn , εi ∈ {0, 1}, is the configuration where
the i-th SLE has grown (until stopped) if εi = 1. Consider the density

L =
dµnc1...10
dµnc0...0

·
dµn−1

c1...100

dµn−1
c0...0

· · ·
dµ2

c10...0

dµ2
c0...0

=
Z(c1...1)Z(c0...0)n−1

Z(c10...0) . . . Z(c0...01)
exp

(
−λ

n∑
j=2

m(D,∪j−1
i=1Ki,Kj)

)
.

Then it is clear from the first expression that the first marginal of L(µ1
c ⊗ · · · ⊗ µnc ) is µ1

c

(integrating out Kn, then Kn−1, . . .); the second expression shows that the construction is
symmetric (for a discussion of the loop measure contribution, see Section 3.4 of [2]).

5. Geometric consequences

We have proved (Theorem 6) existence of maximal couplings under a local commutation
assumption. On the other hand, the systems of SLE’s satisfying this assumption are classi-
fied; we also checked directly the condition in the few cases we will need (combining Theo-
rem 4 and Lemma 12). So we can now apply the existence of maximal couplings to appro-
priate systems of commuting SLE’s to extract information on the geometry of SLE curves.

5.1. Reversibility

Reversibility for κ ∈ (0, 4] is proved in [18]. We review the result for the reader’s conve-
nience.

T 7. – If κ ≤ 4, SLE is reversible; any maximal coupling Θ of chordal SLEκ in
(D,x, y) with SLEκ in (D, y, x) is the coupling of SLE with its reversed trace.
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Proof. – Let (D,x, y) be a configuration, µc the chordal SLE measure from x to y,
µ̂c the chordal SLE measure from y to x. They satisfy local commutation, hence there exists
a maximal coupling Θ.

Take a countable dense sequence of F-stopping times (τm) (e.g., capacity of the hull
reaches a rational number); denote simply by τ an element in this sequence. Then in the
maximal coupling Θ, the conditional distribution of γ̂ τ̂ is SLE in (D \ Kτ , y, γτ ) stopped
upon hitting Kτ . For κ ≤ 4, the SLE trace intersects the boundary only at its endpoints.
Hence γ̂τ̂ = γτ . This proves that under Θ, the intersection γ∩ γ̂ is a.s. dense in γ. Since both
γ, γ̂ are a.s. closed, γ ⊂ γ̂; symmetrically, γ̂ ⊂ γ. Hence the occupied sets of γ, γ̂ are equal.
Again, as the paths are simple, the occupied set determines the parameterized trace. Hence
in any maximal coupling Θ, γ̂ = γr (the reverse trace) a.s.; this determines the coupling
uniquely.

Besides local commutation, the argument uses only qualitative properties of the paths. So
we can phrase at no additional cost:

C 8. – Let κ ≤ 4, µc, µ̂c a system of commuting SLE in the configuration
c = (D, z0, z1, . . . , zn, zn+1). Assume that µc, µ̂c are supported on simple paths that meet the
boundary of D only at z0, zn+1. Then γr and γ̂ are identical in distribution.

A simple example of the situation is as follows: let (z1, . . . , z4) be four marked points
on the arc (z0z5). Then we can consider chordal SLE from z1 to z5 weighted by any, say,
bounded above and below function of the cross-ratio of (z1, . . . , z4) in D \ γ. This plainly
preserves both local commutation and reversibility.

Another setup where the corollary applies is the following: c = (D, z0, z1, . . . , zn+1) with
points in counterclockwise order. Let ρ1, . . . , ρn be such that ρ1 + · · ·+ρi ≥ 0 for 1 ≤ i < n

and ρ1 + · · ·+ ρn = 0. Then the traces of SLE4(ρ,−2) starting from z0 and SLE4(−2,−ρ)

starting from zn+1 are the reverse of each other in distribution. This describes the scaling
limit of the zero level line of a discrete free field ([13]) with piecewise constant boundary con-
ditions (with jump at zi proportional to ρi). A version with marked points on both sides of
z0 also holds.

One also obtains reversibility identities for the pairs of commuting SLE’s (aiming at each
other) with four marked points described at the end of Section 3.2. By degenerating two
points into one, this describes the reversal of SLEκ(ρ), κ ≤ 4, ρ ≥ κ

2 − 2. For instance, if
κ = 8/3, one can represent an SLE8/3(ρ) in (H, 0, 1,∞) as the limit of a chordal SLE8/3 in
(H, 0,∞) conditioned not to intersect a restriction measure with exponent ν = ν(ρ) from 1

to z � 1 ([15]; reversibility in this case follows from [6]). For general κ, it is unclear whether
there is a simple probabilistic interpretation, but one still gets an exact (if unwieldy in general)
description of the reversal.

