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ON THE GROUP OF REAL ANALYTIC
DIFFEOMORPHISMS

ʙʏ T����ʜɪ TSUBOI

Aʙ��ʀ���. – The group of real analytic diffeomorphisms of a real analytic manifold is a rich
group. It is dense in the group of smooth diffeomorphisms. Herman showed that for the n-dimensional
torus, its identity component is a simple group. For U(1) fibered manifolds, for manifolds admitting
special semi-free U(1) actions and for 2- or 3-dimensional manifolds with nontrivial U(1) actions, we
show that the identity component of the group of real analytic diffeomorphisms is a perfect group.

R�����. – Le groupe des difféomorphismes analytiques réels d’une variété analytique réelle est
un groupe riche. Il est dense dans le groupe des difféomorphismes lisses. Herman a montré que, pour
le tore de dimension n, sa composante connexe de l’identité est un groupe simple. Pour les variétés
U(1) fibrées, pour les variétés admettant une action semi-libre spéciale de U(1), et pour les variétés de
dimension 2 ou 3 admettant une action non-triviale de U(1), on montre que la composante de l’identité
du groupe des difféomorphismes analytiques réels est un groupe parfait.

1. Introduction and statement of the result

Let Diff
ω
(M) denote the group of real analytic diffeomorphisms of a real analytic

manifold M . The group Diff
ω
(M) is an open subset of the space of real analytic maps

Map
ω
(M, M) with the C1 topology. The group Diff

ω
(M) with the C1 topology has a

manifold structure modelled on the space Xω(M) of real analytic vector fields on M . Hence
Diff

ω
(M) is locally contractible (see Proposition 11.9). It is well-known that Diff

ω
(M) is

dense in the group Diff
∞

(M) of smooth diffeomorphisms in the C1 topology (See Corollary
11.8). Hence Diff

ω
(M) is a huge complicated group.

Let Diff
ω
(M)0 denote the identity component of Diff

ω
(M). For the n-dimensional torus

Tn, Herman [10] in 1974 showed that Diff
ω
(Tn)0 is a simple group. For 30 years since then,
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602 T. TSUBOI

there are no new results on the simplicity of the groups of real analytic diffeomorphisms.
However, Herman conjectured and we may still conjecture that for any compact connected
manifold M , the identity component Diff

ω
(M)0 of the group of real analytic diffeomor-

phisms is simple.
Now, in this paper, we change the question. If an infinite group is simple, then it is per-

fect. Hence we may ask a weaker question and may try to show the perfectness of the group
of real analytic diffeomorphisms. Note that, in the case of the group of smooth diffeomor-
phisms, the perfectness implies the simplicity ([5], see also [2]), however, we cannot apply this
argument to the group of real analytic diffeomorphisms.

For this question, our present results are as follows.

Tʜ��ʀ�� 1.1. – Let M be a real analytically U(1) fibered real analytic closed manifold.
Then the identity component Diff

ω
(M)0 of the group of real analytic diffeomorphisms of M is

a perfect group.

We consider other manifolds with well-understood U(1) actions. Let N be a compact
(n − 1)-dimensional manifold with boundary ∂N . Let M be the n-dimensional manifold
obtained from N ×U(1) by identifying {x}×U(1) to a point for x ∈ ∂N . This M has a real
analytic structure with the obvious real analytic U(1) action. We call this U(1) action a spe-
cial semi-free U(1) action. Spheres and direct products with spheres admit special semi-free
U(1) actions.

Tʜ��ʀ�� 1.2. – Let M be a real analytic manifold which admits a special semi-free U(1)

action. Then the identity component Diff
ω
(M)0 of the group of real analytic diffeomorphisms

of M is a perfect group.

If the dimension of M is 2 or 3, we can show the perfectness of Diff
ω
(M)0 if M admits a

nontrivial U(1) action.

Tʜ��ʀ�� 1.3. – Let M be a real analytic manifold of dimension 2 or 3 which admits a
nontrivial U(1) action. Then the identity component Diff

ω
(M)0 of the group of real analytic

diffeomorphisms of M is a perfect group.

These theorems are shown in the following way.
First, we show the perfectness of the group of orbit preserving diffeomorphisms for the

U(1) bundles (Theorem 2.2) and a similar result for the orbit preserving diffeomorphisms
for the manifolds admitting special semi-free U(1) actions (Theorem 5.1). These theorems
for orbit preserving diffeomorphisms are proved by using the famous Arnold theorem [1] for
the Diophantine rotations and a similar Theorem 5.3 for the rotations of concentric circles,
which we prove in Section 10. We also need certain explicit orbitwise actions of elements of
SL(2;R), and the existence of such nice actions gives the restriction to the U(1) actions for
which we can show our results by now.

To show our main theorems, we perturb the given U(1) action by real analytic diffeo-
morphisms and obtain finitely many U(1) actions such that the tangent space TxMn of
any point x of the manifold Mn is spanned by the generating vector fields of the resultant
U(1) actions.
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ON THE GROUP OF REAL ANALYTIC DIFFEOMORPHISMS 603

For n = dim(Mn) and U(1) actions generated by the vector fields ξ1, . . . , ξn, we have

the determinant ∆ = det(ξij) with respect to an orthonormal frame
∂

∂xj

for a real analytic

Riemannian metric on Mn, where ξi =

n�

j=1

ξij

∂

∂xj

(i = 1, . . . , n).

On the open set where ∆ �= 0, a diffeomorphism sufficiently close to the identity can be
written as a composition of orbit preserving diffeomorphisms. In fact, we show that for real
analytic diffeomorphisms f such that f − id are divisible by a certain power of ∆, f can be
written as a composition of orbit preserving real analytic diffeomorphisms. This is done by
an inverse mapping theorem for real analytic maps with singular Jacobians (Theorems 6.7
or 6.12).

Now we need to decompose a real analytic diffeomorphism sufficiently close to the
identity as a composition of real analytic diffeomorphisms which satisfy the assumption of
Theorems 6.7 or 6.12. This is done by using the regimentation Lemma 7.1, which replaces
the fragmentation lemma ([2], [13]) for the smooth diffeomorphisms.

Then we use the perfectness of the group of orbit preserving diffeomorphisms of U(1)

bundles (Theorem 2.2) or a similar theorem (Theorem 5.1) for manifolds admitting special
semi-free actions, to show our main theorems (Section 8).

Our method can treat the real analytic manifolds with a little more general U(1) actions.
We say that two elements of a group are homologous if they represent the same element in the
abelianization of the group. In Section 9, we show that, if the manifold admits a nontrivial
U(1) action, any real analytic diffeomorphism isotopic to the identity is homologous to a
diffeomorphism which is an orbitwise rotation (Proposition 9.1). Then we show Theorem
1.3 by showing Propositions 9.2, 9.3 and Theorem 9.4.

We think that Diff
ω
(M)0 is perfect if M admits a nontrivial U(1) action. But for the mo-

ment we need a structure theorem for the orbifold M/U(1) in the construction of a nice
multi-section outside of a codimension 2 suborbifold to show that orbitwise rotations are
homologous to zero.

2. Orbit preserving diffeomorphisms of U(1) bundles

As we mentioned, for the n-dimensional torus Tn, Herman [10] in 1974 noticed that the
result of Arnold [1] implies Diff

ω
(Tn)0 is a simple group. Hence it is perfect.

We note that Herman’s proof ([10]) uses the fact that the commutator subgroup
[Diff

ω
(Tn)0,Diff

ω
(Tn)0] of Diff

ω
(Tn)0 is its dense subgroup. In fact, for the group

Diff
∞

(M) of C∞ diffeomorphisms of a smooth manifold M , its identity component
Diff

∞
(M)0 is perfect by the result of Thurston ([20], [2]). Since Diff

ω
(M) is dense in

Diff
∞

(M), the commutator subgroup [Diff
ω
(M)0,Diff

ω
(M)0] is dense in Diff

ω
(M)0.

For the real analytic diffeomorphisms of Tn, Arnold [1] already noticed the followings.

Tʜ��ʀ�� 2.1 (Arnold[1]). – Let α ∈ Rn satisfy the Diophantine condition. For a real
analytic family Φ(w) (w ∈ W) of analytic diffeomorphisms of Tn close to the identity, there is
an analytic family (ψ(w), λ(w)) ∈ Diff

ω
(Tn)0 × Tn such that

Φ(w) = Rλ(w)−α ◦ ψ(w) ◦Rα ◦ ψ(w)
−1,

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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where R∗ denotes the rotation by ∗ on Tn = Rn/Zn.

Here a real vector α ∈ Rn is said to satisfy the Diophantine condition if there exist posi-
tive real numbers C and β such that |α • �−m| ≥ C���−β for any � ∈ Zn

\ {0} and m ∈ Z.

Since Rλ can be written as a commutator in

PSL(2;R)
n

= PSL(2;R)× · · · × PSL(2;R)

depending real analytically on λ, Φ(w) can be written as a product of 2 commutators depend-
ing real analytically on w ∈ W .

This means that for a compact manifold N and the product N × Tn with the product
foliation F = ({∗} × Tn) (∗ ∈ N ), the group Diff

ω
(F)0 is a perfect group, where Diff

ω
(F)

denotes the group of real analytic diffeomorphisms mapping each fiber of the projection
N × Tn −→ N to itself and the subscript 0 denotes the identity component.

We first generalize the perfectness result for the group of orbit preserving diffeomorphisms
of a U(1) bundle.

Tʜ��ʀ�� 2.2. – Let p : M −→ B be a real analytic principal U(1) bundle over a closed
manifold B. Let Diff

ω
(F) denote the group of real analytic diffeomorphisms mapping each fiber

of the projection p : M −→ B to itself. The identity component Diff
ω
(F)0 of Diff

ω
(F) is a

perfect group.

3. Proof of Theorem 2.2

Proof of Theorem 2.2 for trivial U(1) bundles. – Theorem 2.2 for the trivial U(1) bun-
dle is just a reformation of Arnold’s Theorem 2.1. In this case, M = B × U(1) and
F = ({∗} × U(1))∗∈B . An element of Diff

ω
(F)0 is written as the real analytic family Φ(w)

(w ∈ B) of real analytic diffeomorphism of U(1). It is enough to show that Φ(w) near the
identity can be written as a product of commutators.

Take a Diophantine rotation Rα in the direction of the fibers of the U(1) bundle. The
element Φ(w) near the identity is written as

Φ(w) = Rλ(w)−α ◦ ψ(w) ◦Rα ◦ ψ(w)
−1.

Here, λ(w) is determined uniquely by the condition that the rotation number of
R−λ(w) ◦ (Rα ◦ Φ(w)) coincides with that of Rα, α mod 1. In the proof in [1] of Arnold’s
Theorem 2.1, the conjugating diffeomorphism ψ(w) is obtained uniquely so that the base
point 1 ∈ U(1) is fixed (ψ(w)(1) = 1). Thus ψ(w) (w ∈ B) is a real analytic family of real
analytic diffeomorphisms. In the expression Φ(w) = Rλ(w)−α ◦ ψ(w) ◦Rα ◦ ψ(w)−1, Rλ(w)

can be written as a product of two commutators in Map
ω
(B,SL(2,R)) by the following

Lemma 3.1. Thus Theorem 2.2 for trivial U(1) bundles is shown.

L���� 3.1. – A rotation

�
X −Y

Y X

�
(X2 + Y 2 = 1) close to the identity can be written

as a product of 2 commutators using products of rotations and diagonal matrices.
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Proof. – We notice the following equality:
�

X −Y

Y X

� �
a 0

0
1
a

� �
X 2a

2
Y

a4−1
2a

2
Y

a4−1 X

� �
1
a

0

0 a

�

=

�
1
a

0

0 a

� �
X 2a

2
Y

a4−1
2a

2
Y

a4−1 X

� �
a 0

0
1
a

� �
X Y

−Y X

�
.

Put �
W Z

Z W

�
=

Å
1

¡ 
1−

(a4 + 1)2Y 2

(a4 − 1)2

ã�
X 2a

2
Y

a4−1
2a

2
Y

a4−1 X

�
∈ SL(2;R).

Then �
X −Y

Y X

�2

=

�
1
a

0

0 a

� �
W Z

Z W

� �
a 0

0
1
a

� �
X Y

−Y X

�

·

�
a 0

0
1
a

� �
W −Z

−Z W

� �
1
a

0

0 a

� �
X −Y

Y X

�

=

��
1
a

0

0 a

�
,

�
W Z

Z W

����
W Z

Z W

�
,

�
X Y

−Y X

� �
a 0

0
1
a

��
.

Hence

�
X −Y

Y X

�2

can be written as a product of 2 commutators. Here note that

�
W Z

Z W

�
=

�
1√
2
−

1√
2

1√
2

1√
2

� �
W + Z 0

0 W − Z

� �
1√
2

1√
2

−
1√
2

1√
2

�

and this shows the lemma.

Proof of Theorem 2.2 for non-trivial U(1) bundles. – We choose a family of trivializing
neighborhoods for the U(1) bundle. On each trivializing neighborhood, we can write Φ(w)

as a family of real analytic diffeomorphisms. Then we take a Diophantine rotation Rα and
Φ(w) near the identity can be written as Φ(w) = Rλ(w)−α ◦ ψ(w) ◦ Rα ◦ ψ(w)−1 on the
trivializing neighborhood.

Now note that, for any U(1) bundle, the rotation in the direction of the fiber is defined.
Hence the Diophantine rotation Rα is globally defined. Moreover, since λ(w) is determined
uniquely by the condition that the rotation number of R−λ(w)Φ(w) coincides with that of Rα,
α mod 1, and this condition does not depend on the choice of local trivialization of the U(1)

bundle, λ(w) is well defined as a real analytic function on B.
On the other hand, ψ(w) on a trivializing neighborhood is unique only up to composing

rotations on the right. However, the Lebesgue measure along the fiber is well defined, and
among these ψ(w), there is a unique element ψ(w) ∈ Diff

ω
(F)0 such that

�

S1

(ψ(w)− id)(θ)dθ = 0.

In fact, for a given ψ(w), put

β(w) =

�

S1

(ψ(w)− id)(θ)dθ = −

�

S1

(ψ(w)
−1
− id)(θ)dθ.
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606 T. TSUBOI

Then �

S1

(ψ(w) ◦R−β(w) − id)(θ)dθ

=

�

S1

(ψ(w) ◦R−β(w) − ψ(w) + ψ(w)− id)(θ)dθ

= −

�

S1

(Rβ ◦ ψ(w)
−1
− ψ(w)

−1
)(θ)dθ +

�

S1

(ψ(w)− id)(θ)dθ = 0.

By replacing the given ψ(w) by ψ(w) ◦ R−β(w), the new ψ(w) satisfies the above condition,
and the conjugating diffeomorphism ψ(w) taken for the trivializing neighborhoods for the
U(1) bundle matches up on the intersections.

Thus we can write Φ(w) = Rλ(w)−α ◦ψ(w) ◦Rα ◦ψ(w)−1 (w ∈ B). This means that any
element of the abelianization H1(Diff

ω
(F)0;Z) is represented by an element of the group

Map
ω
(B,U(1))0 of diffeomorphisms which are fiberwise rotation.

Rotations near the identity can be written as commutators in PSL(2;R) or SL(2;R),
however we need a trivialization of the circle bundle to make PSL(2;R) or SL(2;R) act on
the fiber.

We will show the following proposition, which completes the proof of Theorem 2.2 for
non-trivial U(1) bundles.

Pʀ����ɪ�ɪ�ɴ 3.2. – Each element of Map
ω
(B,U(1))0 can be written as a product of com-

mutators of the group of real analytic orbit preserving diffeomorphisms Diff
ω
(F)0.

For the proof of Proposition 3.2, we carefully choose a finite family of trivializations of
the circle bundle over the complements of submanifolds Di’s. We decompose an element of
Map

ω
(B,U(1))0 into elements which are the identity over Di. We see that there is an ana-

lytic action of Map
ω
(B \ Di, SL(2;R)) on p−1(B \ Di). The action of certain elements of

Map
ω
(B \Di, SL(2;R)) extends to that of elements of Map

ω
((B,Di), (SL(2;R), {id})).

Proof of Proposition 3.2. – Let p : M −→ B be a real analytic principal U(1) bundle.
Let pE : E −→ B be the associated complex line bundle. The space of real analytic sections
of E is a real vector space.

We use a finite set of real analytic sections si : B −→ E (i = 1, . . . , k; 2k ≥ n + 1 =

dim(M) + 1) transverse to the zero section such that
k�

i=1

s−1
i

(0) = ∅. Then the bundle

M −→ B has k trivializing open dense sets B \ s−1
i

(0) which form a covering of B.
We consider a real analytic Hermitian metric for E. Then the square of the absolute value

|si|
2 : B −→ R (i = 1, . . . , k) is a non negative real analytic function on B.

For r ∈ Map
ω
(B,U(1))0 near the identity, let �r : B −→ fiU(1) be the lift near the identity,

where fiU(1) is the universal covering group of U(1).
Put

�ri(w) =

Å
|si|

4
(w)

¡ k�

j=1

|sj |
4
(w)

ã�r(w)

2
,
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where the product in fiU(1) ∼= R is written additively. Let ri be the element of Map
ω
(B, U(1))0

defined by �ri. Then as an element of Map
ω
(B,U(1))0,

r = r1
2
· · · rk

2,

where the product in U(1) is written multiplicatively. Note that ri is flat along s−1
i

(0) which
is divisible by |si|

4.
For a real analytic section s : B −→ E transverse to the zero section, s−1(0) is a codi-

mension 2 submanifold of B. The restriction of the bundle M |(B \ s−1(0)) is trivialized by

using the section e : B −→ M given by e(b) =
s(b)

|s(b)|
. Then the coordinate transformation

is written as follows. First,

M |(B \ s−1
i

(0)) −→ (B \ s−1
i

(0))× U(1)

is given by x �−→ (p(x),
x

ei(p(x))
), where ei =

si(b)

|si(b)|
. Hence we have the coordinate trans-

formation
(B \ s−1

i
(0))× U(1) ⊃ (B \ (s−1

i
(0) ∪ s−1

j
(0)))× U(1)

�

(B \ s−1
j

(0))× U(1) ⊃ (B \ (s−1
j

(0) ∪ s−1
i

(0)))× U(1)

given by (w, z) �−→ (w, z
ei(w)

ej(w)
).

