[Surfaces de Del Pezzo singulières réelles et variétés de dimension munies d’une fibration en courbes rationnelles]
Soit une variété projective réelle non singulière munie d’une fibration en courbes rationnelles et telle que soit orientable. J. Kollár a montré qu’une composante connexe de est essentiellement une variété de Seifert ou une somme connexe d’espaces lenticulaires. Répondant à trois questions de Kollár, nous donnons une estimation optimale du nombre et des multiplicités des fibres de Seifert (resp. du nombre et des torsions des espaces lenticulaires) lorsque est une surface géométriquement rationnelle. Lorsque admet une fibration de Seifert au-dessus d’un orbifold , nos résultats généralisent le théorème de Comessatti sur les surfaces rationnelles réelles lisses : ne peut pas être à la fois orientable et de type hyperbolique. Nous montrons, ce qui est une surprise, qu’à la différence du théorème de Comessatti, il existe des exemples où est non orientable, de type hyperbolique, et est minimale.
Let be a real smooth projective 3-fold fibred by rational curves such that is orientable. J. Kollár proved that a connected component of is essentially either Seifert fibred or a connected sum of lens spaces. Answering three questions of Kollár, we give sharp estimates on the number and the multiplicities of the Seifert fibres (resp. the number and the torsions of the lens spaces) when is a geometrically rational surface. When is Seifert fibred over a base orbifold , our result generalizes Comessatti’s theorem on smooth real rational surfaces: cannot be simultaneously orientable and of hyperbolic type. We show as a surprise that, unlike in Comessatti’s theorem, there are examples where is non orientable, of hyperbolic type, and is minimal.
Keywords: Del Pezzo surface, rationally connected algebraic variety, Seifert manifold, Du val surface
Mot clés : surface de Del Pezzo, variété algébrique rationnellement connexe, variété de Seifert, surface de Du val
@article{ASENS_2009_4_42_4_531_0, author = {Catanese, Fabrizio and Mangolte, Fr\'ed\'eric}, title = {Real singular {Del} {Pezzo} surfaces and 3-folds fibred by rational curves, {II}}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {531--557}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 42}, number = {4}, year = {2009}, doi = {10.24033/asens.2102}, mrnumber = {2568875}, zbl = {1183.14075}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2102/} }
TY - JOUR AU - Catanese, Fabrizio AU - Mangolte, Frédéric TI - Real singular Del Pezzo surfaces and 3-folds fibred by rational curves, II JO - Annales scientifiques de l'École Normale Supérieure PY - 2009 SP - 531 EP - 557 VL - 42 IS - 4 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/asens.2102/ DO - 10.24033/asens.2102 LA - en ID - ASENS_2009_4_42_4_531_0 ER -
%0 Journal Article %A Catanese, Fabrizio %A Mangolte, Frédéric %T Real singular Del Pezzo surfaces and 3-folds fibred by rational curves, II %J Annales scientifiques de l'École Normale Supérieure %D 2009 %P 531-557 %V 42 %N 4 %I Société mathématique de France %U http://www.numdam.org/articles/10.24033/asens.2102/ %R 10.24033/asens.2102 %G en %F ASENS_2009_4_42_4_531_0
Catanese, Fabrizio; Mangolte, Frédéric. Real singular Del Pezzo surfaces and 3-folds fibred by rational curves, II. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 42 (2009) no. 4, pp. 531-557. doi : 10.24033/asens.2102. http://www.numdam.org/articles/10.24033/asens.2102/
[1] Real singular Del Pezzo surfaces and 3-folds fibred by rational curves. I, Michigan Math. J. 56 (2008), 357-373. | MR | Zbl
& ,[2] Sulla connessione delle superficie razionali reali, Annali di Mat. 23 (1915), 215-283. | JFM
,[3] Real Enriques surfaces, Lecture Notes in Math. 1746, Springer, 2000. | MR | Zbl
, & ,[4] Families of rationally connected varieties, J. Amer. Math. Soc. 16 (2003), 57-67. | MR | Zbl
, & ,[5] Every connected sum of lens spaces is a real component of a uniruled algebraic variety, Ann. Inst. Fourier (Grenoble) 55 (2005), 2475-2487. | Numdam | MR | Zbl
& ,[6] Every orientable Seifert 3-manifold is a real component of a uniruled algebraic variety, Topology 44 (2005), 63-71. | MR | Zbl
& ,[7] Real algebraic surfaces, preprint arXiv:alg-geom/9712003, 1997.
,[8] Real algebraic threefolds. III. Conic bundles, J. Math. Sci. (New York) 94 (1999), 996-1020. | MR | Zbl
,[9] Cycles algébriques sur les surfaces réelles, Math. Z. 225 (1997), 559-576. | MR | Zbl
,[10] A unique decomposition theorem for -manifolds, Amer. J. Math. 84 (1962), 1-7. | MR | Zbl
,[11] On -dimensional terminal singularities, Nagoya Math. J. 98 (1985), 43-66. | MR | Zbl
,[12] Real algebraic manifolds, Ann. of Math. 56 (1952), 405-421. | MR | Zbl
,[13] The geometries of -manifolds, Bull. London Math. Soc. 15 (1983), 401-487. | MR | Zbl
,[14] Real algebraic surfaces, Lecture Notes in Math. 1392, Springer, 1989. | MR | Zbl
,Cité par Sources :