C 9. – Let κ ≤ 4, ρ ≥ κ
2 − 2, (D,x, y) a configuration. Then SLEκ(ρ) in

(D,x, y, x+) and in (D, y, x, y−) have the same occupied set in distribution, where x, x+, y−, y

are in this order on the boundary.
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Proof. – We sketch the argument. The result follows from reversibility in the regular sit-
uation with four marked points described at the end of Section 3.2. Indeed, if x, z1, z2, y
are in this order on the boundary, one has a pair of commuting SLE’s starting at x, y with
common partition function: Z(c) = HD(x, y)

6−κ
2κ HD(z1, z2)νψ(u) where u is the cross-ratio

u = (z1−x)(z2−y)
(y−x)(z2−z1) (in the upper half-plane), κ2β(β − 1) + 2β = 2ν and

ψ(u) = (u(1− u))β2F1(2β, 2β +
8

κ
− 1; 2β +

4

κ
;u).

When κ ≤ 4, ρ = κβ ≥ κ
2 − 2, the processes do not hit [z1, z2], by comparison arguments.

Thus the local commutation extends to a maximal coupling, and in this coupling the occu-
pied sets coincide.

The first SLE is the martingale transform of chordal SLEκ in (D,x, y) by the martingale
(in upper half-plane coordinates):

t 7−→
Å

g′t(z1)g′t(z2)

(gt(z1)− gt(z2))2

ãν
ψ(ut)

where ut is the cross-ratio at time t. Take z2 = y−ε. Then the leading term of the expansion
of the martingale as ε↘ 0 is:

t 7−→
Å

g′t(z1)g′t(y)

(gt(z1)− gt(y))2

ãν Å
(gt(z1)−Xt)g

′
t(y)

(gt(y)−Xt)(gt(y)− gt(z1))

ãβ
so that this limiting process is identified from Lemma 12 as SLEκ(ρ) in (D,x, y, z1), ρ = κβ.
A symmetric result holds for the other SLE.

The same arguments can be used to establish reversibility of systems of multiple SLE’s
considered in [2] (this also follows from the symmetry of the density of the system w.r.t. in-
dependent chordal SLE’s when the pairing of endpoints is fixed).

5.2. Duality

The question of SLE duality is to describe boundaries of SLEκ, κ > 4, in terms of SLEκ̂,
κ̂ = 16/κ.

There are various parametric situations we can consider. Let us start with the simplest
setting: a configuration c = (D,x, z1, y, z2) has four marked points x, y, z1, z2 on the bound-
ary. We consider two SLE’s (inducing the measures µc, µ̂c, with traces γ, γ̂), see Table 1
([κ] represents an SLEκ “seed”, the other entries are the ρ parameters).

T 1.

x z1 y z2

[κ] ρ1 −κ2 ρ2

− κ̂2 ρ̂1 [κ̂] ρ̂2

The additional conditions for local commutation are ρ1 + ρ2 = 3
2 (κ − 4), ρ̂i = − 4

κρi,
consequently ρ̂1 + ρ̂2 = 3

2 (κ̂−4). This leaves one free parameter, say ρ1 = ρ. We need to put
conditions on ρ so that paths have a correct geometry. Take ρ ∈ [κ−4

2 , κ − 4], a nonempty
interval when κ ≥ 4. Consequently, ρ2 ∈ [κ−4

2 , κ − 4], ρ̂1, ρ̂2 ∈ [ κ̂−4
2 , κ̂ − 4]. Then the first
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SLE will first intersect [z1, z2] at y (see Lemma 15). To restrict even more the situation, take
ρ̂1 = κ̂ − 4 (or symmetrically ρ̂2 = κ̂ − 4). Then the second SLE cannot hit (z2, x), nor
(z1, z2) except at y; and it hits (x, z1) since ρ̂1 = κ̂− 4 < κ̂

2 − 2.

P 10. – In a maximal coupling Θ of µc, µ̂c, the range of γ̂ is contained in that
of γ. If ρ1 = κ− 4, γ̂ is the right boundary of K; if ρ2 = κ− 4, γ̂ is the left boundary of K.