We would like to make a certain element of Map
ω
(B \ s−1

i
(0), SL(2,R)) act on

p−1(B \ s−1
i

(0)) in such a way that this action extends to an element of Diff
ω
(F)0.

Let Ai : B \ s−1
i

(0) −→ SL(2,R) be the map Ai =

Ñ
1 + |si|

2 0

0
1

1 + |si|
2

é
which acts on

U(1) ∼= SO(2) identified with the oriented lines through the origin on the plane. For a neigh-
borhood N of b ∈ s−1

i
(0), there is a real analytic coordinate

N � w �−→ (u(w), pC(si(w))) ∈ Rn−3
×C,

where u : N −→ Rn−3 and pC : p−1
E

(N) −→ C = {x + y
√
−1}. On this coordinate,

Ai(w) =

Ñ
1 + x2 + y2 0

0
1

1 + x2 + y2

é
.

In order to see whether this extends to an element of Diff
ω
(F)0, we need to look at the action

on another trivialization. If N ⊂ B \ s−1
j

(0), we have

x �−→ (p(x),
x

ej(p(x))
) : M |N −→ N × U(1)

and
x �−→ (p(x),

x

ei(p(x))
) : M |(N \ s−1

i
(0)) −→ (N \ s−1

i
(0))× U(1).

These trivializations are related by (w, z) �−→ (w, z
ei(w)

ej(w)
), which is real analytically con-

jugate to (u, x, y, z) �−→ (u, x, y,R(x, y)e2π
√
−1tij(u)z). Here tij(u) is real analytic function

on u, for a neighborhood D of 0 ∈ C ∼= R2, R : D \ {(0, 0)} −→ SL(2;R) is the map given

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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by R(x, y) =
1�

x2 + y2

�
x −y

y x

�
in the real coordinates. Thus we need to check whether

R−1AiR is real analytic on N .

L���� 3.3. – Let R : D \ {(0, 0)} −→ SL(2;R) be the map given by R(x, y) =

1�
x2 + y2

�
x −y

y x

�
. Let A =

�
a 0

0 a−1

�
, where a = a(x, y) is real analytic and a(0, 0) = 1.

If a(x, y)− 1 is divisible by x2 + y2, then R−1AR is real analytic at (0, 0).

Proof. – For A =

�
a 0

0 a−1

�
,

R−1AR− I =
1

x2 + y2

�
x y

−y x

� �
a 0

0 a−1

� �
x −y

y x

�
− I

=
1

x2 + y2

�
(a− 1)x2 + (a−1 − 1)y2 (−a + a−1)xy

(−a + a−1)xy (a−1 − 1)x2 + (a− 1)y2

�

=
a− 1

a(x2 + y2)

�
ax2 − y2 −(1 + a)xy

−(1 + a)xy −x2 + ay2

�
.

Hence if a(x, y)− 1 is divisible by x2 + y2 then R−1AR is real analytic at (0, 0).

By Lemma 3.3, Ai extends to an element of Diff
ω
(F)0. We will use Ai to write ri

2 as a
product of commutators. For this we look at the way to write rotations as products of com-
mutators in SL(2;R) and the extension question on the commutators.

L���� 3.4. – Assume that

(∗)m a(x, y) = 1 + k(x, y)(x2
+ y2

)
m

( k(0, 0) �= 0 ) and Y = �(x, y)(x2
+ y2

)
2m

for real analytic functions k(x, y) and �(x, y) and a positive integer m. Then when we write the
rotation

�
X −Y

Y X

�2 (X2+Y 2 = 1) as a product of two commutators as in Lemma 3.1, using the
products of rotations and diagonal matrices, W±Z−1 in Lemma 3.1 are divisible by (x2+y2)m.

Proof. – We have

Y

a4 − 1
=

�(x, y)(x2 + y2)2m

k(x, y)(a + 1)(a2 + 1)(x2 + y2)m

=
�(x, y)

k(x, y)(a + 1)(a2 + 1)
(x2

+ y2
)
m
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and

W ± Z − 1 =
1 

1−
(a4 + 1)2Y 2

(a4 − 1)2

�
�

1− Y 2 −

 
1−

(a4 + 1)2Y 2

(a4 − 1)2
±

2a2Y

a4 − 1

�

=
1 

1−
(a4 + 1)2Y 2

(a4 − 1)2

á
4a4Y 2

(a4 − 1)2

√
1− Y 2 +

 
1−

(a4 + 1)2Y 2

(a4 − 1)2

±
2a2Y

a4 − 1

ë

are divisible by (x2 + y2)m.

Using Lemmas 3.3 and 3.4 for m = 1, we obtain the following lemma.

L���� 3.5. – Assume (∗)1 in Lemma 3.4. Then
�

X −Y

Y X

�2 (X2 +Y 2 = 1) can be written
as a product of two commutators which are analytic at (x, y) = (0, 0) after conjugated by R.

Proof of Proposition 3.2 continued. – For ri, we use the trivialization

M |(B \ s−1
i

(0)) −→ (B \ s−1
i

(0))× U(1).

We use the diffeomorphism of (B \s−1
i

(0))×U(1) given by Ai =

�
1 + |si|

2 0

0
1

1+|si|2

�
. Then

ri
2 =

�
Xi −Yi

Yi Xi

�2

can be written as product of 2 commutators in Map(B\s−1
i

(0), SL(2;R))

by Lemma 3.1. Then for N ⊂ B \ s−1
j

(0), by Lemma 3.5, the elements appearing in the
commutators are real analytic on the fiber of s−1

i
(0).

This completes the proof of Proposition 3.2 and the proof of Theorem 2.2 for non-trivial
U(1) bundles.

By using Theorem 2.2, we have the following corollary.
A closed manifold n-dimensional M is multi U(1) fibered if there exist n oriented circle

bundle (U(1) bundle) structures with the tangent spaces of fibers spanning the tangent space
TxM of M at each point x ∈ M . For example, compact Lie groups and the 7 dimensional
sphere S7 are multi U(1) fibered.

C�ʀ�ʟʟ�ʀʏ 3.6. – Let M be a real analytically multi U(1) fibered real analytic manifold.
Then the identity component Diff

ω
(M)0 of the group of real analytic diffeomorphisms of M is

a perfect group.

By using the following Proposition 3.7, Corollary 3.6 follows from Theorem 2.2.

Pʀ����ɪ�ɪ�ɴ 3.7. – Let p1 : M −→ B1, . . . , pn : M −→ Bn be real analytic U(1)

fibrations and let F1, . . . , Fn be the bundle foliations. Assume that

TF1 ⊕ · · · ⊕ TFn = TM.

Let Diff
ω
(Fi)0 denote the identity component of the group of real analytic diffeomorphisms of

M mapping each fiber of pi to itself. Then for an element f ∈ Diff
ω
(M)0 close to the identity,

there are elements fi ∈ Diff(Fi)0 such that f = f1 ◦ · · · ◦ fn.
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Proof. – For each U(1) bundle pi, we fix the vector field ξi generating the U(1) action as
the flow ϕ(i)

t
(t ∈ R/Z). We look at the real analytic mapping F : Rn

×M −→ M ×M
given by

F (t1, . . . , tn;x) = ((ϕ(1)
t1
◦ · · · ◦ ϕ(n)

tn
)(x), x).

By the assumption that TM is the Whitney sum of TFi, the tangent map T(0,x)F : T0R
n
×

TxM −→ TxM × TxM is an isomorphism for x ∈ M . Hence by the (real analytic) inverse
mapping Theorem 6.5, a neighborhood of {0} ×M in Rn

×M and a neighborhood of the
diagonal set of M ×M are Cω diffeomorphic. Thus an element f ∈ Diff

ω
(M)0 close to the

identity can be written as (f(x), x) = F (t1(x), . . . , tn(x); x). For i = n, n− 1, . . . , 1, define
fi by

fi((fi+1 ◦ · · · ◦ fn)(x)) = ϕ(i)
ti(x) ◦ · · · ◦ ϕ(n)

tn(x)(x)

and we obtain the desired decomposition.

R���ʀ� 3.8. – Such a decomposition was suggested by Sergeraert to the author in early
1980’s. In the literature, we refer the readers to [9].

4. Orbit preserving diffeomorphisms of manifolds with locally free U(1) actions

For a locally free U(1) action, we can also show that any orbit preserving real analytic
diffeomorphism close to the identity is homologous in Diff

ω
(F)0 to a real analytic diffeo-

morphism which is an orbitwise rotation. Here we say that two elements are homologous if
they represent the same element in the abelianization of the group Diff

ω
(M)0.

Pʀ����ɪ�ɪ�ɴ 4.1. – Let R : U(1)×M −→ M be a real analytic locally free action on a
real analytic manifold M . Let F denote the orbit foliation and Diff

ω
(F)0, the identity compo-

nent of the group of orbit preserving real analytic diffeomorphisms. Then any orbit preserving
real analytic diffeomorphism close to the identity is homologous in Diff

ω
(F)0 to a real analytic

diffeomorphism which is an orbitwise rotation.

Proof. – For any point x ∈ M , let Gx denote the isotropy subgroup at x:

Gx = {g ∈ U(1)
�� g · x = x}.

Then there exists a positive integer m called the multiplicity of the orbit through x such that
Gx

∼= Z/mZ. When m � 2, we call the orbit through x a multiple orbit of multiplicity m.
There is an injective homomorphism h : Z/mZ −→ O(n− 1) (O(n− 1) is the orthogonal
group) such that a neighborhood N of the orbit through x is described as follows.

N ∼= (Bn−1
× U(1))/ ∼,

where Bn−1 is the (n − 1)-dimensional ball of radius 1, (w, z) ∼ (h(k)w, e2π
√
−1k/mz)

(k ∈ Z/mZ) and the action of U(1) on N is induced from that on the U(1) component.
An orbit preserving diffeomorphism Φ of N near the identity induces a unique orbit pre-

serving diffeomorphism Φ(w) near the identity of Bn−1×U(1) which is Z/mZ equivariant.
Let α ∈ R be a Diophantine number and let

Φ(w) = Rλ(w)−α ◦ Ψ(w) ◦Rα ◦ Ψ(w)
−1

(w ∈ B)
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be the expression given by Arnold’s Theorem 2.1. Since Φ(w) is Z/mZ equivariant,
Φ(h(k)w) = Rk/m ◦ Φ(w) ◦ R−k/m. This implies λ(h(k)w) = λ(w). By substituting h(k)w
in the above expression and using λ(h(k)w) = λ(w),

Φ(h(k)w) = Rλ(w)−α ◦ Ψ(h(k)w) ◦Rα ◦ Ψ(h(k)w)
−1.

By the Z/mZ equivariance,

Φ(h(k)w) = Rk/m ◦ Φ(w) ◦R−k/m

= Rλ(w)−α ◦ (Rk/m ◦ Ψ(w) ◦R−k/m) ◦Rα ◦ (Rk/m ◦ Ψ(w) ◦R−k/m)
−1.

If Ψ(w) is chosen such that
�

(Ψ(w)− id)dθ = 0, then
�

((Rk/m ◦ Ψ(w) ◦R−k/m)− id)dθ = 0.

By the uniqueness of such conjugating diffeomorphisms, we see that

Ψ(h(k)w) = Rk/m ◦ Ψ(w) ◦R−k/m,

that is, Ψ(w) is also Z/mZ equivariant. Thus Ψ(w) induces an orbit preserving Cω diffeo-
morphism Ψ of N such that

Φ = Rλ(w)−α ◦ Ψ ◦Rα ◦ Ψ−1,

where Rt corresponds to the action of e2π
√
−1t and Rλ(w) is an orbitwise rotation which is a

Cω diffeomorphism of N .
We take the invariant neighborhoods for the multiple orbits and regular orbits to obtain

a covering of M . On each invariant neighborhood, we obtain the conjugating diffeomor-
phism Ψ and the orbitwise rotation Rλ(w). They match up on the intersections of the
neighborhoods and give the global diffeomorphism Ψ and the orbitwise rotation Rλ(w)

(w ∈ M/U(1)). Thus the proposition is proved.

5. Orbit preserving diffeomorphisms of manifolds with semi-free U(1) actions

When we treat manifolds with special semi-free U(1) actions, we need to look at orbit pre-
serving diffeomorphisms and groups of orbitwise rotations.

Let M = (N × U(1))/∼ be the manifold with a special semi-free U(1) action. There is
a map s : N −→ M transverse to the orbits in int(N) × U(1) such that s(∂N) is the fixed
point set. The normal bundle of s(∂N) is trivial and the action of U(1) near s(∂N) is the
product of rotation of R2 and trivial action in the direction of s(∂N).

Let Diff
ω
(O, s(∂N)k) denote the group of the orbit preserving diffeomorphisms f of M

such that f − id is divisible by (x2 + y2)k, where (x, y) is the coordinate normal to s(∂N)

along s(∂N) where the U(1) action is the rotation.
We have the following theorem for the orbit preserving diffeomorphisms of M with a spe-

cial semi-free U(1) action.

Tʜ��ʀ�� 5.1. – Let M = (N × U(1))/∼ be the manifold with a special semi-free U(1)

action with the fixed point set s(∂N). Then f ∈ Diff
ω
(O, s(∂N)2) can be written as product

of commutators in Diff
ω
(O, s(∂N)0).
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The proof of this theorem uses the following Theorem 5.3 of Arnold type for the Diophan-
tine rotations of concentric circles on the plane. Theorem 5.3 is a spacial case of Theorem
10.1 which we prove in Section 10.

We consider the following situation. Let

∆ζ = {w ∈ Cm
�� |wi| ≤ ζ (i = 1, . . . ,m)}.

Let U be an open neighborhood of 0 ∈ R2 and Φ : U×(∆ζ ∩Rm
) −→ R2 be a real analytic

map such that
(Φ1(x1, x2;w))

2
+ (Φ2(x1, x2;w))

2
= x1

2
+ x2

2.

We write z = x1 +
√
−1x2, z = x1 −

√
−1x2 and

Φ(z, z;w) = Φ(x1 +
√
−1x2, x1 −

√
−1x2;w)

= Φ1(x1, x2;w) +
√
−1Φ2(x1, x2;w).

Since Φ(x1, x2;w) is real analytic, it is written as a convergent series in x1 and x2, hence
Φ(z, z;w) is written as a convergent series in z and z, with analytic parameter w.

For the differential DΦ in the direction (x1, x2) or (z, z), assume that DΦ(0;w) = id.
For a Diophantine number α, we consider the rotation by 2πα which is the multiplication
by e2π

√
−1α. The question is whether e2π

√
−1αΦ is conjugate to the rotation by 2π

√
−1α.

The obvious necessary condition is that the rotation number is constant for the concentric
invariant circles.

R���ʀ� 5.2. – For each circle, this is the case by Arnold’s theorem ([1]) provided that
e2π

√
−1αΦ is close to the rotation by 2π

√
−1α. Since Arnold showed his theorem with real

analytic parameter, it is true on U\{0}. On the other hand there is the theorem by Siegel ([19],
[15]) for the holomorphic diffeomorphism germ, and there also is the parametrized version.

Tʜ��ʀ�� 5.3. – There are real analytic maps λ : U × (∆ζ ∩ Rm
) −→ R (λ(z, z;w)

depending on (zz, w)) and h : U × (∆ζ ∩Rm
) −→ U (h(z, z;w)h(z, z;w) = zz) such that

e−2π
√
−1λw(z)e2π

√
−1αΦ(z, z;w) = hw(e2π

√
−1αhw

−1
(z)),

where λw(z) = λ(z, z;w) and hw(z) = h(z, z;w).

We assume the above Theorem 5.3 for the Diophantine rotations of concentric circles and
prove Theorem 5.1.

Proof of Theorem 5.1. – The proof goes as in the proof of Theorem 2.2 for trivial U(1)

bundles. We consider the Diophantine rotation along the orbits of the U(1) action, that is,
the action of e2π

√
−1α ∈ U(1). f is thought as a real analytic family of real analytic diffeo-

morphisms Φ(w) (w ∈ N ) which are near the identity. Then in a neighborhood of an interior
point w ∈ int(N), Φ(w) is written as Φ(w) = Rλ(w)−α ◦ ψ(w) ◦ Rα ◦ ψ(w)−1, where λ(w)

is uniquely determined by the condition that R−λ(w)Φ(w) has the rotation number α mod 1.
Since we have the section s : N −→ M , ψ(w) is also determined uniquely by assuming that
ψ(w) fixes points of s(N). For a neighborhood of a point w ∈ ∂N , by Theorem 5.3, Φ(w)

is written as
Φ(w) = Rλ(w)−α ◦ ψ(w) ◦Rα ◦ ψ(w)

−1,
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where λ is a real analytic function on x2 + y2 and w ∈ N , and ψ(w) is a real analytic dif-
feomorphism sending each orbit to itself. The diffeomorphism ψ(w) on the neighborhood
of a point w ∈ ∂N is also unique by assuming that ψ(w) fixes points of s(N). Thus ψ(w)

determines an orbit preserving real analytic diffeomorphism Ψ of M and Rλ(w) determines a
real analytic diffeomorphism Λ of M which is an orbitwise rotation. Since f − id is divisible
by (x2 + y2)2, λ is divisible by (x2 + y2)2.

We would like to use Lemma 3.1 to write Λ as a product of commutators.

