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MULTIPLE ZETA VALUES AND PERIODS
OF MODULI SPACES 9.,

BY Francis C. S. BROWN

ABSTRACT. — We prove a conjecture due to Goncharov and Manin which states that the periods
of the moduli spaces Moy, of Riemann spheres with n marked points are multiple zeta values. We
do this by introducing a differential algebra of multiple polylogarithms on 9, and proving that it is
closed under the operation of taking primitives. The main idea is to apply a version of Stokes’ formula
iteratively to reduce each period integral to multiple zeta values.

We also give a geometric interpretation of the double shuffle relations, by showing that they are two
extreme cases of general product formulae for periods which arise by considering natural maps between
moduli spaces.

RESUME. — Nous démontrons une conjecture de Goncharov et Manin qui prédit que les périodes
des espaces de modules M ,, des courbes de genre 0 avec n points marqués sont des valeurs z&éta mul-
tiples. Nous introduisons une algébre différentielle de fonctions polylogarithmes multiples sur 9o, »,
dans laquelle il existe des primitives. L’idée principale est d’appliquer une version de la formule de
Stokes récursivement pour réduire chaque intégrale de périodes a une combinaison linéaire de valeurs
z€ta multiples.

Nous donnons également une interprétation géométrique des double relations de mélange pour les
valeurs zéta multiples. En considérant des applications naturelles entre les espaces des modules, on
déduit des formules de produit générales entre leurs périodes. Les doubles relations de mélange s’ob-
tiennent comme deux cas particuliers de cette construction.

1. Introduction

Letn = ¢+ 3 > 4, and let M, ,, denote the moduli space of curves of genus 0 with n
marked points. There is a smooth compactification 90 ,,, defined by Deligne, Knudsen and
Mumford, such that the complement

ﬁO,'n,\i)n(),n
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372 F. C. S. BROWN

is a normal crossing divisor. Let A, B C ﬁo,n\fmo,n denote two sets of boundary divisors
which share no irreducible components. In[27], Goncharov and Manin show that the relative
cohomology group

(1.1 H*(My,,\A, B\B N A)

defines a mixed Tate motive which is unramified over Z.

On the other hand, let ny,...,n, € N, and suppose that n,. > 2. The multiple zeta value

¢(nq,...,n,) is the real number defined by the convergent sum
1
(1.2) (e, o) = P
Tk
0<k1 <<k

Its weight is the quantity ny + - - - + n,-, and its depth is the number of indices r. We will say
that the period 2im has weight 1. A very general conjecture [25] claims that the periods of
any mixed Tate motive unramified over Z are multiple zeta values. In the case of the motives
(1.1) arising from moduli spaces, this says the following. Consider a real smooth compact
submanifold X5 C My ,, of dimension ¢, whose boundary is contained in B and which does
not meet A. It represents a class in Hy (9 ,, B). Letwa € Q¢(9My,,\A) denote an algebraic
form with singularities contained in A. In [27], Goncharov and Manin conjectured that the
integral

(13) - /X wr

is a linear combination of multiple zeta values, and proved that every multiple zeta value can
occur as such a period integral. In this paper, we develop some general methods for comput-
ing periods and prove this conjecture as an application.

THEOREM 1.1. — The integral I is a Q[2wi]-linear combination of multiple zeta values of
weight at most £.

This theorem thus lends weight to the conjecture on the periods of all mixed Tate motives
which are unramified over Z.

The rough idea of our method is as follows. The set of real points 9, ,,(R) is tesselated
by a number of open cells X,, which can naturally be identified with a Stasheff polytope, or
associahedron. First consider the case where the domain of integration in (1.3) is a single cell
X, (this actually suffices for the version of the conjecture considered in [27]). The key is then
to apply a version of Stokes’ theorem to the closed polytope X,, C My ,,(R). Since each face
of X, is itself a product of associahedra X, x X, we repeatedly take primitives to obtain
a cascade of integrals over associahedra of smaller and smaller dimension. In order to do
this, we need to construct a graded algebra L(90g ,,) of multiple polylogarithm functions on
My, » in which primitives exist. At each stage of the induction, the dimension of the domain
of integration decreases by one, and the weight of the integrand increases by one. At the final
stage, we evaluate a multiple polylogarithm at the point 1, and this gives a linear combination
of multiple zeta values. This gives an effective algorithm for computing such integrals. Our
approach also works in greater generality, and our results should extend without difficulty,
for example, to the case of configuration spaces related to other Coxeter groups.
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1.1. General overview

This paper is essentially a study of the de Rham theory of the motivic fundamental group
of My . Previously, the focus has mainly been on the projective line minus roots of unity,
and in particular Mg 4 = P1\{0,1, 00} ([13], [14], [25, 26], [45]). The advantage of consider-
ing the moduli spaces My ,, is that we can bring to bear the full richness of their geometry.
We show, for example, that the double shuffle relations for multiple zeta values are just two
special cases of generalised product relations arising naturally from functorial maps between
moduli spaces.

An essential part of this work is devoted to multiple polylogarithms, which are functions
first defined by Goncharov for all nq,...,n, € N by the power series:

k‘1 k/‘[
(1.4) Lin, .. ng(T1,...,20) = Lt where |z;| < 1.
k ke
O<ki<-<ke L "7

By analytic continuation, they define multi-valued functions on 9%, ,,, where n = £+ 3. One
of our main objects of study in this paper is the larger set L(9%, ,,) of all homotopy-invariant
iterated integrals on My ,,. It forms a differential algebra of multi-valued functions on My ,,,
in which the set of functions (1.4) is strictly contained. From the point of view of differen-
tial Galois theory, L(9% ,,) defines a maximal unipotent Picard-Vessiot theory on 9, ,,. We
then define the universal algebra of multiple polylogarithms B(9% ,,) to be a modified ver-
sion of Chen’s reduced bar construction. It is a differential graded Hopf algebra which is an
abstract algebraic version of L( ). One of our key results states that the de Rham coho-
mology of B(My ,,) is trivial. From this we deduce the existence of primitives in L(9g ).
We also need to understand the regularised restriction of polylogarithms to the faces of X ,.
This requires a canonical regularisation theorem, and amounts to studying what happens
when singularities of an iterated integral collide. We are thus led to work on certain blow-ups
of My ,,, described below. It follows that the structure of L(9% 5, ), and hence the function
theory of multiple polylogarithms, is intimately related to the combinatorics of the associa-
hedron.

1.2. Detailed summary of results

In Section 2, we review some aspects of the geometry of the moduli spaces M ,,, and study
certain blow-ups obtained from them. Let S denote a set with n elements, each labelling a
marked point on the projective line P!, and write My s = Mo . A dihedral structure on S
is an identification of S with the set of edges (or vertices) of an unoriented n-gon. For each
such dihedral structure 6, we embed 9, s in the affine space A, where ¢ = n — 3, and blow
up parts of the boundary in A*\9M, s to obtain an intermediary space

5 __
gﬁo,s C 9.7{075 C ETJI(),S,

where 9 ¢ is an affine scheme defined over Z. We prove that the set of M g, for varying 4,
forms a set of smooth affine charts on 9y s. In order to define them, we introduce dihedral
coordinates, which are one of the key tools used throughout this paper. These are functions

i Mo, — P'"\{0,1,00}, where {i,j} € XS,
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374 F. C. S. BROWN

indexed by the set of chords x s s in the n-gon defined by §. Together, they define an embed-
ding (uij)ys., : Mo,s — A("=3/2 and the scheme M g is the Zariski closure of the image
of this map. For example, in the case n = 5, we can identify Mo 5 = {(t1,t2) € P! x P! :
tita(1 —t1)(1 — t2)(t1 — t2) # 0, t1,t2 # oo}. The pentagon (5, ¢) has five chords, labelled
{13, 24, 35,41, 52} (fig. 1), and we have

3] to — 11 _ 1-— to

u =1-t (72 = — U = u —
13 1, 24 tz’ 35 tz(l _tl)a 41 1 _tl

,  usg = ta.

The scheme Sﬁg, 5 is then defined by the five cyclically symmetric equations in A®:

U3 + U24Use = 1, ugg + uzsuiz = 1,...,us2 + u1guis = 1.

53

(t1,t2) — (u1s, u24, uss, Ud1, us2)

FIGURE 1. Dihedral coordinates on My 5. The scheme zm(;i 5 (right) is defined to
be the Zariski closure of the image of the embedding {u;;} : Mo 5 — A® defined by
the set of dihedral coordinates, which are indexed by chords in a pentagon (middle).
This map has the effect of blowing up the points (0, 0) and (1, 1). A cell Xg 5 is given
by the region 0 < t1 < t2 < 1 (left). After blowing-up it becomes a pentagon with
sides Fij = {uij = 0}

Now consider the set of real points 9ty g(R). There is a bounded cell Xg 5 C My s(R) de-
fined by the region {0 < u;; < 1}. One shows that 9ty s(R) is the disjoint union of the open
cells X g 5 of dimension £ = n — 3, as ¢ runs over the set of dihedral structures on S, so a di-
hedral structure corresponds to choosing a connected component of 9ty s(R). The closure
of the cell X g s satisfies

(1.5) Xs5={0<u; <1} C mg,s(R)a

and smg, 5\Mo, s is the union of all divisors meeting the boundary of Xg 5. Therefore X g 5 is
a convex polytope, and its boundary divisors give an explicit algebraic model of the associa-
hedron. It is well-known that the combinatorics of the associahedron is given by triangula-
tions of polygons. But because dihedral coordinates are already defined in terms of polygons,
the main combinatorial properties of the associahedron, and its dihedral symmetry, follow
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immediately from properties of the coordinates u;;. In particular, the face F;; = {u;; = 0}
of X g5 is a product

(16) F'L'j = YT1,51 X YT23627

where (T1,61), (T, 02) are two smaller polygons obtained by cutting the n-gon S along
the chord {7,5} (fig. 3, §2.2). In this way, a vertex v of X g s corresponds to a complete
triangulation « of the m-gon by ¢ chords. We also introduce explicit vertex coordinates
x¢,...,x7 which are a certain subset of the set of all dihedral coordinates. These form a
system of normal parameters in the neighbourhood of the vertex v € X g 5 corresponding
to a, such that 9y s(R) C My s(R) is locally the complement of the normal crossing
divisor z¢ ... zy = 0. These systems of coordinates (in the sense of differential geometry)
are precisely what is needed for solving differential equations on 9y s and regularising
logarithmic singularities of multiple polylogarithms.

In Section 3, we define an abstract algebra of iterated integrals on 9t g using a variant of
Chen’s reduced bar construction. Since this construction exists in far greater generality, we
consider the complement of an arbitrary affine hyperplane arrangement defined over a field

k of characteristic 0. So let
N

M= AN\ H;,
i=1
where Hy, ..., Hy is any set of hyperplanes in A¢. Let ¢y,...,t, denote coordinates on A’,
and let Oy, denote the ring of regular functions on M. It is a differential k-algebra with
respect to the coordinate derivations 9/0¢;, for 1 <+ < £. Let
dozz-

w; = , for1<i<N,
Qg

denote the logarithmic 1-form corresponding to H;, where «; is a defining equation for H;.
The version of the bar construction B(M) we consider is defined as follows. Let V,, (M)
denote the k-vector space generated by linear combinations of symbols

(1.7) > alwil.lwi,), e €k,

I=(i1,...,im)

which satisfy the integrability condition:

(1.8) Zc;w“@n'@(wij/\wij+1)®~~®wim:0 foralll1 <j <m.
I

We then set B(M) = Op Qi @Dr>o Vi (M), where Vo(M) = k. This is a graded Hopf
algebra over Oy, which is related to the zero® cohomology group of the bar complex
O(M) ®, H°(B(2°Ojy)) studied by Chen [10] (see also [31]). We systematically drop the
H? from the notation and simply write B(M). Using the 1-part of the coproduct on B(M),
we define the action of £ commuting derivations 9; on B(M), and show that (B(M), 9;) de-
fines a differential extension of (O, 9/0t;). Its cohomology will be denoted HR i (B(M)).
The possibility of using iterated integrals to construct a Picard-Vessiot theory on manifolds
was first suggested by Chen [9].
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THEOREM 1.2. — B(M) is an infinite unipotent Picard-Vessiot extension of Opy. In other
words, it has no non-trivial differential ideals and its ring of constants is k. It is therefore a
polynomial algebra. Furthermore, B(M) contains I-primitives:

Hpg (B(M)) = 0.

It follows that every unipotent extension of B(M) is trivial, and it is the smallest extension
of Oy with this property. Equivalently, B(M) is the limit

B(M) =1lim U,

where U ranges over all unipotent extensions U of Oj,. In this sense it is universal, and it
follows that its differential Galois group is a pro-unipotent group. Now if we identify 9y s
with the affine hyperplane configuration

Mo,s 2 {(tr,...,te) €A t; #£0,1, t;—t; #0},

then we define the universal algebra of polylogarithms on My s to be B(My s). In general,
it is difficult to construct words (1.7) satisfying the integrability condition (1.8) since they
rapidly become very complicated as the weight increases. In order to overcome this problem,
we consider two affine hyperplane arrangements, one of which fibres linearly over the other.
Therefore, let M C Afand M’ C A*~! denote two affine arrangements, and consider a linear
projection
T M — M

with constant fibres F, where F is the affine line A' minus a number of marked points. We
then prove that there is a tensor product decomposition

B(M) = B(M') ®0,,, Bu(F),
where By (F') is a free shuffle algebra which can be described explicitly. In the case of moduli
spaces My g, we apply this argument to the fibration map:
Mo, — Mo,n—1

and use induction to deduce that B(9%, s) is a tensor product of free shuffle algebras. As a
result, one can write down a basis for B(91, s), and one deduces that the higher cohomology
groups of B(My, g) vanish.

THEOREM 1.3. — The de Rham cohomology of B(My s) is trivial:
Hir(B(os)) =0  forall i>1.

A similar result holds for any hyperplane arrangement of fibre type, i.e., one which can be

obtained as a sequence of such fibrations. In an appendix we also prove that Hj,, (B(M)),

for ¢ > 1, vanishes for all arrangements M which have quadratic cohomology. The proofs

only use simple arguments of differential algebra. Theorem 1.3 holds because My g is a

K (m,1)-rational space. An equivalent theorem is due to Hain and MacPherson ([33], [38]).
Given any point zg € My s(C) we define a realisation

(19) pZ() : B(WO,S) L’ LZO (mo,s)
S frlonl . Jwi] — Zfz/ Wiy
I I Z0
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given by iterated integration along any path v : [0,1] — 2%, s(C) which begins at z; and
ends at a variable point z € 9y g(C). The integrability condition (1.8) ensures that the
iterated integral (1.9) only depends on the homotopy class of 7. It therefore defines a multi-
valued function of the parameter z, i.e., a holomorphic function on the universal covering
space of My s(C). Here, L., (My g) is a differential graded algebra of multi-valued functions
on My s. We deduce from the previous theorem that ¢-forms with coefficients in L, (9 s)
have primitives in L, (Mo, s).

The realisation p,, is not quite good enough, however. We actually need a realisation
Pz : B(Mo,s) — L., (9o s), where the base point zy does not lie in My s(C). The point zy
can be replaced with a tangential base point in the sense of [13], but our approach consists
instead of viewing zg as the corner of a manifold with corners. This gives rise to divergent
integrals, and to deal with this requires a regularisation procedure. The best approach is to
consider the generating series of all such iterated integrals, and regularise them all simulta-
neously. Such a generating series satisfies a formal differential equation, and to solve it re-
quires a generalised Fuchs’ theorem in several variables in the unipotent case. For want of a
suitable reference, we develop the necessary theory from scratch in Section 4. We also study
the regularisation of logarithmic singularities along the boundary of any manifold with cor-
ners. Section 5 is devoted to a detailed study of the case of a one dimensional arrangement
P\{oy,...,0n,00}. In this case, the bar construction can be written down explicitly (it is a
free shuffle algebra), and the corresponding iterated integrals are known as hyperlogarithms,
which go back to Poincaré and Lappo-Danilevsky.

In Section 6, we apply all the results developed previously to the case of the moduli spaces
My, s to obtain the necessary regularisation results. The generating series of multiple poly-
logarithms can be described as follows. To each dihedral coordinate, or chord, is associated
a logarithmic one-form

w;j = dlogu;j, for {i,j} € xs,6-

It is symmetric in ¢ and j. Let §;;, for {3,j} € xs,, denote a set of symbols satisfying
di; = d;;, and consider the formal 1-form

(1.10) Qss= >, Sijwi.
{i,j}€xs,s

This is a homogeneous version of the Knizhnik-Zamolodchikov form [36, 37, 18]. The in-
tegrability of g 5 is equivalent to certain quadratic relations in the 6;;, which we call the
dihedral braid relations. In the special case 9 5, these reduce to the relations:

[055,0k1] = 0,
for any pair of chords {i, j}, {k, !} which do not cross, and the pentagonal relation

(013, 024] + [024,035] + [035,041] + [041, I52] + [52,013] = 0.
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Let us fix a dihedral structure § on S, and let B 5,6(C) denote the ring of non-commutative
formal power series in the symbols 6;; with coefficients in C, modulo the dihedral braid re-
lations. Then we can consider the formal differential equation

(1.11) dL = Qg 4L,

where L takes values in %5)5(@).

THEOREM 1.4. — Let v denote a vertex of the associahedron YS,,;, and let F,, denote the set
of faces meeting v. Then there is a unique solution L, s of (1.11) such that

Ly5(2) = fos(2) eXp( > dijlog uij)a

{i,j}:Fij €eF,

where f,, 5(2) is holomorphic in a neighbourhood of v € smg,s, and fy s(v) = 1.

In other words, the function L, 5(z) is holomorphic on an open set of zm(;{ 5(C) which con-
tains the real cell Xg 5, and has explicitly given monodromy around each face u;; = 0 of the
associahedron X g s which meets the vertex v. The differential equation (1.11) is closely re-
lated to the Knizhnik-Zamolodchikov equation. Solutions to the latter equation are usually
constructed by induction using fibration maps between configuration spaces. The previous
theorem, however, is proved directly using the generalised Fuchs’ theorem developed in Sec-
tion 4. This approach has many advantages: firstly, there are no coherence conditions to
verify; secondly, we obtain a direct geometric interpretation of Drinfeld’s asymptotic zones,
which were studied by Kapranov; and thirdly, the functoriality of the solution L, 5(z) with
respect to maps between moduli spaces follows automatically. As a result, we obtain a direct
definition of an associator on 9, s by considering the quotient of two different solutions:

7%V = (Ly.(2)) "Ly s(2) € Bgs(C).

Here, z is any point in an open neighbourhood of Xg s in 2))‘(37 s- The quotient is necessarily
constant. The main properties of Drinfeld’s associator can be derived immediately. Using the
previous theorem, we deduce an expression for the monodromy of L, s(z) and its regularisa-
tion in terms of the series Z”*" (§ 6.5). Then, using explicit expressions for hyperlogarithms,
we deduce the following result, which was first proved by Le and Murakami, following Kont-
sevich.

THEOREM 1.5. — The coefficients of the series 7" are multiple zeta values.

It follows that the holonomy of the moduli spaces M1, s can be expressed using multiple zeta
values and the constant 27i. Now define L?° (9 s) to be the differential algebra generated
by the coefficients of the series L, s(z). We can then define the sought-after realisation p, s
which is regularised at the vertex v of Y575:

pu,s : B(Mo,s) — L (Mo, 5),

and which is defined over the field ¥ = Q. From this we deduce the main regularisation
theorem, which describes the regularised restriction of a multiple polylogarithm to the face
of the associahedron in terms of multiple zeta values.
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THEOREM 1.6. — Let F;; denote a face on375 isomorphic to a product YTI,,SI X YT2,52
as in (1.6) above. Then if the vertex v corresponds to the pair (vi,vs),

Reg (L"°(Mo,5), Fij) ®q Z =2 L' (Mo, 1,) ®g L% (Mo,1,) ®g Z.

In other words, the regularisation of multiple polylogarithms along divisors at infinity is com-
pletely determined by the combinatorics of the associahedron.

In Section 7, we study period integrals on 9%, s(R) in terms of dihedral coordinates. We
first show that, up to multiplication by a rational number, there is a unique algebraic ¢-form
ws,s, which has neither zeros nor poles on smg{ g- This form is invariant under the natural
action of the dihedral group. We deduce that one can write an arbitrary integral (1.3) as a
linear combination of integrals

(1.12) Iss(ai;) = /

XS,5 {7,

ugy? ws s,
J}EXxs,s
for some fixed dihedral structure §, where the indices «;; € Z. Such an integral converges
if and only if the coefficients «;; are all non-negative. In explicit coordinates, (1.12) can be
written as a generalized Selberg integral

¢
Iss(aj) = H (1 — 2;)™ H(l —ZiTip1 ... ;)9 dxy .. day.
[0.1]% 5=1 i<j
Particular subfamilies of these kinds of integrals have been considered by various authors in
connection with the Diophantine approximation of zeta values (see, e.g, [54, 55, 21]). Tera-
soma has also computed the Taylor expansions (with respect to the exponents) of certain
families of such integrals, and proved they are multiple zeta values [49]. The advantage of the
blown-up integral representation (1.12) is that all poles of the integrand have been pushed
to infinity, which allows an algebraic interpretation of the integrals as periods, and a system-
atic procedure for computing them, which is detailed in Section 8 and summarised below.
As a further application of dihedral coordinates, we give an explicit formula for the order of
vanishing of any form
Il wse,

{i,i}€xs,s
along the divisors at infinity in 9y g. Using this formula we retrieve a result, due to Gon-
charov and Manin, which gives the singular locus of a certain family of forms which cor-
respond directly to multiple zeta values. Our method exploits the action of the symmetric
group on My g, and completely avoids the delicate calculation of blow-ups and the cancel-
lation of singularities studied in [27]. In § 7.5, we show how functorial maps

f : moﬁ — f’.n()j1 X gﬁgyTQ,

where T} and T5 satisfy certain conditions (§2.10), give rise to generalised product formulae
between multiple zeta values. More precisely, given any such map f, there is a set of dihedral
structures G ¢ on S such that the following formula holds:

(113) /X wq X /X Wy = Z f*(w1 ®(.U2).