Proof. – As before, take τ̂ a stopping time for the second SLE. The first SLE in c0,τ̂ is
defined until it exits at γ̂τ̂ at time τ . More precisely, it is defined up to a time where it ac-
cumulates at γ̂τ̂ and at no other point of the boundary arc [z1, z2] of c0,τ̂ ; this follows from
maximality of the coupling and Lemma 15. But γ is continuous away from [z1, z2] in c0; so
if τ̂ is positive, γ stopped when exiting c0,τ̂ has a limit, which is γ̂τ̂ . Hence γ̂τ̂ is on γ. Taking
countably many stopping times, this shows that γ̂ is included in (the range of) γ. Moreover,
if σ(t) = inf{u ≥ 0 : γu ∈ γ̂[0,t]}, then σ is a.s. strictly decreasing (if τ̂ stopping time and
t < τ̂ , then σ(t) > σ(τ̂), and stopping times are dense), and a.s. γσ(t) = γ̂t for all t (again
by density of stopping times).

Set ρ1 = κ − 4. Then the range of γ is partitioned into points on the range of γ̂, points
to the left of γ̂, and points to the right of γ̂; here left and right are from the perspective of
a particle moving along γ, starting from x. We want to prove that actually no point in the
range of γ is (strictly) to the right of γ̂. Take a stopping time τ . Then γ̂ first hits Kτ ∪ [x, z1]

on the arc [γτ , z1] at time τ̂ , again by maximality of the coupling and exit properties of the
second SLE. If γ̂t is inKτ for all t > τ̂ , then γτ is on γ̂ or to its left. If there exists t > τ̂ such
that γ̂t /∈ Kτ , then σ(τ̂) ≤ τ < σ(t), which contradicts the monotonicity of σ.

Hence a generic point γτ lies on γ̂ or to its left. This implies that γ̂ is contained in the right
boundary of the range of γ. Indeed, a point z on γ is on the right boundary of γ if there is a
continuous curve δ with endpoints z1, z that lies in D \ γ except at its endpoints. For any t,
since γ̂ is simple, one can find such a crosscut δ from z1 to γ̂t inD\ γ̂. This crosscut lies to the
right of γ̂ (except at its endpoint), where there is no other point of γ; it is thus also a crosscut
in D \ γ. Hence the right boundary of γ contains γ̂.

Since γ̂ starts at y (where γ ends) and ends on (x, z1), this shows that γ̂ is the full right
boundary of γ. Indeed, γ̂ disconnects z1 from points (strictly) to the left of γ̂. As no point
on γ lies to the right of γ̂, the endpoint of γ̂ on (x, z1) is also the rightmost point on (x, z1)

visited by γ.

R 11. – The situation where ρ varies in [κ−4
2 , κ− 4] is of some independent interest

and seems related to pivotal points questions.

We consider now versions where the non simple SLE is actually chordal SLEκ, at the
expense of some complication for the dual simple SLEκ̂.

Proof of Theorem 1. – Assume that κ ∈ (4, 8). Consider chordal SLEκ, say in (H, 0,∞).
The point 1 is swallowed at time τ1; D = γτ1 is on (1,∞) with distribution given by:

P(D ∈ (1, z)) = F (z) = c

∫ z

1

u−
4
κ (u− 1)

8
κ−2du

where c = B(1− 4/κ, 8/κ− 1)−1. In other words, D−1 has a Beta(1− 4/κ, 8/κ− 1) distri-
bution. The function F is such that t 7→ F ((gt(z)−Wt)/(gt(1)−Wt)) is a martingale. Let
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us disintegrate the SLE measure w.r.t. D (see [1] for related questions). It is easy to see that
up to τ1, the SLE conditional on D ∈ dz is the Girsanov transform of chordal SLE by:

t 7→ ∂zF

Å
gt(z)−Wt

gt(1)−Wt

ã
= c

g′t(z)

gt(1)−Wt
(gt(z)−Wt)

− 4
κ (gt(z)− gt(1))

8
κ−2(gt(1)−Wt)

2− 4
κ

and this is readily identified with SLEκ(κ − 4,−4) in (H, 0,∞, 1, z) (Lemma 12). To get a
regular situation, we split the point z into two points y and z2, while setting x = 0, z1 = 1,
z3 =∞. Consider the system of commuting SLE’s given by Table 2.

T 2. 4 < κ < 8

x z1 y z2 z3

[κ] κ− 4 −κ2
κ
2 − 4 2

− κ̂2 κ̂− 4 [κ̂] κ̂− 2 − κ̂2

The first SLE hits [z1, z3] at y, while the second SLE will not hit [z2, z3] and exits [x, z1]

somewhere in (x, z1) (Lemma 15). Arguing as in Proposition 10, this shows that γ̂ is the
right boundary of K. Finally, one takes z2 ↘ y, so that the first SLEκ becomes chordal
SLEκ conditional on D = y. This yields Theorem 1.

When κ ≥ 8, the trace is a.s. space filling, and we have to proceed differently to isolate a
boundary arc.