We use an orbit preserving action of the diagonal matrix A =

�
a 0

0 a−1

�
, where a is a real

analytic function of r2 = x2 + y2.

L���� 5.4. – Let A =

�
a 0

0 a−1

�
, where a = a(x, y) is a real analytic function on x2 +y2

and a(0) = 1. Then the map �A preserving concentric circles given by

�A
�

x

y

�
=

�����

�
x

y

������ A

�
x

y

�¡�����A

�
x

y

������

is real analytic at (0, 0).

Proof. – Note that

�A
�

x

y

�
=

�
x2 + y2

�
a2x2 + a−2y2

�
ax

a−1y

�

and
�

x2 + y2

�
a2x2 + a−2y2

= 1

¡ 
1 +

a2 − 1

x2 + y2
(x2

−
y2

a2
).

Since a(x, y)− 1 is divisible by x2 + y2, �A is real analytic at (0, 0).

Now we can finish the proof of Theorem 5.1.

We take a real analytic function a on the double DN of N such that a = 1 along ∂N ,
a > 1 on DN \ ∂N , a is invariant under the involution on DN , and the second derivative
normal to ∂N is nontrivial. Then we have a real analytic map N −→ SL(2;R) given by

w �−→

�
a(w) 0

0 a(w)−1

�
. Using this diagonal matrix, by Lemma 3.1, λ can be written as

commutators in SL(2;R) outside of s(∂N) and by Lemma 5.4 these elements used in com-
mutators extend to s(∂N) as real analytic diffeomorphisms.

Thus we proved Theorem 5.1.
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6. Inverse mapping theorem and its singular case

We already used in showing Corollary 3.6, the real analytic inverse mapping theorem. To
show our theorem we need an inverse mapping theorem for the real analytic maps with the
Jacobian matrices being not regular.

Real analytic maps between real analytic manifolds are defined by taking the local coor-
dinates. In fact, the definition of the real analytic manifolds relies on the real analytic inverse
mapping theorem.

Before reviewing the real analytic inverse mapping theorem, we review the fundamental
lemma.

L���� 6.1. – Let U ⊂ RN be an open set and (T,m) an interval with the probability

measure m. If f : T ×U −→ R is real analytic in x ∈ U , then F (x) =

�

T

f(t, x)dm(t) is real

analytic in x.

Proof. – For each (t, x) ∈ T × U , there is a neighborhood I × V of (t, x) and f |(I × V )

has a complexification (f |(I×V ))C : I×V C −→ C. We can cover T ×{x} by finitely many
such neighborhoods and f |(T ×{x}) has a complexification fC : T ×WC −→ C. Since fC

satisfies the Cauchy-Riemann equation with respect to z ∈ WC , FC(z) =

�

T

fC(t, z)dm(t)

satisfies the Cauchy-Riemann equation as well. Hence the restriction F (x) of FC is real
analytic.

L���� 6.2 (Hadamard Lemma). – For a real analytic function f defined in a neighbor-
hood of the origin of RN , there are real analytic functions g1, . . . , gN defined in a neighborhood
of (x, x) ∈ R2N such that

f(y)− f(x) =

N�

i=1

(yi − xi)gi(x, y).

Proof. – We have

f(y)− f(x) =

ï
f(t(y − x) + x)

òt=1

t=0

=

� 1

0

N�

i=1

∂f

∂xi

(t(y−x)+x)(yi − xi)dt

=

N�

i=1

(yi − xi)

� 1

0

∂f

∂xi

(t(y−x)+x)dt

and
� 1

0

∂f

∂xi

(t(y−x)+x)dt is real analytic in x and y.

C�ʀ�ʟʟ�ʀʏ 6.3. – For a real analytic function f defined in a neighborhood of the origin
of RN , there are real analytic functions hij (i, j = 1, . . . , N) such that

f(y)− f(x) =

N�

i=1

(yi − xi)
∂f

∂xi

(x) +

N�

i,j=1

(yi − xi)(yj − xj)hij(x, y).
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We also need the following lemma given by Cartan ([3]). This is usually referred to as the
closure of modules theorem (see also [7], [8]).

L���� 6.4. – Let fi be a sequence of real analytic functions on U ⊂ Rn. Assume that fi

is divisible by a real analytic function µ(x) and the complexification fi
C converges uniformly to

the complexification of a real analytic function f∞ on a complexified neighborhood of U . Then
f∞ is divisible by µ(x).

Now we review the real analytic inverse mapping theorem.

Tʜ��ʀ�� 6.5 (Inverse mapping theorem). – Let f : U −→ V be a real analytic map
between open sets in Rn. If the Jacobian matrix Df(x) at x is invertible, then there are a neigh-
borhood W of f(x) and a real analytic map g : V −→ U such that g(f(x)) = x, g ◦ f is the
identity on g(W ) and f ◦ g is the identity on W .

Proof. – There are several ways to prove the real analytic inverse mapping theorem.
By the usual (differentiable) inverse mapping theorem, f has a differentiable inverse map

g : W −→ U . We need to show that f is real analytic.
f : U −→ V has a complexification fC : UC −→ V C , where UC and V C are neigh-

borhoods of U and V in Cn
= Rn

⊕
√
−1Rn. The Jacobian matrix (DfC)(x) of fC is the

same matrix as Df(x) =

Å
∂fi

∂xj

ã

i,j=1,...,n

considered as a complex matrix. Now we look at

the pull-back of dzi. Then we have

(fC)
∗
dzi =

n�

j=1

∂fi

∂xj

dzj .

This is equivalent to the Cauchy-Riemann equation for fC
i

= ui +
√
−1vi.

By the usual (differentiable) inverse mapping theorem, there is a mapping
gC : WC −→ UC . Since the Jacobian matrix D(gC)(f(x)) is the inverse of (DfC)(x),

it is the same matrix as Dg(f(x)) =

Å
∂gi

∂xj

ã

i,j=1,...,n

considered as a complex matrix. Then

we have

(gC)
∗
dzi =

n�

j=1

∂gi

∂xj

dzj .

Thus gC
i

also satisfies the Cauchy-Riemann equation. Since g is the restriction of gC to Rn,
g is real analytic.

R���ʀ� 6.6. – There is a little more direct way to prove the inverse mapping theorem
and it is more important for its generalization to the case where Df(x) = 0.

The usual proof of the differentiable inverse mapping theorem considers the fixed point
of G(y) : x �−→ x + Df(x0)

−1(y − f(x)). This fixed point can be obtained as the limit
of the points {xk}k≥0, where x0 = x0, x1 = G(y)(x0) = x0 + Df(x0)

−1(y − f(x0)),
xk = G(y)(xk−1) (k ≥ 2). Then

G(y)(xk+1
)−G(y)(xk

) = xk
− xk−1

+ Df(x0)
−1

(f(xk−1
)− f(xk

)).
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Since

fi(x)− fi(x
0
) =

n�

j=1

∂fi

∂xj

(x0)(xj − x0
j
) +

n�

j,�=1

hij�(x, x0
)(xj − x0

j
)(x� − x0

�
)

for some real analytic functions hij�(x, x0),

fi(x
k−1

)− fi(x
k
) =

n�

j=1

∂fi

∂xj

(x0)(x
k−1
j

− xk

j
)

+

n�

j,�=1

hij�(x
k−1, x0

)(xk−1
j

− x0
j
)(xk−1

�
− x0

�
)

−

n�

j,�=1

hij�(x
k, x0

)(xk

j
− x0

j
)(xk

�
− x0

�
),

and

G(y)(xk+1
)−G(y)(xk

) = Df(x0)
−1

Å n�

j,�=1

hij�(x
k−1, x0

)(xk−1
j

− x0
j
)(xk−1

�
− x0

�
)

−

n�

j,�=1

hij�(x
k, x0

)(xk

j
− x0

j
)(xk

�
− x0

�
)

ã

i=1,...,n

.

Each component of vector given as the parenthesis
Å

•

ã

i=1,...,n

is estimated by

ε max
j

|xk

j
− xk−1

j
| with arbitrary small ε as xk tends to x0. In fact,

n�

j,�=1

hij�(x
k−1, x0

)(xk−1
j

− x0
j
)(xk−1

�
− x0

�
)

−

n�

j,�=1

hij�(x
k, x0

)(xk

j
− x0

j
)(xk

�
− x0

�
)

=

n�

j,�=1

{hij�(x
k−1, x0

)− hij�(x
k, x0

)}(xk−1
j

− x0
j
)(xk−1

�
− x0

�
)

+

n�

j,�=1

hij�(x
k, x0

){(xk−1
j

− x0
j
)(xk−1

�
− x0

�
)− (xk

j
− x0

j
)(xk

�
− x0

�
)},

and formulas

hij�(x
k−1, x0

)− hij�(x
k, x0

) =

n�

m=1

(xk−1
m

− xk

m
)h�

ij�m
(xk−1, xk, x0

)
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for some real analytic functions h�
ij�m

(xk−1, xk, x0) and

(xk−1
j

− x0
j
)(xk−1

�
− x0

�
)− (xk

j
− x0

j
)(xk

�
− x0

�
)

= {(xk−1
j

− x0
j
)(xk−1

�
− x0

�
)− (xk

j
− x0

j
)(xk−1

�
− x0

�
)}

+ {(xk

j
− x0

j
)(xk−1

�
− x0

�
)− (xk

j
− x0

j
)(xk

�
− x0

�
)}

= (xk−1
j

− xk

j
)(xk−1

�
− x0

�
) + (xk

j
− x0

j
)(xk−1

�
− xk

�
)

imply that G(y) is Lipschitz with small Lipschitz constant in a neighborhood of x0.
Now we look at the same proof in a complexified neighborhood of x0. Then G(y) is holo-

morphic on y and xk are also holomorphic on a neighborhood of x0. Since this converges
uniformly on this neighborhood the limit G(y)C is holomorphic. Hence its real part G(y) is
real analytic.

Now we look at the case we are interested in. The following theorem treats the case where
the Jacobian matrices of real analytic mappings are singular.

Tʜ��ʀ�� 6.7. – Let M be a closed n-dimensional real analytic manifold. Let y1, . . . , yn

be real analytic functions on M . Let (x1, . . . , xn) be a coordinate around a point x ∈ M . Let

∆(x) = det

Å
∂yi

∂xj

ã
be the Jacobian. Let f : M −→ M be a real analytic diffeomorphism of

M close to the identity such that f − id is divisible by ∆(x)r (r ∈ Z, r ≥ 3). Then there are
real analytic diffeomorphisms f1, . . . , fn such that

f = f1 ◦ · · · ◦ fn,

where, for k = 1, . . . , n,

y1((fk ◦ · · · ◦ fn)(x)) = y1(x), . . . , yk−1((fk ◦ · · · ◦ fn)(x)) = yk−1(x),

yk((fk ◦ · · · ◦ fn)(x)) = yk(f(x)), . . . , yn((fk ◦ · · · ◦ fn)(x)) = yn(f(x)).

Moreover, fi − id (i = 1, . . . , n) is divisible by ∆(x)r−1.

R���ʀ� 6.8. – For another choice of coordinate (x�1, . . . , x
�
n
), we have

det

Å
∂yi

∂x�
k

ã
= det

Å
∂yi

∂xj

ã
det

Å
∂xj

∂x�
k

ã
,

and hence the condition that f(x) − x is divisible by the r-th power of ∆ = det

Å
∂yi

∂xj

ã
is

independent of the choice of the coordinates.

Proof. – This follows from the following Proposition 6.9. We put

u(x) = (y1(x), . . . , yk(x), yk+1(f(x)), . . . , yn(f(x)))− (y1(x), . . . , yn(x))

and we obtain fk ◦ · · · ◦ fn as z(x) in the proposition.

Pʀ����ɪ�ɪ�ɴ 6.9. – Let U be an open set of Rn and V , a compact subset of U . Let

y = (y1, . . . , yn) : U −→ Rn be a real analytic map. Put ∆(x) = det

Å
∂yi

∂xj

(x)

ã
and assume

that ∆(x) is not the constant 0. Let u = (u1, . . . , un) : V −→ Rn be a sufficiently small real
analytic map such that ui(x) is divisible by ∆(x)r (r ∈ Z, r ≥ 3). Then there is a real analytic
map z : V −→ Rn such that y(z(x)) = y(x) + u(x). Here z(x)− x is divisible by ∆(x)r−1.
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Proof. – By Corollary 6.3, we have

yi(z)− yi(x) =

n�

j=1

∂yi

∂xj

(x)(zj − xj) +

n�

j,k=1

hijk(x, z)(zj − xj)(zk − xk),

where hijk is real analytic on a neighborhood of (x, x).

If ∆(x) = det

Å
∂yi

∂xj

(x)

ã
�= 0 and u(x) is sufficiently small, then by the inverse mapping

Theorem 6.5, there uniquely exists z(x) in a neighborhood of x.
For the point x0 where ∆(x0) = 0, the solution should satisfy that z(x0) = x0. We would

like to know the analyticity of the map z(x).

If ∆(x0) = 0, u(x) is divisible by ∆(x)r near x0. Put J(x) =

Å
∂yi

∂xj

(x)

ã
. We look at the

following functional for real analytic map z from a neighborhood of x0 to Rn.

F (z) = z + J(x)
−1

Å
u(x)−

ß
J(x)(z − x) +

Å n�

j,k=1

hijk(x, z)(zj − xj)(zk − xk)

ã

i

™ã
,

where (•)
i

denotes the column vector. This functional is defined so that the fixed point z(x)

of F is the desired map z(x). Namely, if F (z) = z, then u(x) = y(z)− y(x).
For u(x) = ∆(x)rv(x), this functional is rewritten as follows. Note that ∆(x)J(x)

−1 =

(Aij(x)), where Aij(x) is the cofactor of
∂yj

∂xi

(x).

F (z)� = x� + ∆(x)
−1

n�

i=1

A�i(x)

Å
∆(x)

rvi(x)−

n�

j,k=1

hijk(x, z)(zj − xj)(zk − xk)

ã
.

We are going to find the fixed point by sequential approximation. So we put z(0) = x, and
define z(m) (m ≥ 1) by z(m) = F (z(m−1)). Then

z(1)
�
− x� = ∆(x)

r−1
n�

i=1

A�i(x)vi(x).

If z(m)
i

(x) − xi is divisible by ∆(x)r−1, then z(m+1)
i

(x) − xi is again divisible by ∆(x)r−1.
For, by putting z(m)

i
− xi = ∆(x)r−1ζ(m)

i
(x),

z(m+1)
�

− x� = F (z(m)
)� − x�

= ∆(x)
r−1

n�

i=1

A�i(x)vi(x)

−∆(x)
−1

n�

i=1

A�i(x)

n�

j,k=1

hijk(x, z(m)
)∆(x)

r−1ζ(m)
j

∆(x)
r−1ζ(m)

k

= ∆(x)
r−1

n�

i=1

A�i(x)vi(x)

−∆(x)
2r−3

n�

i=1

A�i(x)

n�

j,k=1

hijk(x, z(m)
)ζ(m)

j
ζ(m)
k

.
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Note that if |ζ(1)
i
| ≤

K

2
and |ζ(m)

i
| ≤ K,

|ζ(m+1)
�

| ≤
K

2
+ K1|∆(x)|

r−2K2

for some constant K1. If we take x close to x0, then |∆(x)| ≤
1

√
2K1K

and on this neigh-

borhood |ζ(m+1)
�

| ≤ K.

Now we would like to show that z(m) converges uniformly on a complexified neighbor-
hood of x0.

z(m+1)
�

− z(m)
�

= F (z(m)
)� − F (z(m−1)

)�

= −∆(x)
−1

n�

i=1

A�i(x)

n�

j,k=1

hijk(x, z(m)
)(z(m)

j
− xj)(z

(m)
k

− xk)

+ ∆(x)
−1

n�

i=1

A�i(x)

n�

j,k=1

hijk(x, z(m−1)
)(z(m−1)

j
− xj)(z

(m−1)
k

− xk)

= −∆(x)
−1

n�

i=1

A�i(x)

n�

j,k=1

{

Ä
hijk(x, z(m)

)− hijk(x, z(m−1)
)

ä
(z(m)

j
− xj)(z

(m)
k

− xk)

+ hijk(x, z(m−1)
)

Ä
(z(m)

j
− xj)(z

(m)
k

− xk)− (z(m−1)
j

− xj)(z
(m−1)
k

− xk)

ä
}.

Since

hijk(x, z(m)
)− hijk(x, z(m−1)

) =

n�

p=1

(z(m)
p

− z(m−1)
p

)h�
ijkp

(x, z(m), z(m−1)
)

for some real analytic functions h�
ijkp

,

−∆(x)
−1

n�

i=1

A�i(x)

n�

j,k=1

Ä
hijk(x, z(m)

)− hijk(x, z(m−1)
)

ä
(z(m)

j
− xj)(z

(m)
k

− xk)

= −∆(x)
2r−3

n�

i=1

A�i(x)

n�

j,k=1

n�

p=1

(z(m)
p

− z(m−1)
p

)h�
ijk�

(x, z(m), z(m−1)
)ζ(m)

j
ζ(m)
k

.