Tp,82 YEG X5,y
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This expresses a product of periods as a Q-linear combination of other periods. We compute
two explicit examples of such maps f; one where G is as large as possible, and the other
when G reduces to a single element. In the first case, G is the set of (p, ¢) shuffles where
p = dim Mo 1, and ¢ = dim My 1,, and (1.13) gives rise to the shuffle product for multiple
zeta values. In the second case, we show that (1.13), on applying an identity due to Cartier,
gives rise to the stuffle relations for multiple zeta values. Thus both shuffle and stuffle re-
lations can be regarded as two extreme cases of generalised product relations of geometric
origin on moduli spaces.

The above results are put together in Section 8, where we give a proof of Theorem 1.1 using
Stokes’ formula as described above. We summarise the main points of the argument here.
The regularisation results of Section 6 provide the existence of a graded algebra of multi-
valued functions L(9t ¢) with the following properties:

1. The graded part of weight 0 of L(9% ¢) consists of all regular algebraic functions on
My, s with coeflicients in Q.

2. Primitives of ¢-forms exist in L(9%y g), and increase the weight by one.

3. The restriction of a function f € L(My s) to a face of X g4 is a product of multiple
zeta values with functions in L(9to 1, ) L(Mo 1,)-

The argument for computing the period integrals is then by an inductive application of
Stokes’ theorem over the associahedron X g 5. At each stage, we must compute

I'=[ fuwsg,
Xs,6

where f € L(9,s) is a function which is allowed logarithmic singularities along the bound-
ary X s 5, but which has no polar singularities. Such an integral necessarily converges, and
it follows from property (2) that there exists a primitive F' with coefficients in L(9%, ) such
that dF = f. However, such primitives are not unique, and we may inadvertently have in-
troduced extra poles. We show, however, that there exists a primitive F' with no poles along
X5, and it then follows that F extends continuously to the boundary 8X s 5. The essential
remark is that the one-form
log z dx where z > 0,

has a logarithmic singularity at the point x = 0, but that its primitive z log z — = extends
continuously to the point 0. We can therefore restrict the primitive F' to the faces of the asso-
ciahedron by property (3), and proceed by induction using Stokes’ formula and (1.6) with-
out any further difficulty. In § 8.5 we show how the same strategy can be used to compute
all relative periods (1.3) of moduli spaces 9y ¢ when the integrand is an algebraic ¢-form,
and finish with some simple examples in § 8.6. The paper is completely self-contained, apart
from some properties of iterated integrals which are very clearly presented in [31], and some
remarks on framed motives in § 7.2.

We expect that the ideas and methods introduced in this paper should have applications
in the following situations. First of all, one can consider more general hyperplane configu-
rations associated to other root systems or Coxeter groups, and consider the corresponding
polylogarithm algebras, periods and associators. Notably, one can introduce N*" roots of
unity to obtain a tower of spaces over P'\{0, e?™*/N oo} which are finite covers of My s
and construct a similar theory giving a higher dimensional version of [14, 45]. Furthermore,
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in perturbative quantum field theory, it is generally believed that certain renormalised pe-
riod integrals one derives from a large class of Feynman diagrams should give multiple zeta
values. After blowing up, these are integrals of rational algebraic forms over algebraic con-
vex polytopes. It would be very interesting to try to apply the methods of this paper to such
integrals.

This paper was written during my doctoral thesis at the university of Bordeaux. I am very
grateful to Richard Hain for his many detailed comments regarding an earlier version of this
manuscript, Joseph Oesterlé for a thorough reading of § 2, and especially to Pierre Cartier,
without whose many suggestions, good humour, and continuous encouragement, this paper
would not have reached its present form.

2. Dihedral coordinates on 9 ,,

2.1. — Letn > 4, and let S denote a set with n elements. Let 91y s denote the moduli space
of curves of genus 0 with n points labelled with elements of S. If (P!)$ denotes the set of all
n-tuples of distinct points z, € P!, for s € S, then

My s = PSLy\ (P17,

where PSL, is the algebraic group of automorphisms of P* and acts by Mébius transforma-
tions. The quotient 9y s is an affine variety of dimension ¢ = n — 3. A point in 9ty 5(C)
is therefore an injective map S < P!(C) considered up to the action of PSLy(C). If
S ={s1,..., s}, then we frequently write ¢ instead of s;, and denote My g by My ,,..

We wish to write down the set of regular functions on 9y g, or, equivalently, the set of
PSL,-invariant regular functions on (P!)?. Let 4, §, k, [ denote any distinct indices in S. Re-
call that the cross-ratio is defined by the formula:

[Z] | kl] _ (Zi - Zk)(zj - zl).
(zi — 21) (25 — 2)

The cross-ratios do not depend on the choice of coordinates z; and are PSLy-invariant. We
therefore have a set of maps [ij |kl] : Mo s — Mos = P1N\{0,1,00}. The symmetric
group on four letters &4 acts on each cross-ratio via the group of anharmonic substitutions
(z—1—2, z+— 1/2) = 63 = &,4/V, where V is the Vierergruppe. We have:

(2.1) [z‘j | kl] =1- [zk |jl], and [ij | lk] = [ij|kl]7l = [jz‘ | kl],
and  [ij |kl] = [kl|ij] = [ji|lk] = [lk]ji].
For any five distinct indices 4, j, k, I, m € S there is also the multiplicative relation:

(2.2) [ij | k1] = [ij | km].[ij |m].

In order to make explicit computations, it will be convenient to fix a system of coor-
dinates on My s from the beginning. This breaks the symmetry, so we assume here that

S = {1,...,n}. Since the action of PSL; is triply transitive on P!, we can place the coor-
dinates z; at 1, z5 at oo, and z3 at 0. We define simplicial coordinates ty,...,t, on My s by
setting

tl =24y ..y t[:Zn.
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This identifies My ¢ with the complement of the affine hyperplane configuration:
(2.3) Mos = {(tr,...,te) €A : t; ¢ {0,1}, t; #t; foralli # j}.

If we now perform the change of variables

2.4) tih=x1...2p, to=2X2...2p, ..., ty = xy,

then we can identify 9%y ¢ with the open complement of hypersurfaces:

(2.5) Mos = {(x1,...,20) €AY : 2, ¢ {0,1}, z;...2; #1foralli < j}.

The coordinates x1, ..., z, will be referred to as cubical coordinates and are well-suited to
the study of polylogarithms on 9 g (§6). Simplicial and cubical coordinates are two ex-
tremal cases of more general systems of coordinates which we define in an invariant manner
in §2.10. We shall pass freely between the two systems, especially when making compar-
isons with formulae existing in the literature. The change of coordinates (2.4) has the effect
of blowing up the origin; the boundary divisors at the origin in (2.5) cross normally, but do
not in (2.3).

2.2. Dihedral coordinates on 9, 5

Let S be a finite set with n > 4 elements.

DEFINITION 2.1. — A cyclic structure -y on S is a cyclic ordering of the elements of S, or
equivalently, an identification of the elements of .S with the edges of an oriented n-gon mod-
ulo rotations. A dihedral structure § on S is an identification with the edges of an unoriented
n-gon modulo dihedral symmetries.

When we write S = {s1, ..., s, }, it will carry the obvious dihedral structure unless stated
otherwise. In this case, the group of permutations Sg can be identified with the symmetric
group &,,. The set of cyclic (resp. dihedral) structures on S is then indexed by the set of
cosets &,,/C,, (resp. &,,/Day,), where C,, and Dy, denote the cyclic and dihedral groups of
orders n and 2n respectively. We will often represent a dihedral structure as a regular n-gon
(S, ) with edges labelled 1,2, ..., n in order. A number in parentheses (i), where i € Z/nZ,
will denote the pair of adjacent edges {,¢ + 1}. We will represent this on the n-gon (S, J)
by labelling the vertices with the elements (1), (2), ..., (n); the convention is that the vertex
labelled () meets the edges labelled ¢ and ¢ + 1 modulo n (Figures 2 and 3).

Given a dihedral structure 6 on S, we define coordinates on 9 s using a certain subset of
the set of all cross-ratios as follows. Let x g s denote the set of all n(n — 3)/2 unordered pairs
{i,7},1 <i,j < mnsuchthati,j,i+1, j+1 are distinct modulo n (i.e., 4, j are not consecutive
modulo n). Each element {4, j} € x5 Will be depicted as a chord joining the vertices ¢ and
j in the regular n-gon (fig. 2). We set

(2.6) ui; = [ii+1]j+1j] foreach {i,j} € xse-

A priori, u,; seems to depend on the ordered quadruple (¢,3+1, j, j+1), but one verifies from
(2.1) that it is invariant on interchanging both ¢ «» ¢+ 1 and j < j + 1, and is also invariant
under ¢ < j. It therefore only depends on the chord {3, j} and in particular is symmetric in
i and j. Consequently, we obtain a regular morphism

2.7 (“ij){i,j}exS,a : Mo,s — mg,(z;n_sm C AN,
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A simple calculation in simplicial coordinates gives the explicit formulae:

(i) A g

i+1

®

-1 A 9]

FIGURE 2. Part of an oriented regular n-gon inscribed in a circle. Its edges are
labelled with the elements of .S, and its vertices are labelled with elements of .S in
parentheses. Left - a chord {4, j} € xs,s meets four edges ¢, ¢+ 1, 5, j + 1 which de-
fine the dihedral coordinate u;; = [¢ 4+1|j+1 j]. Changing the orientation of the
n-gon does not alter u;; by the last equation in (2.1). Right - a set of four edges
i,J, k,l breaks the n-gon into four regions as in Lemma 2.2, and defines a pair
A,B C xs,s of completely crossing chords, depicted by the shaded rectangles
(Corollary 2.3).

tg —1t
28) ws=l=f,  wan =t =gy
11—t ti—
U= 2 4 <i<n—1, uy=-"24<i<n-1,
1—ti_3 ti—2
ti_o (ti_s —t 1—ti_g)(ti—o —t
u3i212w’5§i§n_1, um:( i3)(ti—2 — t) 4<i<n-—2

(te —ti3)(1 —ti_g)’

,4<i<j<mn-—landj>i+1.

ti—z (ti—2 —t1)
_ (tims —tj_2)(ti—2 —tj_3)

u,-j =
(ti—s — tj—s)(ti—2 — tj—2)
We will also require the following useful formulae:

(2.9) t1 =ugq.. . U2pn, ..., g1 =1Uap_1U2n, tg= U2p,
11—t =wu3, 1—1ts=wigu14, ..., 1l—ty=1u13...U1n_1.
Similarly, the set of cubical coordinates (x1,...,x¢) = (u24,...,us,) is completely deter-

mined by the functions w;;, and the following lemma shows that every cross-ratio can be
written in terms of the functions u;;, for {¢,j} € xs,s.

LEMMA 2.2. — Let i, 3, k,l be distinct indices modulo n in dihedral order. Then
j—11-1

i | k1] = T] TT v

a=1i b=k
Using (2.1), we can write any cross-ratio as a product of uyp, or their inverses.
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Proof. — Suppose first that 1 < i < j < k <[ < n. Using the definition of ugp,
Ugk - - Ug[—1 = [aa+1|k+1k][aa+1|k+2k+1]...[aa+1|ll—1] = [aa+1|lk],

by repeated application of (2.2). Likewise, using (2.1) and (2.2),

j=1li-1
T T wae = [ii+110k] [i+ Li+2|1k] ... [j — 15|k +1k] = [ij | 1k].
a=1 b=k

The formula is clearly invariant under cyclic rotations. Therefore, given any four indices
i, j, k,lin arbitrary position, we can reduce to this case by applying the inversion (2.1), which
allows us to interchange i, j, or k, [ or both pairs (i, j), (k, ). O

It follows from invariant theory that every PSL,-invariant regular function on (P)? is a
polynomial in the cross-ratios [ij | kl]. We deduce from Lemma 2.2 that the ring of regular
functions on My ¢ is generated by the dihedral coordinates w;;, for {i,j} € xs,5, and their
inverses.

We can write down a generating set for all algebraic relations between the coordinates u;;
in a dihedrally-invariant manner. We say that two chords {3, j} and {k,l} € xg, crossif
they intersect in the interior of the polygon (S, §). We write this

{17.7} ~x {k7l}'

Given asubset A C x5, let A* denote the set of chords in x g s which cross every chord in A.
We say that two sets A, B C xs,5 cross completely if A* = Band B* = A, i.e,

a€A <<= a~,b forall be B,
and vice versa (fig. 2). If, for example, A is the single chord {4, j}, and B is the set of all
chords crossing {4, j}, then A and B cross completely.
COROLLARY 2.3. — For every two sets of chords A, B C xs,s which cross completely,
where us = [[aea Ua and up = [[pen Us.
Proof. — One can verify that A and B cross completely if and only if there exist four ele-
ments {3, j, k,l} C S in dihedral order (fig. 2) such that

A={{pg}exss: i<p<j and k<qg<l},
B={{p,q} €xss: j<p<k and [<g<i}.

By Lemma 2.2 and (2.1), ua = [ij|kl]~* = [ij|lk]. Likewise, up = [li|jk]~t = [il|jk]. Tt
follows that us + up = [ij|lk] + [il|jk] = 1 by (2.2). O
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2.3. The dihedral extension 90§ ¢

Recall that 9 g is the affine scheme over Z in simplicial coordinates:

1 1 1
Mo,s = SpecZ|t;, —

—, —,1 <1< '<4
ti’l—ti’ti—t]‘ - 7=

where £ = |S| — 3, and we have the convention 9ty s = SpecZ if |S| = 3. Its dihedral
extension M g is the affine scheme defined by the equations (2.10).

DEFINITION 2.4. — Let I5 5 C Z[u;;] denote the ideal generated by the identities (2.10).
Let the dihedral extension Em(i g of My ¢ be the affine scheme

(2.11) MY s = Spec Zlui; : {i, 5} € Xxs5,6)/1% 5-

By Lemma 2.2, we could also define Dﬁg’ g as follows:

(2.12) MQ g = SpecZ[ [i j|l k], wherei,j,k,1 € S are in dihedral order]/Is,s,
where Ig s is the ideal generated by the identities [¢ j|l k] + [¢{|j k] = 1 and (2.2).

For every chord {4, j} € x5, we define a divisor
(2.13) Dij = {uy; =0} C MY 5.

The scheme M s is retrieved from 9)?65’ ¢ by removing all divisors D;;, {¢,j} € xs,s.

LEMMA 2.5. — There is a canonical open immersion is : Mgy s — ME 5 whose image is the
5
complement My o\ Ui jyexss Dij-

Proof. — Let R, = Z[usj, {i,5} € xs,6]/I5 5- Equations (2.8) define a map

b Ruluz', {i,5} € xs5] — Z[ti, tl % t_ltj]
The way ¢(u;;) is defined is first to map wu;; to the cross-ratio [i ¢ + 1|j + 1], and then to
setz1 = 1,20 = 00,23 = 0and z,43 = t; for 1 < ¢ < £. The fact that ¢ is well-defined
then follows from the proof of Lemma 2.2: each relation [[,c 4 %a + [[pcp 4 — 1 maps to
an identity on cross-ratios of the form [ij|lk] + [il|jk] — 1 = 0.

In the other direction, we define a map
1 1 1

DLty —y—— ——
v [“ti’l—ti’ti—tj

] — Rulug;', {i,5} € xs.]

by ¥(t;) = U243 - .. Uy, for 1 < i < £. It follows immediately from the second line of (2.8)
that ¢ o) = 1. That ¢ o ¢ = 1 can be verified case by case. Here we only do the generic case
(the fourth line of (2.8)). Therefore, let4 < ¢ < j < m,and j > i + 1. Then ¢ o ¢(u;;) is
given by:

’l/)((ti_s — tj_z)(ti_g — tj_g)) _ (UQi co U2 — U541 - .UQn)(’U,QH_l U2y — UG . ’LLQn)

(ti,3 — tjfg)(tifg — tjfg) (u2i oo Uy — UQJ' e UQn)(UQiJrl Lo U2y — '11,2]'+1 e UQn)

_ (U,Qi...’LLQj — l)(U2i+1-uu2jfl - 1) _ HIl uabHIz Uab H U’i'll_‘[ Un i = Ui
(u% .. .UQj_l — 1)(11,2i+1 . ..’U.Qj — 1) HIg Uab HI4 Uab 3<a<i—1 aj3§a§i @ E
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where; = {3 <a<i-1,j+1<b< 1L = {3 <a<ij <b< 1},
ILi={3<a<i-1,j<b<1handly ={3<a <4j+1<b< 1}, and where the
indices are taken modulo n. The other cases are similar. O

In order to describe the configuration of the divisors D,;, consider cutting the regular
n—gon along the chord {i, j} joining vertices (¢) and (5). This partitions the set of edges
of S into two sets S; and Ss and breaks the n-gon into two smaller polygons. Their sets of
edges are S; U {e} and S; U {e}, where e is the new edge given by the chord {4, j} (fig. 3).
Each set inherits a dihedral structure 6 for k¥ = 1,2, and x s ¢ is a disjoint union:

(2.14) XS,6 = XS1Ufe},s1 U XSou{e},s, U {3,753 U U {k,1}.
{k7l}~x{i’j}

So U {6}
4)

S1U
® 6 ®) v e} 6

FIGURE 3. Decomposition of the hexagon on setting uss = 0. The variables cor-
responding to chords which cross {2, 5}, namely w13, u4s, u14, uss, are all equal
to 1 (left). The system (2.10) splits into the pair of equations, u1s = 1 — u2¢ and
uzs = 1 — a4, which identifies Dos with 9§ 4 x MM 4.

LEMMA 2.6. — The decomposition (2.14) gives a canonical isomorphism

x 902

~Y 6
Dy; =My 0,55U{e}"

O,Slu{e}
Proof. — Equations (2.10) imply in particular that
(2.15) Ugh + H ucg =1 forall {a,b} € xg,5.
{c,d}~y{a,b}

Therefore, setting u;; = 0 implies that ug; = 1 for all chords {k,{} which cross {¢,j}. The
system of equations (2.10) then decomposes into two disjoint sets, each one containing all
variables uqp, Where {a,b} € X5,01e},6,5 OF XS,u{e},s, TeSPectively. To see this, consider the
equation

(2.16) us +ug =1,
where A, B C xg, cross completely, and where we write uy = [[;c; u: for any subset

I C xs,5. Consider the decomposition (2.14) above, and set A; = ANXg,u{e},s, fOri =1,2.
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It follows from the calculation above that, since u;; = 0,

{o if {i,j} € A,
ups =

2.17) _
ua,u4, Otherwise.

A similar formula holds for ug. The picture below depicts the three possible cases which can
occur, up to exchanging i, j or A, B. If neither A; nor A, is empty, the set A contains chords
on either side of the chord {i, j} (case I). It follows that {3, j} € A, and therefore u4 = 0.
Since B = A~ it follows that B C {i,j}*, and so ug; = 1 for all {k,l} € B. Thus (2.16)
reduces to 0 + 1 = 1. Therefore we can assume without loss of generality that A; = & (see
cases I and I11), and so uyg = ua, by (2.17). It is clear that B; = &, and so up = up,.

I ~____~ I ~____~ I

It follows that Equation (2.16) reduces to u 4, + up, = 1, which is a defining equation for

Sﬁgfsw (e} All pairs of completely crossing sets in each smaller polygon S U{e}, fork = 1, 2,
arise in this way. This proves the result. O

It follows from the proof of the lemma that D;; and Dy,; have non-empty intersection if
and only if the chords {¢, j} and {k, !} do not cross. By (2.15), u;; and uy; cannot simulta-
neously be zero if {i,j} ~x {k,1}. We are therefore led to consider partial decompositions
of the n—gon (S, §) by k non-crossing chords.

DEFINITION 2.7. — Foreachinteger1 < k < £, let X’%, s denote the set of k distinct chords
a = {{i1,j1},--.,{ik, jx}} in the n-gon (S, d), such that no pair of chords in « cross. For
each such a € x’g’ s» let D, denote the subvariety defined by the equations u;, j, = -+ =

—0 i — Nk
Uiy, Jk = 0, Le., Da = ﬂm:1 Dim Jm

It follows by induction using the previous lemma that the codimension of D, for a € X]fq, 5
is exactly k, and that every codimension-k intersection of divisors D;; arises in this manner.
Any set of k chords a € X’g, s splits the polygon into k + 1 pieces, and we have:

k+1
Om
My, s

1

+

IR

(2.18) D,

m

where (S, d,,) are given by the set of all edges of each small polygon in the k-decomposition
«a, with the induced dihedral structures (fig. 4).
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€

7 6

FIGURE 4. A partial decomposition a € X3 5 of an octagon gives an isomorphism
of Do, with MYl x M2, x M2y = Mly x A x {pt}.