Proof of Theorem 2. – Consider now the case of a chordal SLEκ in (H, 0,∞), κ ≥ 8 (thus
κ̂ ≤ 2). Then γτ1 = 1 a.s. There is a leftmost point G on (∞, 0) visited by the trace before
τ1. We are interested in the boundary ofKτG , a simple curve from G to some point in (0, 1).
Then the distribution of G is given by:

P(G ∈ (z, 0)) = c

∫ 0

z

(−u)−4/κ(1− u)
8
κ−2du

where c = B(1− 4/κ, 1− 4/κ). In other words, G is such that G/(G− 1) has a
Beta(1 − 4/κ, 1 − 4/κ) distribution (generalized arcsine distribution). The disintegrated
SLE measure w.r.t. G is again SLEκ(−4, κ− 4) in (H, 0,∞, G, 1), up to hitting G. In order
to get a regular situation, we need to split the point G into three points z1, y, z2; we also set
x = 0, z3 = 1, z4 =∞. Consider the system of two commuting SLE’s in (H, y, z1, x, z2, z3)

given by Table 3.

T 3. κ ≥ 8

z1 y z2 x z3 z4

−2 −κ2
κ
2 − 2 [κ] κ− 4 2

κ̂
2 [κ̂] κ̂

2 − 2 − κ̂2 κ̂− 4 − κ̂2
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The first SLE exits at y, the second one exits in (x, z3) (Lemma 15). As in Proposition 10,
this shows that one can couple the two SLE’s in such a way that the second one is the bound-
ary arc of the first one between y and a point of (x, z3). Taking z1 ↗ y, z2 ↘ y gives Theo-
rem 2.

At the expense of some complications, one can consider more symmetric situations. Let
(D,x, y, z, z′, y′, x′) be a configuration (points are in that order). There is a system of four
commuting SLE’s attached to this configuration (where a+ b = 2), see Table 4.

T 4.

x y z z′ y′ x′

[κ] a(κ− 4) −κ2 −κ2 b(κ− 4) 2

2 a(κ− 4) −κ2 −κ2 b(κ− 4) [κ]

− κ̂2 a(κ̂− 4) [κ̂] 2 b(κ̂− 4) − κ̂2
− κ̂2 a(κ̂− 4) 2 [κ̂] b(κ̂− 4) − κ̂2

6. Some technical results

6.1. Absolute continuity for variants of SLE

In this subsection, we phrase similar absolute continuity results for different versions of
SLE. In the context of duality, it is useful to consider SLE-type measures in a parametric
family SLEκ(ρ) ([1, 6]), as acknowledged in [1].

An SLEκ(ρ), ρ = ρ1, . . . , ρn, in the configuration (H, x,∞, z1, . . . , zn) is an SLE the driv-
ing process of which satisfies the SDE:

dWt =
√
κdBt +

n∑
i=1

ρi
Wt − gt(zi)

dt

and W0 = x, up to swallowing of a zi; as usual (gt) denotes the solution to the Loewner
equation: dgt(z) = 2dt/(gt(z) − Wt). See Lemma 3.2 of [3] for homographic change of
coordinates. In particular, if

∑
i ρi = κ − 6, the point at infinity is used for normalization

only.

The following lemma is a change of measure result (see also [15]).

L 12. – Consider an SLEκ starting from x in H, ρ = ρ1, . . . , ρn; letZit = gt(zi)−Wt.
Then:

Mt =
∏
i

g′t(zi)
αi |Zit |βi

∏
i<j

|Zjt − Zit |ηij

is a local martingale if 2αi = κ
2βi(βi − 1) + 2βi, 2ηij = κβiβj . Before the swallowing of any

marked point, Mt/M0 is the density of an SLEκ(ρ) starting from (x, z1, . . . zn) w.r.t. SLEκ,
where ρ = κβ1, . . . , κβn.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



718 J. DUBÉDAT

Proof. – This is a standard computation relying on:

dZit =
2

Zit
dt−

√
κdBt

dg′t(zi)

g′t(zi)
= − 2

(Zit)
2
dt

d(Zjt − Zit)
(Zjt − Zit)

= − 2

ZitZ
j
t

dt

so that:
dMt

Mt
=
∑
i

βi
Zit

Å
2

Zit
dt−

√
κdBt

ã
+
κ

2

βi(βi − 1)

(Zit)
2

dt− 2αi
(Zit)

2
dt+

∑
i<j

(κβiβj − 2ηij)
dt

ZitZ
j
t

.