The absolute value of the right-hand side is estimated by |∆(x)|
2r−3K2K

2
max

p

|z(m)
p

−

z(m−1)
p

| for some constant K2. On the neighborhood where |∆(x)| ≤
1

(4K2K2)1/(2r−3)
,

this is estimated by
1

4
max

p

|z(m)
p

− z(m−1)
p

|. Since

(z(m)
j

− xj)(z
(m)
k

− xk)− (z(m−1)
j

− xj)(z
(m−1)
k

− xk)

=

Ä
(z(m)

j
− xj)(z

(m)
k

− xk)− (z(m−1)
j

− xj)(z
(m)
k

− xk)

ä

+

Ä
(z(m−1)

j
− xj)(z

(m)
k

− xk)− (z(m−1)
j

− xj)(z
(m−1)
k

− xk)

ä

= (z(m)
j

− z(m−1)
j

)(z(m)
k

− xk) + (z(m−1)
j

− xj)(z
(m)
k

− z(m−1)
k

),
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−∆(x)
−1

n�

i=1

A�i(x)

n�

j,k=1

hijk(x, z(m−1)
)

·

Ä
(z(m)

j
− xj)(z

(m)
k

− xk)− (z(m−1)
j

− xj)(z
(m−1)
k

− xk)

ä

= −∆(x)
−1

n�

i=1

A�i(x)

n�

j,k=1

hijk(x, z(m−1)
)

·

Ä
(z(m)

j
− z(m−1)

j
)(z(m)

k
− xk) + (z(m−1)

j
− xj)(z

(m)
k

− z(m−1)
k

)

ä

= −∆(x)
r−2

n�

i=1

A�i(x)

n�

j,k=1

hijk(x, z(m−1)
)

·

Ä
(z(m)

j
− z(m−1)

j
)ζ(m)

k
+ (z(m)

k
− z(m−1)

k
)ζ(m−1)

j

ä
.

The absolute value of the last expression is estimated by |∆(x)|
r−2K3K max

p

|z(m)
p

−

z(m−1)
p

|. On the neighborhood where |∆(x)| ≤
1

(4K3K)1/(r−2)
, this is estimated by

1

4
max

p

|z(m)
p

− z(m−1)
p

|. Thus z(m) satisfies |z(m)
�

| ≤ max
p

|z(1)
p
|, and z(m) converges uni-

formly on a complexified neighborhood of x0. Hence the limit is holomorphic on the
complexified neighborhood and z(m) converges to a real analytic map.

The divisibility of the limit z(x) by ∆(x)r−1 follows from Lemma 6.4.

E����ʟ� 6.10. – For the unit sphere

Sn
= {(x1, . . . , xn+1) ∈ Rn+1

�� x1
2

+ · · ·+ xn+1
2

= 1},

we look at the map (x1, . . . , xn) : Sn −→ Rn. Then on the coordinate
(x1, . . . , xk−1, xk+1, . . . , xn, xn+1),

∆(x1, . . . , xk−1, xk+1, . . . , xn, xn+1) = ±xn+1

¡ 
1−

�

i �=k

xi
2.

Hence by Theorem 6.7, if a diffeomorphism f of Sn close to the identity is divisible by
(xn+1)

4, then f = f1 ◦ · · · ◦ fn, where fi maps an orbit of the rotation in the xixn+1 plane
to itself and fi − id is divisible by (xn+1)

3.

The previous theorem is for one real analytic mapping. Now, we consider families of real
analytic mappings. What we did in Theorem 6.7 is similar to showing that the exponential
map of a Riemannian manifold is a diffeomorphism in a neighborhood of the zero of a tan-
gent space. What we consider now in Theorem 6.12 is similar to show that the exponential
map induces the diffeomorphism from a neighborhood of the zero section of the tangent bun-
dle to a neighborhood of the diagonal set of M ×M .

Pʀ����ɪ�ɪ�ɴ 6.11. – Let ξ(1), . . . , ξ(n) be real analytic vector fields on an open set U of
Rn. Let ϕ(i)

t
denote the flow generated by ξ(i) (i = 1, . . . , n). For a compact subset V of U ,

consider the map Φ : Rn
× V −→ U defined by Φ((t1, . . . , tn), x) = (ϕ(1)

t1
◦ · · · ◦ ϕ(n)

tn
)(x).

Let f be a real analytic diffeomorphism from V into U close to the identity and f − id is di-
visible by ∆(x)r, where ∆(x) = det

�
ξ(1) · · · ξ(n)

�
. Then there are real analytic functions
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t1(x), . . . , tn(x) such that f(x) = Φ((t1, . . . , tn), x). These t1(x), . . . , tn(x) are divisible by
∆r−1.

Proof. – We would like to solve

f(x)− x = Φ((t1, . . . , tn), x)− x.

First note that

Φ((t1, . . . , tn), x)� − x� =

n�

i=1

ξ(i)
�

(x)ti +

n�

i,j=1

η�ij(t, x)titj

for real analytic functions η�ij(t, x), where t = (t1, . . . , tn).

For the points x, where ∆(x) = det

Å
ξ(1) · · · ξ(n)

ã
�= 0, by the inverse mapping theorem

we obtain real analytic functions t1(x), . . . , tn(x) such that f(x)−x = Φ((t1, . . . , tn), x)−x.
For the points x where ∆(x) = 0, the solution should be (t1(x), . . . , tn(x)) = (0, . . . , 0) and
we would like to show the analyticity of this solution near x.

Put Ξ = (ξ(j)
i

) and ∆Ξ−1 = (Aij), where Aij is the cofactor of ξ(i)
j

. Now we look at the
functional

F (t) = t + Ξ−1

Å
f(x)− x−

ß
Ξt +

Å n�

j,k=1

ηijk(t, x)tjtk

ã

i=1,...,n

™ã

= Ξ−1

Å
f(x)− x−

Å n�

j,k=1

ηijk(t, x)tjtk

ã

i=1,...,n

ã
.

Put t(0) = (0, . . . , 0), and define t(m)(x) = F (t(m−1)(x)) (m ≥ 1). Since f(x) − x is

divisible by ∆(x)r, put f(x)i − xi = ∆(x)rvi(x). Then t(1)
i

= ∆(x)r−1
n�

j=1

Aij(x)vj(x).

If t(k−1) is divisible by ∆(x)r−1, then t(k) = F (t(k−1)) is also divisible by ∆(x)r−1. For, if
t(m)
i

= ∆(x)r−1τ (m)
i

(x), then

t(m+1)
�

= F (t(m)
)�

= ∆(x)
r−1

n�

i=1

A�i(x)vi(x)−

Å
Ξ−1

Å n�

j,k=1

ηijk(t(m), x)∆(x)
r−1τ (m)

j
∆(x)

r−1τ (m)
k

ã

i

ã

�

= ∆(x)
r−1

n�

i=1

A�i(x)vi(x)−∆(x)
2r−3

n�

i=1

A�i(x)

n�

j,k=1

ηijk(t(m), x)τ (m)
j

τ (m)
k

.

Note that if |τ (1)
i

| ≤
K

2
and |τ (m)

i
| ≤ K, then

|τ (m+1)
�

| ≤
K

2
+ K1K

2
|∆(x)|

r−2

for some constant K1. If we take x close to the zeros of ∆, then |∆(x)| ≤
1

(2K1K)1/(r−2)

and we have |τ (m+1)
�

| ≤ K.
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We show that t(m) converges uniformly on a complexified neighborhood of the zeros of
∆(x).

t(m+1)
�

− t(m)
�

= F (t(m)
)� − F (t(m−1)

)�

= −∆(x)
−1

n�

i=1

A�i(x)

n�

j,k=1

ηijk(t(m), x)t(m)
j

t(m)
k

+ ∆(x)
−1

n�

i=1

A�i(x)

n�

j,k=1

ηijk(t(m−1), x)t(m−1)
j

t(m−1)
k

= −∆(x)
−1

n�

i=1

A�i(x)

n�

j,k=1

{

Ä
ηijk(t(m), x)− ηijk(t(m−1), x)

ä
t(m)
j

t(m)
k

+ ηijk(t(m−1), x)(t(m)
j

t(m)
k

− t(m−1)
j

t(m−1)
k

)}.

Since

ηijk(t(m), x)− ηijk(t(m−1), x) =

n�

p=1

(t(m)
p

− t(m−1)
p

)η�
ijkp

(t(m), t(m−1), x)

for some real analytic functions η�
ijkp

,

−∆(x)
−1

n�

i=1

A�i(x)

n�

j,k=1

(ηijk(t(m), x)− ηijk(t(m−1), x))t(m)
j

t(m)
k

= −∆(x)
2r−3

n�

i=1

A�i(x)

n�

j,k=1

n�

p=1

(t(m)
p

− t(m−1)
p

)η�
ijkp

(t(m), t(m−1), x)τ (m)
j

τ (m)
k

The absolute value of the right-hand side is estimated by |∆(x)|
2r−3K2K

2
max

p

|t(m)
p

−

t(m−1)
p

| for some constant K2. On the neighborhood where |∆(x)| ≤
1

(4K2K2)1/(2r−3)
,

this is estimated by
1

4
max

p

|t(m)
p

− t(m−1)
p

|. Since

t(m)
j

t(m)
k

− t(m−1)
j

t(m−1)
k

= (t(m)
j

t(m)
k

− t(m−1)
j

t(m)
k

) + (t(m−1)
j

t(m)
k

− t(m−1)
j

t(m−1)
k

),

−∆(x)
−1

n�

i=1

A�i(x)

n�

j,k=1

ηijk(t(m−1), x)(t(m)
j

t(m)
k

− t(m−1)
j

t(m−1)
k

)

= −∆(x)
−1

n�

i=1

A�i(x)

n�

j,k=1

ηijk(t(m−1), x)

·

Ä
(t(m)

j
− t(m−1)

j
)t(m)

k
+ t(m−1)

j
(t(m)

k
− t(m−1)

k
)

ä

= −∆(x)
r−2

n�

i=1

A�i(x)

n�

j,k=1

ηijk(x, z(m−1)
)

·

Ä
(t(m)

j
− t(m−1)

j
)τ (m)

k
+ (t(m−1)

j
− t(m−1)

j
)τ (m−1)

k

ä
.
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The absolute value of the last expression is estimated by |∆(x)|
r−2K3K max

p

|t(m)
p

− t(m−1)
p

|.

On the neighborhood where |∆(x)| ≤
1

(4K3K)r−2
, this is estimated by

1

4
max

p

|t(m)
p

− t(m−1)
p

|. Thus t(m) satisfies |t(m)
�

| ≤ max
p

|t(1)
p
|, and t(m) converges uni-

formly on a complexified neighborhood of x0. Hence the limit is holomorphic on the
complexified neighborhood and t(m) converges to a real analytic map.

Tʜ��ʀ�� 6.12. – Let M be a closed n-dimensional real analytic manifold in RN . Let
ξ(1), . . . , ξ(n) be real analytic vector fields on M . Let ϕ(i)

t
denote the flow generated by ξ(i)

(i = 1, . . . , n). Consider the map Φ : Rn
× M −→ M defined by Φ((t1, . . . , tn), x) =

(ϕ(1)
t1
◦ · · · ◦ ϕ(n)

tn
)(x). Let f be a real analytic diffeomorphism of M close to the identity and

f − id is divisible by ∆(x)r (r ∈ Z, r ≥ 3), where ∆(x) = det

Ä
ξ(j)
i

ä
, ξ(j) =

�
ξ(j)
i

∂

∂xi

in a

coordinate neighborhood (U, (x1, . . . , xn)) and we assume that ∆(x) is not the constant 0. Then
there are real analytic functions t1(x), . . . , tn(x) such that f(x) = Φ((t1(x), . . . , tn(x)), x).

R���ʀ� 6.13. – For another coordinate neighborhood (V, (y1, . . . , yn)),
n�

i=1

ξ(j)
i

∂

∂xi

=

n�

i,k=1

ξ(j)
i

∂yk

∂xi

∂

∂yk

and ∆(y) = ∆(x) det

Å
∂yk

∂xi

ã
. Thus, the condition that f − id is divisible by ∆(x)r is inde-

pendent of the choice of coordinate neighborhood.

Proof. – The expression f(x) = (ϕ(1)
t1
◦ · · · ◦ ϕ(n)

tn
)(x) is unique where ∆(x) is not zero,

and (t1, . . . , tn) = (0, . . . , 0) on the zero set of ∆(x). By taking a coordinate neighborhood,
it is real analytic on a neighborhood of a zero point of ∆(x), Hence (t1(x), . . . , tn(x)) is a
globally defined real analytic map.

Here is the same example as before for the application of Theorem 6.12. The estimates
are worse than before but it still works.

E����ʟ� 6.14. – Consider the unit n sphere

Sn
= {(x1, . . . , xn+1) ∈ Rn+1

�� x1
2

+ · · ·+ xn+1
2

= 1}.

Let ξ(i,j) (1 ≤ i < j ≤ n + 1) be the vector field generating the rotation in the direction of
xixj plane, i.e.,

ξ(i,j)
(x1, . . . , xn+1) = −xj

∂

∂xi

+ xi

∂

∂xj

.

We look at ξ(i,n+1) (i = 1, . . . , n) and their time t maps ϕ(i,n+1)
t

. Then ∆(x) with respect to
the (x1, . . . , xn) coordinate is (−xn+1)

n, and ∆(x) with respect to the (x1, . . . , xk−1, xk+1,
. . . , xn, xn+1) coordinate is

±xk(xn+1)
n−1

= ±(xn+1)
n−1

 
1−

�

i �=k

xi
2.
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Hence if a diffeomorphism f of Sn close to the identity is divisible by (xn+1)
4(n−1), then

f = f1 ◦ · · · ◦ fn, where fi ◦ · · · ◦ fn(x) = ϕ(i,n+1)
ti(x) ◦ · · · ◦ ϕ(n,n+1)

tn(x) and fi maps an orbit of

ϕ(i,n+1)
t

to itself. Moreover fi − id is divisible by (xn+1)
3(n−1).

7. Regimentation lemma

The key tool in the proof of the perfectness of the identity component of the group of
smooth diffeomorphisms is the fragmentation lemma [2] which uses the partition of unity by
the bump functions. Note that we cannot use the bump functions in the real analytic case.
However, we can use the following lemma to show our Theorems 1.1 and 1.2.

Let µ1, . . . , µm be nonnegative real analytic functions on M such that
m�

i=1

µi = 1. Put

Sk = µk
−1(0) and assume that

m�

k=1

Sk = ∅. Put νj =

j�

i=1

µi (j = 1, . . . , m). Let

Φ : [0, m]×M −→ [0, 1]×M

be the map given by
Φ(t, x) = (ν[t](x) + (t− [t])µ[t]+1(x), x).

This map is real analytic on [j − 1, j]×M (j = 1, . . . , m).
Let F be a foliation of [0, 1]×M given by a real analytic isotopy F : [0, 1]×M −→ M ,

that is, the leaf passing through (t, x) is

{(s, (F (s) ◦ F (t)−1
)(x))

�� s ∈ [0, 1]}.

Tʜ��ʀ�� 7.1 (Regimentation Lemma). – If F is close to the constant isotopy, then
Φ|{t} × M is transverse to F for t ∈ [0, m], and Φ∗F is real analytic isotopy on each
[j − 1, j]×M (j = 1, . . . , m). Thus

F (0) ◦ F (1)
−1

= G1 ◦ · · · ◦Gm,

where Gj (j = 1, . . . , m) are real analytic diffeomorphisms of M such that Gj |Sj = idSj .
Moreover, Gj − id is divisible by µj .

R���ʀ� 7.2. – The fact that a diffeomorphism G near the identity is divisible by a real
analytic function µ does not depend on the choice of the coordinate neighborhood. For, let
G be written as (g1(x), . . . , gn(x)) in a coordinate (x1, . . . , xn) and gi(x1, . . . , xn) − xi is
divisible by µ(x1, . . . , xn) (i = 1, . . . , n). In another coordinate (y1, . . . , yn), first we have

yj(z)−yj(x) =

n�

k=1

(zk−xk)ajk(z, x) with real analytic functions ajk(z, x) by the Hadamard

Lemma 6.2. Then

yj(g1(x(y)), . . . , gn(x(y)))− yj =

n�

k=1

(gk(x(y))− xk(y))ajk(g(x(y)), x(y))

and if gi(x1, . . . , xn) − xi is divisible by µ(x1, . . . , xn) (i = 1, . . . , n), then the function
yj(g1(x(y)), . . . , gn(x(y)))− yj is divisible by µ(x1(y), . . . , xn(y)).
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Proof of Theorem 7.1. – This is a consequence of the real analytic inverse mapping The-
orem 6.5. A real analytic foliation is defined by a family of local real analytic submersions,
and the induced foliation on [j − 1, j]×M is given by the composition of real analytic map
Φ|[j − 1, j] × M and the submersion given by the isotopy, hence it is real analytic. The
transversality insures that it is given by an isotopy.

To show the divisibility, we look at the induced vector field on [j − 1, j] × M . Let
∂

∂t
+ ξ(t, x) be the vector field on [0, 1] × M defining the isotopy F . The map Φj(t, x) =

(νj−1(x) + tµj(x), x) induces the tangent map

(Φj)∗ : T(t,x)([0, 1]×M) −→ TΦj(t,x)([0, 1]×M)

given by

(Φj)∗
∂

∂t
= µj(x)

∂

∂t
,

(Φj)∗|({t} × TxM) = ((νj−1)∗ + t(µj)∗, id).

If Φj
∗F is defined by

∂

∂t
+ ηj(t, x), then we have

(Φj)∗(
∂

∂t
+ ηj(t, x)) = (µj(x) + {(νj−1)∗ + t(µj)∗}ηj(t, x))

∂

∂t
+ ηj(t, x)

and this is proportional to
∂

∂t
+ ξ(Φj(t, x)). Hence

ηj(t, x) = (µj(x) + {(νj−1)∗ + t(µj)∗}ηj(t, x)) ξ(Φj(t, x)).

That is, �
1− ξ(Φj(t, x)){(νj−1)∗ + t(µj)∗}

�
ηj(t, x) = µj(x)ξ(Φj(t, x)).

Since ξ(t, x) is small, 1−ξ(Φj(t, x)){(νj−1)∗+t(µj)∗} is invertible, and we obtain ηj(t, x) as
a Cω time dependent vector field. Since this vector field is divisible by µj(x), by the following
Proposition 7.3, for the time 1 map Gj , Gj − id is divisible by µj(x).