REMARK 2.8. — The set of all polygons equipped with the operation of gluing sides to-
gether forms what is known as the mosaic operad [15]. This says that, given two polygons
with edges labelled S; U {e} and S2 U {e} respectively, there is an operation of gluing along
the common edge e, which gives rise to a map

k ! k+i+1
XS U{e},61 X X8yU{e}, 82 7 XS1U8S,,6"

This corresponds to the decomposition of Lemma 2.6.
2.4. Forgetful maps between moduli spaces and projections

Let T denote any subset of S such that |T'| > 3. There is a natural map
(2.19) fr:Mos — Mo

obtained by forgetting the marked points of S which do not lie in 7. Now suppose that S has
dihedral structure 6. Then T inherits a dihedral structure which we denote 1. Identifying
S with the set of edges of the n-gon (.5, §), we obtain a map:

frixss = X161
which contracts all edges in S\T and combines the corresponding chords (fig. 5).
LEMMA 2.9. — The map (2.19) extends to give a map fr : ng)s — WSTT such that
(2.20) frw) = I e
{abyefr ({k1})
Proof. — By (2.12), f7 is induced by the map:
frZ[[i|Uk] « i,5,k,0 € T°T) /g5, — Z[[ij|LK] : 4,5,k 1 € S°]/Iss,

where i, j, k,1 € T°T (resp. S°) denotes four elements in T (resp. S) in dihedral order. For-
mula (2.20) follows immediately from Lemma 2.2. O

REMARK 2.10. — If {i,j} € xg,6, let T denote the four element set T = {4,5+1, j, j+1}.
Then the dihedral coordinate u;; is by definition a forgetful map:

) fr St 1
My s — mO,T > A
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FIGURE 5. The forgetful map fr contracts edges labelled 3,4, 6,8. The dihedral
coordinates corresponding to the two chords in the square are pulled back by f7 to
u1s5U16 and U7 U3TULTU28U3ZULS.

If T3, T5 are two subsets of S such that [T} NT3| > 3, we obtain a map

(2.21) fro X fr, MY g — imngl X o’ imngz’

0,T1NTy
where 81 = 67y, 62 = 01, and 8’ = 7,1, Recall that M 5 = Spec Z.

For future reference, we will need to consider what happens when |T) NT| = 2. Suppose
that the elements of T} are consecutive with respect to 8, for ¥ = 1,2. Then two cases can
occur: either T) NT5 consists of two consecutive elements {4, 4+1} where i € S, or T1 NT» has
two components and Ty N T, = {a, b}, where a, b € S are non-consecutive. We only consider
the first case here. This corresponds to choosing a directed chord {i, j} € xs,5, and cutting
along it. Let S; and S; denote the corresponding partition of the set S viewed as edges of
the n-gon (fig. 3), and consider the larger overlapping sets defined by 73 = S; U {4,% + 1}
and Ty = Sy U {4, + 1}. A product of forgetful maps gives

(2.22) fry X fry 2 MG 5 — MGy, X M2 .

The dimension of the product on the right hand side is (|71 | — 3) + (|72| — 3), which is £ — 1,
one less than on the left. Suppose that the chord {i, j} = {4,%+ 2} is short. In that case, one
of the sets, say 75, has just three elements, and mng2 reduces to a point. The complement
S\T; is a single point. We write S = {s1,...,8,}, and let {s,,} = S\Ti. In that case, the
restriction of fr, to My s:

le : iUtO,{sl,...,sn} - EInO,{sl,...,sn,l}

is a fibration with one-dimensional fibres which are isomorphic to the punctured projective
line P!\{s1,...,8,—1}. In general, the restriction of the map (2.22) to the open set My g is
not a fibration, but almost. Let us compute it in cubical coordinates. By applying a dihedral
symmetry, we can assume ¢ = 2. By (2.9), we have us; = x,,, where m = j — 3. One verifies
that

f))’t()”_r1 g{(iﬂl,...,l‘mfl)Zl’i¢{071}, iﬂlxj#l fOI'i<j},
W&LTZg{(l‘m+1,...,x[)2£L‘i¢{0,1}, :Ezwj7é1 fori<j},
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and the map fr, x fr, : Mo s — Mo, 7, X My, 7, is just projection onto x,, =0:

le X ng : (xlw-'axﬁ) = ((l'l)'"»xm—l)a(l‘m—kl)"'»xl)) .

We can therefore think of (2.22) as a coordinate projection in cubical coordinates. Referring
to Figure 10, we see that in 90t ¢ there are two such types of map, one given by projection
onto My 5 (set 1 = 0 or 3 = 0), and the other given by projection onto My 4 x Mo 4
(set 2 = 0). Restricting (2.22) to the divisor u;; = 0, we retrieve the isomorphism D;; =
Smngl X Dﬁngz which was defined in Lemma 2.6.

REMARK 2.11. — One can make the map fr, x fr, : Mos — Mo, X Mo, 1, Into a
fibration by restricting it to an open subset Us C 9ty 5. One obtains a map fr, X fr, :
Us — Vs, where Vg C Moy 7, X Mo 1,, whose fibres are isomorphic to A! with N points
removed. The N removed points correspond to the set of chords {k,{} which cross {4, j},
plus the chord {i, j} itself.

For example, consider the case 91, ¢, where we write the cubical coordinates (1, z2, x3) as
(z,y,2). Then Us = Mo ¢\{z = 2}, and Vs = {(z,2) € A% : 3,2 #0,1: x # z*'}. Then the
fibration map (x,y, z) — (z,2) : Us — Vg has fibres {y € A’ : y ¢ {0,1,27%, 27, (z2)"'}}.
The removed points in the fibre are given by the five equations uss = 0, w13 = u14 = uzg =
uge = 1 (see Figure 3).

2.5. Smoothness and irreducibility of Dﬁg’ g

Let S={1,...,n}, with canonical dihedral structure §, and let S; = S\{n},
Sa ={1,2,n — 1,n}, with induced dihedral structures d;,d>. This gives a product of
forgetful maps

. ) 61 P ~ 41 1
fsi X fs, : My g — Mylg X My%g, = M'g X A

We will show that this map induces an isomorphism between an open subset of smg{ gandan
open subset of Sﬁgfsl x A, and deduce that MM g is smooth and irreducible by induction.
Note that fg, : Mo s — My s, is just the map which forgets the n*™ marked point, and its
fibre is isomorphic to the projective line minus n — 1 points.

Let us define
Ry = Zuij : {i,j} € xs6l/155; and R, =Zvi; : {5} € xs,,6.)/15, 5,5

so that u;;, for 1 < 4,5 < n are dihedral coordinates on E)ﬁg’s = Spec R, and v;;, for
1 <4,j < n—1are dihedral coordinates on imgfsl = Spec R,,. Let

v = (1 — V13014 ...V1n—2 t) . (1 — V1 n—-3V1n—-2 t)(l — V1n-—2 t) S Rv[t],

and write ©u = Uop U3y, - . . Up—35, € Ry. Notethat u = 1 — uq ,—1U1 n—2 IN R,,.

PROPOSITION 2.12. — The map fs, X fs, induces an isomorphism

(2.23) MY g\ {u =0} = (Mg, x A')\{v=0}.
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Proof. — Using (2.20), the morphism (fs, X fs,)* is given by:

(2.24) ¢: Ry)v™"] — Ru[u™"],
(t) = Uin-1,
(vzn l) = Uin—1Uin, for2§z’§n—3,

d(vij) = ugy, ifi,j#n—1
One checks from the definitions that

dp(v) =1 —uwigura.. . Urp-1)-.- (1 — U p_2U1n—1) = Uy, 4ugn 5 Up—3n.
We define an inverse map:
(2.25) ¥ Ry[u™'] — Ry [t]v™1].
Y(Uurn-1) = t,
Y(UgpUzp -« - Uip) = 1 —v1441...010-0t, for2<i<n-—2
Y(Uin-1Uin) = Vin-1,
Y(uy;) = vy, ifi,jé{n—1,n}

These equations determine v uniquely, using the fact that ¢ is multiplicative, and the fact
that u and v are invertible. To prove that 1) is well-defined, one must show that ¢ maps every
relation [],c 4 ¢q + [[pep s — 1 to 0, where A, B are sets of completely crossing chords in
(S, ). One checks that the image under ¢ of such a relation is of degree at most one in the
variable ¢, so it suffices to check the cases t = 0, and ¢ = 1. Setting ¢ = 0 in the definition
of 1) gives rise to a map:

o : Ru[u_l] — Rv[v_l]a
where 1/}0(u1 n—l) =0, ’([)0(’U,ij) =1ifi=n Ol”j =n, and wg(uij) = Uiy for all other ’L,]
This map is well-defined since it is nothing other than the restriction to an open subset of the
inclusion map:

gﬁo S, — Dln—l = {uln_l = 0} i 2))?(‘]5’5.

Similarly, setting ¢ = 1 in the definition of « gives rise to another map

(R Ru[u_l] - Rv[v_l]a

where Y1 (Unn—2) = 0, ¢¥(u;;) = 1ifi =n—1lorj =n— 1, and ¥(uin) = vin—1 and
¥ (ui;) = v;; for all other ¢, j. This is just the inclusion D, ,—o — 9)?65, g» wWhich proves that
17 is also well-defined.

It is clear from the definitions that ¢ o ¢ is the identity on (R, ®z Z[t])[v~']. To show that

¢ o % is the identity on R, [u~1], it suffices to verify that
¢ o ¢(u2nU3n .. .um) = (Z)(]. —Uli+41--- ’Uln_gt) =1- Ui+l -Uln—-1 = U2p .. . Uin.

The last equality holds since {{1,% + 1},...,{1,n — 1}} and {{2,n}, ..., {¢,n}} are com-
pletely crossing chords. Thus ¢ and v are isomorphisms, inverse to one another, which com-
pletes the proof. O

For every vertex (¢) in (S,0), let Z; = U;D,;, where the union is over all chords
{%,7} € xs,6 meeting (7). Let U; = SJTg’S\Zi denote the open complement.
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LeEmMA 2.13. — The sets U;, for i € S, form an open cover ofi))?(is.

Proof. — Tt suffices to show that ;g Z; = @. Let S = {1,...,n}. We have

mZi:ﬂ U D;; = U (D1j, NN Dnj,),

i€S i€S j:{i,j}E€xs,5 J1seedn

where the union is over ji,...,j, such that {1,71},...,{n,j.} are chords of S. At least
two of these chords must necessarily cross (otherwise, there would exist a triangulation of
an n-gon with a chord passing through each vertex, which is clearly impossible). Since the
intersection of divisors D;;, Dy, corresponding to pairs of chords which cross is empty, it
follows that Dy, N---N D, ;, = @, for all such ji, ..., j,, and hence ;.5 Z; = 2. O

COROLLARY 2.14. — The scheme smg) g is integral and smooth.

Proof. — If | S| = 4, then E)Z)T(‘f’ s = Al, which is clearly integral and smooth. By induction,
assume that ﬁﬁg, g 1s integral and smooth for all |S| = n — 1. If |S| = n, then it follows
from Proposition 2.12 that the open set sm(;{ s\{u = 0} is integral and smooth. The divisor
{u = 0} is by definition Dy, U---U D,,_3,, which is contained in Z,, = Dy, U---UD,,_a,,
and therefore U,, C M \{u = 0}. It follows that U,, is integral and smooth, and likewise
for every U; for i € S, by dihedral symmetry. By the previous lemma, these sets form an
open cover of ?).’ft(‘f’ 5> wWhich proves the corollary. O

THEOREM 2.15. — The affine scheme Dﬁg g Is integral and smooth, and the divisors D;;, for
{3,5} € xs,5, are smooth and normal crossing.

Proof. — We know from Lemma 2.6 that each divisor D;; is isomorphic to a product of
spaces smgj o and is therefore smooth. The fact that they cross normally follows by induction
from the isomorphism (2.23) of proposition 2.12.

Let a={{i1,j1},---,{ix,Jx}} € X@,s denote a decomposition of (S,d), where
1 < k < ¢ It suffices to check that the divisors D;;, where {i,j} € «, cross normally
in an open neighbourhood of D, which is contained in U,,, for each 1 < m < n. Without
loss of generality we can assume that m = n. There are three cases. First of all, if (n) € (S, d)
is a vertex which is an endpoint of a chord in «, then D, N U,, = &, and there is nothing
to check. Therefore we can assume that the vertex (n) meets no chord in . Suppose that
« contains the short chord {1,n — 1}, and suppose that {iy,jx} = {1,n — 1}. Under the
isomorphism (2.23), the divisor D;, j, \{u = 0} € M 5\{u = 0} maps to

Mots, x {t =0} C (MY, x AM)\{v =0},

and the remaining divisors D; ; NU,for1 < r < k — 1, map to a set of k — 1 divi-
sors (Dyr 5o x AM)\{v = 0} C (imgfsl x A1)\{v = 0} which cross normally, by induc-
tion hypothesis. Finally, if (n) meets no chord in «, and the short chord {1,n — 1} is not
in «, the same argument applies, except that all divisors in & map to divisors of the form
(Dyr j» x A')\{v = 0}, and the conclusion is the same. Since the open sets Uy, . .., U, cover

M s, this proves that the divisors D;; are normal crossing. O
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2.6. Normal vertex coordinates on 9, s(C)

The previous theorem gives normal coordinates in the neighbourhood of any intersection
of divisors D, on sm(;{ s- Unfortunately, these coordinates are not canonical. For example,
if S ={1,...,6} and o = {{1,3},{1,5}, {3, 5}}, then Proposition 2.12 yields, for example,
a set of normal coordinates of the form (w15, u13use, uss), which are not symmetric. It is
therefore reasonable to ask whether the dihedral coordinates (u15, 413, ugs) themselves form
a coordinate neighbourhood of D, = {u1s = wiz = wuzs = 0}. It turns out that they
actually define a 2:1 étale map to A2 on a certain open subset of 9313’ g- In this section, we
study canonical normal coordinates in the neighbourhood of each subvariety D, for general
a € xks.

We first consider two useful relations satisfied by the dihedral coordinates u;; on Mg s.
We frequently use the following notation: for any two sets I, J C S, we write

(2.26) urg= ] iy

iel, jeJ
Also, given two consecutive indices ¢, i + 1 modulo n, we adopt the convention that u; ;11 =
0. This is compatible with the decomposition of Lemma 2.6: after cutting along a chord
{3,7} € xs,s, the vertices ¢ and j become adjacent in each small polygon, and indeed, u;; = 0
is the equation of the corresponding divisor (Fig. 4).

LEmMMA 2.16. — Let {p,q} € xs,5. Then any three of the four coordinates wupq, Upqt1,
Upt1q Upt1q+1 determine the fourth, and we have the butterfly relation on My s:

(2 27) qu(l — Up q+1) _ 1- Up+1 q+1
. - )
L = Upqtip g1 L= Upr1gt1Uptig

where upy14 =0 (upg+1 =0) if p+ 1 and g, (respectively g + 1, p) are consecutive.

Proof. — Let A and B be the subsets of vertices S pictured in the diagram below (left).
Then (2.10) implies the following equations:
1 —Upgt1 = UAp41 UAB UAg,
1 — Upq Up g1 = UAp+1UAB,
1 —Upt1g+1 = UpB UAB UAqg Upg;
1 — Upt1g4+1Upt1q = UpB UAB.

Identity (2.27) follows by substitution. O

LEmMA 2.17. — Let p,q,r denote three non-consecutive elements of S, and set
Tr = [1p<i<q Wir- Then the triangle relation holds on My s:
1—u T
(2.28) L = .
(1 —upr)(1 —ugr) (1= mrupy)(1 — mrugr)
If we regard this as a quadratic equation for m, in Q(Upq, Upr, Uqr), then the discriminant is
non-zero in a Zariski-open neighbourhood of up, = tgr = upq = 0.
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® (p+D

()

(g+D) (@ ®
FIGURE 6. Proof of the butterfly (left) and triangle relation (right).

Proof. — Let A, B and C be the subsets of vertices .S pictured in the diagram above (right).
Then (2.10) implies the following equations:

1—1upy = upcmruac,
1 —upr = upc UBq UAB,
1 —ug = uacuapuas,
1 — upymr = upquaB,
1 —ugm = uapuaB.
The identity (2.28) follows by substitution. One verifies by straightforward computation that
the discriminant of (2.28) is
(2.29) Apgr = (1 = UpgUgr + Ugrthpr — Uprtipg)? — 4(1 — Upg)*Upptigr,

from which the last statement follows. O

Leta € Xzs, s denote a triangulation of the n-gon (S, 8). An internal triangle of a is a triple
p,q,7 € S such that p, g, r are non-adjacent, and {p, ¢}, {p,r}, and {q,r} are in a. A free
vertex of acis a vertex ¢ € S such that {4, k} ¢ a forall {i,k} € xg . If t denotes the number
of internal triangles in «, and v denotes the number of free vertices in «, then it is easy to
show that v = 2 4 ¢. A triangulation of the n-gon has no internal triangles if and only if it
has exactly two free vertices.

DEFINITION 2.18. — Let a € Xéé, and choose an ordering on the set of chords
{i1,51}, ....{i¢,j¢} in a. Then the set of vertex coordinates'"

dered triangulation « is the set of variables:

corresponding to the or-

[e% o
7y, ..., 2y,

defined by setting «§ = w;, ;, for1 <k < L.

(D) The reason for this terminology will become apparent in § 2.7. A triangulation a corresponds to the point Dy,
which is a vertex (corner) of the Stasheff polytope Ys,g C img 5 (R) (see Fig. 10).
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If o« = {{2,4},...,{2,n}} with the natural ordering, then z{f{ = zr = wugp4s3 for
1 < k < ¢, and we retrieve the cubical coordinates defined in (2.5) as a special case.

Let {3,j} € xs,5. Recall from (2.14) that there is a decomposition
X8S,8 :Xlu{iaj}l—l U {k7l}7
{k,1}~{d,5}

where x’ consists of all chords {a, b} which do not cross {7, j}. The following lemma states
that we can eliminate all dihedral coordinates ug;, where {k,(} crosses {4, j}.

LEMMA 2.19. — Let {i, j} € a. Onthe openset M s\{ui; = 1}, every variable uy;, where
{k,1} € xs,5 crosses {1, j}, can be expressed as a rational function of u;j, and the variables uqy,
where {a,b} € X'.

Proof. — The easiest way to see this is on the example o € xé, s depicted in Figure 7 (left),
where {7, j} = {1,5}. Consider the following equations given by (2.10):
ugs = 1 — ur7u16UI5UI4UL3,
Ugglor = 1 — U16U15U14U13,
UgglUgrlze = 1 — U15U14U13,
ugglos = 1 — u17U16U15U14,
UzgUzrUsU27 = 1 — U16UI5U14,

U38U3TU3EU28U2TU26 = 1 — U15U14,

The identities (2.10) imply that
1—u; = H Ukl
{k, 1}~ {iss}
and therefore all the variables on the left hand side in the equations above are invertible on

M s\{ui; = 1}. All the variables on the right hand side lie in x’ U {i, j}. We can therefore
solve for wuag, ug7, Uog, Uss, Us7, Usg and so on, in turn. The general case is similar. O

Let {i,7} € xs,6 denote a chord. Then {i, j} partitions the set of edges of (.5, §) into two
sets, S7 and Sy. The chord itself corresponds to the four edges E = {i,i 4+ 1,7,5 + 1}. The
sets Ty = S1UE, and Ty, = Sy U E overlap in precisely the set F, and therefore |73 N Ty | = 4.
Let g denote the induced dihedral structure on E. By definition of the dihedral coordinate
u;;, there is an isomorphism w;; : E)L)Tng =~ Al. Therefore (2.21) defines a map:

(2.30) Mo g — zmngl X g1 zmngQ.

The chord {i, j} is in both xr, 5, and xr, s, (Fig. 7).

PROPOSITION 2.20. — The map (2.30) defines an isomorphism

(2.31) MY s\ {us; = 1} = fmngl\{uij =1} a1\ 1 fmngz\{uij =1}.
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Proof. — The map (fr, x fr,)* is given by:
Zl[ij|Uk] =i, 5,k,0 € T{*) /Iry 5, @zpusy) Z[[1 510K 6,5, k, 1 € T3] /Ir, 5,
— Z[[ij|Lk] 4,5k, 1 € S°]/Iss,
with the notation used in the proof of Lemma 2.9. It can also be regarded as a map:
Zluay = {a,b} € x1,,6,1/17, 5, ®zus;) Lluan : {a,0} € x15.6,1/17, 5,

— Zluap : {a,b} € xs,6/13 5,
The previous lemma implies that the map (f, X fr,)* is surjective when we invert the coor-
dinates wuy; such that {k,} crosses {4, j}, i.e., on the open set u;; # 1. Using this, one can

write down an inverse map to (fr, x fr,)*, and check that it is indeed an inverse. We omit
the details. O

FIGURE 7. The induction step in the proof of Proposition 2.22. The chord {1, 5} in
the octagon on the left distinguishes the four thick edges E = {1, 2,5,6}. The two
sets Th = {1,2,3,4,5,6} and T> = {5,6,7,8,1,2} intersect in E and define the
hexagons on the right. The right hand hexagon can be further decomposed into
a pair of pentagons, but the middle hexagon has an internal triangle, so we have
to invoke the triangle lemma 2.17. In this way, we reduce to the case of 93“(5376 and
M 5 only.

Each set of vertex coordinates defines an étale map on a certain Zariski-open subset ob-
tained by iterating the map in the previous proposition. Let a € X’§, s denote any partial
k-decomposition of the n-gon and define:

(2.32) Ua = m {uij # 1} C MY 5.