The statement on the density follows from the Girsanov theorem (e.g., [11]), observing that:

d〈Mt,Wt〉
Mt

= −
∑
i

κβi
Zit

dt

that is, the drift term of an SLEκ(ρ) with ρi = κβi. More precisely, under the original mea-
sure, W =

√
κB, B a standard Brownian motion. Under the transformed measure (via the

local martingale Mt stopped away from swallowing a zi), Ŵ = W − 〈W,M〉/M is a (local)
martingale with the same quadratic variation as W ; i.e., from Lévy’s theorem, a Brownian
motion

√
κB̂. Hence W =

√
κB̂ + 〈W,M〉/M .

Let c = (D, z0, . . . , zn) be a configuration. As in Theorem 4, we consider a variant of SLE

of the following type: let ψ be a positive, continuous, conformally invariant function on the
configuration space and exponents νij such that if

Z(c) = ψ(c)
∏

0≤i<j≤n+1

HD(zi, zj)
νij

then
∑n+1
j=1 ν0,j = ακ and

Ms = HD(z0, z)
−ακZ(cs,0)

is a local martingale under the reference measure SLEκ(D, z0, z), z an auxiliary marked
point on the boundary. For short, let us denote by SLEκ(Z) the measure obtained by
Girsanov transform of the reference measure SLEκ(D, z0, z) by M (up to a disconnection
event).

For example, from Lemma 12, it is easy to see that SLEκ(ρ) in c = (D, z0, z1, . . . , zn),
ρ1 + · · ·+ ρn = κ− 6, is SLEκ(Z) with:

Z(c) =
n∏
i=1

HD(z0, zi)
− ρi

2κ

∏
1≤i<j≤n

HD(zi, zj)
−
ρiρj
4κ .

The following is an extension of Proposition 3.

L 13. – Let c = (D, z0, z1, . . . , zn) be a configuration consisting of a simply
connected domain D with n + 1 marked points on the boundary; c′ = (D′, z0, z

′
1, . . . , z

′
n) is

another configuration agreeing with D in a neighborhood U of z0; U is at positive distance of a
connected boundary arc containing marked points other than z0. Let µUc denote the distribution
of an SLEκ(Z) in c, stopped upon exiting U . Then:

dµUc′

dµUc
(γ) =

Å
Z(c′τ )Z(c)

Z(cτ )Z(c′)

ã
exp(−λm(D;Kτ , D \D′) + λm(D′;Kτ , D

′ \D))

where cτ = (D \Kτ , γτ , z1, . . . , zn), similarly for c′τ .
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Proof. – One can proceed as follows: let µUc denote chordal SLEκ in the configuration c
(aiming at an auxiliary point z), stopped upon exiting U . Then trivially:

dµUc′

dµUc
=
dµUc′

dµUc′
· dµ

U
c′

dµUc
· dµ

U
c

dµUc
.

The middle term is studied in Proposition 3, while the outer terms are, from the definition of
SLEκ(Z):

dµUc
dµUc

=
Mτ

M0
=
Z(cτ )

Z(c)
· HD(z0, z)

α

HDτ (γτ , z)α

where τ is the first exit of U , and similarly for the other term. Under the assumptions above,
Mτ is uniformly bounded (see Lemma 14).

Recall that Z(c) depends on a choice of local coordinates at the marked points as a power
of a 1-form; but the ratio Z(c′τ )Z(c)

Z(cτ )Z(c′) does not depend on the choices.

6.2. A bound on densities

We give an upper bound on Radon-Nikodym derivatives that appear in the coupling
argument. This is a crude estimate that is sufficient for our purposes.

A configuration c = (D,x, y, z1, . . . , zn) consists in a bounded simply connected Jor-
dan domain D, with distinct marked points on its boundary; ∂ (resp. ∂̂) is the smallest
connected boundary arc containing all marked points except x (resp. y); K (resp. K̂) is
a chain growing at x (resp. y) generated by the continuous trace γ (resp. γ̂). We denote
cs,t = (D \ (Ks ∪ K̂t), γs, z1, . . . zn, γ̂t); also Z(c) = ψ(c)

∏
i<j HD(zi, zj)

νij , ψ a positive,
continuous, conformally invariant function. For 0 ≤ s′ ≤ s, 0 ≤ t′ ≤ t, define:

`s,ts′,t′ =

Å
Z(cs,t)Z(cs′,t′)

Z(cs′,t)Z(cs,t′)

ã
exp(−λm(D \ (Ks′ ∪ K̂t′);Ks, K̂t)).

L 14. – For any η > 0 small enough, there exists C = C(D, η) > 0 such that for all
chains K, K̂, 0 ≤ s′ ≤ s, 0 ≤ t′ ≤ t with dist(Ks, K̂t) ≥ η, dist(Ks, ∂) ≥ η, dist(K̂t, ∂̂) ≥ η,

C−1 < `s,ts′,t′ < C.