Pʀ����ɪ�ɪ�ɴ 7.3. – Let ξ(t, x) (t ∈ (−ε, ε), ε > 0) be a real analytic time dependent
vector field on an open set U of Rn. Assume that ξ(t, x) is divisible by µ(x). Then for the isotopy
ϕt generated by ξ(t, x), ϕt − id is divisible by µ(x).

Proof. – The differential equation
dx

dt
= ξ(t, x) = µ(x)η(t, x)

is solved by looking at the integral equation

ϕ(t, x) = x +

�
t

0
ξ(ϕ(s, x))ds.

We use the method of sequential approximation. That is, first put ϕ(0) = x and

ϕ(k)
(t, x) = x +

�
t

0
ξ(ϕ(k−1)

(s, x)))ds (k ≥ 1).

Then the sequence converges uniformly on t and x on a (small) complexified neighbor-
hood (in x) and the limit is real analytic with respect to x.
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In fact, define the functional F by F (ϕ)(t, x) = x +

�
t

0
ξ(s, ϕ(s, x))ds. Assume that in a

δ-neighborhood Uδ(x(0)) = {x
�� |xi − x(0)

i| ≤ δ} of x(0), max
i

����
∂ξ

∂xi

���� ≤ K1. Then

|F (ϕ1)j(t, x)− F (ϕ2)j(t, x)| ≤ n|t|K1 max
i

sup
|s|≤|t|,x∈Uδ

|ϕ1i − ϕ2i|.

Hence for |t| ≤
1

2nK1
, F is a Lipschitz map with Lipschitz constant

1

2
. On the other

hand, if max
i

|ξi(s, x)| ≤ K0 in Uδ, max
i

|ϕ(1)
i

− ϕ(0)
i
| ≤ |t|K0. Thus if |t| ≤

δ

4K0
,

max
i

|ϕ(1)
i
− ϕ(0)

i
| ≤

δ

4
. Then for x with max

i

|xi − x(0)
i| ≤

δ

2
, max

i

|ϕ(k−1)
i

− x(0)
i| ≤

δ −
δ

2 · 2k−1
implies

max
i

|ϕ(k)
i
− ϕ(k−1)

i
| = max

i

|F (ϕ(k−1)
)i − F (ϕ(k−2)

)i|

≤
1

2
max

i

|ϕ(k−1)
i

− ϕ(k−2)
i

| ≤
δ

4 · 2k−1
,

and hence max
i

|ϕ(k)
i
− x(0)

i| ≤ δ −
δ

2 · 2k
. Then the estimates for ϕ(k) hold. Thus for |t| ≤

min

ß
1

2nK1
,

δ

4K0

™
, ϕ(k) converges uniformly on Uδ/2. The uniform estimate holds on a

complexified neighborhood and the limit ϕ(t, x) is real analytic with respect to x for small
|t|. By the continuation with respect to t, we see that the limit ϕ(t, x) is real analytic with
respect to x for t ∈ [0, 1].

Now since ξ(x) = µ(x)η(x), the sequential approximation ϕ(k) is given by

ϕ(k)
(t, x) = x +

�
t

0
µ(ϕ(k−1)

(s, x))η(s, ϕ(k−1)
(s, x))ds (k ≥ 1).

Note that

ϕ(1)
(t, x)− x =

�
t

0
µ(x)η(s, x)ds = µ(x)

�
t

0
η(s, x)ds

is divisible by µ(x). If ϕ(k−1)(t, x) − x is divisible by µ(x) and say ϕ(k−1)(t, x) − x =

µ(x)η(k−1)(t, x), then

ϕ(k)
(t, x)− x =

�
t

0
µ(ϕ(k−1)

(s, x))η(k−1)
(s, ϕ(k−1)

(s, x))ds,

and by the Hadamard Lemma 6.2, there are real analytic functions αj(x, y) such that

µ(y)− µ(x) =

n�

j=1

(yj − xj)αj(x, y) and

µ(ϕ(k−1)
(s, x)) = µ(x + µ(x)η(k−1)

(s, x))

= µ(x) +

n�

j=1

µ(x)η(k−1)
j

(s, x)αj(x, x + µ(x)η(k−1)
j

(s, x))
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is divisible by µ(x). Hence ϕ(k)(t, x)−x is divisible by µ(x). Since the limit of a sequence of
real analytic functions divisible by µ(x) is divisible by µ(x) by Lemma 6.4, ϕt− id is divisible
by µ(x).

Here is an example of application of the regimentation lemma.

E����ʟ� 7.4. – Let Sn = {x ∈ Rn+1
�� �x� = 1}. We have the functions

µi = xi
4

¡�

j

xj
4

: Sn
−→ R

such that
�

n+1
i=1 µi = 1. We think about the decomposition of real analytic diffeomor-

phisms of Sn into regimented diffeomorphisms by Lemma 7.1. Then for a diffeomorphism
f : Sn −→ Sn close to the identity, f = f (1) ◦ · · · ◦ f (n+1), where f (i) − id is divisible by µi,
i.e., 4-flat along {x ∈ Sn

�� xi = 0} (i = 1, . . . , n + 1).

For a diffeomorphism f : Sn −→ Sn close to the identity, as in Example 7.4, f is decom-
posed into a composition of diffeomorphisms which are flat along coordinate hyperplanes.
Then as in Example 6.10, such flat diffeomorphisms are decomposed into a composition
of orbit preserving diffeomorphisms. Then by Theorem 5.1, these orbit preserving diffeo-
morphisms can be written as product of commutators of orbit preserving diffeomorphisms.
Hence we obtain the following corollary.

C�ʀ�ʟʟ�ʀʏ 7.5. – The identity component Diff
ω
(Sn)0 is a perfect group.

8. Proof of main theorems

Pʀ����ɪ�ɪ�ɴ 8.1. – Let M be a compact real analytic manifold with nontrivial U(1) ac-
tion. Let ξ be the generating vector field for the U(1) action. Then there are finitely many real
analytic diffeomorphisms fi, i = 1, . . . , N (f1 = id) of M such that, for any point x ∈ M ,
there is a subset {i1, . . . , in} ⊂ {1, . . . , N} with (fi1)∗ξ, . . . , (fin)∗ξ spanning TxM .

Proof. – For each point x ∈ M , there is a point y close to x where ξ(y) �= 0. Then there
are C1 diffeomorphisms g1, . . . , gn of M such that (g1)∗ξ, . . . , (gn)∗ξ span TxM . Now we
take real analytic approximations fx

1 , . . . , fx

n
of them. Then (fx

1 )∗ξ, . . . , (fx

n
)∗ξ span TxM

and these span Tx�M for x� in a neighborhood Ux of x. We cover M by these Ux and take a
finite subcover and obtain f1, . . . , fN .

Proof of main Theorems 1.1 and 1.2. – Let M be a U(1) fibered manifold or a manifold
admitting a special semi-free U(1) action.

We put a real analytic Riemannian metric on M . We use Proposition 8.1 and obtain U(1)

actions generated by ξ1, . . . , ξN with the following property. For each choice κ of n vec-
tor fields among {ξ1, . . . , ξN}, we have the determinant ∆κ = det (ξkij) with respect to

an orthonormal frame
∂

∂xj

at each point, where κ = {ξk1 , . . . , ξkn}, n = dim(M), and

ξki =

n�

j=1

ξkij

∂

∂xj

. By Remark 6.13, ∆κ does not depend on the choice of the orthonormal

frame and ∆κ is a real analytic function on M .
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Then M is covered by the open sets of the form M \ {∆κ = 0}. By the regimentation
Lemma 7.1, any real analytic diffeomorphism f close to the identity is decomposed into real
analytic diffeomorphisms fκ such that fκ − id is divisible by (∆κ)4. Then by the inverse
function Theorem 6.12 for multi-vector fields, fκ can be written as a composition of orbit
preserving diffeomorphisms. For a special semi-free U(1) action, ∆κ = 0 along the fixed
point set s(∂N) and these orbit preserving diffeomorphisms satisfy the assumption of The-
orem 5.1.

Then by Theorems 2.2 and 5.1, orbit preserving diffeomorphisms can be written as
product of commutators in the group of orbit preserving diffeomorphisms. Thus Theorems 1.1
and 1.2 are proved.

9. Real analytic diffeomorphisms of 2 and 3 dimensional manifolds with U(1) actions

In this section, we show that Diff
ω
(M)0 for 2 and 3 dimensional manifolds M with non-

trivial U(1) actions are perfect.

First we note that, by the proof of main theorems, if M admits a nontrivial U(1) action,
any element of Diff

ω
(M)0 is homologous to a diffeomorphism which is an orbitwise rota-

tion. Here we say that two elements are homologous if they represent the same element in
the abelianization of the group Diff

ω
(M)0.

Pʀ����ɪ�ɪ�ɴ 9.1. – If M admits a nontrivial U(1) action, any real analytic diffeomor-
phism isotopic to the identity is homologous to a diffeomorphism which is an orbitwise rotation.

Proof. – We note first that by the proof of main theorems, if M admits a nontrivial U(1)

action, using Proposition 8.1 of perturbation, the regimentation Lemma 7.1 and the inverse
function Theorem 6.12 for multi-vector fields, any real analytic diffeomorphism f close to
the identity can be written as a composition of orbit preserving diffeomorphisms. Note that
these orbit preserving diffeomorphisms are conjugate to orbit preserving diffeomorphisms
of the original U(1) action.

If M admits a locally free U(1) action, Proposition 4.1 implies that orbit preserving dif-
feomorphisms close to the identity are homologous to diffeomorphisms which are orbitwise
rotations. In general, the argument of the proof of Proposition 4.1 together with Theorem
5.3 (and its generalization Theorem 10.1) implies that orbit preserving diffeomorphisms, ob-
tained by the regimentation Lemma 7.1 and the inverse function Theorem 6.12 for multi-
vector fields, are homologous to diffeomorphisms which are orbitwise rotations. Here, note
that Theorem 10.1 in Section 10 gives

Hw(z) = (z1e
2π
√
−1m1kw(z), . . . , zne2π

√
−1mnkw(z)

)

such that Φw(z) = (Rλw(z) ◦ R−α ◦ Hw ◦ Rα ◦ H−1
w

)(z). This Hw can be replaced
by Hw ◦ R−βw(z), where βw(z) is real analytic function constant along the orbit. Put

βw(z) =
1

2π

�
kw(z)dθ, then

(Hw ◦R−βw(z))(z) = (z1e
2π
√
−1m1kw(ze

−2π
√
−1βw(z))), . . . , zne2π

√
−1mnkw(ze

−2π
√
−1βw(z))

)
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and kw(ze−2π
√
−1βw(z)) satisfies

�

S1

kw(ze−2π
√
−1βw(z)

)dθ

=

�

S1

(kw(ze−2π
√
−1βw(z)

)− kw(z) + kw(z))(θ)dθ

= −

�

S1

(kw
−1

(z) + βw(z)− kw
−1

(z))(θ)dθ +

�

S1

kw(z)(θ)dθ = 0.

Thus the conjugating real analytic diffeomorphisms match up on M as in the proof of Propo-
sition 4.1.

Since the product of orbitwise rotations is an orbitwise rotation, we showed that any real
analytic diffeomorphism close to the identity is homologous to an orbitwise rotation. Since
any element of Diff

ω
(M)0 is a composition of diffeomorphism close to the identity, it is ho-

mologous to an orbitwise rotation.

Now we prove Theorem 1.3. This is done by showing following Propositions 9.2, 9.3 and
Theorem 9.4.

If the dimension of M is 2, then M with nontrivial U(1) action is diffeomorphic to the
torus T 2, the sphere S2, the Klein bottle K2 or the real projective plane RP 2. For the torus
T 2, Diff

ω
(T 2)0 is simple by the result of Herman ([11]). For the sphere S2, our Theorem 1.2

says that Diff
ω
(S2)0 is perfect.

Pʀ����ɪ�ɪ�ɴ 9.2. – Diff
ω
(K2)0 is perfect.

Proof. – For the Klein bottle K2, we have a locally free U(1) action with 2 multiple or-
bits of multiplicity 2. By Proposition 9.1, any element of Diff

ω
(K2)0 is homologous to a

diffeomorphism which is an orbitwise rotation. K2/U(1) is an interval. We can take a cir-
cle transverse to the U(1) orbits which is Z/2Z equivariant, where Z/2Z ⊂ U(1). Using
this circle, we can make SL(2;R) act on the regular orbits so that the induced action on
the 2 multiple orbits is the action of PSL(2;R). Using this we can write orbitwise rotations
close to the identity as a product of commutators of orbit preserving diffeomorphisms. Thus
Diff

ω
(K2)0 is perfect.

Pʀ����ɪ�ɪ�ɴ 9.3. – Diff
ω
(RP 2)0 is perfect.

Proof. – For the real projective plane RP 2, there is a U(1) action with 1 fixed point and
1 multiple orbit of multiplicity 2. By Proposition 9.1, any element of Diff

ω
(RP 2)0 is ho-

mologous to a diffeomorphism which is an orbitwise rotation. We can arrange so that this
orbitwise rotation satisfies that f − id is divisible by (x2 + y2)2 at the fixed point. We have
the action of Lemma 5.4 which extends to the multiple orbit of multiplicity 2, and using it
we can write orbitwise rotations close to the identity as a product of commutators of orbit
preserving diffeomorphisms. Thus Diff

ω
(RP 2)0 is perfect.
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All other closed 2-dimensional manifolds are hyperbolic and do not admit nontrivial
U(1) action. We do not know the abelianization of Diff

ω
(M)0 for a hyperbolic closed

2-dimensional manifold M .

Now we consider a closed 3-dimensional manifold M3 admitting a nontrivial U(1) action.
Those manifolds with U(1) actions are classified by Raymond ([17]) and Orlik-Raymond
([16]).

In the rest of this section, we show the following theorem.

Tʜ��ʀ�� 9.4. – Let M3 be a closed oriented 3-dimensional real analytic manifold admit-
ting a nontrivial U(1) action. Then the identity component Diff

ω
(M3)0 of the group of real

analytic diffeomorphisms of M is a perfect group.

First we assume that the action is locally free. If there are no multiple orbits, then the the-
orem follows from our Theorem 1.1. Hence we assume that there are multiple orbits. Then
the quotient space M3/U(1) is a 2-dimensional orbifold with boundary which corresponds
to the multiple orbit of multiplicity 2 with the homomorphism Z/2Z −→ O(2) sending the
generator to an orientation reversing map. Let S1

1 , . . . , S1
n

denote the boundary components.
Other than orbits corresponding to the boundary, there are finitely many multiple orbits

O1, . . . , O�, where the isotropy subgroups are nontrivial. Let m1, . . . , m� be the multiplicity
of O1, . . . , O�. Let k be the least common multiple of m1, . . . , m� if the boundary is empty,
and k be the least common multiple of m1, . . . , m� and 2 if the boundary is not empty.

For the multiple orbit Oi, we have a neighborhood Ni
∼= (B2 × U(1))/ ∼, where

(w, z) ∼ (we2π
√
−1rqi/mi , ze2π

√
−1r/mi) ((mi, qi) = 1 and r ∈ Z/miZ).

For the boundary component S1
i

of M/U(1), we have a neighborhood N �
i
∼=

([−1, 1]×S1
i
×U(1))/ ∼ of the component of multiple orbits, where (u, v, z) ∼ (−u, v,−z).

For each Ni, we take k sections B2 × {e2π
√
−1j/k} (j = 0, . . . , k − 1) in B2 × U(1), and

then this gives k/mi disks in Ni transverse to the multiple orbit Oi.
For each N �

i
, we can take a family of curves γi on S1

i
× U(1) such that γi intersects

{x} × U(1) (x ∈ S1
i

) in k points and is invariant under the translation by e2π
√
−1/k in the

U(1) direction. We take a family of annuli [−1, 1]×γi in [−1, 1]×S1
i
×U(1). Then, for each

N �
i
, this gives a family of annuli transverse to each multiple orbit in ({0} × S1

i
× U(1))/ ∼

at k/2 points.
The quotient space Σ = M/U(1) is an orbifold which is topologically a connected sur-

face of genus g with � marked points and possibly with the boundary. Then the projection
M −→ Σ = M/U(1) has a multi-section on each Ni/U(1) and N �

i
/U(1). We try to extend

the multi-section over Σ. Put g� = 2g if the surface Σ is orientable, and put g� = g if the
surface Σ is nonorientable.

If the boundary is empty, we choose arcs A1, . . . , A�−1, B1, . . . , Bg� on Σ = M/U(1)

connecting Ni/U(1) so that the complement of
��

i=1

(Ni/U(1)) ∪

�−1�

i=1

Ai ∪

g
��

i=1

Bi is simply

connected. We extend the multi-section over these arcs, and then we have a multi-section
along the boundary of the simply connected region. We have the obstruction to extend this
multi-section to the simply connected region, which is the Euler class.
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If there are multiple orbits Oi and the boundary is not empty, we also choose arcs
A1, . . . , A�−1, B1, . . . , Bg� on Σ = M/U(1) connecting Ni/U(1) and arcs Ci connecting

A1 to N �
i
/U(1) (i = 2, . . . , n) so that the complement of

��

i=1

(Ni/U(1)) ∪

n�

i=2

(N �
i
/U(1)) ∪

�−1�

i=1

Ai ∪

g
��

i=1

Bi ∪

n�

i=2

Ci is an annulus with a boundary component being S1
1 . We choose a

multi-section on each Ni/U(1) (i = 2, . . . , �) and on each N �
i
/U(1) (i = 2, . . . , n). We extend

the multi-section over these arcs, and then we can extend it to the whole Σ = M/U(1).
If there are no multiple orbits other than the boundary, we take arcs Ci(i = 2, . . . , n− 1)

connecting N �
i
/U(1) (i = 2, . . . , n) so that the complement of

n�

i=2

(N �
i
/U(1)) ∪

n−1�

i=2

Ci is an

annulus with a boundary component being S1
1 . We choose a multi-section on each Ni/U(1)

(i = 2, . . . , �), we extend the multi-section over these arcs, and then we can extend it to the
whole Σ = M/U(1). If the boundary is the circle S1

1 , then Σ is the disk or the Möbius band,
and we have a multi-section (k = 2).