{i.j}ea
Since D, = {u;; = 0 : for{i,j} € a}, it follows that D, C U,, and U, is an open
neighbourhood of the subvariety D, which contains the open set 9 s.

Now let {3, j} € a, and consider the map (2.31). By restricting, we obtain two decompo-
sitions a1, ag, and Zariski-open sets Uy, , Uy, on T, T5 respectively.

REMARK 2.21. — The embedding (2.31) extends the isomorphism D,, & D,,, x D,,. The
product structure on each boundary stratum of Dﬁg, g therefore extends over a Zariski-open
subset of the variety.
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Now for each a € x% 5, we define a Zariski-open set

(2.33) U,y= [\ {Bper #0100 C M,

{p.ar}ea
where the intersection is over all sets of (ordered) internal triangles {p, ¢,7} € o and A, ,
is defined by (2.29). It follows from (2.29) that D, C U,,.

PROPOSITION 2.22. — Let a € xfg’é denote any ordered triangulation of the n-gon (S, 6).
The set of vertex coordinates {x§, ..., x¢} defines a map

(z$,...,29) : U, — A*
which is étale. It therefore defines a system of coordinates on U, (R) or U/, (C).

Proof. — By iterating the decomposition (2.31), we obtain an embedding

N
(2.34) Ua = [ U,
=1

where each «; is a triangulation of a k;-gon which cannot be decomposed any further. We
can assume that each decomposition is strict, i.e., k; > 5 for each .

Two cases can occur. If there are no internal triangles, then necessarily k; = 5, and we
can assume that a;; = {{1,3},{1,4}}, so that 2 = uy3, and z3* = uy4. In that case, (2.10)
gives:

ugs =1 — u13u14, ugqups = 1 — w13, and  ussugs = 1 — uyg.
The variables on the left are invertible on U, = {uas # 0} N {uag # 0} N {uss # 0}, so it
follows that 7, x5 is a coordinate system on this open set, i.e., the map

(29, 25") : Ua, — A?

is certainly étale. On the other hand, if there is an internal triangle {p, ¢, 7}, and the k;-gon

cannot be decomposed any further, then we are in the situation corresponding to Mg ¢ pic-

tured above (Fig. 6, middle). By symmetry, we can assume that 27 = w3, 5% = w5, and
a;

x3" = ugs. By Equation (2.28), the variable 7, = uo5 depends quadratically on z{*, z5*, z3".
It follows from the triangle lemma (2.17) and the definition of U, that the map

(27,25, a5") : U, — AP
is étale and two to one. This is because all remaining dihedral coordinates u;; are uniquely
determined by 7% = w5, ™. = ugs, and z3° = ugs by applying the relation (2.10) and
inverting coordinates which do not vanish on U,,, in much the same way as above. From

(2.34) we obtain an embedding U?, — [, U, &,» Which in turn gives rise to a commutative
diagram

(@)

U Al
! !
N ] a;
e (m Lz Y)
Ty, U, M 1Y, Ak

The vertical maps on the left and on the right are diagonal maps. We have shown that the
horizontal map along the bottom is étale. It follows that the horizontal map along the top is
étale, which completes the proof. O
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If the triangulation « contains no internal triangles, then U/ = U,, and the functions
z$, ..., ¢ give an isomorphism of 90y ¢ with a Zariski open subset of A’.

COROLLARY 2.23. — Let a € Xf; s> such that o has no internal triangles (and therefore
two free vertices). Then the set %, ..., x% is a system of coordinates everywhere on MMy s, and
every cross-ratio w;; is a rational function of the x3'.

We could also define zmg{ s using the set of equations (2.27). One can verify thatif o € Xé, s
has no internal triangles, then all dihedral coordinates can be expressed in terms of the vertex
coordinates {z} by repeatedly applying the butterfly lemma.

LEMMA 2.24. — The sets U], for a € ng 50 cover zmgs.

Proof. — For each partial decomposition § € x’f;, 5> Set

Ng = {ui; = 0 forall {7, 5} € 8} N {up, # 0 forall {p,q} ¢ B},

which is an open subset of Dg = {u,;; = 0forall {4, j} € §}. It follows immediately from
this definition that 9010 ¢ decomposes as a disjoint union:

4
(2.35) Mmes=Mosul) J Ns

k=1 Bexg,a

Letg € X’é, s denote any partial decomposition of the n-gon (S, §). By adding chords, we can
find a full triangulation o € qu, s Which contains 8, without creating any new internal trian-
gles in a. It follows from (2.29) and Lemma 2.17 that N3 C U/,. Note that if § is the empty
triangulation, then My ¢ C U/, for any o which has no internal triangles. The decomposition
(2.35) then implies that

misc |J UL. O

aEX§5
In this manner, we obtain a second proof of the following theorem:

THEOREM 2.25. — The affine varieties M g(R) or ME 5(C) are smooth and irreducible,
and the divisors D;;, for {i,j} € xs,s, are smooth and normal crossing.

Proof. — Let a € qu, 5 Proposition 2.22 states that the vertex coordinates z¢, ..., z¥
corresponding to a define an étale map U/, — A*. The image of My s N U/, in U/, is precisely
the complement of the normal crossing divisor

zf ... 2y =0

(see Fig. 8). The theorem follows since the sets U/, cover zm(;{ g O
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/

e
~ _ — UI
- [

FI1GURE 8. The covering of 93?(‘)575. To each vertex a € ng,g, there is an open set
U/, on which the set of vertex coordinates {z$*} cross normally. The sets Uy, form a
covering, which gives a second proof that the divisors D;; are smooth and normal
crossing.

2.7. The real moduli space M o (R)
Consider the moduli space of projective circles with n ordered marked points:
Mo,s(R) = PSLy(R)\P! (R)?.

The space M, g(R) is not connected, but is a disjoint union of open cells which we define as
follows. First, we fix a dihedral structure § on S, which defines a set of dihedral coordinates
w;j for {i,5} € xs,5. Let

(2.36) Xso={ui; >0 : {i,j} € xs.5} CMs(R).

By (2.10), X 5, is also defined by the equations 0 < u;; < 1forall {i,j} € xs,5, and is
therefore compact. We define the open cell Xg 5 to be the interior of Ys,(;:

(2.37) Xs5=Xg5NMos={u; >0 : {i,j} € xs,6}-

The sets Xg 5 and X g 5 are clearly preserved by the dihedral symmetries of 6, so there is an
action of the dihedral group Do, X YS,(; — Ys’g. Using explicit simplicial coordinates (2.9),
one checks that the open set X g s is homeomorphic to the simplex

(2.38) Xgo =Z{(t1,...,t) : 0<t;<---<tp <1}

It follows that Xg 5 is contractible, and moreover, that Xg 5 is a connected component of
Mo, s(R). After changing to cubical coordinates, we see that Xg s is the unit hypercube
{(z1,...,2¢) : z; € (0,1)} = (0,1), which explains the nomenclature of each coordinate
system (Fig. 9).

Each cell Xg 5 consists of the set of points s1, ..., s, € P*(R) such that sq,..., s, are in
the dihedral order determined by 6. Two components Xg 5, Xg ¢ are disjoint if 6 and ¢’ are
distinct, and the set of dihedral structures are permuted transitively by the symmetric group
&,,. This implies the following tiling lemma. Devadoss has studied the exact gluing relations
between the cells Xg s in this tiling [15].
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LEMMA 2.26. — The space My s(R) is the disjoint union of the n!/2n open cells Xg 5, as
§ € 6,/ Ds, ranges over the set of all dihedral structures on S.

It is now clear that the choice of a dihedral structure 6 on S is equivalent to the choice of
a fundamental cell Xg;5 € mo(Mo,s(R)) = &,/Day,. The set of dihedral coordinates u;;
corresponding to ¢ can be regarded as a natural set of functions which is stable under the
action of the symmetry group of Xg 5.

X, 2}

FIGURE 9. The set of real points 9 5(R) in cubical (left), simplicial (middle),
and dihedral coordinates (right). The dotted circles denote points which are blown
up when passing to dihedral coordinates. There are 5!/10=12 regions X g s when
|S| = 5.

DEFINITION 2.27. — For each chord {i,5} € xs,5, we define the face F;;(Xs,5) of X5
to be the closed subset Fj;(X 5,5) = Di; N X 55 C MY g(R). Likewise, for each o € x 5, we
define the codimension-k face of X g5 to be F (X s,5) = Do N X 5,5-

It follows from Lemma 2.5 that

(2.39) Fij(X5,5) 2 X100e}.6, X XTou{e} 620

where T} U T is the partition of (the set of edges) S corresponding to the chord e = {i, j}.
By Equation (2.18), each codimension-k face F,, (X s,s) is a product

B k+l
Fo(Xs5) = H D, QE I
m=1
By repeatedly taking boundaries we obtain a stratification:
(2.40) Xs5520X5520*°Xs552-20Xsg,
where the codimension-k boundary of Y&(s is the union of its codimension-k faces:
8kyS,5 = U Fa(YS75) for1 < k < L.
aéxg’s

For each n > 4, the associahedron K,,_1, or Stasheff polytope [4€], is a convex polytope
of dimension n — 3 whose codimension-k faces are indexed by the partially ordered set of
compatible bracketings on a set of n — 1 elements.
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COROLLARY 2.28. — The lattice of fuces X g s is combinatorially equivalent to the associa-
hedron K,,_1.

Proof. — The set of all codimension-k faces F, (X g s) is indexed by k-triangulations of
a regular n-gon, and the inclusion of one face in another is given by removing a chord. By
taking the dual graph of a partial triangulation of an n-gon we obtain a planar tree. If we fix
an edge s; of S, then each such tree is rooted, and defines, in a standard way, a bracketing
of the ordered set {sq, ..., sy} (fig. 11). We obtain in this way a bijection between faces of
X 5,5 and bracketings on a set of n — 1 elements (this is beautifully illustrated in [16]). O

FIGURE 10. The associahedron or Stasheff polytope X5 = K5 in MM ¢(R) ob-
tained by truncating the unit cube in R3, or blowing up along z; = z2 = x5 = 1,
and then Tr1 = T2 = 1 and To = T3 = 1.1t has SiX faces F13, F24, F35, F46, F’517 F62
which are pentagons Yw, and three faces Fi4, F25, F36 which are quadrilaterals
X4,5, X X4,5,. These are permuted by the group D12. There are three types of ver-
tices corresponding to three kinds of triangulation of a hexagon. The vertex coordi-
nates defined in § 2.6 for each triangulation provide local affine charts in the neigh-
bourhood of each vertex.

Since each face F,, is contractible, we can view YS,‘; in the coordinates u;; as a dihedrally-
symmetric algebraic model of the associahedron K,,_;. The fact that the divisors D;; cross
normally implies that the associahedron is a simple polytope, i.e., each vertex is the intersec-
tion of exactly /¢ distinct faces.

REMARK 2.29. — As remarked earlier, smgﬂ can be obtained by blowing up a set of di-
visors bounding X 5. Since the operation of blowing up is non-commutative, we have to
specify that the blow-ups occur along subvarieties in increasing order of dimension. A use-
ful intuitive picture of the polytopes X g 5 can be obtained by blowing up the unit hypercube
[0, 1]¢ along the divisors z; = --- = x; = 1for1 < i < j < £. The set of real points
in the blow-up can be visualised by truncating the unit hypercube along the hypersurfaces
x;...x; =1 —¢,whered < j for some fixed ¢ > 0 which is sufficiently small (see fig. 10).
Alternatively, one could truncate the simplicial model of X g ; to obtain another explicit con-
struction of K,,_1 (see [16]). This involves a greater number of truncations, however.
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2.8. The compactification 9, s and its divisors at infinity

The set of all cross-ratios defines an embedding:
(241) {31k} M5 — M = @{0,1,001) ().

The coordinates {[¢ j|k {]} satisfy identities (2.1) and (2.2). These identities define a projec-
tive scheme we denote

ﬁO,S C (]}Dl)(Z)’
which is defined over Z. This representation of ﬁo,s is degenerate since some coordinates

are the same, but it is clearly invariant under the action of the symmetric group. For every
cross-ratio [ij|kl], with 4, j, k, 1 € S, there is a divisor

Dyijiey = {[i§]k 1) = 0} C My 5.

It follows from simple properties of the cross-ratio (2.1) that
(242) Diijiry O Dyikjjyy = @, and Dyjiey N Dyijury = 2,
and Di;jixy) = Dprijij) = Dpjijie) = Dpkyje- For each dihedral structure 6 on S, define an
open subset U° C My s by:

U° = {[i j|k1] # 0 for all 4, j, k, 1 in dihedral order §}.
Thus U® = 9y 5\ Z5, where Zs is the union of divisors Dy for every quadruple (3, 4, k, 1)
in dihedral order 6.

LEMMA 2.30. — There is an isomorphism js : SDT&S = U°.

Proof. — By the relations (2.1), a set of coordinates on Uy is given by the cross-ratios
[¢ |l k] for all (4, 4, k, 1) in dihedral order §. The result follows from the definition (2.12) of
m . O

For example, My 4 is defined by 24 cross-ratios [i |k 1], with {i,j,k,1} = {1,2,3,4},
each of which is equal to one of the 6 anharmonic ratios {z,1— =z, 1, 2= _2_ 1} where
x = [12|43]. Thus 9y 4 is isomorphic to P*. The three distinct dihedral structures on a set
with four elements give three embeddings of MJ, = A! — P!, whose images are P*\{0},

P'\{1}, and P"\{oc}.

LEMMA 2.31. — The compactification My g is covered by affine charts 9;71657 g as o ranges
over the set of all dihedral structures on S:

(2.43) Mos= |J ds(Mis)-
6€6,,/Day,

Proof. — To show that the sets U® = js(9M( 5) form an open affine covering of My, is
equivalent to proving that (5 Zs = @, where ¢ ranges over all N = n!/2n dihedral structures
on S. But

ﬂ Zs = ﬂ U D[iﬂkl] = U (D[i1j1|k111] NN D[iNlekNlN])7
5 5 (,4,k,1)€S4 (tmsdm Kkm,lm) €87,
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where 64 denotes the set of all 4-tuples (i, 7, k, 1) which are in dihedral order &, and where

d1,...,0N are representatives of every dihedral structure on S. It suffices to show that for
every (i1, j1,k1,01) € 6%,...,(in,jn, kN, IN) € 83, we have
(2.44) D[iljl\klll] n---N D[iNlekNlN] =9.

Since for all n > 4,

n

!
#{dihedral structures} = N = ;—n > ( 4

) = #{4-tuples {4, j, k,[}},

there must, by the pigeonhole principle, be at least two sets of indices {iy, jp, kp, I, }, and
{iq:Jq, kq,1q} In (2.44) which coincide. But since they necessarily occur in distinct dihedral
orders, we have by (2.42) that Dy; ;. ik,1,] N Di,j,|kgl,) = &> Which proves (2.44). O

Theorem (2.25) implies the following corollary.
COROLLARY 2.32. — 9y g is smooth and My s\Mo. s is a normal crossing divisor:
The irreducible components at infinity of ﬁ& 5\My, s can be described as follows.

LEMMA 2.33. — Let § denote a dihedral structure on S, and let {p,q} € xs,. The chord
{p, q} partitions the set S, viewed as edges of the n-gon (S, §), into two sets Py U Py. Then the
divisor js(Dpgq) C j(;(DJTg’S) is determined by the equations [i j|k 1] = 0 for all distinct indices
1,7, k,l such that

{Z,k} ch Clnd{],l} C P,

or {j,l} C Pyand{i,k} C Ps.

Proof. — On the chart js (zmo‘i ), these equations imply in particular that u,, = 0, and
therefore determine the divisor js(Dpq). That the remaining cross-ratios also vanish on
Js(Dpq) follows from Lemma 2.2. O

It follows that two divisors js, (D1) and js, (D2) coincide on js, (mgfs) Njs, (93?825) ifand
only if the corresponding partitions of S agree.

DEFINITION 2.34. — A partition Py U P, = S is stable if |P;| > 2 and |P;| > 2. A di-
hedral structure § on S is compatible with P; U P if the elements of each set P, and P; are
consecutive with respect to §. An irreducible divisor D C ﬁo,s\zmo, s 1s said to be at finite
distance with respect to a dihedral structure 4, if D N j(;(i)ﬁg’ g) #9.

PROPOSITION 2.35. — There is a bijection between the irreducible components of the divi-
sors at infinity of Mo s\Myo s, and stable partitions S = Py U Py. The component D corre-
sponding to this partition is canonically isomorphic to

ﬁo,Plu{e} X ﬁO,PQU{e}M

where e is a symbol. A divisor is at finite distance with respect to a dihedral structure § if and
only if ¢ is compatible with the corresponding partition of S.
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Proof. — The bijection between stable partitions and divisors follows immediately from
the previous remarks and the covering (2.43). The last statement of the proposition holds
by definition. It remains to prove the decomposition. Suppose that we are given a stable
partition S = P; U Ps, and let D denote the corresponding divisor. Note that a dihedral
structure § on S, compatible with P; U P, induces dihedral structures d;, d2 on the sets P; U
{e} and P, U {e} (compare Fig. 3), and every pair of 41, d2 arises in this way. It follows from
Lemma 2.6 that:

5 ey X M2 pyuqey) i 8 is compatible with Py U Py,

Dnyjs (m(is) = .
%] otherwise.

If we identify jg(mgjplu{e} X mgfm{e}) with js, (mgjplu{e}) X j52(£mgfp2u{e}) in
Mo, puger X Mo, p,uge}» WE Obtain:

D=DNMos =D Jis(M3s) = (J 4o,y % Mp,000)
61,62

5
EU' (M )xU' (m?> ) =M, x M O
J51 Py prugel Jo2 by pyugey 0,P1U{e} 0,P;U{e}-
61 52

We introduce the following notation. Let D denote the divisor given by a stable partition
S = P; U P,. Then for any pair of indices 7, j € S, we set

(2.45) Ip(i,§) = I({i,j} € P") +1({3, 5} C P?),

where [(A C B) is the indicator function which takes the value 1 if a set A is contained in B,
and 0 otherwise.

COROLLARY 2.36. — Let D denote the divisor corresponding to the stable partition
S = Py U Py. The order of vanishing of any cross-ratio along D is given by:

ordp [ij k1] = 3 [In(i, k) + In(5,1) ~ In(i 1) ~ o (s, k).

Proof. — The formula is invariant under the action of &(S) on divisors and cross-
ratios. We can therefore fix a dihedral structure § on S and assume that D = D,,, where
a € {4,...,n}. The formula is also compatible with (2.1) and additive with respect to (2.2).
By Lemma 2.2, it therefore suffices to verify the formula for [pp + 1|g + 1¢] = upq, where
{p,q} € xs,5. It follows from (2.10) that ord p,, upq is 1if {p, ¢} = {2, a} and is 0 otherwise.
The partition corresponding to Do, is {3,4,...,a} U{a + 1,...,n,1,2}, and it is easy to
check that the formula holds in this case. O

A stable partition S = P; U P; is conveniently represented as the union of two circles,
joined at a point e, with marked points corresponding to P; on the first circle, and those cor-
responding to P, on the other. Taking iterated intersections of divisors, one obtains bubble
diagrams (fig. 11)[16]. Such a diagram defines a tree, and one retrieves the standard combi-
natorial description of strata in 90y s. If we take the dual graph, we obtain a partial decom-
position of a polygon. Note that we can find dihedral structures ¢ for which the labellings of
the outer edges are in dihedral order with respect to é. In this way, any bubble diagram cor-
responds to an intersection of divisors at finite distance on a certain number of affine pieces
mg’S in ﬁO,S-
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S3 Sy4

-85

S7

Fi1GURE 11. A partial decomposition of a heptagon (left), its dual graph (dotted
lines), and the corresponding bubble diagram (right). If the tree is rooted at s1, this
corresponds to the bracketing (s2, ((s3,54), (85, 86, 57))).

2.9. Comparison with the Deligne-Mumford-Knudsen construction

. . . = o . . —DMK
It remains to verify that our definition of 9y s coincides with the construction 90 g

due to Deligne-Mumford and Knudsen. The universal property for the latter implies that

there is a morphism
—DMK

ﬁO,S - 9no,s
One could probably check that this is an isomorphism using the combinatorial and geomet-
ric results proved for My s above, but it would be preferable to prove the universal property
directly for 9%y s using our definition in terms of the affine schemes 9¢ g. We have not done
this.

2.10. Product maps

The projection maps on 9y g defined above decrease the dimension by one. We will also
need to consider various maps between products of moduli spaces 9ty 7, which preserve the
dimensions. These give rise to special coordinate systems on 9y s and will be used to define
products on period integrals. Given two subsets 77, 7> C S such that |T;| > 4, we consider
maps of the form

(2.46) f=1In x fr, : Mo,s — Mo, X Mo,1,.
Such a map will be called a product map if
(2.47) Ty NTy| =3,

S=TyUT>.