Proof. – From the identity: `s,ts′,t′ = `s
′,t′

0,0 `
s,t
0,0(`s

′,t
0,0 `

s,t′

0,0 )−1, it is enough to prove the bound
for s′ = t′ = 0. From, e.g., Corollary 2.8 in [10], it is enough to prove it in any reference
Jordan domain, say the upper semidisk, with all marked points on the segment (−1, 1). Also
without loss of generality, one can assume there is at least one marked point z1.

In the bounded domain D, the total mass of loops of diameter at least η in the loop mea-
sure µloop is finite; this gives uniform bounds above and below for the factor exp(−λm(. . . )).

Consider the set S of quadruplets (K,x′, K̂, y′) where K, K̂ are compact subsets of D,
K, K̂ connected, with x′, y′ on their respective boundaries, dist(K,K ′) ≥ η, dist(K, ∂) ≥ η,
dist(K̂, ∂̂) ≥ η, and x′ (resp. y′) corresponds to a single prime end onD\(K∪K̂). (This last
condition is always satisfied “at the tip”). The set S is compact (for Hausdorff convergence
of compact subsets ofD). To such a quadruplet are associated four configurations: c0,0 = c,
c1,0 = (D \K,x′, y, z1, . . . , zn), c0,1 = (D \ K̂, x, y′, . . . ), c1,1 = (D \ (K ∪ K̂), x′, y′, . . . ).
Then the ratio Z(c11)Z(c00)

Z(c10)Z(c01)
defines a positive function on the compact set S. It is enough to

prove that this function is continuous.
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Let (Kn, x
′
n, K̂n, y

′
n)n converge to (K,x′, K̂, y′). By Schwarz reflection across [−1, 1] and

the Carathéodory convergence theorem ([10], Theorem 1.8), the conformal equivalence φn11
betweenDn

11 = D\(Kn∪K̂n) andD11 = D\(K∪K̂), extended by reflection and normalized
by φn11(z1) = z1, φn11(z1) > 0, converges locally uniformly away from the unit circle and

(K ∪K ∪ K̂ ∪ K̂) (here K is the conjugate of K). The same holds for Dn
10 = D \Kn and

Dn
01 = D \ K̂n.

Fix small semidisks D(zi, η/2) around the marked points zi’s; the choice of D as the up-
per semidisk gives a choice of local coordinates at the zi’s. Then the HDn..

(zi, zj) are num-
bers; they can be decomposed into: excursion harmonic measure in the semidisksD(zi, η/2),
D(zj , η/2), and the Green function at points on C(zi, η/2), C(zj , η/2). The excursion har-
monic measures are fixed and the Green function converges due to the conformal invariance
of the Green function and uniform convergence of theφn.. near the zi’s. This proves continuity
of the HDn..

(zi, zj).

The treatment of ratios of type HDn1,1
(x′n, zi)/HDn1,1

(x′n, zj) is similar: take a crosscut δ

at positive distance of K, separating it from K̂ and the marked points. Then the Poisson
excursion kernel can be decomposed w.r.t. the first crossing (by a Brownian motion starting
near x′n) of δ and the last crossing ofC(zi, η/2). It is easy to see that the excursion harmonic
measure on δ converges. This gives continuity of ratios of type HDn1,1

(x′n, zi)/HDn1,1
(x′n, zj).

Assuming without loss of generality that there are at least two marked points z1, z2, the term
H(x, y). can be eliminated from the partition function.

The only remaining thing to check is the convergence of the cross ratios. This is immediate
for those not involving x, y, from the convergence of the φn.. as above. This can be done also
for those involving x, y; though for our purposes it is enough to prove that all cross-ratios
(between marked points) are uniformly bounded. By comparison arguments, it is enough
to prove it for cross-ratios involving x−, x+, y−, y+ (instead of x, y, x′, y′) , where these
new points are on [−1, 1] and are such that the interval (x−, x+) (resp. (y−, y+)) contains
Kn ∩ [−1, 1] (resp. K̂n ∩ [−1, 1]) for n large enough, and no other marked point. This then
reduces to the previous situation.

6.3. First exit of SLEκ(ρ)

We need to establish some simple qualitative properties of SLEκ(ρ) in, say, a reference
configuration c = (H, 0,∞, z1, . . . , zn). In particular, we are interested in the position of the
trace the first time a marked point is swallowed.