Now we need to know that we can choose the multi-section real-analytically and invariant
under the action of Z/kZ, possibly outside of several regular orbits if the boundary is empty.

Consider M = M/(Z/kZ). For each multiple orbit Oi,

Ni/(Z/kZ) ∼= (B2/(Z/miZ))× (U(1)/(Z/kZ)),

where B2/(Z/miZ) is a cone of angle 2π/mi. For each boundary component S1
i

,

N �
i
/(Z/kZ) ∼= [0, 1]× S1

× (U(1)/(Z/kZ)).

Then the action of U(1)/(Z/kZ) is free on M . The multi-section we took corresponds to a
section of this U(1)/(Z/kZ) bundle M −→ Σ.

For the cases where there is a multi-section for M −→ Σ, we approximate this section
for M −→ Σ, by a real analytic section and the inverse image of it under M −→ M is the
desired real analytic multi-section for M −→ Σ. Note that, for the real analyticity around
the cone points and the boundary, we understand as follows. A function f on B2/(Z/miZ)

is real analytic if f is induced from a real analytic function on B2 invariant under the action
of Z/miZ. A function f on [0, 1] × S1

i
is real analytic if it is induced from a real analytic

function on [−1, 1]× S1
i

invariant under the map (u, v) �−→ (−u, v).
If there are obstructions to construct multi-sections, we proceed as follows. Let E be the

C bundle over Σ = M/U(1) associated to M −→ Σ. We consider real analytic sections of
E −→ Σ.

We divide into two cases according to the uniformizability of Σ = M/U(1). We treat the
case where Σ = M/U(1) is not uniformizable in a different way later.

If Σ = M/U(1) is uniformizable, there is a finite branched cover

Σ −→ Σ/F ∼= Σ = M/U(1),

where F is a finite group acting on the real analytic surface Σ. This map Σ −→ Σ is cov-
ered by the C bundle map EΣ −→ E. First, take a smooth section which is not zero on
B2/(Z/miZ) (i = 1, . . . , �) and is transverse to the zero section of E −→ Σ. This gives an
F equivariant smooth section of EΣ −→ Σ. Let s be a real analytic section of EΣ −→ Σ
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which approximates the smooth equivariant section. Then we take the average by the action

of F . That is, let σ =
1

|F |

�

γ∈F

γ · s ◦ γ−1. Then σ is equivariant and still not zero on the

preimages of B2/(Z/miZ). The section σ is transverse to the zero section because the maps
γ · s ◦ γ−1 (γ ∈ F ) are close to each other, each zero of σ is near a zero of γ · s ◦ γ−1 (γ ∈ F )
and the tangent maps of γ · s ◦ γ−1 near the zero of σ are close to each other. Thus this σ
induces a real analytic section σ of E −→ Σ.

Outside the zeros of σ, σ gives a real analytic section of M −→ Σ. Now we take the inverse
image �σ of σ(Σ \ Zero(σ)) under M −→ M . This �σ gives the desired multi-section outside
the zeros of σ.

Now we have necessary real analytic multi-sections �σ when the boundary of Σ is not
empty or Σ is uniformizable.

Let ›SLk(2;R) denote the k fold covering group of SL(2;R). Using this section, we make
the diagonal matrices of ›SLk(2;R) act along the orbits.

If there is a real analytic multi-section σ over Σ, then we make ›SLk(2;R) act along the
orbits. By Lemma 3.1, orbitwise rotations close to the identity can be written as a product
of commutators of orbit preserving diffeomorphisms, and the theorem of this case is shown.

If Zero(σ) is not empty and there is a multi-section only over Σ\Zero(σ), we need a multi-
section version of Lemma 3.3, which is proved by looking at the k fold covering along the
fiber and lift the maps appearing in the proof of Lemma 3.3 to the k fold covering.

L���� 9.5. – Let R : D \ {(0, 0)} −→ SL(2;R) be the map given in Lemma 3.3.

Let A =

�
a 0

0 a−1

�
, where a = a(x, y) is real analytic and a(0, 0) = 1. If a(x, y) − 1 is

divisible by x2 + y2, then R−1AR lifts to a real analytic map �Ak : D −→ ›SLk(2;R) such that
�Ak(0, 0) = id.

We note that Lemma 3.4 can be applied to the lifts of the actions of the rotations and
diagonal matrices and this together with Lemma 9.5 implies the following lemma.

L���� 9.6. – The orbitwise action Map(D\{0}, ›SLk(2;R)) which is the lift of the action
given in Lemma 3.5 extends real analytically to the fiber on 0.

By using real analytic sections σ whose zero sets are disjoint, we can write an orbitwise
rotation as a product of orbitwise rotations such that the condition (∗)1 of Lemma 3.5 is
satisfied as in the proof of Proposition 3.2. Then by Lemma 3.1, using the action of elements
of ›SLk(2;R), we can write an orbitwise rotation close to the identity, as a product of two
commutators in Map

ω
(Σ\Zero(σ), ›SLk(2;R))0. Then by Lemma 9.6, the diffeomorphisms

appearing in the commutators are real analytic on the fibers of Zero(σ).

If M/U(1) is not uniformizable, Σ = M/U(1) is the 2-dimensional sphere S2 with 1 or
2 cone points. In this case, M is a lens space L(p, q) for coprime integers (p, q). The lens
space L(p, q) admits a U(1) action such that L(p, q)/U(1) is uniformizable. The lens space
L(p, q) is given as the quotient space of S3 by the Z/pZ action defined by � · (z1, z2) =

(e2π�/p
√
−1z1, e2π�q/p

√
−1z2) for � ∈ Z/pZ. There is a U(1) action (actually a U(1)/(Z/pZ)
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action) induced from the diagonal U(1) action of {e2π
√
−1t} on the unit sphere S3. For this

action Σ = L(p, q)/U(1) is the 2-dimensional sphere without cone points (p = 1) or with two
cone points of angle 2π/p (p �= 1). Thus Σ is uniformizable and we can apply the previous
argument.

If the fixed point set is not empty, we need the following lemma which is ›SLk(2;R) version
of Lemma 5.4.

L���� 9.7. – Let �A : C −→ C be the map given in Lemma 5.4 preserving concentric
circles, where we identify R2 with C and a = a(w,w) is a real analytic function on ww and
a(0) = 1. If a − 1 is divisible by (ww)k, then the map �Ak : C −→ C satisfying ( �Ak(w))k =

�A(wk) is real analytic at (0, 0).

Proof. – Put z = wk and in the coordinate (z, z), the map �A given by

�A
�

x

y

�
=

�
x2 + y2

�
a2x2 + a−2y2

�
ax

a−1y

�

is written as follows:

�A(z) =

√
zz…

a2
(z + z)2

4
−

1

a2

(z − z)2

4

Å
a
z + z

2
+

1

a

z − z

2

ã

=

√
zz 

1

2

Å
a2

+
1

a2

ã
zz +

1

4

Å
a2
−

1

a2

ã
(z2

+ z2
)

Å
1

2

Å
a +

1

a

ã
z +

1

2

Å
a−

1

a

ã
z

ã

=

1

2

Å
a +

1

a

ã
z +

1

2

Å
a−

1

a

ã
z

 
1

2

Å
a2

+
1

a2

ã
+

1

4

Å
a2
−

1

a2

ã
z2 + z2

zz

=

z +
1

2

(a− 1)2

a
z +

1

2

(a− 1)(a + 1)

a
z

…
1 +

1

2

(a− 1)2(a + 1)2

a2
+

1

4

(a− 1)(a + 1)(a2 + 1)

a2

z2 + z2

zz

.

If a− 1 is divisible by (x2 + y2)k = (ww)k = zz, Then �A(z) is divisible by z and written as
the convergent series

�A(z) = z
Ä
1 +

�
aijz

izj
ä

.

The map �Ak is written as

�Ak(w) =
k

�
wk

Ä
1 +

�
aijw

kiwkj
ä

= w k

�
1 +

�
aijw

kiwkj

and it is real analytic.
If the fixed point set is not empty, Σ = M/U(1) is a surface of genus g with boundary and

with � marked points. It is always uniformizable. Since Σ = M/U(1) is uniformizable, we
proceed as before and we obtain a multi-section of M −→ M/U(1) outside the boundary.
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For the boundary components corresponding to the fixed point set, we have a k-fold multi-
section. By using this multi-section we make �Ak act along the orbits. We can arrange the or-
bitwise rotation f obtained by Proposition 9.1 to satisfy that f−id is divisible by (x2+y2)2k.
We take a real analytic function a on Σ such that a = 1 on the boundary ∂Σ, and a > 1 on
Σ\∂Σ, a−1 is divisible by (x2+y2)k along the boundary ∂Σ but the (2k)-th derivative is not

trivial. By using the real analytic map Σ −→ ›SLk(2;R) which lifts w �−→

�
a(w) 0

0 a(w)−1

�
,

by Lemma 3.1 the orbitwise rotation f close to the identity can be written as a product of two
commutators. Then by Lemmas 3.4 and 9.7, the diffeomorphisms appearing in the commu-
tators are real analytic on the fixed point set.

Thus we proved Theorem 9.4.

10. Appendix 1: Proof of Theorem 5.3

Theorem 5.3 is a special case (n = 1) of the following Theorem 10.1. Before stating The-
orem 10.1, we clarify the situation.

We consider the complex vector space Cn with the coordinate (z1, . . . , zn). Let U be a
neighborhood of the origin 0. Let Φ : U −→ ϕ(U) ⊂ Cn be a real analytic diffeomorphism
fixing 0 such that T0ϕ = idT0Cn .

Then the component ϕi(z, z) (i = 1, . . . , n) of Φ(z, z) = (ϕ1(z, z), . . . , ϕn(z, z)) is
written as a convergent series in the variables (z, z) = ((z1, . . . , zn), (z1, . . . , zn)), and

satisfies
∂ϕi

∂zj

(0) = δij and
∂ϕi

∂zj

(0) = 0. Hence the linear term of ϕj is zj .

Let U(1)×Cn
−→ Cn be the U(1) action given by

(e2π
√
−1t, (z1, . . . , zn)) �−→ e2π

√
−1t

· (z1, . . . , zn) = (e2π
√
−1m1tz1, . . . , e

2π
√
−1mntzn),

where (m1, . . . ,mn) is a primitive integer vector called the type of the U(1) action. Any ef-
fective real analytic U(1) action on Cn with the unique fixed point set {0} is real analytically
conjugate to this action for some (m1, . . . ,mn).

Assume further that Φ(z, z) is on the orbit of z. Put

ϕj(z, z) =

�

k≥0,�≥0
k+�≥1

gj

k�
zj

kzj
�,

where gj

k�
are convergent series on

((z1, . . . , zj−1, zj+1, . . . , zn), (z1, . . . , zj−1, zj+1, . . . , zn)).

Since ϕ(z, z) is on the same orbit of z, ϕj(z, z)ϕj(z, z) = zjzj . Since ϕj(z, z)ϕj(z, z) begins
with

(gj

1,0zj + gj

0,1zj + · · · )(gj

1,0zj + gj

0,1zj + · · · )

= gj

1,0g
j

0,1z
2
j

+ (gj

1,0g
j

1,0 + gj

0,1g
j

0,1)zjzj + gj

0,1g
j

1,0zj
2

+ · · ·

and this coincides with zjzj , gj

1,0g
j

0,1 = 0, gj

1,0g
j

1,0 + gj

0,1g
j

0,1 = 1 and gj

0,1g
j

1,0 = 0. Here
gj

1,0(0) = 1 and hence it is nonzero on a neighborhood of 0, gj

0,1 = 0 and |gj

1,0| = 1. If
gj

0,2, . . . , gj

0,�−1 is 0 and gj

0,�
�= 0, then the coefficient of z�+1

j
of ϕj(z, z)ϕj(z, z) is gj

0,�
.

4 e SÉRIE – TOME 42 – 2009 – No 4



ON THE GROUP OF REAL ANALYTIC DIFFEOMORPHISMS 635

Since ϕj(z, z)ϕj(z, z) = zjzj , gj

0,�
= 0. Thus all the terms of ϕj(z, z) contain zj and

ϕj(z, z)is written as ϕj(z, z) = zjuj(z, z), where uj(z, z) is real analytic, uj(0, 0) = 1 and
uj(z, z)uj(z, z) = 1. Then by putting uj(z, z) = 1− vj(z, z) and

2π
√
−1µi(z, z) = log(1− vj(z, z)) = −

∞�

i=1

vj(z, z)i

i
,

ϕj(z, z) is written as ϕj(z, z) = zje2π
√
−1µi(z,z), where µi(z, z) is real-valued if the value of

the variable z is the complex conjugate of z.

Now since Φ(z, z) = (z1e2π
√
−1µ1(z,z), . . . , zne2π

√
−1µn(z,z)) is on the same orbit as

z = (z1, . . . , zn), and µ1, . . . , µn are small near the origin,

2π
√
−1µj(z, z)/mj = 2π

√
−1µk(z, z)/mk

holds where |zj | · |zk| �= 0. This means that the real analytic functions µ1(z, z)/m1, . . . ,
µn(z, z)/mn defined on a neighborhood of 0 coincide on the open set where
|z1| · · · |zn| �= 0. Hence there is a real analytic function µ(z, z) defined in a neighbor-
hood of 0 such that µ1(z, z) = m1µ(z, z), . . . , µn(z, z) = mnµ(z, z). Thus the orbit
preserving map Φ is written as follows:

Φ(z, z) = (z1e
2π
√
−1m1µ(z,z), . . . , zne2π

√
−1mnµ(z,z)

).

We show the following theorem.

Tʜ��ʀ�� 10.1. – Let ∆ζ be the polydisk of radius ζ. Let α ∈ R be a Diophantine num-
ber. Let Φ(z, z;w) = (ϕ1(z, z;w), . . . , ϕn(z, z;w)) be a real analytic family of real analytic
diffeomorphisms of a neighborhood U of 0 in Cn which sends each orbit the U(1) action of type
(m1, . . . ,mn) to itself, and T(0)Φw = idT0Cn , where Φw(z) = Φ(z, z;w) and w ∈ ∆ζ ∩Rm.
Then there are real analytic maps λ : U×(∆ζ ∩Rm

) −→ R (λ(z, z;w) is constant along each
orbit) and H : U × (∆ζ ∩Rm

) −→ U (H(z, z;w) is on the same orbit as z) such that

e−2π
√
−1λw(z)

· e2π
√
−1α

· Φw(z) = Hw(e2π
√
−1α

·Hw
−1

(z)),

where λw(z) = λw(z, z;w) and Hw(z) = H(z, z;w).

For the proof, we rewrite the equation. By replacing Hw
−1(z) by z, the equation is written

as follows:

e−2π
√
−1λw(Hw(z))

· e2π
√
−1α

· Φw(Hw(z)) = Hw(e2π
√
−1α

· z).

Since Φw(z) sends each orbit to itself, we have the real analytic function µw(z) =

µ(z, z;w) such that

Φw(z) = (z1e
2π
√
−1m1µw(z), . . . , zne2π

√
−1mnµw(z)

).

We are going to find Hw(z) such that T0Hw = idT0Cn . If Hw(z) is on the same orbit as z,
then there is a real analytic function kw(z) = k(z, z;w) such that

Hw(z) = (z1e
2π
√
−1m1kw(z), . . . , zne2π

√
−1mnkw(z)

).
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If λw is constant along each orbit, λw(Hw(z)) = λw(z). Then the i-th coordinate of the
above equation is written as follows:

e−2π
√
−1miλw(z)e2π

√
−1miα(zie

2π
√
−1mikw(z)

)e2π
√
−1miµw(Hw(z))

= zie
2π
√
−1miαe2π

√
−1miµw(e2π

√
−1α·z).

Since Hw(0) = 0 and kw(0) = λw(0) = µw(0) = 0, we have the following equation.

µw(Hw(z))− λw(z) = kw(e2π
√
−1α

· z)− kw(z)

Hw(z) = (z1e
2π
√
−1m1kw(z), . . . , zne2π

√
−1mnkw(z)

).

We use the Kolmogorov-Arnold-Moser process to obtain the sequence converging to the
solution.

Put

G(λ, k)(z, z;w) = µw(Hw(z))− λw(z)− (kw(e2π
√
−1α

· z)− kw(z)).

We are looking for λw and kw such that G(λw, kw)(z, z;w) = 0. The question is:
“If we have an approximation (λ, k) of the solution, how can we make a better approxi-

mation (λ + �λ, k + �k)?”
In principle, for an appropriate norm � · �, we have

�G(λ + �λ, k + �k)−G(λ, k)−DG(λ,k)(
�λ,�k)� ≤ const (��λ�+ ��k�)2.

Thus for the given (λ, k), take (�λ,�k) so that G(λ, k)+DG(λ,k)(
�λ,�k) is small, then (λ+�λ, k+�k)

should be a better approximation.
First we investigate the terms which we need to estimate.
Put

µw(z1, . . . , zn, θ) = µw(z1e
2π
√
−1m1θ, . . . , zne2π

√
−1mnθ

).

Then
∂µw

∂θ
=

n�

i=1

Å
2π
√
−1mizi

∂µw

∂zi

− 2π
√
−1mizi

∂µw

∂zi

ã
.

The differential DG(λ,k) is computed as follows:

DG(λ,k)(
�λ,�k) =

∂µw

∂θ
(Hw(z))�k(z)− �λ(z)− (�k(e2π

√
−1α

· z)− �k(z)).