In this case the dimensions on both sides of (2.46) are equal, since the equalities (2.47) imply
that | S| —3 = |T1| — 3+ |T2| — 3. The map f is an embedding, because we can place the three
points in T3 N T3 at 0,1, and oo, and each remaining marked point s € S is then uniquely
determined by the map fr, where ¢ € {1,2} and s € T;. We can iterate this construction
by further decomposing T; as a union of sets satisfying (2.47). Since the composition of two
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forgetful maps fr is itself a forgetful map, we obtain a family of subsets 77, ..., T, C S such
that |T;| > 4, and a map

k k
(2.48) F=11fr.:Mos — [[ Mo,
i=1 i=1
This is an embedding by construction. The sets T; cover S, i.e., S = UleTi, and the equality
of dimensions on the left and right hand sides of (2.f18) implies that

(2.49) IS|+3(k—1) = Z|T|

We can then regard 9, s as a dense open subscheme of Hle Mo, 1,, and we say that f
is a non-degenerate coordinate system on MMy s. Any set of vertex coordinates {z$*} corre-
sponding to a triangulation a € ng, 5> when « has no internal triangles, is an example of
a non-degenerate coordinate system (this can be verified by induction). More precisely, if
x$ = Up,q;, then we can cover S with the sets T; = {p;, p; + 1, ¢;, ¢; + 1}, and identify My 7,
with P*\{0, 1, oo} using the coordinate z¢, for 1 < i < £. If, however, « has internal trian-
gles, then the map f corresponding to the set of vertex coordinates z{' is not an embedding,
and therefore cannot be a non-degenerate coordinate system.

Let us fix a dihedral structure 6 on S. This is equivalent, by § 2.7, to choosing one of the
open cells X g s which covers 9ty s(R). This induces a dihedral structure §; on each subset
T, C S, which in turn defines a fundamental cell X7, 5,, for 1 < ¢ < k. By construction,
fr.(Xss) C Xr,s,, and therefore f(Xs5) C [I%, X1, 5,. We define G to be the set of
all dihedral structures on S which are compatible with the dihedral structures on each T;
induced by 4: ie.,

(2.50) G = {y € (S)/Ds, such that 7|7, = §;}.

The precise relation between the domains [[; X, 5, and Xg s is given by:

k
2.51) (T Xrs) = I Xsa-

i=1 YEGy
Any pointz € Xg, mapsvia f into [[; X1, s, if and only if v|7, = J;. Identity (2.51) follows
because the set of cells Xg -, for v € &(S5)/Da,, covers My s(R) disjointly, by §2.7.

We consider two examples of such a map f, one for which G/ is trivial, which gives rise
to cubical coordinates, and the other for which G is as large as possible, which defines sim-
plicial coordinates. We will see later in § 7 that these special cases give rise to the stuffle and
shuffle relations for multiple zeta values, respectively.

We fix a dihedral structure § on S, and write S = {sy, ..., s, }, as usual. Consider first of
all the covering S = | J;—, T;, where

(2.52) T; = {s2, 53,8, Si+1} for 4<i<m,
and all indices are modulo n, as usual. This defines a map
(2.53) fo:Mos — [ Mo,

i=4
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which satisfies condition (2.49). One verifies without difficulty that this is a non-degenerate
coordinate system as defined above (or use the fact that |T; N T; 1| = 3ford < i <n-—1).
We call f a system of cubical coordinates on My 5. In this case, Gy is trivial, since if v is a
dihedral structure on S compatible with all the dihedral structures so < s3 < s; < 8;4+1 On
T; (or sg > s3 > 8; > $;+1), then we must have s; < --- < s, < s (Ors; > -+ > s, > $1).
Each moduli space Mo 1, = My 4 is isomorphic to P1\{0, 1, 00} in six natural ways, corre-
sponding to the six choices of cross-ratio on Mg 4. If we identify Mg 7, with P1\{0, 1, 0}
using the coordinate us; = [23|i + 14], for 4 < i < n, then, since z;_3 = uz; by (2.9), we
retrieve the explicit cubical coordinates defined in §2.1. In other words, (2.53) is just

fo = (@1, m0) : Mos — (AN{0,1})",

and coincides with (2.5). Each cell X7, s, is the unit interval (0, 1) in these coordinates, and
X s maps under f5 to (0,1)%. In this case, Equation (2.51) simply states that a product of
£ unit intervals is the unit /-dimensional hypercube.

Cubical coordinates come from a product map. If k£ > 4, we set

k n
51: UEZ{SQ,Sg,...,Sk+1} and SQZ U CTZ':{Sk+1,...,sn,81,82,83}.
=4 i=k+1

Setting m = k — 3, we define the cubical product map mp to be
(2.54) mp = fs; X fs, : Mo,s — Mo,s, X Mo, s,
(z1,...,20) — ((331, cosZm), (Tmt1y - - - ,CL‘g)).

The cubical coordinates f defined above are obtained by iterating such maps.
Now, the simplicial case arises by considering the covering S = | J;—, T;, where

(255) T; = {81, S2, 83, Si} for 4 <i<n.
This defines a map
(2.56) fa 1 Mos — [[ Mo,

i=4

which satisfies condition (2.49) and is a non-degenerate coordinate system for the same rea-
sons as above (namely |T;NT;| = 3forall¢ # j). Wecall fa a system of simplicial coordinates
on My s. It is easy to check that G, is in bijection with the symmetric group on £ letters

Grn =6({s4,.--,8n})
As above, we obtain an explicit set of simplicial coordinates by choosing the coordinate
t; =[i+31[32] : Mo,7,,, = P\{0,1,00}, for 1 < i < £. Thus (2.56) can be written
¢
fA = (tl, e ,tg) : Dﬁopg — (Al\{ﬂ, 1}) 5

and we retrieve the isomorphism (2.3). As before, the domains X, 5, map to unit intervals
(0,1) under t¢;_3, and Xgs; maps bijectively under fa to the unit simplex
{0 <ty <--- <ty < 1}. In this case, Equation (2.51) states that

I Xeo=s2(IIxx),

JEG({047»--70n})
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i.e., the unit cube (0, 1) is tesselated with £! copies of the unit simplex, up to boundary terms.

Now let £ > 4, m = k — 3, and set

k n
Slz UE:{817827837'~'78k7178k} and 52: U Ti:{8178278378k§+17"-78n}-
=4 i=k+1

We define the simplicial product map m x to be

(2.57) ma = fs, X fs, : Mo,s — Mo, 5, X Mo, 5,
(t17 s 7t2) — ((tl) s ?tm)7 (tm+17 s 7t2))'

In this case, the set G, . is exactly the set &(m, ¢ — m) of all possible ways of shuffling to-
gether the sets {s4, ..., sg} and {sg41,. .., sp } Whilst preserving the orderings s4 < - -+ < sg,
and sgy1 < -+ < Sp. In explicit simplicial coordinates, which involves setting s; = 1,
89 =00, 83 =0, and s;4.3 = t; for 1 < ¢ < ¢, Equation (2.51) is the well-known formula for
the decomposition of a product of simplices:

(2.58) {0<t; <. . <ty <1} x{0<tmy1 <.. <t <I}\{t; =t;} =

H {0 < lo(r) < .. <tg < 1}.
ceS(m,l—m)
This plays an important role in the shuffle product for iterated integrals. The product maps
defined above will be used to generalize such shuffle product formulae in § 7.5.

3. The reduced bar construction and Picard-Vessiot theory

The main tool for computing the periods of moduli spaces is a triviality theorem for the
cohomology of a variant of the bar construction on the de Rham complex of My g. Al-
though many of the results below hold in considerably greater generality, we consider the
complement of an affine hyperplane arrangement M, which is more than adequate for our
purposes. We first show that the reduced bar construction on 2* (M) defines a Picard-Vessiot
extension of its ring of regular functions. This is an abstract algebraic analogue of the ring of
iterated integrals over M. Then, by showing that the bar construction decomposes as a ten-
sor product over a fibration, we prove that the cohomology of the bar construction is trivial
for fibre-type arrangements. This result is also proved for quadratic arrangements in the ap-
pendix. Our point of view, using differential Galois theory, is different from classical ap-
proaches to this subject [9, 10, 31, 32, 39]. The main technical idea is the notion of unipotent
extensions of differentially simple algebras, which is developed in §3.3. The example M 5 is
discussed in § 3.8.

3.1. Shuffle algebras and non-commutative formal power series

Let R be a commutative unitary ring. Letk > 1,let A = {a4, ..., a;} denote an alphabet
with k symbols, and let A* denote the free non-commutative monoid generated by A, i.e., the
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set of all words w in the symbols a;, along with the empty word 1. Let R(A) be the free non-
commutative R-algebra generated by A. If V; is the free R-module with basis {a1,...,ax},
and if we set V,,, = Vl®m and Vp = R, then clearly

R(A) = @B Vi
m>0
It is well-known that R(A) can be given the structure of a cocommutative graded Hopf alge-
bra. The multiplication law on R(A) is given by concatenation of words, and the coproduct
I': R(A) — R(A) ® R(A) is defined to be the unique coproduct for which the elements of
A are all primitive:

F(al):az®1+1®az

The counit e : R(A) — R is given by projection onto the unit word 1. If |w| denotes
the number of symbols occuring in a word w € A*, then the antipode map is defined by
w +— (—1)*l@w, where the mirror map w + @ reverses the order of the symbols in each
word. One verifies that this defines a graded Hopf algebra structure.

Let VY denote the R-module dual to V3, and let A’ = {af, ..., a}} denote the basis dual
to A. Then R(A’), the free tensor algebra over V7", is the graded dual of R(A), and inherits
a commutative Hopf algebra structure by duality. The multiplication law is now given by the
shuffle product mr : R(A") ® R(A’) — R(A’) which is defined recursively by the formulae:
wml = lmw = w, and

3.1 a;wlma;wQ = a;(wlma;wg) + a; (afwymws),
for all words wy, wy € A™, and all a;,a; € A’. This is a commutative, associative product
with no zero divisors. The algebra (R({A’), m) will be called the free shuffle algebra on the
generators a’, . .., a,. The coproduct is defined by the map
(3.2 A:R(A")Y — R(A") @ R(A")

A(w) = Z U v,

and the antipode is given by the map w — (—1)!“lw. The counit e : R(A’) — R is given by
projection onto the graded part of weight 0, as previously.

Let R((A)) and R{(A’)) denote the completions of the graded algebras defined above with
respect to the augmentation ideals ker €. These are just the algebras of formal power series
in A, A respectively. The Hopf algebra structures A, T, and ¢ extend in the natural way to
the completed algebras, and we shall denote them by the same symbols.

In addition, we introduce k truncation operators 8,1; forl <i<k:

(3.3) Ou’ R(AYy — R(A")

0ar (ajw) = 045w,
for all @} € A’, w € A", where d;; is the Kronecker delta. It is easy to verify that the
8,12 are derivations for the shuffle product, and furthermore, that this determines the shuffle
product uniquely if we assume that 1 is the unit. The operators 9, are dual to the operators
w — a;w : R(A) — R(A) which affix the letter a; to the left of words w € A*. That 0,/ is a
derivation is equivalent to the fact that a; is primitive for the coproduct I' by duality.
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3.2. Arrangements of hyperplanes and the bar construction

Consider an arrangement of N hyperplanes Hi, ..., Hy in affine space A*. Let k denote
a field of characteristic 0 over which the arrangement is defined. Foreach 1 < i < N, choose
a linear form «; € k[x1, ..., x,] such that H; is the divisor of zeros of «;. Let
Om =klzy,...,z, {a;l}lgiSN]
denote the ring of regular functions on the complement M = A%\ | J; H;. We set

y4

d= Z (%ida:i.

i=1
Consider the de Rham complex of Oy;:
(3.4) 0— Op 5 QY Oy) -5 02(0n) -5 ... -5 QY ON) — 0,

where Q" (Onr) = Pi<iy<...<ip <y Omdxs, A--- Ada;, is placed in degree r. Let H (Oyy),
for 0 < ¢ < ¢, denote the corresponding cohomology groups. These are k-vector spaces.
Since M is affine, it follows that H*(Oj/) coincides with the de Rham hypercohomology of
M [30]. Consider the set of algebraic 1-forms:

3.5 w; =dloga;, forl1<i<N.
The following theorem is due to Arnold and Brieskorn [43, § 5.4].

THEOREM 3.1. — The cohomology ring H* (M) is isomorphic to the graded k-algebra A
generated by the forms w;, for 1 < i < N.

In particular, the cohomology classes of the forms wy, ..., wy € Q1(Oy) are a k-basis for
H'(Oyr). In this section, all tensor products will be taken over the field & unless specified
otherwise. Let IV denote the kernel of the exterior product

N =ker (A : H(Oy) ® H (Oyn) — H*(Owp)).

We will not require the full strength of Theorem 3.1, only the following corollary.
COROLLARY 3.2. — Ifa formw € A is a coboundary d¢, then it is zero.

It follows that NNV is also the kernel of the map
VANKS @ kwi®wj —>QQ(OM)
1<4,j<N

For each positive integer m > 2, the vector space V,,(Oy) of integrable words in the forms
w; of weight m is defined to be

(3.6) Vi Om)= [ HY(OM)® @ N®H (On)%.

i+j=m—2
This is just the intersection of the kernels of the maps A; for1 <i < m — 1:
GD A HY(Ow)®™ — HY(Oa)®' ™ @ H*(On) ® H' (On)®™ 77,
MO @y — M @@ (M AMig1) @ -+ @ 1.
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Its elements can be written as linear combinations of symbols

Z C1 [wh |wi2| cee |wim]7

I=(i1,-yim)
where 1 <i; < N, and ¢; € k, which satisfy the integrability condition:
3.8) Z clwil®-~-®wij,1®(w1-j/\wij+1)®w¢j+2®-~-®wim:O,
I=(i1,eyim)
foreach1 < j < m — 1. We set Vo(Onr) = k, and V1(Opr) = HY(Onr) = @Y., kw;, and
define
(3.9) V(Om) = €D Vi (Oum).
m>0

The vector space of homotopy-invariant iterated integrals is then defined to be
(3.10) B(On) = Oy ®@ V(Onp),

with the obvious grading. This is similar to the zero*® cohomology group of Chen’s reduced
bar complex on Oy, which is usually written H°(B(2*O,y)), with the difference that it is
made up of closed 1-forms only (see [32, 39, 10, 31]).

In order to define a differential on B(Oyy), we let
Q'B(Oy) = Q(On) ®0,, B(Oy) = Q(On) @1 V(Our),
and define d : Q°B(Oyr) — Q1 B(O)y) by the formula
d Y dr®wilwil.Jwi, )= Y (—1)E G Aw, @ iy Jwi,]

I=(i17~--7im) I:(ilv-uvim)

(3.11) + Z dor ® [wi, |wiy| - - - |wi,,, ]

I:(il)-“vim)

where ¢; € Q¢(Oyy). It follows from the integrability condition (3.8) that d> = 0. We can
therefore consider the following complex

(3.12) 00— B(Oy) -5 Q'B(Oy) -5 Q*B(Oy) -5 -+ -4 Q!B(Oy) — 0,

where Q'B(O)y) is placed in degree i. Its cohomology will be denoted H, (B(Oyr)). By
Definition (3.9), V(Oys) is contained in the free Oy, shuffle algebra generated by V4 (Ox),
which is a commutative graded Hopf algebra:

V(On) C kw1, ... ,wN).

The product mr is the shuffle product defined in (3.1), and the coproduct A was defined in
(3.2). One can verify that V' (O,) is preserved by m and A, and is therefore a graded Hopf
subalgebra of Opr{ws, ..., wnN).

COROLLARY 3.3. — B(Oyy) is a commutative graded algebra for the shuffle product w, and
has a natural coproduct A : B(Opr) — B(Owm) @0, B(Owm).
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3.3. Unipotent extensions of differentially simple algebras

Let k& be a field of characteristic 0, and let R denote a commutative, unitary k-algebra with

¢ commuting derivations 01, . . ., Op. Its de Rham complex begins as follows:
O—>R—>@R—> @ R—s ...,
1<i<t 1<i<j<t

where the first map is given by f — (9;f);, and the second map sends (fi,..., fz) to
(8:f; — 0 fi)i<;. The ring of constants of R is the k-algebra:

4
H°(R) = () ker 8.
=1

DEFINITION 3.4. — We say that R is differentially simple if H°(R) = k, and if Ris a simple
module over its ring of differential operators R[01, . . ., O¢].

Recall that a differential ideal of R is anideal I C R such that 9;1 C I foralll <1 < /.
It is immediate that R is differentially simple if and only if it has no differential ideals apart
from 0 and R. An equivalent condition is that for every non-zero r € R, there exists an
operator D, € R[04, ...,0,] such that D, r = 1. This is the analogue of the notion of a field
in differential algebra.

Now let us assume that R is differentially simple. Let B be a differential k-algebra con-
taining R, with differentials we also denote by 94, . .., 0.

DEFINITION 3.5. — We say that B is unipotent if H(B) = k, and if there exists a filtration
by R[01, . .., 0y)-subalgebras W'B of B:
R=W°BcW!Bc.---cW'Bc...cC B,

such that B = | JW'B, and W**1 B is generated, as an algebra over W'B, by finitely many
elements y such that 8,y,...,0,y € W*'B.

In other words, B is obtained by adding successive primitives to R with respect to the
operators 01, ...,0. The following lemma is a variant of a well-known result concerning
extensions of differential fields by adjoining primitives.

LEMMA 3.6. — Let R be a differentially simple k-algebra, and let vy, . ..,ry € R such that
0;r; = 01y forall1 < 4,5 < £. On the polynomial ring R[y|, we extend the derivations
01,...,00 by setting

dy=r,€R forlgigﬁ.
The extended operators 0; commute and are unique. Suppose that no element u € R satisfies
Oiu =1, (ie, theclassof (r1,...,re) isnon-zero in H*(R) ). Then Rly] is differentially simple.

Proof. — Let I be a differential ideal in R[y], and suppose that f(y) € I is a polynomial
in y of minimal degree n > 1:

fW) =any" +an_1y" '+ +ag€l,
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where a; € R, a,, # 0. Since R is differentially simple, there exists an operator D € R[0;]
such that D a,, = 1. After applying this operator to the equation above, we may assume that
a, = 1. On applying 0;, we obtain

(TLTi + 3¢an—1)yn_1 + -+ (alri + 8ia0) el.

By the minimality of f(y), this polynomial is identically 0, so the set of equations 9;u = r;,
for 1 < ¢ < ¢, already has a solution u = —a,,_1/n € R. This contradicts the assumption,
and proves that R[y] has no non-trivial differential ideals. O

REMARK 3.7. — Since R[y] is differentially simple, it has no non-trivial quotients. For
any differential R-algebra R[n|, where 9;n € R for 1 < i < ¢, and 7 satisfies the conditions
of the lemma, the element 7 is therefore transcendental.

COROLLARY 3.8. — Let B denote a unipotent extension of R, where R is differentially sim-
ple. Then B is a polynomial algebra, and every differential R-subalgebra of B is differentially
simple.

Proof. — Let A denote a differential R-subalgebra of B. We can formally add primitives
Y1,---,Yp,... to R, where y, € A, to obtain a sequence of differential algebras

R CR[y1) CR[y1,y2] C - CA=Ry1,-- -, Yps---]-

We can assume that each inclusion is strict, i.e., yp41 is not in Rlyi, ..., y,| for each p > 0.
Let
O0iYps1 = Tpr1: € Rly1, ..., yp)-

Since the ring of constants of B is k, it follows that the primitive y,11 is the unique solution
to the equations O;u = 7,41, for 1 < ¢ < £in B, up to some constant in k. Applying the

previous lemma inductively, we deduce that R[y,...,y,] is differentially simple and pure
transcendent for all p > 1. It follows that A is differentially simple, and that A is a polynomial
algebra. O

DEerINITION 3.9. — Let B denote a unipotent extension of a differentially simple
k-algebra R. We say that B is a unipotent closure of R if

H°(B)=k, and H'(B)=0.

A unipotent closure is closed under the operation of taking 1-primitives: for all
fis..., foe € Bsuchthat 0;f; = 0; f; forall 1 <14, j < £, there exists a primitive F' € B such
that 81F = fl, ey 8[F = fg.

DEFINITION 3.10. — A pointed differential k-algebra (R, ¢) is a differential k-algebra R
and a k-linear homomorphism of algebras ¢ : R — k. Now suppose that R is differen-
tially simple. We define up(R, €) to be the category of unipotent pointed extensions of (R, €).
Its objects are (B, &’), where B is a unipotent extension of R, such that the composition
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R— B N k coincides with ¢ : R — k. A morphism ¢ from (B1, 1) to (Ba,e2), is given by

a commutative diagram:
R
€1 15p)
k

Any object B € up(R, ¢) is differentially simple by the previous corollary. It follows that
morphisms in up(R, €) are necessarily injective.

¢: By

Bs

LEMMA 3.11. — Morphisms in up(R, ) are unique.

Proof. — Consider two morphisms ¢, ¢’ : (B1,e1) — (Ba,e2) of pointed unipotent alge-
bras over (R, ¢). If 9;, for 1 < i < ¢, are the differentials on R, we denote their extensions to
B; and By by the same symbols. Let W* B; denote a filtration on B; as in Definition 3.5,
and suppose by induction that ¢ = ¢’ on WPB,. Let y € WPT1B such that 9,y € WPB;
foralll < ¢ < /. Then

Oi(¢p—¢")(y) = (¢ — ¢")(0sy) =0, foralll1 <i<¢,

and therefore ¢(y) — ¢/'(y) € H°(Bs) = k. Since e2¢(y) = e2¢/(y) = €1y, it follows that
é(y) = ¢'(y). Thus ¢ = ¢’ on WP B and the uniqueness follows by induction. O

PROPOSITION 3.12. — Let (R, {0;}1<i<e,€) and (R, {0/ }1<i<e,€") denote two differen-
tially simple pointed k-algebras, and let ¢ : (R,e) — (R',&’) be a non-zero differential
homomorphism. Let (U,€") be a unipotent closure of (R',€"), and let (B, €) be any unipotent
extension of (R,€). Then there is a unique morphism of differential algebras ¢, : B — U
which extends ¢ and which is necessarily injective, such that the following diagram commutes:

R R
B—" -y
k
The map ¢.. preserves any given filtrations on B and U, i.e., g(WPB) C WPU for allp > 0.
If, furthermore, H'(B) = 0 and ¢ is an isomorphism, then ¢, is also an isomorphism.