Assume that n = 2, 0 < z1 < z2 < ∞. Then the SLE is well defined up to swallowing
of z1 at time τ1 = τz1 . There are several possibilities: τ1 = ∞; γτ1 = z1; γτ1 ∈ (z1, z2);
γτ1 = z2; γτ1 ∈ (z2,∞); or γτ1 does not exist. (This last case is unlikely to ever happen,
though delicate to rule out in general).

More precisely, let Yt = gt(z1)−Wt

gt(z2)−Wt
and ds = dt

(gt(z2)−Wt)2
= − 1

2d log g′t(z2). Then:

dYs = (1− Ys)
ï√

κdBs + (
ρ1 + 2

Ys
+ ρ2 + 2− κ)dt

ò
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where B is a standard Brownian motion. This is a diffusion on [0, 1]. Notice that g′t(z2) is
positive before τ2, and goes to zero at t↗ τ2. A scale function of this diffusion is F :

F (y) =

∫ y

1/2

u−
2
κ (2+ρ1)(1− u)

2
κ (4+ρ1+ρ2−κ)du.

It blows up at 0 if ρ1 ≥ κ
2 − 2. This means that Y does not reach 0 in finite time, so that

τ1 = τ2 a.s. (possibly infinite). If ρ1 <
κ
2 − 2, ρ1 + ρ2 ≤ κ

2 − 4, the scale function blows up
at 1, not 0, meaning that τ1 < τ2 a.s.

Assume that the trace has an accumulation point in [z1, z2) as t ↗ τ2. Then (Yt) accu-
mulates at 0 as t ↗ τ2. This can be seen by interpreting (gt(z) − Wt) as the limit of the
probability divided by y that a Brownian motion started at iy, y � 1, exits H \ Kt on the
boundary arc [γt, z]. Consider a time where the trace is near an accumulation point in [z1, z2)

In order to exit on [γt, z1], the Brownian motion has to get near z2, and then move through
a strait where the trace accumulates; this conditional probability is controlled by Beurling’s
estimate.

The following lemma gives conditions under which the exit point of an SLEκ(ρ) process
(first disconnection of a marked point) can be located (at least on a segment). The statement
is in terms of accumulation points, which will be enough for our purposes. It is likely that a
stronger statement (in terms of limits) holds.

L 15. – Consider an SLEκ(ρ) in (H, 0,∞, z1, . . . , zn), 0 < z1 < · · · < zn. Let
ρk = ρ1 + · · ·+ ρk, ρn = κ− 6.

1. Assume that for some k, ρi ≥ κ
2 − 2 for i < k and ρi ≤ κ

2 − 4 for k ≤ i < n. Then a.s.
as t↗ τ1, γt accumulates at zk and at no other point in [z1, zn].

2. Assume that for some k, ρi ≥ κ
2 − 2 for i < k; ρk ∈ (κ2 − 4, κ2 − 2); and ρi ≤ κ

2 − 4 for
k < i < n. Then a.s. as t ↗ τ1, γt accumulates at a point in [zk, zk+1] and at no point
in [z1, zn] \ [zk, zk+1].

Proof. – While the results are fairly intuitive from a simple Bessel dimension count, com-
plete arguments are a bit involved.

1. a) Case k = n = 2. By a change of coordinates, one can send z2 to ∞. Then the
SLE is defined for all times, τ1 = τ2 = ∞. This implies that the trace is unbounded
(accumulates at z2 = ∞). Moreover, for any z ∈ (z1, z2), the (time changed) diffusion
Yt = (gt(z)−Wt)/(gt(z1)−Wt) goes to 1 as t ↗ τ1 = ∞, by a study of its scale function.
In particular, it does not accumulate at 0; hence the trace does not accumulate in [z1, z3).
So the only point of accumulation of the trace in [z1, z2] is z2.

b) Case k = n ≥ 2. Again, we change coordinates so that zn =∞. Let ρ1 = κ
2 − 2 + ρ′1,

ρi = ρ′i−ρ′i−1. By assumption, ρ′i ≥ 0, i < n. Consider the SDE (notations as in Lemma 12):

dZ1
t =

2

Z1
t

dt−
√
κdBt +

n−1∑
i=1

ρi
Zit
dt = −

√
κdBt +

κ

2
.
dt

Z1
t

+
n−1∑
i=1

ρ′i
Zi+1
t − Zit
ZitZ

i+1
t

dt

the last sum being nonnegative. By a stochastic domination argument (comparison with a
Bessel process, δ = 2), this shows that τ1 =∞. Hence the process is defined for all times and
the trace is unbounded.
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Next we prove that there is no point of accumulation of the trace in [z1, zn−1]. Take a small
neighbourhood U of [z1, zn−1]. Let σn be the first time the trace goes at distance n (an a.s. finite
stopping time). LetUn be the connected component of 1 in (gσn(U)−Wt)/(gσn(zn−1)−Wt).
By harmonic measure estimates, it is easy to see that Un is contained in an arbitrarily small
neighborhood of 1 as n→∞, sayD(1, εn). By a), with probability 1−o(1), an SLEκ(ρn−1)

in (H, 0,∞, 1) does not intersect D(1,
√
εn). On the other hand, the density of the SLEκ(ρ)

starting with all marked points inD(1, εn) w.r.t. to SLEκ(ρn−1) in (H, 0,∞, 1) is 1+o(1) on
the event that the trace does not intersect D(1,