Then

G(λ + �λ,k + �k)−G(λ, k)−DG(λ,k)(
�λ,�k)

= µw(z1e
2π
√
−1m1(kw(z)+�kw(z)), . . . , zne2π

√
−1mn(kw(z)+�kw(z))

)

− µw(z1e
2π
√
−1m1kw(z), . . . , zne2π

√
−1mnkw(z)

)

−
∂µ

∂θ
(z1e

2π
√
−1m1kw(z), . . . , zne2π

√
−1mnkw(z)

)�k(z).

Hence

(10.1) |G(λ + �λ, k + �k)−G(λ, k)−DG(λ,k)(
�λ,�k)| ≤ sup

����
∂2µ

∂θ2

���� (sup |�k|)2.

4 e SÉRIE – TOME 42 – 2009 – No 4



ON THE GROUP OF REAL ANALYTIC DIFFEOMORPHISMS 637

Here
∂2µ

∂θ2
=

Å n�

i=1

Å
2π
√
−1mizi

∂

∂zi

− 2π
√
−1mizi

∂

∂zi

ãã2

µ.

Put
kw(z1, . . . , zn, θ) = kw(z1e

2π
√
−1m1θ, . . . , zne2π

√
−1mnθ

).

Then
∂kw

∂θ
=

n�

i=1

Å
2π
√
−1mizi

∂kw

∂zi

− 2π
√
−1mizi

∂kw

∂zi

ã
.

Now put �k(z) = (1 +
∂kw

∂θ
(z))E(z), where E(z) = E(z, z;w). By substituting this to the

differential of G(λ, k),

DG(λ,k)(
�λ,(1 +

∂kw

∂θ
)E)

=
∂µw

∂θ
(Hw(z))

Å
1 +

∂kw

∂θ
(z)

ã
E(z)− �λ(z)

−

ÅÅ
1 +

∂kw

∂θ
(e2π

√
−1α

· z)

ã
E(e2π

√
−1α

· z)−

Å
1 +

∂kw

∂θ
(z)

ã
E(z)

ã
.

Since

G(λ, k) = µw(z1, . . . , zn, θ + kw(z1, . . . , zn, θ))− λ(z1, . . . , zn)

− (kw(z1, . . . , zn, θ + α)− kw(z1, . . . , zn, θ)),

∂G(λ, k)

∂θ
(z) =

∂µw

∂θ
(Hw(z))

Å
1 +

∂kw

∂θ
(z)

ã
−

Å
∂kw

∂θ
(e2π

√
−1α

· z)−
∂kw

∂θ
(z)

ã
.

Hence we have
∂G(λ, k)

∂θ
(z)E(z) =

∂µw

∂θ
(Hw(z))

Å
1 +

∂kw

∂θ
(z)

ã
E(z)

−

Å
∂kw

∂θ
(e2π

√
−1α

· z)E(z)−
∂kw

∂θ
(z)E(z)

ã

=
∂µw

∂θ
(Hw(z))

Å
1 +

∂kw

∂θ
(z)

ã
E(z)

−

ÅÅ
1 +

∂kw

∂θ
(e2π

√
−1α

· z)

ã
E(z)−

Å
1 +

∂kw

∂θ
(z)

ã
E(z)

ã
.

Thus

DG(λ,k)(
�λ,(1 +

∂kw

∂θ
)E)−

∂G(λ, k)

∂θ
(z)E(z)

= −

Å
1 +

∂kw

∂θ
(e2π

√
−1α

· z)

ãÄ
E(e2π

√
−1α

· z)− E(z)

ä
− �λ(z).

For (λ, k), we would like to solve

G(λ, k)− �λ =

Å
1 +

∂kw

∂θ
(e2π

√
−1α

· z)

ãÄ
E(e2π

√
−1α

· z)− E(z)

ä
.

That is

E(e2π
√
−1α

· z)− E(z) =

Å
1 +

∂kw

∂θ
(e2π

√
−1α

· z)

ã−1 Ä
G(λ, k)− �λ

ä
.
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To find E, it is necessary that
� Å

1 +
∂kw

∂θ
(e2π

√
−1α

· z)

ã−1 Ä
G(λ, k)− �λ

ä
dθ = 0.

Since �λ is constant on each orbit, this is rewritten as
� Å

1 +
∂kw

∂θ
(e2π

√
−1α

· z)

ã−1

G(λ, k)dθ = �λ
� Å

1 +
∂kw

∂θ
(e2π

√
−1α

· z)

ã−1

dθ.

With these (�λ,�k =

Å
1 +

∂kw

∂θ
)E

ã
,

G(λ, k) + DG(λ,k)

Å
�λ,

Å
1 +

∂kw

∂θ

ã
E

ã

= G(λ, k) + DG(λ,k)

Å
�λ,

Å
1 +

∂kw

∂θ

ã
E

ã
−

∂G(λ, k)

∂θ
(z)E(z)

+
∂G(λ, k)

∂θ
(z)E(z)

= G(λ, k)−

Å
1 +

∂kw

∂θ
(e2π

√
−1α

· z)

ãÄ
E(e2π

√
−1α

· z)− E(z)

ä
− �λ

+
∂G(λ, k)

∂θ
(z)E(z)

=
∂G(λ, k)

∂θ
(z)E(z).(10.2)

It is important to note that since G(λ, k) is small,
∂G(λ, k)

∂θ
(z) is small.

Thus by (10.1) and (10.2),

|G(λ + �λ, k + �k)| ≤ sup

����
∂G(λ, k)

∂θ
(z)

���� sup |E(z)|+ sup

����
∂2µw

∂θ2

���� (sup |�k|)2.

We treat the equation

E(e2π
√
−1α

· z)− E(z) =

Å
1 +

∂k

∂θ
(e2π

√
−1α

· z)

ã−1 Ä
G(λ, k)− �λ

ä

for the given (λ, k), where �λ is already determined.

Assume that

sup
∆η×∆η×∆ζ

|G(λ, k)| ≤ ε, and sup
∆η×∆η×∆ζ

|
∂k

∂θ
(z, z;w)| ≤

1

22
.

Then by the equation determining �λ, sup
∆η×∆η×∆ζ

|�λ| ≤ 24

32
ε, hence

sup
∆η×∆η×∆ζ

�����

Å
1 +

∂kw

∂θ
(e2π

√
−1α

· z)

ã−1

(G(λ, k)− �λ)

����� ≤
4

3

52

32
ε < 2

2ε.
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Here

ν(z, z;w) =

Å
1 +

∂kw

∂θ
(e2π

√
−1α

· z)

ã−1 Ä
G(λ, k)− �λ

ä

=

�

j1,...,jn,k1,...,kn

aj1···jnk1···kn(w)z1
j1 · · · zn

jnz1
k1 · · · zn

kn

satisfies aj1···jnk1···kn(w) = ak1···knj1···jn(w) and aj1···jnk1···kn(w) = 0 if
n�

i=1

miji =

n�

i=1

miki. The reason for the latter is as follows: Since the integral of ν along the orbit is 0,

�
ν(e2π

√
−1θ

· z, e−2π
√
−1θ

· z;w)dθ

=

�

j1,...,jn,k1,...,kn

�
e2π

√
−1(

�n

i=1
miji−

�n

i=1
miki)θz1

j1 · · · zn
jnz1

k1 · · · zn
kndθ

=

�
�n

i=1
miji=

�n

i=1
miki

aj1···jnk1···kn(w)z1
j1 · · · zn

jnz1
k1 · · · zn

kn = 0.

Since it vanishes as a function on (z, z;w), the coefficient satisfies aj1···jnk1···kn(w) = 0 if
n�

i=1

miji =

n�

i=1

miki.

Since sup
∆η×∆η×∆ζ

|ν(z, z;w)| ≤ 2
2ε, |aj1···jnk1···kn(w)| ≤

22ε

η
�n

i=1
ji+

�n

i=1
ki

by the Cauchy

inequality.

For the series ν(z, z;w) =

�

j1,...,jn,k1,...,kn

aj1···jnk1···kn(w)z1
j1 · · · zn

jnz1
k1 · · · zn

kn with

aj1···jnk1···kn(w) = ak1···knj1···jn(w) and aj1···jnk1···kn(w) = 0 for
n�

i=1

miji =

n�

i=1

miki, put

E(z) =

�

j1,...,jn,k1,...,kn

bj1···jnk1···kn(w)z1
j1 · · · zn

jnz1
k1 · · · zn

kn ,

and we can solve

E(e2π
√
−1α

· z)− E(z) = ν(z, z;w).

Since

E(e2π
√
−1α

· z)− E(z) =

�

j1,...,jn,k1,...,kn

(e2π
√
−1α(

�n

i=1
miji−

�n

i=1
miki) − 1)

· bj1···jnk1···kn(w)z1
j1 · · · zn

jnz1
k1 · · · zn

kn ,

bj1···jnk1···kn(w) =
aj1···jnk1···kn(w)

e2π
√
−1α(

�n

i=1
miji−

�n

i=1
miki) − 1

.
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Thus

E(z) =

�

j1,...,jn,k1,...,kn

bj1···jnk1···kn(w)z1
j1 · · · zn

jnz1
k1 · · · zn

kn

=

�

j1,...,jn,k1,...,kn

aj1···jnk1···kn(w)

e2π
√
−1α(

�n

i=1
miji−

�n

i=1
miki) − 1

z1
j1 · · · zn

jnz1
k1 · · · zn

kn .

This E(z) is real if the value of the variable z is the complex conjugate of the value of z and
satisfies

ν(z, z;w) = E(e2π
√
−1α

· z)− E(z).

Note that by the Diophantine condition,

|e2π
√
−1α(

�n

i=1
miji−

�n

i=1
miki) − 1| ≥

Cβ�����

n�

i=1

miji −

n�

i=1

miki

�����

1+β
(β ≥ 1).

Since |aj1···jnk1···kn(w)| ≤
22ε

η
�n

i=1
ji+

�n

i=1
ki

,

|bj1···jnk1···kn(w)| ≤
22ε

Cβ

�����

n�

i=1

miji −

n�

i=1

miki

�����

1+β

η
�n

i=1
ji+

�n

i=1
ki

holds. Then, for |z| ≤ (1− a)η (0 < a < 1),
�

ji≥0, ki≥0

|bj1···jnk1···kn(w)||z1
j1 · · · zn

jnz1
k1 · · · zn

kn |

≤

�

ji≥0, ki≥0

22ε

Cβ

|

n�

i=1

miji −

n�

i=1

miki|
1+β

(1− a)

�n

i=1
ji+

�n

i=1
ki

≤

�

ji≥0, ki≥0

22ε

Cβ

�
n�

i=1

|mi|

�1+β �
n�

i=1

|ji − ki|

�1+β

(1− a)

�n

i=1
ji+

�n

i=1
ki .

Here

�

ji≥0, ki≥0

�
n�

i=1

|ji − ki|

�1+β

(1− a)

�n

i=1
ji+

�n

i=1
ki

≤

�

ji≥0, ki≥0,

�n

i=1
ji+

�n

i=1
ki>0

�
n�

i=1

(ji + ki)

�1+β

(1− a)

�n

i=1
ji+

�n

i=1
ki

≤

�

�≥1

Å
2n− 1 + �

2n− 1

ã
�1+β

(1− a)
�

≤ 2
2n−1

�

�≥1

�2n+β
(1− a)

�.
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In the second inequality above we used the following inequality:

(2n− 1 + �)(2n− 2 + �) · · · (1 + �)

(2n− 1)(2n− 2) · · · 1 · �2n−1
=

Å
1

�
+

1

2n− 1

ãÅ
1

�
+

1

2n− 2

ã
· · ·

Å
1

�
+

1

1

ã
≤ 2

2n−1.

Then by using the equalities

� ∞

0
x2n+βe−γx

dx =

� ∞

0

Å
x

γ

ã2n+β

e−x
d

Å
x

γ

ã
=

Γ(2n + 1 + β)

γ2n+1+β

with γ = | log(1− a)| and the inequality | log(1− a)| ≥ a,

�

ji≥0,ki≥0

�
n�

i=1

|ji − ki|

�1+β

(1− a)

�n

i=1
ji+

�n

i=1
ki ≤ 2

2n−1 Γ(2n + 1 + β)

a2n+1+β
.

Thus

�

ji≥0,ki≥0

|bj1···jnk1···kn(w)||z1
j1 · · · zn

jnz1
k1 · · · zn

kn |

≤
22ε

Cβ

�
n�

i=1

|mi|

�1+β

2
2n−1 Γ(2n + 1 + β)

a2n+1+β

=
22n+1Γ(2n + 1 + β)

Cβ

�
n�

i=1

|mi|

�1+β

ε

a2n+1+β
.

This implies that E is real analytic on ∆(1−a)η ×∆(1−a)η ×∆ζ and

sup
∆(1−a)η×∆(1−a)η×∆ζ

|E| ≤
22n+1Γ(2n + 1 + β)

Cβ

�
n�

i=1

|mi|

�1+β

ε

a2n+1+β
.

Since

∂E

∂θ
= 2π

√
−1

�

j1,...,jn,k1,...,kn

(

n�

i=1

miji −

n�

i=1

miki)

· bj1···jnk1···kn(w)z1
j1 · · · zn

jnz1
k1 · · · zn

kn ,
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for |zi| ≤ (1− a)η (i = 1, . . . , n),

����
∂E

∂θ

���� ≤ 2π
�

ji≥0, ki≥0

22ε

Cβ

|

n�

i=1

miji −

n�

i=1

miki|
2+β

(1− a)

�n

i=1
ji+

�n

i=1
ki

≤
23πε

Cβ

�

ji≥0, ki≥0

�
n�

i=1

|mi|

�2+β �
n�

i=1

|ji − ki|

�2+β

(1− a)

�n

i=1
ji+

�n

i=1
ki

≤
23πε

Cβ

�
n�

i=1

|mi|

�2+β �

ji≥0, ki≥0,�n

i=1
ji+

�n

i=1
ki>0

�
n�

i=1

(ji + ki)

�2+β

(1− a)

�n

i=1
ji+

�n

i=1
ki

≤
23πε

Cβ

�
n�

i=1

|mi|

�2+β

2
2n−1

�

�>0

�2n+1+β
(1− a)

�

≤
23πε

Cβ

�
n�

i=1

|mi|

�2+β

2
2n−1 Γ(2n + 2 + β)

a2n+2+β
.

Thus

sup
∆(1−a)η×∆(1−a)η×∆ζ

����
∂E

∂θ

���� ≤
22n+2πΓ(2n + 2 + β)

Cβ

�
n�

i=1

|mi|

�2+β

ε

a2n+2+β
.

Thus by putting C �
β

=
22n+1Γ(2n + 2 + β)

Cβ

and M =

n�

i=1

|mi|, we have

sup
∆(1−a)η×∆(1−a)η×∆ζ

|E| ≤
C �

β
M1+βε

a2n+1+β

and

sup
∆(1−a)η×∆(1−a)η×∆ζ

����
∂E

∂θ

���� ≤
2πC �

β
M2+βε

a2n+2+β
.

Then for �k =

Å
1 +

∂kw

∂θ

ã
E,

sup
∆(1−a)η×∆(1−a)η×∆ζ

|�k| ≤
5C �

β
M1+βε

4a2n+1+β
.

If a holomorphic function f on ∆η ×∆η ×∆ζ satisfies sup
∆η×∆η×∆ζ

|f(z, z, w)| ≤ K, then

for

∂f

∂θ
(z, z, w) =

n�

i=1

(2π
√
−1mizi

∂f

∂zi

− 2π
√
−1mizi

∂f

∂zi

),
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sup
∆(1−a)η×∆(1−a)η×∆ζ

����
∂f

∂zi

(z, z, w)

���� and sup
∆(1−a)η×∆(1−a)η×∆ζ

����
∂f

∂zi

(z, z, w)

���� are estimated by

K

aη
by the Cauchy formula, and

sup
∆(1−a)η×∆(1−a)η×∆ζ

����
∂f

∂θ
(z, z, w)

���� ≤
22(1− a)πK

a

n�

i=1

|mi| ≤
22πK

a

n�

i=1

|mi|.

For

∂2f

∂θ2
(z, z, w) =

Å n�

i=1

(2π
√
−1mizi

∂

∂zi

− 2π
√
−1mizi

∂

∂zi

)

ã2

f

= −2
2π2

Å n�

i=1

mi
2
(zi

∂

∂zi

+ zi
2 ∂2

∂zi
2
) + mi

2
(zi

∂

∂zi

+ zi
2 ∂2

∂zi
2
)

+

�

i �=j

(mimjzizj

∂2

∂zi∂zj

+ mimjzi zj

∂2

∂zi∂zj

)

−

�

i,j

(mimjzizj

∂2

∂zi∂zj

+ mimjzizj

∂2

∂zi∂zj

)

ã
f,

by the Cauchy formula,

sup
∆η×∆η×∆ζ

����
∂2f

∂θ2
(z, z, w)

����

≤ 2
2π2

Å
2

n�

i=1

|mi|
2
(
1− a

a
+

2(1− a)2

a2
)K

+ 2

�

i �=j

|mimj |
(1− a)2

a2
K + 2

�

i,j

|mimj |
(1− a)2

a2
K

ã

≤ 2
2π2

Å
2

n�

i=1

|mi|
2
(
1− a

a
+

(1− a)2

a2
)K + 4

�

i,j

|mimj |
(1− a)2

a2
K

ã

≤ 2
2π2

· 6

�
n�

i=1

|mi|

�2
K

a2

Thus if sup
∆η×∆η×∆ζ

����
∂k

∂θ
(z, z, w)

���� ≤
1

22
, then for

∂2k

∂θ2
(z, z, w) =

n�

i=1

(2π
√
−1mizi

∂

∂zi

− 2π
√
−1mizi

∂

∂zi

)
∂k

∂θ
,

sup
∆(1−a)η×∆(1−a)η×∆ζ

����
∂2k

∂θ2
(z, z, w)

���� ≤
π

a

n�

i=1

|mi| =
πM

a
.