Proof. — Suppose by induction that ¢, has been defined on WP?B. Since B is unipotent,
WPT1B is generated by elements y such that 9;y C WP B. For such v,

9;¢+(0iy) = ¢(0;0:y) = ¢(0:0;y) = 9, (9;y).

Since H(U) = 0, there exists f € U such that 8, f = ¢.(8;y) forall 1 < i < ¢. We extend the
definition of ¢, by setting ¢, (y) = f +k,, where the constant of integration k, € k is chosen
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such that k, + €'(f) = e(y). By the previous lemma, y is transcendent, and therefore ¢, is
well-defined. We obtain a map ¢, on the whole of B by induction. The previous corollary
implies that B is differentially simple. It follows that ¢, is injective because its kernel is a
differential ideal in B not equal to B itself. The fact that ¢, preserves the filtrations is clear
from the construction.

Now suppose that ¢ is an isomorphism and that H*(B) = 0. Applying the same construc-
tion to ¢!, we obtain a map (¢~ 1), : U — B. Because of the uniqueness of morphisms in
up(R, €), ¢(¢1). is the identity, and therefore ¢, is an isomorphism. O

COROLLARY 3.13. — 4 pointed unipotent closure (U,e) over (R,¢) is a final object in
up(R, ), i.e., every unipotent extension (U,e) — (B, &) is an isomorphism.

We can therefore speak of the unipotent closure U of a pointed differentially simple ring
(R, ) whenever it exists. Since U is a union of polynomial algebras (Corollary 3.8), it neces-
sarily has a k-valued point over ¢.

DEerINITION 3.14. — If U is the unipotent closure of a differentially simple k-algebra R,
let Gal(U/R) be the group of differential automorphisms ¢ : U — U over R.

It follows from the definitions that Gal(U/R) is a pro-unipotent group. Nowlete: R — k
denote a k-valued point on Spec R. The set of k-valued points {¢ € Homy (U, k) : ¢|r =€}
on Spec U lying above ¢, is a principal homogeneous space over Gal(U/R). There is thus a
complete analogy between the theory of unipotent differentially simple extensions and the
theory of covering spaces.

3.4. Base points at infinity

We need to repeat the theory of unipotent closures in the case where the base points are at
infinity. In order to do this, we need to generalise the notion of a k—valued point for certain
differential algebras.

DEFINITION 3.15. — Let k be a field. We define
1 1
(3.13) k{el,...,eg}:k[[el,...,q]][— 7}

b b)
€1 €

to be the differential k—algebra of Laurent series in ¢€;, equipped with £ commuting differen-
tials 9, , for 1 < i < /. Now define the extension

(3.14) Uler,...,e} = k{er,...,€}[Ley,- -5 Le,]

where L., is the formal logarithm of ¢;, i.e., O, L., = ei_l forl1 <i </t

The ring of constants of k{e,...,€,} is k, and the extension Uf{ey,..., €} is easily
verified to be a unipotent closure of k{ey,..., €}, since H'(U{e,...,e}) = k, and
HY(U{e1,...,e}) =0.
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DEerFINITION 3.16. — Let R be a differentially simple k-algebra with £ commuting differ-
entials 01, ...,0,. We define a k{eq, ..., €, }-point on R to be a k—linear homomorphism

pZR—>k{61,...,€g},

which satisfies
p0; = O, D, forall 1<i<V/.

Ak{er,...,eo}-pointp : R — k{eq,..., e} defines an ordinary k-valued point if it factorises
through R — k[[e1, ..., €]

R — k[ler,. .., €] 22220
N\ 1
k{e1,... e}
At the other extreme, we say that the point p is at infinity if €7, . . ., ee_l € Imp.

ExAMPLE 3.17. — Consider the case where k = Q, and R = Q[z,1/z,1/(1 — z)] with
differential /0z. This corresponds to the projective line minus three points P!\ {0, 1,00} =
A™\{0, 1}. The set of k-valued points on R is the set k\{0, 1}. Each k{e}-point

p: Q[m, %, ﬁ} — k{e}
satisfies O.p(xz) = p(d,x) = 1, and takes x to € + ¢, where ¢ € k. The set of k{e}-points
is therefore the set k. In this case, there are just two points at infinity, given by the maps

px : R — k{e}, where A = 0, 1; defined as follows:

T e+ A
1 1

— .
r—A €

More generally, every corner of the Stasheff polytope X g5 C smg{ g defines a base-point at
infinity on the ring O(9My s). Given a triangulation o € Xg, s of the n-gon (S, ¢), a set of
vertex coordinates z¢, ..., z% (§2.6) gives rise to a map

((’)(93?0,3)7 8/83:?) —_— k{el, ey 6(}
which sends z to ¢; for 1 <4 < £.

A point at infinity corresponds to a point which is the intersection of a number of normal
crossing divisors, and will play the role of a tangential base point.

DEerINITION 3.18. — Let R denote any differentially simple k-algebra, with derivations
01, ...,00. Wedefine a logarithmic Laurent expansion to be a homomorphism of differential
k-algebras:

¢:R— Ufer,... e}

There is a natural map A : U{eq, ..., e} — k which projects on to the constant coefficient
in the logarithmic Laurent series. It factorises through

U{El,...,ﬁe} —>k{61,..,,€e} _)k>
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where the first map sends L., to 0 for 1 < ¢ < ¢, and the second map picks out the constant
term in the Laurent expansion

E . kit 7
Qiq ... 00€1 <€ — ao,...,0-
B1,ey00>— N

The map A has a certain number of formal properties, which we will not require explicitly.
Given a logarithmic Laurent expansion ¢ : R — Uf{e,..., e}, we define the map of
constants of ¢ to be the (k-linear, additive) map

Ao¢p:R— k.

LEMMA 3.19. — Let R be a differentially simple k-algebra, and let p : R — k{ey,... €0}
denote a k{e1, ..., e }-point. Let B denote a unipotent extension of R. Consider any logarith-
mic Laurent expansion ¢ : B — U{ey,..., €} over the point p, i.e., such that the following
diagram commutes.

B -2 Ufey,... e}

T T
R L k{Gl,...,eg}.

Then ¢ is uniquely determined by its map of constants Ao ¢ : B — k.
Proof. — This follows immediately using the method of proof of Proposition 3.12. O

A map of constants amounts to choosing a constant of integration for each successive
primitive in a unipotent extension B of R. We can now copy the results of the previous sec-
tions for base points at infinity.

DEerINITION 3.20. — Let R denote a differentially simple k-algebra, and let
p : R — k{e,...,e0} be a k{ey,...,eo}-point. Let ut(R,p) denote the category of
pointed unipotent extensions of (R,p), whose objects are unipotent R-algebras (B, ¢),
where ¢ : B — U{ey, ..., €} is alogarithmic Laurent expansion (or, equivalently, the corre-
sponding map of constants). Morphisms are defined in a similar manner to the category up.

The proof of Lemma 3.11 and Proposition 3.12 go through without any difficulty.

PROPOSITION 3.21. — Morphisms are unique in ut(R,p), and a unipotent closure U of R
is a final object in the category ut(R,p).

If U is the unipotent closure of (R, p), where pis a k{ey, ..., €, }-point, then

(3.15) {6:U - Ufer,..., e}, 9|r =}

is a principal homogeneous space over Gal(U/R).
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3.5. One-dimensional fibrations and their relative unipotent closures
Let R denote a differentially simple k-algebra, with commuting differentials 04, ..., d,.
Suppose that we are given N elements fi,..., fy € R which satisfy the condition
1
fi— 1

(3.16) €R foralll<i<j<N.

Consider the R-algebra

(3.17) E:R[y,y_lfl,...,y_lfN],

equipped with the derivation 8, which is the unique R-linear derivation satisfying 9, y = 1.
Clearly 0;, 0, commute for all 1 < ¢ < £. Consider the free shuflle algebra generated by the
symbols wy, ...,wy over R:

(3.18) Uﬁ/Rzﬁgokk(wl,...,wN),

and let us extend the definition of 9, to Uy IR by setting
A

(3.19) ay:ay®1+zy_f_®awi,
i=1 t

where the left truncation operators 0,,, were defined in § 3.1. This makes into a differ-

U~
R/R
ential R-algebra. A similar algebra was considered in [41], and a specific case is studied in
detail in § 5. The symbol w; represents the formal logarithm log(y — f;), for 1 < i < N. By
analogy with the bar construction, we will write [w;, | . . . |w;, ] for the tensor w;, ® - - - Qw;, .

The following proposition states that Uz IR is a relative unipotent closure over the base R.

PROPOSITION 3.22. — H(Ug, ) = Rand H' (Ug

R/R =0.

/ r)

Proof. — Tt is a simple exercise to show that the ring of constants of Uz R is R. The ar-
gument is given in the proof of Lemma 3.31, and works in complete generality. The fact that
H l(Uﬁ y ) vanishes is equivalent to the existence of primitives with respect to 9, over the
base R. The key observation is the following identity, which is valid in U+, ,, by assumption

R/R’
(3.16):

1 1 1 1
(3.20) = — )
—rfow—1r) fi—Ff (y_fi y—fj)
Using this, we can decompose elements of R into partial fractions. It suffices, therefore, to
find primitives of expressions of the form

1
m[wﬂmwim},
wheren € Z,and 1 < 4y,...,4,, < N. If n = —1, a primitive is given by
[wilwi, [ - wi,]

by definition. For other values of n, we can reduce to this case by integrating by parts and

using induction. It follows that every element in Uz /R has a primitive with respect to 9. [J
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Note that there is no integrability condition to be verified because the fibres of the map
Specﬁ — Spec R are one-dimensional. We now show how to differentiate the symbols
[wi, | .- |wi,,] With respect to the operators 04, ...,0; of the base ring R (differentiation
under an iterated integral). To do this, consider an R-linear map

~ 1
p: R — R{e} = RIEI[]
which satisfies p 8, = 0. p. Then there is a unique logarithmic Laurent expansion:

Uz, = R{c}[L]

R/
7 T
R 2 R{e
such that the map of constants is zero on the generators of Us IR ie.,
(3.21) Ao¢:U§/R—>R
[wi1| e |wim] — 0.
This follows from the inductive method of proof of Proposition 3.12: if w = [w;, | ... |w;,,],

and ¢(0,w) = a has already been defined, then ¢(w) is defined to be a primitive of a with
respect to d.. The constant of integration is normalised by the condition A(¢(w)) = 0, since
the map (3.21) is R-linear.

ProPOSITION 3.23. — The action of the differential operators 0; on R, for 1 < i < £,

extend uniquely to Uz IR in such a way that the 9; commute with each other, and such that:

[0i, 0] = [0:,0,] =0 forall1 <i<U{.

For each element w = [w;,| ... |w;, ] € WmUﬁ/R, ow € Wm’lUﬁ/R. It follows that Uﬁ/R

is a unipotent differential algebra with respect to all the operators 01, ..., 04, 0y.

Proof. — The map ¢ is injective, since Uy /R is differentially simple, and therefore the
action of the operators 0; on Uy /p Are induced from R{e}[L.] by restriction. More pre-
cisely, suppose by induction that the action of the operators 9; have already been defined on
WPUﬁ/R, for somep > 0. Letw € W”“Uﬁ/R such that 9,w € WpUﬁ/R. If we view Uz
as a subalgebra of R{e}[L.], then we can write

/R
8y82w = 818yw € Uﬁ/R
The element 9;w, which is a priori in R{e}[L¢], in fact lies in U IR This is because it is a

primitive of 9;0,w € Up, . and we know that Hl(Uﬁ/R) = 0, and H°(R{e}[L]) = R.

More explicitly, if w = [w;, | ... |w;,,], then we define
where A is any solution in Ug Jr 10 0yA = 0;0,w. The fact that the operators 0; decrease

the weight of each such element w is easily proved by induction and is left to the reader. [
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For each 1 < i < N, there is a unique R-linear map
(3.22) p: R — R{e}

y—fire
such that d.p = p 9. It satisfies:

1 1 ek o
o) s S

y_fj 7 k>0 J

COROLLARY 3.24. — Suppose that Ug is the unipotent closure of R. Then the algebra
Ur ®Rr UE/R is the unipotent closure of R.

R Proof. — By choosing any map p given by Equation (3.22) above, we obtain a differential
R[04, ..., 00, 0y]-structure on Ur Qr UE IR It is clear that a tensor product of unipotent
algebras is unipotent, and that H°(Ur ®g Uﬁ/R) = k. Since the operator 9, is zero on
UR, it follows that H}(Ur ®gr Us y ) = 0. Concretely, in order to find 1-primitives in this
algebra, first take a primitive with respect to 9, and then adjust the constant of integration

in Ug, using the fact that H(Ug) = 0. O

By iterating the previous corollary, we deduce that any differentially simple algebra R
which is of fibre-type (i.e., an iterated sequence of fibrations) has an explicit unipotent closure
which is a tensor product of shuffle algebras.

THEOREM 3.25. — Let R denote a differentially simple k-algebra, which can be expressed
as a finite series of extensions of the type (3.17) satisfying (3.16):

(3.23) k=RyCRyC---CR,=R,
where

1
(3.24) Ri=Rus [y, (—yt - ftvi)l%m},

and fy; — fi; is invertible in Ry_q for all1 < i < j < Ny, andallt = 1,...,n. Then the
unipotent closure Ur of (R, p) exists, and is isomorphic (as an algebra) to the tensor product
of free shuffle algebras on Ny generators, for 1 <t < n:

(3.25) Ur = R Q ® k(we,. .o weN,)-

t=1

Its differential structure is uniquely determined by such a tensor decomposition.

Proof. — This follows immediately from the previous corollary by induction. The differ-
ential structure is determined by the construction in Proposition 3.23. O

We therefore have an explicit description of the algebraic structure of the unipotent clo-
sure of R for any R which is of fibre type. Note that there may be several natural isomor-
phisms of the form (3.25), even after fixing base-points.
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3.6. Iterated integrals

Let Oy, denote the ring of regular functions on an affine hyperplane arrangement as con-
sidered in §3.2. Oy is a differential algebra with £ commuting differentials 9/9z1, . . ., 8/0z,.
Suppose that I C O is any non-zero differential ideal. It must contain a polynomial
P € k[xy,...,x4, since we can multiply by suitable powers of the hyperplane equations «;
to clear denominators. It is clear that there exists a polynomial Dp in the 8/9z; such that
Dp P =1, and therefore I = O),. It follows that Oy, is differentially simple.

THEOREM 3.26. — The de Rham cohomology of B(Oyy) satisfies:
Hpr(B(Oy)) =k, and Hpr(B(On)) =0,

and B(Oyy) is the unipotent closure of O ;. It follows that every differential O yr-subalgebra of
B(Oyy) is differentially simple, and B(Oyyr) is a polynomial algebra.

The proof of this theorem is postponed until §3.7.

REMARK 3.27. — The theorem in fact holds in much greater generality. Let F' denote any
differential algebra such that H'(F) = @, kw;, where w; € Q' (F) satisfy

(P kwi Aw;) NdQ'(F) = 0.
i
If & is the field of constants of F', and if B(F’) is defined as in § 3.2, then it is clear from the
proof (§3.7), that H*(B(F)) = k and H'(B(F)) = 0. Furthermore, when F is differen-
tially simple, every differential F'-subalgebra of B(F) is differentially simple, and B(F) is a
polynomial algebra.

We now recall the definition of Chen’s iterated integrals, which will give an isomorphism
of the abstract algebra B(F') with an algebra of multi-valued functions. Let M be a univer-
sal covering for M, and let p : M — M denote the projection map. Let b € M denote a
base point for M. Given any smooth path «y : [0, 1] — M beginning at b, and holomorphic
1-forms n1,...,nm € QY(M), the iterated integral of the word 7,, . ..n; (note the reversed
order of symbols) along ~ is defined by

v 0<t; < <tm<1

One can show using the calculus of variations [10] that the iterated integral of a linear combi-
nation of forms f = >"; c;w;, ... w;,, only depends on the homotopy class of v if and only if
the integrability condition (3.8) is satisfied. In this case, an iterated integral varies holomor-
phically as a function of the endpoint z = 7(1) of , and therefore defines a holomorphic
function on the universal covering M. We can realise Q* (Onr) as an algebra of differential
forms on M by taking the pull-back along the covering map p : M — M. When we refer to
a multi-valued function (or form) on M it will be a linear combination of such iterated inte-
grals with coefficients in Oy (resp. 2*(Oys)) (compare the multi-valued de Rham complex
defined in [33]).

Lemua 3.28 ([32, 10, 31]). — Letny, ..., € QL(M).
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1. Let1 < m <, andlet &(m,l—m) denote the set of (m,l—m)-shuffles defined in § 2.10.
Then the shuffle product formula holds:

/m...nm/nm+1---nz= > /%a o )-
vy vy

€& (m,l—m)

2. Let v, : [0,1] — M denote a smooth family of paths such that v,(0) = b, and
v.(1)=z¢€ M. If > crw;, ... w;, satisfies the integrability condition (3.8), we have:

P> )3

—_— CiWwi,, - Wi, = CrWw; Wi oo o Wiy

dz 1 1 2
Y= T I

Y=

DEFINITION 3.29. — Let Ly (M) denote the O ,-module generated by all such homotopy-
invariant iterated integrals on M. We write Q¢(Ly(M)) = Ly(M) ®0,, 2 (Own).

By the previous lemma, Q*(L,(M)) is a differential algebra, and there is a map:
(3.26) py s U B(Oyr) = Q* Ly (M)

S brlwn] - Jwi, ] — Zm/wim...%,
I I Y

which is a surjective map of differential algebras by (3.11). As above, v denotes a smooth
path beginning at the point b € M. The kernel of py is a differential ideal, and therefore must
reduce to zero since B(Q)y) is differentially simple. Therefore (3.26) is an isomorphism.

COROLLARY 3.30. — If{e;} is a basis for B(Oxr) over Oy, then the functions py(e;) are
linearly independent over Oyy. All algebraic relations between the functions py(e;) are deter-
mined by the shuffle product.

One can determine a basis for B(O)y) in the fibre-type case (see § 6.2).

3.7. Proof of Theorem 3.26

We first show that the ring of constants of B(Oy) is k. For any ¢ € B(Oypr), n > 0, we
write ¥, = griy ¢ for its graded part of weight n.

LemMA 3.31. — H3R(B(Oy)) =
Proof. — Let ¢ € B(Oyr) of weight m > 1 such that d¢p = 0. We write
Uy = Z friwi].. |ws] for0<r<m,
T=(i1,..0ir)
where each fr € Ops. Then the graded weight m part of dy is zero:
d)m =Y dfr[wi]...|w;,] = 0.
[ I|l=m

Therefore df; = 0 and so f; € H3z(Onr) = k for all ordered sets I such that |I| = m. The

weight m — 1 part of dv is also zero:

(d)m—1 = Z froi Wil Jwi ]+ > dfslwiy|. . |wi,] =0,

|I|= J=(i2,..,8m)
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which implies that
fi1>i27---7imwi1 + dfiz,...,im =0 fOf all iQ, e ,im.

Therefore the forms f;, .. ;. w;, are exact for all iq,...,4,. But since we have shown that
fir,....ir, € kK is constant, this can only occur if f;, ., = 0. This implies that the weight
of 1) is at most m — 1, which contradicts the initial assumption. Therefore, any 4 such that
dy = 0 is of weight 0, and lies in Ops. Hence ¢ € H3R (On) = k. O

The following lemma states that we can replace a closed 1—form in B(Qj,) with an element
in its cohomology class of strictly lower weight.

LEMMA 3.32. — Let ¢ € QY(B(Oyr)) be an element of weight m such that dip = 0. Then
there exists 8 € B(Oyy) such that k = 1 — d@ is of weight at most m — 1.