√
εn). This follows from an inspection of the

densities (Lemma 12) and the fact that on the event {γ ∩D(0,
√
εn) = ∅}, (g′t(z)/g

′
t(1)− 1)

is small uniformly in t and z ∈ [1− εn, 1 + εn]. Indeed, Brownian excursions starting from 1
and z couple with high probability before exiting D(1,

√
εn).

This proves that with probability 1−o(1), the original SLE does not return to U after σn.
Notice that one can insert a point z′n between zn−1 and zn with ρn = 0 and the result still
applies. This shows that there is no point of accumulation in [z1, zn).

c) Case n = 3, k = 2. We prove that the trace does not accumulate at z3 (similarly, at z1).
By sending z3 at infinity, it is easy to see that the half-plane capacity of the hull at τ seen
from z1 is finite a.s. (one can even compute its Laplace transform). We have to rule out that
the hull is unbounded while having finite half-plane capacity. It is enough to prove that the
driving process stopped at τ stays bounded. Since Z1

t = gt(z1)−Wt goes to zero as t↗ τ ,
it is enough to prove that

∫ τ ds
Z1
s

is finite. Consider the SDE for Z1
t :

dZ1
t = −

√
κdBt +

ρ1 + ρ2 + 2 + εt
Z1
t

where εt = ρ2(1 − Z1
t /Z

2
t ); εt goes to zero as t ↗ τ (by studying the time changed dif-

fusion (Z1
t /Z

2
t )). One can proceed with a comparison with Bessel processes. On the event

{εt ∈ [0, ε], t ≥ t0}, for t ≥ t0, Z1
t is between a Bessel(δ − ε) and a Bessel(δ),

δ = 1 + 2ρ1+ρ2+2
κ ≤ 2 − 8

κ (both hit zero in finite time). Let t1 be the first time the
ratio of the two bounding Bessel processesX− andX+ is 2; restart them at t1 from the same
position Z1

t1 , and define inductively ti, i > 1. One can think of restarting the majorizing
Bessel process at a lower level at t1 as waiting for the Bessel to reach level Z1

t1 . This proves
that

∫ τ
t0

ds
Z1
s
≤ 2

∫ τ0
t0

ds
X+
s

, which is finite.

d) General case. Send zk to infinity by a change of coordinate. The conditions on the ρi’s
are rephrased as:

ρ1, ρ1 + ρ2, . . . , ρ1 + · · ·+ ρk−1 ≥
κ

2
− 2

ρn, ρn + ρn−1, . . . , ρn + · · ·+ ρk+1 ≥
κ

2
− 2.

Hence the situation to the left and to the right of 0 are identical. It is easy to see from b)
that the trace is defined for all times and is unbounded. Let σn be the time of first exit of
D(0, n) by γ. Rescale the process so that gt(z1) (resp. gt(zn), Wt) is sent to −1 (resp. 1, wt)
at t = σn. If wt is away from ±1, one can reason as in b) from the result of c). If w is close
to 1, say, one can rescale by sending w to 0 (and 1) is fixed. The resulting process has density
very close to 1 with a process of type b) as long as wt stays close to 1. When wt separates
from 1, one can apply c) with a density argument.
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2. a) Case n = 2, k = 1. It is easily seen by sending z2 (or z1) to infinity that the trace
is defined for a finite time. Reasoning as in 1c) shows that the trace is bounded. Hence it
accumulates somewhere in (z1, z2), but not at z2 (and by symmetry z1).

b) General case. Send zk to infinity (so that zk+1 < 0). A stochastic domination ar-
gument as in 1b) shows that the driving process is dominated by the one corresponding to
z2, . . . , zk−1 being sent to infinity while zk+2, . . . , zn are sent to zk+1. It is easily seen that
for that process, τk+1 < τ1. Consequently, this is also the case for the original process, viz.
the trace accumulates on [zk, zn] without accumulating on [z1, zk). As in 1d), the situation
is symmetric, so there is also no accumulation on (zk+1, zn].
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