Since
∂�k
∂θ

=
∂2k

∂θ2
E +

Å
1 +

∂k

∂θ

ã
∂E

∂θ
,

sup
∆(1−a)η×∆(1−a)η×∆ζ

�����
∂�k
∂θ

����� ≤
πM

a

C �
β
M1+βε

a2n+1+β
+

5

4

2πC �
β
M2+βε

a2n+2+β
≤

22πC �
β
M2+βε

a2n+2+β
.
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Assume that sup
∆η×∆η×∆ζ

|µ| ≤ ε�. Then for

∂2µ

∂θ2
=

Å n�

i=1

(2π
√
−1mizi

∂

∂zi

− 2π
√
−1mizi

∂

∂zi

)

ã2

µ,

sup
∆(1−a)η×∆(1−a)η×∆ζ

����
∂2µ

∂θ2

���� ≤ 2
2π2

· 6

�
n�

i=1

|mi|

�2
ε�

a2
=

233π2M2ε�

a2
.

Thus
Å

sup
∆(1−a)η×∆(1−a)η×∆ζ

����
∂2µ

∂θ2

����
ãÇ

sup
∆(1−a)η×∆(1−a)η×∆ζ

|�k|
å2

≤
233π2M2ε�

a2

Ç
5C �

β
M1+βε

4a2n+1+β

å2

=
3 · 52π2C �

β

2M4+2βε�ε2

2a4n+4+2β
.

Since sup
∆η×∆η×∆ζ

|G(λ, k)| ≤ ε,

sup
∆(1−a)η×∆(1−a)η×∆ζ

����
∂G(λ, k)

∂θ

���� ≤
22π

a

�
n�

i=1

|mi|

�
ε =

22πMε

a

and Ç
sup

∆(1−a)η×∆(1−a)η×∆ζ

����
∂G(λ, k)

∂θ

����

åÇ
sup

∆(1−a)η×∆(1−a)η×∆ζ

|E|

å
≤

22πC �
β
M2+βε2

a2n+2+β
.

We assume further that
3 · 5

2πC �
β
M2+βε� ≤ 2

3

and we have

sup
∆(1−a)η×∆(1−a)η×∆ζ

|G(λ + �λ, k + �k)| ≤
23πC �

β
M2+β

a4n+4+2β
ε2.

Now we put λ0 = 0 and k0 = 0. Then G(λ0, k0) = G(0, 0) = µ(z) and assume that

sup
∆η×∆η×∆ζ

|µ(z)| ≤ ε = ε� ≤
23

3 · 52πC �
β
M2+β

.

Put η�−1 =

Å
1

2
+

1

2�

ã
η and ε0 = ε, we have

sup
∆η0×∆η0×∆ζ

|G(λ0, k0)| ≤ ε0.

Note that

η� = η�−1

1

2
+

1

2�+1

1

2
+

1

2�

= η�−1(1− a�−1)

where a�−1 =

1

2�+1

1

2
+

1

2�

≥
1

2�+1
for � ≥ 1.
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Then we have (�λ0,�k0 = (1 +
∂k0

∂θ
)E0 = E0) such that

G(λ0, k0)−
�λ0 =

Å
1 +

∂k0

∂θ
(e2π

√
−1αz)

ãÄ
E0(e

2π
√
−1αz)− E0(z)

ä

and

�k0(z) =

Å
1 +

∂k0

∂θ
(z)

ã
E0(z),

where

sup
∆η0×∆η0×∆ζ

|�λ0| ≤
24

32
ε0

sup
∆η1×∆η1×∆ζ

|�k0| ≤
5C �

β
M1+β

4a0
2n+1+β

ε0

sup
∆η1×∆η1×∆ζ

�����
∂�k0

∂θ

����� ≤
22πC �

β
M2+β

a0
2n+2+β

ε0.

Then for λ1 = λ0 + �λ0 and k1 = k0 + �k0,

sup
∆η1×∆η1×∆ζ

|G(λ1, k1)| ≤
23πC �

β
M2+β

a0
4n+4+2β

ε0
2

≤ 2
3πC �

β
M2+β

2
2(4n+4+2β)ε0

2.

For (λ�, k�), assume that

sup
∆η�

×∆η�
×∆ζ

|G(λ�, k�)| ≤ ε�.

Then we get
Å

�λ�,�k� =

Å
1 +

∂k

∂θ

ã
E�

ã
such that

G(λ�, k�)−
�λ� =

Å
1 +

∂k�

∂θ
(e2π

√
−1αz)

ãÄ
E�(e

2π
√
−1αz)− E�(z)

ä

and

�k�(z) =

Å
1 +

∂k�

∂θ
(z)

ã
E�(z),

where

sup
∆η�

×∆η�
×∆ζ

|�λ�| ≤
24

32
ε�

sup
∆ηn+1×∆ηn+1×∆ζ

|�k�| ≤
5C �

β
M1+β

4a�
2n+1+β

ε�

sup
∆η�+1

×∆η�+1
×∆ζ

�����
∂�k�

∂θ

����� ≤
22πC �

β
M2+β

a�
2n+2+β

ε�.
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Put λ�+1 = λ� + �λ� and k�+1 = k� + �k�. Then

sup
∆η�+1

×∆η�+1
×∆ζ

|G(λ�+1, k�+1)| ≤
23πC �

β
M2+β

a�
4n+4+2β

ε�
2

≤ 2
3πC �

β
M2+β

2
(n+2)(4n+4+2β)ε�

2.

Moreover,

sup
∆ηn+1×∆ηn+1×∆ζ

����
∂kn+1

∂θ

���� ≤ 2
2πC �

β
M2+β

Å
ε0

a0
2n+2+β

+ · · ·+
ε�

a�
2n+2+β

ã
.

We will show that λ� and k� are defined successively and (λ�, k�) converges to (λ, k) which
are holomorphic on ∆η/2 ×∆η/2 ×∆ζ , and then we will have Gµ(λ, k) = 0.

Put N = 23πC �
β
M2+β22(4n+4+2β), and we have

ε1 ≤ Nε0
2, ε2 ≤ N2

4n+4+2βε1
2, . . . , ε�+1 ≤ N2

n(4n+4+2β)ε�
2, . . . .

If we take ε0 ≤
1

N24n+4+2β
, then ε1 ≤

1

N22(4n+4+2β)
. If ε� ≤

1

N2(�+1)(4n+4+2β)
, then

ε�+1 ≤
1

N2(�+2)(4n+4+2β)
. Then

2
2πC �

β
M2+β

Å
ε0

a0
2n+2+β

+ · · ·+
ε�

a�
2n+2+β

ã

≤ 2
2πC �

β
M2+β

Ç
22(2n+2+β)

N2(4n+4+2β)
+ · · ·+

2(�+2)(2n+2+β)

N2(�+1)(4n+4+2β)

å

=
22πC �

β
M2+β

N

Å
1 + · · ·+

1

2�(2n+2+β)

ã

≤
23πC �

β
M2+β

N
=

23πC �
β
M2+β

23πC �
β
M2+β22(4n+4+2β)

=
1

22(4n+4+2β)
≤

1

22
,

and

sup
∆ηn+1×∆ηn+1×∆ζ

����
∂kn+1

∂θ

���� ≤
1

22

is satisfied.

Thus the construction of the sequence (λ�, k�) is performed. Since
�

ε� converges,

λ =

∞�

�=0

�λ� is holomorphic on ∆η/2 ×∆η/2 ×∆ζ . Since

� ε�

a�
2n+1+β

=

� 2(�+2)(2n+1+β)

N2(�+1)(4n+4+2β)
=

� 1

N22+�(2n+3+β)

converges, k =

∞�

�=0

�k� is holomorphic on ∆η/2 ×∆η/2 ×∆ζ .

Thus (λ, k) satisfies G(λ, k) = 0 on ∆η/2×∆η/2×∆ζ and this is the desired real analytic
solution.
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11. Appendix 2: Preliminary on the real analytic diffeomorphisms

In this section, we review several fundamental facts on real analytic manifolds, real ana-
lytic maps and diffeomorphisms. Basic references are Cartan [4], Grauert-Remmert [7].

Let A be the sheaf of germs of real analytic functions on a real analytic manifold M .
Analytically coherent sheaves are defined as follows. A sheaf S on M is analytically coherent
if there is a neighborhood U of x, such that SU is finitely generated over AU and for y ∈ U ,
Sy is represented as follows:

Sy = (Aye1 + · · ·+Ayek)/

�
f =

k�

i=1

aiyei |

k�

i=1

b(j)
iy

aiy = 0 (j = 1, . . . , �)

�

for some basis {e1, . . . , ek} and b(k)
ij

∈ AU . In other words, there is an exact sequence of
sheaves:

(AU )
�
−→ (AU )

k
−→ SU −→ 0.

It is fundamental that if Sx is finitely generated over Ax, then there is a neighborhood U of
x where SU is finitely generated over AU .

Let Hn(M ;S) be the n-dimensional cohomology group with coefficients in S. Then,
Theorems A and B of Cartan are stated as follows ([4]).

Tʜ��ʀ�� 11.1 (Theorem A). – For any analytically coherent sheaf S, H0(M ;S) −→ Sx

is surjective.

Tʜ��ʀ�� 11.2 (Theorem B). – For any analytically coherent sheaf S, for n > 0,
Hn(M ;S) = 0.

Let M be a real analytic submanifold in RN . Let IM denote the sheaf of the real analytic
functions on RN which vanishes on M . Then, we have the well known proposition.

Pʀ����ɪ�ɪ�ɴ 11.3. – IM is coherent.

For a real analytic submanifold M of RN , the sheaf AM of real analytic functions on M
is identified with the quotient A/IM . Proposition 11.3 and Theorem B of Cartan (Theorem
11.2) imply the following proposition.

Pʀ����ɪ�ɪ�ɴ 11.4. – For any real analytic function f on M ⊂ RN , there is an extension
�f on RN .

Pʀ����ɪ�ɪ�ɴ 11.5. – Any compact real analytic manifold M is defined by f = 0 with
f ∈ H0(RN

;A).

Proof. – Let SN ⊂ RN+1 be the unit sphere in RN+1. Since SN − {∗} ∼= RN real
analytically, M is real analytically embedded in SN ⊂ RN+1. It is sufficient to show that
there is a real analytic function f on SN defining M .

By Theorem A of Cartan (Theorem 11.1), for x ∈ M , the defining ideal (IM )x is generated

by F (x)
1 , . . . , F (x)

kx
∈ H0(RN+1

; IM ). Then G(x) =

kx�

i=1

(F (x)
i

)
2 is a real analytic function

on RN+1 such that G(x) = 0 on M and G(x) defines M on a neighborhood Ux of x. For
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y ∈ SN \ M , (IM )y is generated by any F (y) ∈ H0(RN+1
; IM ) such that F (y) �= 0 on a

neighborhood Uy of y.

Now take the covering {Ux}x∈M ∪ {Uy}y∈SN\M of SN . Since SN is compact, we have a

finite subcovering {Uxj}j=1,...,p ∪ {Uy�}�=1,...,q of it. Then the sum
p�

j=1

G(xj) +

q�

�=1

(F (y�))
2

is the desired defining function of M on SN .

The defining function fM obtained by Proposition 11.5 is positive and bounded. By
taking a function like (1−

fM

K
)m, we obtain the following corollary.

C�ʀ�ʟʟ�ʀʏ 11.6. – For any ε > 0 and δ > 0, there is a real analytic function f on RN

which is 1 on M and f < ε out of the δ neighborhood of M .

Now we look at the topology of the set of real analytic maps (see Royden [18], Hirsch [12]).

It is shown by Grauert [6] and Morrey [14] that an n-dimensional real analytic manifold
Mn is real analytically embedded in the (2n + 1)-dimensional Euclidean space R2n+1.

Let M1 and M2 be compact real analytic manifolds. Let Map
r
(M1, M2) and

Map
ω
(M1, M2) be the set of Cr maps (1 ≤ r < ∞) and real analytic maps from M1 to

M2, respectively.

Pʀ����ɪ�ɪ�ɴ 11.7. – For compact real analytic manifolds M1 and M2, Map
ω
(M1, M2)

is dense in Map
r
(M1, M2) in the Cr topology.

Proof. – Using the real analytic embedding theorem, this is shown as follows. Let M1

and M2 be real analytic submanifolds of RN1 and RN2 , respectively. Let f : M1 −→ M2 be
a Cr map. Then the Cr map f extends to a Cr map �f : UM1 −→ M2 for a neighborhood UM1

of M1 in RN1 . Then by the Weierstrass approximation theorem, this �f is Cr approximated
by a Cω map �f : UM1 −→ RN2 . Here, the trouble is that �f(M1) may not be in M2. Let pM2

denote the normal bundle projection for M2 ⊂ RN2 which is defined in a neighborhood of
M2 and Cω. Then pM2 ◦

�f is a Cω map to M2 which is Cr close to f .

For the group of real analytic diffeomorphisms of a compact real analytic manifold M ,
we have the following corollary.

C�ʀ�ʟʟ�ʀʏ 11.8. – For a compact real analytic manifold M , Diff
ω
(M) is dense in

Diff
r
(M) (1 ≤ r ≤ ∞) in the Cr topology.

Proof. – Since Diff
ω
(M) is open in Map

ω
(M, M) in the Cr topology, if f is a diffeomor-

phism then pM2 ◦
�f in the proof of Proposition 11.7 is a Cω diffeomorphism. Thus Diff

ω
(M)

is dense in Diff
r
(M) in the Cr topology. For r = ∞, the C∞ topology is given as the pro-

jective limit topology. Hence Diff
ω
(M) is dense in Diff

∞
(M) in the C∞ topology.

Pʀ����ɪ�ɪ�ɴ 11.9. – For a compact real analytic manifold M , Diff
ω
(M) is locally con-

tractible.
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Proof. – Let M ⊂ RN , and let p : νM −→ M be the projection of the normal bundle
of M to M . For a real analytic diffeomorphism f in a C1 neighborhood of the identity idM ,
take ft(x) = p((1− t)x+ tf(x)). Then ft(x) is a Cω path in Diff

ω
(M) from the identity idM

to f .

Pʀ����ɪ�ɪ�ɴ 11.10. – For a compact real analytic manifold M , Diff
ω
(M) is homotopy

equivalent to Diff
r
(M) (1 ≤ r ≤ ∞).

Proof. – Given a continuous map Sk −→ Diff
1
(M), it is approximated by a C1 map

Sk×M −→ M such that {∗}×M −→ M are diffeomorphisms. Then it is approximated by
a Cω map Sk ×M −→ M such that {∗} ×M −→ M are diffeomorphisms. Since Diff

1
(M)

is open in Map
1
(M, M), πk is surjective.

Given a continuous map f : Sk −→ Diff
ω
(M), assume that f : Sk −→ Diff

ω
(M)

extends to a continuous map F : Dk+1 −→ Diff
1
(M). F is approximated by C1 map

Dk+1 ×M −→ M such that {∗} × M −→ M are diffeomorphisms. Then this is approxi-
mated by a Cω map “F : Dk+1 ×M −→ M . Thus we have “F : Dk+1 −→ Diff

ω
(M). Now

consider the map Sk× [0, 1] −→ Diff
ω
(M) given by pM ◦(t“F +(1− t)f) and we attach these

2 maps along Sk = ∂Dk+1 to obtain a map Dk+1 −→ Diff
ω
(M) bounded by f .

Pʀ����ɪ�ɪ�ɴ 11.11. – Let L ⊂ M be a closed submanifold. If f ∈ Diff
ω
(L) extends to

F ∈ Diff
1
(M) then f ∈ Diff

ω
(L) extends to “F ∈ Diff

ω
(M).

Proof. – We may assume that M is a real analytic submanifold of RN . First we approxi-
mate F by a real analytic map F1 : M −→ M . The C1 norm of F1|L−f : L −→ RN can be
made arbitrarily small. Let pM be the normal bundle projection on a neighborhood in RN

of M to M . In the product M × [0, 1] ⊂ RN
× [0, 1], we consider the submanifold

{(pM ((1− t)F1(x)− tf(x)), t)
�� x ∈ L, t ∈ [0, 1]} ⊂ M × [0, 1],

which is Cω diffeomorphic to L× [0, 1]. We have a vector field
Å

∂pM ((1− t)F1(x)− tf(x))

∂t
, 1

ã

along this submanifold. Then by Proposition 11.4, we can extend this vector field to a Cω

vector field on RN
× [0, 1]. The second component of the vector field is always taken to

be 1. Now we take the restriction of this vector field on M × [0, 1] and take the image by
((pM )∗, id∗) of the restriction. Then we have a Cω vector field ξ on M× [0, 1], and for x ∈ L,
{(pM ((1 − t)F1(x) − tf(x)), t)

�� t ∈ [0, 1]} is the integral curve of ξ. Let ϕ : M −→ M be
the time one map of ξ, then this is a diffeomorphism extending f ◦ (F1|L)−1. Then ϕ ◦F1 is
a Cω extension of f .

C�ʀ�ʟʟ�ʀʏ 11.12. – Let L1 ⊂ M1 be a closed submanifold. If f ∈ Diff
ω
(L1 × M2)

extends to F ∈ Diff
1
(M1 ×M2) then f ∈ Diff

ω
(L1 ×M2) extends to “F ∈ Diff

ω
(M1 ×M2).

This corollary means the following. Given a Cω map f : Sk −→ Diff
ω
(M), assume that

f : Sk −→ Diff
ω
(M) extends to a continuous map F : Dk+1 −→ Diff

1
(M). Then f extends

to a Cω map “F : Dk+1 −→ Diff
ω
(M).
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