Proof. — Let
p= Y brlwi ] fws],
r=0 I=(1,...,3,)
where ¢; € Q1O for all indexing sets I. Since diy = 0, we deduce that

m—1

0= > dorlwil|...lwi,] = > b1 Awi[wi, . |wi, ]+ > dty).

|T|=m |T|=m r=0

This implies firstly that d¢; = 0 for all sets I with |I| = m, and secondly that

m—1
(3.27) Sdy) = > b1 Awi Wil |ws,] = 0.
r=0

I:(il,...,im)

Taking the graded part of this equation of weight m — 1, we deduce that
- Y drAwh il wi ] D ddiy i Wi - |wi, ] =0,

I=(i1,-. yim) 2500 050m
and so
(3.28) Y Birin AWis = iz, i
i1
forall I = (iy,...,%m). We have shown that ¢; is closed for |I| = m, so we can write
(3.29) ¢r=y ar;w;+dgr,

j
where oy ; € k, and g; € Oys. Substituting into (3.28) above, we have

Z Oy y.yim,j Wi N\ Wiy + Z AGir,..iy N Wiy = dbiy, i,

11,] i1
for all 4s,...,4,,. The corollary to Theorem 3.1 implies that any linear combination
of exterior products of forms w; which is exact, is necessarily zero. Using the fact that
Agiy,...imy Nwiy = d(giy....i,, N ws,) s exact, we have
(3.30) D iy i wi Awiy, =0, forallig,... iy,

1,]
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Let
01 = Z ZOA[J [wj|wil|...|wim] .
I=(i1,-yim) J

Since the integrability condition (3.8) is homogeneous with respect to the weight, the inte-
grability of ¢ implies the integrability of ¢, = 3772, ¢rlwi |- - |ws, ]. This is equivalent
to a number of linear equations of the form 2o Il=m Ar¢r = 0, where A; € k. Using the
decomposition (3.29), and the fact that Im ( ), ; k wi Aw; — Q' (Oxr)) and dO) are com-
plementary spaces (this follows from Theorem (3.1)), we deduce that

(3.31) ST Y arjwilwil . fwil,
I=(i1,-.yim) J

is integrable, as is )7/, dgr|wi, | - - - [ws,,]. By adding constants, we can assume that the
primitives g7 of dg; satisfy the same linear equations 7/, Argr = 0. This ensures that

b= 3 grlwi,]. . lwi,]
[ I|=m
satisfies the integrability criterion also. The integrability of 6; follows from (3.31) and (3.30).
We set = 01 + 02 € B(O)y). By construction, we have
d—yp=d( > D ar;lwilwil. . |wi,]+grlwil. . |w,]) -
I=(i1,-yim) J

= > (O arjwi+dgr) [wiy] - |wi, ] + g1 Aws, [wig - Jwi, ] — ¥

Hl=m j
= Z g1 ANwiy [wiy| - |wi,, ] — (Yo + -+ Pm—1),
|I|=m
which is of weight at most m — 1, since all terms of weight m cancel by (3.29). O

Given a closed form ¢ € Q'(O)y) of weight m, we defined an explicit § € B(O,) such
that ¢» = df + 1, and 1 is of weight < m — 1. In fact, 0 is of weight at most m + 1.
Applying the lemma repeatedly, we obtain a series of forms 1,...,%, € QY(Oy) and
01,...,0, € B(Oypr), where 4; is of weight at most m — 4, such that

Y = db; + Pita.

At the final stage, ¥, = d,,. Thus¢ =d(@+6,+---+6,,),and0+6; +---+6,,isa
primitive of ¢ of weight at most m + 1.

As remarked earlier, the argument in the proof of the lemma can be both generalised and
simplified using spectral sequence arguments (see the appendix).

COROLLARY 3.33. — Hpx(B(Oy)) =0.
This completes the proof of Theorem 3.26. The fact that every Ops-subalgebra of B(Oyy)

is differentially simple, and the fact that B(O),) is a polynomial algebra, follows from the
results of § 3.3.
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3.8. Fibrations of hyperplane arrangements

We recall necessary and sufficient conditions for an affine hyperplane arrangement to de-
compose as a fibration over an arrangement of smaller dimension [43]. We deduce from the
results of § 3.5 that the reduced bar construction has trivial cohomology for fibre-type ar-
rangements.

Let § = {Hy,..., Hy} denote any affine hyperplane arrangement in A*. Choose any
affine subspace W = A° contained in A and let V C A* denote a complementary subspace
such that

A2V e W.

Foreach z € A® = W, let V, = Vj + 2z denote the affine space parallel to V' passing through
the point z € W. The spaces V, define a vertical direction normal to the base W. We define
the set of vertical hyperplanes to be

$HY ={H € 9 : H contains V, for some z € W},
and let $" denote the set of all remaining hyperplanes. There is a decomposition
H=9"Us"

and it is clear that every horizontal hyperplane H € $* intersects each V, properly. Consider
the complements

M=AN\JH ad M=w\|JHNW
He®H HeHv

The linear projection A* — W with kernel V; induces a surjective map p : M — M.

LemMaA 3.34. — The map p is a fibration if and only if the following condition holds. for all
H,H' € $ such that H N H' # @, there exists H" € $¥ such that

H'DHNH.
The fibre over z € M’ is the complement V,.\Ugcgn(H NV,).

The proof is left as an exercise.

DEerINITION 3.35. — An affine hyperplane arrangement is said to be of fibre-type if it can
be expressed as an iterated sequence of linear fibrations whose fibres are of dimension 1.
Thus there is a sequence of fibrations

(3.32) MES My, L M, P M,
where F+,...,E,_1,and E, = M,_, are of dimension 1.

We consider in greater detail the case where the dimension of the fibres is 1. Then each
fibre is isomorphic to A! minus a finite number of points. Let us choose coordinates compat-
ible with the direct sum decomposition A* = W @Vj. In other words, let z1, . . ., z,_, denote
coordinates on A®~! = W, and let y denote the vertical coordinate on A' = V;. Let Oy and
O+ denote the rings of regular functions on the affine schemes M and M’ respectively. Let
us write the equations of all horizontal hyperplanes in the form y — f; = 0, where f; € Oy,
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v=ho M

§f2=0 §f1=f2

FIGURE 12. An arrangement M in A® which fibres over M’ C A*~! (the thick line
at the bottom). A vertical hyperplane (dashed) passes through every point where
horizontal hyperplanes intersect.

and 1 < ¢ < Ny, for some integer N;,. Thus H; = ker(y — f;) for1 < i < Nj,. By the
previous lemma, the fact that M is a fibration is equivalent to the equations (see Figure 12):

1
(3.33) e Oy forall 1<14,5 < Np.
fi—f;
We have
(3.34) Op =0 [ 1 1 ]
‘ M M yvy—flv'”’y—ho ’

We have already shown that the rings Oy, and Oy, are differentially simple over k. We are
therefore in the situation considered in § 3.5 (compare (3.16) and (3.17)).

DEFINITION 3.36. — Letuswrite 8; = dy/(y — f;) for 1 < i < N},. We define the relative
bar construction of M over the base M’ to be the free O, -shuffle algebra:

(3.35) By (E) = Oy (B, .-, BN,)-

The relative bar construction is a differential Oy;-algebra with respect to the operator
0/0y. Note that since E is of dimension 1, there is no integrability condition. Proposition
3.22 gives:

(3.36) H°(Byp(E)) = Ope, and HY (B (E)) = 0.

Proposition 3.23 and its corollary imply the following result.

COROLLARY 3.37. — For each Opy-linear map p : Opr — Onpe[[€]][1/€] which satisfies
p 0Oy = Ocp, there is a natural action of the operators 0/0x1,...,0/0x¢_1 on Byp (E), such
that the 0/0x; commute with p. As aresult, B(M') ®o,,, By (E) is the unipotent closure of
Opr. We deduce that there is an isomorphism of differential Op[0/021, . ..,0/0z¢—1,0/0y]
algebras:
B(M) = B(M') ®o,,, Bu/(E).

The following theorem follows by induction.
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THEOREM 3.38. — Let M be a fibre-type affine hyperplane arrangement with fibrations
(3.32). There is a (non-unique) isomorphism of differential algebras

B(M) = B, (E1) ®o,y, " ® By, (Ee—1) ®o,, , B(E).

COROLLARY 3.39. — The de Rham cohomology of the reduced bar construction on a fibre-
type affine hyperplane arrangement defined over a field k is trivial:

HRr(B(M)) =k and ~ Hpjr(B(M)) =0 foralli>1.

The reason why this result is true is essentially because arrangements of fibre type are ra-
tional K (7, 1) spaces (see [20], [33]). By (2.3), 9,5 is a fibre-type affine hyperplane arrange-
ment over Q.

COROLLARY 3.40. — [In the case of moduli spaces My s this gives:
HY (B s))=Q, and Hpr(B(Mos)) =0 forall i>1.
The primitive of a closed form f € W Q!B(My s) is of weight at most b + 1.

This result can be proved directly using the fact that the hyperplane arrangement 91 s
is quadratic (see Appendix, Section 9). This is equivalent to Corollary 8.7 in [33], since
Mo p+2 = Y7 in the notation of that paper. The fact that primitives increase the weight by
at most one is clear from the definition of the differential (3.11) on B(Oyy).

In the case of the moduli spaces 9y s, we can make the decomposition of Theorem 3.38
totally canonical by working in cubical coordinates (2.5). The corresponding fibrations are
given by the maps (z1,...,x¢) — (21,...,2¢—1) (§2.4). Furthermore, there is a base-point
at infinity corresponding to the origin, which is compatible with this sequence of fibrations.
It is given by the map:

O(My,5) = @[(Iiﬂhgige, ( !

1 —xi...xj)lgigjgz]
T; — €;.

— k‘{€1,...,€g}

There is a corresponding logarithmic Laurent expansion over this point, whose map of
constants is trivial:

(3.37) B("My,s) — Uf{er, ..., €}
Z crlwiy|- .- |ws,,] — 0.
Iz(ila“'yi‘rn)

Because we have fixed a k{ey, . .., €, }-point, the isomorphism in Theorem 3.38 is unique.

COROLLARY 3.41. — In cubical coordinates, there is a canonical isomorphism

/4

B(My,s) = O(Mo,s) ®g (X) Q([dlog zx], [dlog(1 — ;i ... zk)1<i<k),
k=1

where the algebras on the right are free shuffle algebras.

There is a similar decomposition for any set of vertex coordinates z¢,...xz%, where
a € x% 5 does not contain an internal triangle.
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REMARK 3.42. — In order to compute the periods of My s, we shall only require the fact
that HY(B(9My,s)) = 0, where £ = |S| — 3. In cubical coordinates, this is equivalent to
finding a primitive to

fdxy...dzg forall fe B(Mys).

We have in fact proved a much stronger result. Corollary 3.41 implies that we can find
F € B(My,s) such that 0F/0xz, = f. The constant term of F' is uniquely determined by
the map of constants (3.37). In other words, there is a primitive of the form

Fdl‘l . ..d.’tg_l,

where the weight of F' is at most one more than the weight of f. The primitive F' constructed
in this way has the advantage that it is unique.

Vo

Xy

FIGURE 13. In cubical coordinates, there is a natural base point at infinity on 9,5
corresponding to (0, 0).

ExaMPLE 3.43. — Consider the fibration 9ty 5 — 9y 4, whose fibres are isomorphic to
A minus 3 points (fig. 13). In cubical coordinates, we have:

1 1
Owm g@[%;’m]a
1 1
OM = OM’ [ya ° ]’

y'l-y' l-ay
where the fibration map is the projection onto the z-axis:
(z,y) > z : My 5 — P\{0,1,00}.
There is a natural k{e;, €3 }-point at the origin which sends
(3.38) p:Om — k{er, e2}
T €
Yy €2,

and which maps, for example, z/(1 — zy) to Y ;5 eitle. The differential algebra
B(M') = B(P'\{0,1,00}) is the universal algebra of multiple polylogarithms in one
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variable defined in [7], and By (E) is the relative bar construction over O},. As algebras,
each one is the free non-commutative algebra on two (respectively three) symbols:

B(MI):OM/ <dj’ dz >’ and BM’(E):OM <d7y’d7y7 -Tdy >
z 1l—=x y 1—y 1l—ay

Corollary 3.41 gives a canonical isomorphism

and enables us to write down a basis of integrable words in B(M). However, the map
Bp/(E) — B(M) is far from trivial. For example, it gives

dy xdy dy dx dx | xzdy + ydz dx dy
1—y‘1—xy] - [1—y_ 1—1’_?’ 1—zy ]+ [1—1’ l—y]
A similar formula was given in [53] and [32]. It is obvious that the left-hand side is integrable,
the right-hand side not so. The left-hand coding can be retrieved from the one on the right
by formally setting dz = 0. The map By (E) — B(M) is canonically normalised in such
a way that, apart from all terms of the form [%y]m. . .m[‘i—y], its image vanishes on setting
dy = y = 0. The logarithmic Laurent expansion of this example is given by the multiple
logarithm (see § 5.4):

1®[

kol
Li171(x7y) = Z %7
0<k<l
where we have written xz, y instead of €1, 5. The coding on the left-hand side of the equa-
tion above only takes into account the differential equations which Li; ; (z, y) satisfies with
respect to the variable y (which are very simple), the right-hand side encodes the differential
equations with respect to both variables z and y. The coproduct of Li; ;(z,y) can be read

off the right-hand coding directly:
ALiy,1(z,y) = Lir1(z,y) ® 1+ (log(1 — y) — log(1 — z) + log z) ® log(1 — zy)
+log(1 — 2) ® log(1 —y) + 1 ® Liy 1 (z,y).
One can compare this with the coproduct for the motivic multiple polylogarithms defined by
Goncharov [25].
The integrable words corresponding to the function Li, ; (x, y) are likewise:
dy ‘ dy ‘ xdy ] [ dy |dx zdy + ydx}
&J — faied L8Y T IeE

1—ylyll—=zy 1—ylx 1—2ay

dx| dy dx dx | zdy + ydz dx| dx dy
+ [ zll—-y 1—-2 = ‘ ] + [ ]

d
19| +?y‘

1—zy zll—zl1—yl

We therefore have two different points of view on B(9t s). On the one hand, there is a
direct definition in terms of hyperplane configurations, from which the differential structure
and the action of the symmetric group are evident. The problem is that the complexity of the
set of integrable words grows rapidly, and the algebraic structure is obscured. On the other
hand, using the fibration map above, we have a description of B(9%, s) as a product of free
shuffle algebras, from which its algebraic structure is completely evident. But this point of
view breaks the symmetry and only part of the differential structure is visible. By exploiting
both points of view, one can deduce a lot of information about the structure of B(My ). In
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particular, by regarding it as a representation of the symmetric group, one obtains many in-
teresting functional relations between multiple polylogarithms. This will be studied in detail
in a future paper.

4. Manifolds with corners and Fuchsian differential equations

Let X denote a real analytic manifold with corners. We consider functions on X which
have logarithmic singularities along the boundary of X, and we define the regularised limit
of such a function along components of the boundary 0 X. Next, we state and prove a gener-
alised Fuchs theorem in many variables, and show that, in the unipotent case, we obtain so-
lutions on X which are precisely of this type, i.e., which have logarithmic singularities along
0X. Finally, we state a version of Stokes’ theorem in the case when X is compact. This re-
quires some regularity results which allow the integration of functions with logarithmic di-
vergences along the boundary of X. The example to bear in mind throughout this section is
when X = X g 5 is the closed Stasheff polytope defined in §2.7.

4.1. Manifolds with corners

A manifold with corners X is a differentiable manifold whose charts are diffeomorphic to
sets of the form

Upq=RP xRY,
where Ry = {x € R:x > 0}, and p,q > 0 [0]. If ¢ > 1, the boundary of U, , is
4.1) Upe= |J R xR, x{0} xR,
itj=q—1

which is a union of sets diffeomorphic to U, ,—1, and is empty if ¢ = 0. Let 8'U,, , denote
the successive submanifolds with corners obtained by iteration. There is a stratification

Up,q 2 aUp,q 22 6qu,q?

which has the combinatorial structure of a face of a hypercube. There are many different
ways to define maps between charts depending on how rigid we wish to make the manifold
X . We require that derivatives of maps between charts do not vanish along boundary compo-
nents, and in order for logarithmic regularisation to be well-defined, we must rule out maps
of the form z — kz : Ry — Ry, where k # 1.

DEFINITION 4.1. — Letn =p+q > 1, and let z4,..., z, be coordinates on R™ such that
Upq=RP xRL ={z; >0,...,z5 > 0}. Let &, denote the symmetric group on ¢ letters
which permutes the indices 1, ..., ¢. We define Hom,, (U, 4, U, 4) to be the ring of analytic
isomorphisms (i.e., whose Jacobian does not vanish anywhere along U, ,):

¢) = (¢17 i 7¢n) : Up,q - Up,q
which permute the components of the boundary 90U, 4, i.e.,

¢l

B =0 = 0, for1 < <gq,
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where o € &, and which satisfy

0¢;
= 1.
8xa(i) ma(i):()
In other words, ¢ = (z,(1)f1,-- s To(q)fqs Pgs1,-- -, Pn), Where f; are analytic functions

such that f; is identically equal to 1 along the boundary component {z,¢;y = 0} C 90U, g,
for1 < i < ¢. Forexample, if n = 2 and Upy = {(x1,22) : 21,22 > 0}, the map
d(z1,22) = (T1 + T2, T2 + 23) is in Hom,, (Up 2, Up 2).

We define an analytic manifold with corners to be a manifold with corners whose transition
maps lie in Homay (Up,q, Up,q)-

It follows from this definition that any ¢ € Hom,,(Up,q, Up,q) preserves the boundary
stratification of U, , (4.1). Any analytic manifold with corners therefore admits a global
stratification

X=X02X12X22 -2 X,,

where each X; is a manifold with corners, and X;.; = 0X; is the union of the boundary
components of X;.

Consider the closed Stasheff polytope X = X g 5 contained in 9)237 5(R). Then X is a man-
ifold with corners whose stratification is given by (2.40). To see this, let 0 < ¢ < 1 denote a
small constant, and let e € X’é, 5 denote a k-decomposition of the regular n-gon (.5, 6), where
k can be zero. This can be completed, in a non-unique way, to a full triangulation o € ng, 5
Then F, is a corner contained in the face F, = {u;; =0: {i,j} € e}. Define

42) Ueale) ={0<u;; <efor{i,j} €e0<uy <1for{kl}e€a\e}C Dﬁg’S(R).

Since we know that {w;;, {¢,j} € a} defines a local coordinate system on 9.7(557 s(R) (Propo-
sition 2.22), U, o () is diffeomorphic to a chart Uy_j = R*~% x R when ¢ is sufficiently
small. We have (¢f. (2.35)):

Xss5=XgsU U U Ue,a(€), for some € > 0.

k>1eexkt ;

This proves that X g s is indeed an analytic manifold with corners, since all transition maps
between boundary components of charts are given by permutations of coordinates. The ac-
tion of the dihedral group of symmetries on X g s is a morphism of analytic manifolds with
corners.

4.2. Logarithmic singularities and regularisation

We define three sheaves of functions on an analytic manifold with corners X which have
singularities along its boundary 0X. They are:

1 1
FCF8 C Fpe,

where 72" denotes the sheaf of analytic functions on X, F1°¢ denotes the sheaf of functions
with logarithmic singularities along 0.X, and .Flljog denotes the sheaf of functions with both
logarithmic singularities and ordinary poles along 0.X.
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More precisely, let p, g > 0 wheren = p+q¢ > 1, and let z4, . . ., x,, be coordinates on R™
such that U, ; = R? x R§ = {z1 > 0,...,z, > 0}. Then we define

Fo(Up,q) C Rllz1, ..., z5]],
to be the ring of convergent Taylor series in the variables x4, . . ., z,,. Next, we define
4.3) Fo8(U, 4) = F*™(Up,q)[logz1,. .., log 4],
féog(Upvq) = ]:an(Upvq)[xl_l? ce ,‘qul’ IOg T1y.-. 710g xq]:
where log x; is the principal branch of the logarithm along R, . It follows by a monodromy
argument that the functions log z, are linearly independent over the ring F**(Up 4). Simi-
lar rings of functions in one variable (polynomials in log 2 with analytic coefficients) were
considered in [42].
Foreach 1 <4 < n, let v; denote the valuation map on F** (U, ,) which associates to any
function the order of its vanishing along x; = 0. It extends to a valuation

Ui ‘Féog(Upyq) — Z,
once we have adopted the convention that v;(log ;) = 0.
LEMMA 4.2. — Let X denote an analytic manifold with corners. Then F?*, F log  and le,og

define sheaves on X, and for each boundary component D of 80X, the valuation map vp on f]},og

is well-defined.

Proof. — Let ¢ € Homay, (Up 4, U, o). It suffices to check that the composition with ¢
preserves F°¢(U, ;). Let ¢ = (¢1,...,¢n). By Definition 4.1, and by permuting the coor-
dinates if necessary, we have

(4.4) ¢i($1,-..,xn)infi(xl,...,mn), forl1 <i<g,

where f; € 7 (U, ). This implies that f;(z1,...,2,) > 0forall (z1,...,2,) € U, 4, and
furthermore, v;(f;) = 0. It follows that

log(¢i(z1,...,2zn)) = log(z;) + log(fi(z1,...,2n)), for1 <i<g,

where log f; € F2*(U,,,) is analytic. It follows that ¢* F°8(U, ,) C F°8(U, ,), and, simi-
larly, ¢* F,°8(Up,q) C Fp°8(Up,q). The fact that the valuations are well-defined along the
components of X follows immediately from (4.4). O

We can define the regularised value of a function along boundary components of X by
formally setting the functions log x; to 0, for 1 < ¢ < ¢, on each chart U, , of X.

DEFINITION 4.3. — Let f € F°8(U,, ), and let 1 <[ < g. We can write

f' = Z f[ logi1 1. .. logil xy, where f[ S flOg(Up+l7q_[),
I=(i1,...,3,)EN!
and f; is zero for all but finitely many indices I. The regularized value of f along
D ={(z1,...,7,) i 71 =+ =23 = 0} C 8'U,,, is defined to be:
Reg(f, D) = fo,..,00(0,...,0, %141, .., g, Tgi1,...,Tn),

viewed as a function on D 2 U,, ,_;. By construction, Reg(f, D) € F°8(D).
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DEFINITION-PROPOSITION 4.4, — Let X denote an analytic manifold with corners, and
let D C 9'X denote any boundary component of X. Then there is a well-defined regulari-
sation map along the component D:

Reg(e, D) : F'8(X) — F'°¢(D).

Proof. — The transition maps are compatible with logarithmic regularisation by Defini-
tion 4.1. Let ¢ € Homan(Up,q, Up,q). Then, up to permuting coordinates, ¢ is of the form
o= (x1(1+2101),...,2¢(1 + 249q), Pg+1, - - -, $n). It follows that

log ¢; = logz; + log(1 + x;9;), forl <i<g,

and the term log(1+x;¢;) vanishes at z; = 0. It follows that logarithmic regularisation along
xz; = 01s well-defined for 1 < ¢ < ¢q. By regularising with respect to one variable at a time, it
follows that regularisation along an arbitrary boundary component D C ' X is well-defined
also. O

REMARK 4.5. — Clearly we can extend the regularisation map for polar singularities
Reg(e, D) : F,°5(X) — F5(D),

by mapping all negative powers of coordinates x1, ..., xz; to zero also (this is just a map of
constants as defined in § 3.4).

4.3. Fuchsian differential equations in several complex variables
Consider the open complex affine space obtained by complexifying Up, 4:
CPTI\{z; ...z, = 0},

and let V,, denote an open polydisk neighbourhood of the origin contained in
CP+a\{zy...2, = 0}. We require a generalised Fuchs’ theorem which we solve locally
on the spaces Vj, 4. Let m > 1, and consider the differential equation:

(4.5) dF = QF,

where F takes values in the set of m x m complex matrices M, (C), and where

p+q dz:
4.6 0= N, =2 + A;dz;.
@) RN

i=1

Here, N; € M,,(C) are constant matrices, and each A, is a holomorphic function on V, 4,
which takes values in M,,,(C). Assume that € is integrable, i.e.,

dQ=QAQ.
This implies, in particular, that the matrices INV; commute:
4.7 [N;,N;]=0 forall 1<i,57<mn.
Let us writen = p + ¢ > 1, and suppose that N; = O forall ¢ + 1 < ¢ < n. The form Q

is continuous on Vj, 4. Let us fix branches of the logarithm log z; fori = 1,...,q on V4.
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In practice, we will choose a real subspace R? x R = U, , C V,, and take the principal
branches of the logarithm as previously. The function

q
D= exp(z N; log z;)
i=1
is a well-defined multi-valued function on V,, , because the matrices N; commute. The fol-
lowing result is a generalized Fuchs’ theorem in many complex variables. Similar situations
have been considered in [1 1, 52].

THEOREM 4.6. — Suppose that for each 1 < i < n, no pair of eigenvalues of the matrix
N; differs by an non-zero integer. Let Hy € M,,,(C) be any constant matrix. Then (4.5) has a
unique solution

F=HD,

where H : V,, ¢ — My, (C) is holomorphic and takes the value Hy at the origin.
Proof. — The matrix D is invertible, and is a solution to the differential equation
dD = N, 29 D.
(M
It follows that F' = HD is a solution of (4.5) if and only if
n
dZi

(4.8) dH =Y [N;, H]

i=1

Zi

If we write 9y, = 0/0z, then this is equivalent to the set of equations

1
4.9) O H = [Nk,H];+AkH, forl <k<n.
k
A solution H is holomorphic on V}, 4 if and only if it can be written as a power series
(4.10) H= Y Hu a2,
0<iy,...,0<in

where the coefficients H(;, .. ;) € M,,(C) satisfy a growth condition. By substituting such
a power series expansion into (4.9) and considering the coefficient of 2%' ... zi», we obtain
the following recurrence relations:
(4.11)

(ix +1 = ad (Nk)) Heiy,.pig41,im) = > (A) Gr,eooin) Hlin—g1ein—sn)

0<71<01,..,0<jn <in

for each 1 < k < n, where (Ag)j, ,....;,,) are the coefficients in the power series expansion of
Ayg. Now consider a matrix M € M, (C). If we denote the eigenvalues of M by o, ..., am,
then the eigenvalues of ad M are o;; — a;. The assumption on the eigenvalues of V; is there-
fore equivalent to the invertibility of the operators

(m —ad (Ny)) forallm € N,

and foreach 1 < k < n. The operator on the left-hand side of (4.11) is therefore invertible, so
we can solve (4.11) iteratively, provided that these equations are compatible. This means that
we must show that the two different ways of obtaining H;, | i, 4+1,....i+1,...,i,) DY applying
(4.11) first for k and then for [, or the other way round, both lead to the same answer. This is

4¢ SERIE — TOME 42 — 2009 — N° 3



MULTIPLE ZETA VALUES AND PERIODS OF MODULI SPACES My, ,, 435

equivalent to the integrability of the form €. In order to see this, write Q@ = >, Q;dz;, where
Q; = R; + A;,and R; = N;/z;, for 1 <i < n. The integrability of 2 and the commutativity
of the R, imply the following equations for all 1 < i,j < n:

9, = 0;Q; + [, il
8_7‘RZ‘ = &R] + [RJ,RZ]

It follows that the expression
(ﬁZ](M) = (GJQZ + QEQJ)M — QZMRJ — Q]]\/[B‘!Z + ]\4(]‘0—‘!]]1—‘!Z - 8JRZ)

is symmetric in ¢, j for all matrices M € M,,(C). But Equations (4.9) are precisely the set
of equations 0, H = 0, H — HR,; for 1 <14 < n. It follows, on applying 0; to each equation,
that

0;0; H=¢;; H foralll <i,j <n.

One can check by differentiating a truncated power series expansion for H that the compat-
ibility of the Equations (4.11) up to a given weight is a consequence of the symmetry of the
operators ¢y, forall 1 < k,I < n. We can therefore solve (4.11) recursively to obtain a
solution of (4.8) of the form (4.10). It remains to check that the function H defined in this
manner is holomorphic on V,, 4. Since the series Ay for 1 < k < n are holomorphic on the
polydisk V}, 4, there exist constants ry,...,r, > 0 and a constant ¢ > 0 such that

4.12) (AR iy, || S et ool foralll <k < n.

Form > 1, let &, = sup; <<, ||(m — ad Ni)||~!. By the assumption on the eigenvalues of
Ny, and the remarks above, £, — 0 as m — oco. It follows from (4.11) that

(4.13) WHy, it i || S €iitr D AR Gyensdi) N H i1t -
0<5<4;

Now let sy >rg, for 1<k<n, and let m be sufficiently large such that
Em CH?:I(SZS%”) < 1. Set

_ [Hiy,....i0 |l
€ = sup i < o0
0<i1yeeyin<m, 81" ...8n"
Let M > m, and suppose by induction that [[H, ;)| < esit ... sl for all
0 < 1,...,i, < M. This is true when M = m by the definition of e. Then, by apply-
ing (4.12), we deduce from (4.13) that

ry\Jt ro\Jn )
NHy,.ov41,. 00| < €mg1 Z ce (—1) (—") s; ...

o oo 81
0<71<i1,-,08n <in

n
§€M+166H( ¢ )sil...s;"ges?...s;".

=1 Si—Ti
By induction we deduce that || H;, . ;)| < esi'...sin forall (iy,...,i,). This holds for
any set of constants sy, ..., s, satisfying s; > r;, which proves that H is holomorphic on
Vp,q» as required. O
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We will be interested in the case where the matrices N; are all nilpotent. It then follows
that the matrix

q
D =exp (Z N, log zl)
i=1
has coeflicients which are polynomials in log z;. Since all eigenvalues of N; are 0, the con-
dition of the previous theorem is satisfied, and therefore there exists a matrix solution F' to

Equation (4.5) whose entries F;, are polynomials in log z1, . . ., log z, whose coefficients are
convergent Taylor series in z1, . . ., 2,:
Fop CCllz1, ..., 2n]|[log 21, ..., log 2z4].

DEerFINITION 4.7. — Let X denote an analytic manifold with corners. An integrable
1-form Q defined on X is unipotent of Fuchs’ type if, locally on each chart of the form U, 4,
Q restricts to a 1-form of type (4.6), where the matrices N; are nilpotent.

As remarked in § 4.2, there are canonical branches of the functions log z; on local charts
of X . The solutions to (4.5) will therefore be real-valued on X.

COROLLARY 4.8. — Let Q be a real-valued unipotent integrable 1-form of Fuchs’ type on
X. Suppose that X is simply connected. Then any solution (Fyp) to (4.5) defined in the neigh-
bourhood of any point x € X extends over the whole of the interior of X. This gives a global
solution of (4.5) whose coefficients satisfy F,, € T'(X, F'°8).

4.4. Stokes’ theorem with logarithmic singularities

The key argument in our proof of the main theorem is to apply a version of Stokes’ theo-
rem to the manifold with corners X g 5. This requires integrating functions which have loga-
rithmic singularities along the boundary.

LEmMA 4.9. — Let X denote a compact analytic manifold with corners of dimensionn. Let
¥ € Q"(X) denote an n-form on X whose coefficients lie in .Fll)og. Then v is absolutely inte-
grable on X if and only if ¢ has no poles along 0X.

Proof. — 1If ¢ has a pole of order k& > 1 along some component of 90X, then there is a
chart on X of the form U, ; such that ¢ = fdx; ...dx,, where f can be written

N M
1 ; 1 ;
f@1, . mn) = — Zfi(l’m o xp)loghay + —— Zgi(xl, ey Tp) log zq,
3 1 =0
where f;,g9; € F**(U, ) are analyticon z; > 0,...,z, > 0, and fx is not identically zero.

Since the term (log ;)" dominates the other powers of log z; near z; = 0, it follows by
continuity that there is a small box

B(e) ={(z1,...,zn) : 21 € [0,¢], T2 — ag,...,Tn — oy € [—€,€]},
where as, ..., a, > 0, and a constant ¢ > 0 such that

C
112 S lloga |,
1
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for all (z1,x2,...,2n,) € B(e) whenever € > 0 is sufficiently small. It follows that

1
/|f|dx1...dwn20(2£)”_1/ —k|logm1|Ndm1:oo,
X o I1

and therefore 9 is not absolutely integrable.

Now suppose that ¢ has no poles along 0.X. Then in each small chart of the form U, 4,
we can write ¢ = f(x1,...,2z,)dz ... dx,, where

fl@i,..z) = Y (logz)™...(ogzg)" fr(x1,. .., 7n),

I=(i1,...,iq)

where fr(z1,...,2,) € F*(Up,q), and almost all f; are identically zero. But the function
log z is integrable on any interval [0,¢), where ¢ > 0, and since sums and products of inte-
grable functions are integrable, it follows that f is integrable locally. Since X is compact, we
can find a finite partition of unity on X, and deduce that f is absolutely integrable over the
whole of X. O

We can therefore integrate functions which have at most logarithmic singularities. The
following lemma implies that primitives of functions on X which have at most logarithmic
singularities extend continuously to 0X. The essential point is that the 1-form log x dz on
R, has a logarithmic singularity at 0, but its primitive, x log  — z + ¢, is continuous at x = 0.

LEmMMA 4.10. — Let X be an analytic manifold with corners. Let p € Q™(X) have at most
logarithmic singularities along 0X, and let ¥ € Q"~1(X) denote a primitive of 1» which has no
poles along 0X. Then V¥ is continuous on the interior of 0X.

Proof. — It suffices to prove the result on each chart of X isomorphic to U, , with co-
ordinates z1,...,, as above. Let = fdz;...dz,, where f € F°8(U,,). We write
U =" (-1)"'Fdz...dz;...dz,, where F; € F'°¢(U, ) for 1 <i < n. Let

F; = Z logk z; Fi,k,
k>0

where F; ;, € F'°¢(U, ,) is analytic in the coordinate z; and is zero for all but finitely many
indices k. Since Y - ; OF;/dz; = f, we have

~ klogh !z, log

E E ———Fi (w1, .., 2-1,0,Ti41,. .., Tn) € FE(Upq)-
: Z;

=1 k>1

This implies that F; x(z1,...,2;-1,0,Z41,...,25) = Oforalll < ¢ < n,k > 1, and

therefore F; € Cllog 1, ...,z;logx;,. .., log z4]([x1, ..., z,]]. It follows that
¥ =(-1)"'F|  dey...dz;...dz,
a:i:O (Ei:()
is continuous for all 1 < ¢ < n. Thus ¥ is continuous along the interior of 0.X. O

We can now state the following version of Stokes’ theorem.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



438 F. C. S. BROWN

THEOREM 4.11. — Let X denote a compact analytic manifold with corners of dimension n.
Let ) € Q"(X) be an n-form such that 1 has no poles along X, and let ¥ € Q"~(X) be a
primitive of ¢ such that VU has no poles along 0X either. Then ¥ extends continuously to 0X,

and
Jer=l®

Proof. — Let Uy, 4(¢) = R? x RIwhere R, = {# € R : ¢ > ¢}. By Lemma 4.9, ¢ is
integrable on X. We know that ¥ extends continuously to X by the previous lemma. On
each small chart of X we can apply Stokes’ theorem:

/ ¥ = lim ¥ = lim \1l=/ v,
Up.q e=0 Up,q(e) e=0 OUp,q(e) OUp q

and all terms are finite. Since X is compact, we can find a finite partition of unity and apply
the above identity locally. The result then follows in exactly the same way as the usual proof
of Stokes’ theorem. O

where both integrals are finite.

In the case which interests us, when X = YS,(;, we can define the following exhaustion of
the polytopes X g 5. For all small & > 0, we set

7;5 ={ui >, {i,j} € xs,6}-

The required version of Stokes’ theorem is then immediate:

p=1lm [ ¢=1lm [ O=[ W
Xs.s e=0Jxs s e=0JoX% 5 0X s

5. Hyperlogarithms

We give an explicit description of the constructions in the previous two sections when the
dimension is 1, i.e., when M is the affine line A! minus N + 1 fixed points oo, . ..,on. How-
ever, we need to consider iterated integrals whose path of integration has endpoints at one of
the removed points o;, and so does not necessarily converge. This requires a regularisation
procedure which can be solved for all iterated integrals simultaneously by considering their
generating series.

5.1. Hyperlogarithms and differential equations

Let N > 1, and let A = {ao,...,an} be an alphabet with N + 1 letters. We fix any
injective map of sets j : A — C, and set 09 = j(ag), ..., on = j(an). Let X denote the set
j(A) U {oo}, and let D = P!(C)\X denote the complex plane with the points o) removed.
Consider the following formal differential equation:

0 Nooa
(5.1) 5. F(2) = ; e,
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which is an equation of Fuchs type, whose singularities are simple poles in 3. Let F(z) be a
solution on D taking values in C({A)). If we write

F(Z) = Z Fy (Z) w,
weEA*
then (5.1) is equivalent to the system of equations
0 Fy(z)
“Fapw = )
0z “F (2) Z— Ok

forall0 < k < N and all w € A*, together with the initial equation 0F;(z)/0z = 0, where
1 denotes the empty word in A*. The term Fj(z) is therefore constant.

(5.2)

One can construct explicit holomorphic solutions L,,(z) to (5.2) on a certain domain U
obtained by cutting C. These functions extend by analytic continuation to multi-valued func-
tions on the punctured plane D, and can equivalently be regarded as holomorphic functions
on a universal covering space p : D — D. Since no confusion arises, we shall always de-
note these functions by the same symbol L,,(z). For each 0 < k < N, choose closed half-
lines £(0%) C C starting at o, such that no two intersect. Let U = C\ |J,, ¢x ¢(ox) be the
simply-connected open subset of C obtained by cutting along these half-lines. Fix a branch
of log(z — 0g) on C\£(0yp).

PRrOPOSITION 5.1. — Equation (5.1) has a unique solution L(z) on U such that
L(z) = fo(2) exp(ag log(z — 09)),
where fo(z) is a holomorphic function on C\ i ¢(ok) which satisfies fo(oo) = 1. We write
this L(z) ~ (z — 0¢)® as z — og. Furthermore, every solution of (5.1) which is holomorphic

on U can be written L(z) C, where C € C{{X)) is a constant series (i.e., depending only on X,
and not on z).

The proposition can be deduced from Theorem 4.6, and a direct solution is given in
Gonzalez-Lorca’s thesis [28]. We use another approach here, since we require an explicit
formula for the functions L,,(z) which is originally due to Poincaré and Lappo-Danilevsky
[40, 44]. First, let A% denote the subset of all words in A* which do not end in the letter ag,
and let C(A.) C C(A) denote the sub-vector space they generate. It is easy to verify that
C(A.) is preserved by the shuffle product. If w € A% and w # 1, the limiting condition given
in the proposition is just lim,_,,, L, (z) = 0. If we write w = ay”a;, a;" ‘a;,_, - ..af a;,,
where 1<4y,...,i. <N, then L, (2) is defined in a neighbourhood of &y by the formula

(—1)T z—0og \"™/ z2—0g \M2T™1 zZ—0g \Mr—Mmr-1
67 JD Y —
1 oo my” 0iy —00 O, —00 0;,.—00

1<my <---<my m

which converges absolutely for |z — 0| < inf{|oy, — o0l,...,|0i. — 0o|}. One can easily
check that this defines a family of holomorphic functions satisfying the Equations (5.2) in
this open disk, and that the limiting condition is trivially satisfied.

The functions L,,(z) extend analytically to the whole of U by the recursive integral for-
mula:

(5.4) Lapu(z) = / T Lo 4

Ot—O'k
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which is valid for all 0< k< N and all w € A%. Since iterated integrals are homomorphisms
for the shuffle product (Lemma 3.28), we also have

(5.5) Lw(2)Luw/(2) = Lymw (z)  forall  w,w’ € A,

where L is extended by linearity to all words w € C(A.). It follows from the definition of
the shuffle product that any word in A* can be uniquely written as a linear combination of
shuffles of ag with words in A}:

w = Z aguwy,, where v, € C(A.).
n>0
We can therefore set
Lo, (2) = log(z — 09),

and extend the definition of L,,(z) to all words w € A* by demanding that L,,(z) satisfy the
shuffle relations Ly, (2)L.,(2) = Luymw (2) for all w,w’ in A*. One verifies that the functions
L,,(z) can be written in the form (5.4) for all words w € A*, for w # af}, and are solutions
to (5.2). In order to prove that fy(z) = L(z) exp(—ag log(z — 09)) is holomorphic at z = oy,
we use the following lemma.

LemMA 5.2. - 7 o(=1) wal “wa) =0 mod C(A%)  forallw € A:.

Proof. — Let 5% denote the truncation operator with respect to the letter ag defined in
§ 3.1, but which acts by truncation on the right, i.e., 5a0wai = dp;w, where dg; is the Kro-
necker delta. It is a derivation with respect to m. If we apply it to the left-hand side of the
equation, we obtain zero, by the Leibniz formula. This implies that the left-hand side is a
linear combination of words not ending in aqg. O

REMARK 5.3. — The operators 5%. are related to the ‘dérivations étrangeres’ defined by
Ecalle [19].

Using the fact that af = i! af, we have

fo(2) = L(2) exp(—ag log(z — 00)) = Y Lu(z)w Y _(=1)'af Ly ().
weA* >0
It follows from the previous lemma and the shuffle relations for the functions L,,(z), that the
coefficient of each word waf}, where w € A} and n > 0, is a linear combination of L, (z),
where w’ € A%. These are holomorphic at z = o by construction, and this proves the regu-
larity condition for fy(z).

In order to prove the uniqueness statement in the proposition, let K(z) be any other so-
lution of (5.1) which is holomorphic on U. The series L(z) defined above is invertible, as its
leading coefficient is the constant function 1. Let F(z) = L(z) 'K (z). On differentiating
the equation K(z) = L(z)F(z), we obtain

N N
Z z iio,K(Z) = Z z iZJL(z)F(z) + L(z)F/(Z),
i=0 ! =0 '

by (5.1), and therefore L(z)F’(z) = 0. Since L(z) is invertible, F'(z) = 0, and so F(z) is
constant. This completes the proof of the proposition.
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REMARK 5.4. — The functions L,,(z) are known as hyperlogarithms and were originally
defined by Poincaré and Lappo-Danilevsky. They were recently resurrected by Aomoto
[1,2, 3], Ecalle [19], and Goncharov [24, 25, 26]. It is clear that L1 (z) = 1, and

L. n
LaTL(z) = Elog (

zZ—0;

: ) it P>,

g9 — 0;
1 n
Lon(2) = alog (z — 09),

for alln € N. Note that L,z () depends on the choice of branch of log(z — o) which was
fixed previously, but that the functions L,r (2) do not. They are the unique branches which
satisfy the limiting condition Lgr (09) = 0.

Given a branch of log(z — oy,) on C\¢(0},) foreach 1 < k < N, we obtain by symmetry a
solution to (5.1) corresponding to each singularity.

COROLLARY 5.5. — Forevery 0 < k < N, there exists a unique solution L°*(z) of Equa-
tion (5.2) on U such that

L7 (z) = fu(2) exp(ak log(z — o)),
where fy(z) is holomorphic on C\ | J; 4, £(0;) and satisfies fr(ox) = 1.
The quotient of any two such solutions is a constant non-commutative series known as a

regularised zeta series. Using these series, one can determine the monodromy of hyperloga-
rithms explicitly ([8]).

5.2. The bar construction on P'\Z

In this situation, the variant of the bar construction defined in § 3 is very easy to describe.
Let k denote any subfield of C which contains oy, . ..,on. The ring of regular functions on
P\ is simply
1
z— Uj)ongN} '

O =k|z (

Since P'\X is of dimension one, the integrability condition is trivially satisfied. Let
AV = {4o,...,¥n}, where ¢; = dlog(z — 0;), for 0 < ¢ < N. The cohomology classes of
the forms ¢; form a k-basis for H*(P'\X). Clearly ¢; A ¢; = Oforall0 < 4,5 < N, and
therefore B(P*\X) is a shuffle algebra

(5.6) B(P'\X) = Ox @y, k(AY),
equipped with the derivation

d AN
(5.7) d—dz®1+§(z_m)®0wi,

where the truncation operators 8y, were defined in §3.1. Let L(P*\X) denote the Ox-algebra
generated by the coefficients of a solution L to (5.1). The analogue of the map (3.26) is the
differential homomorphism:

(5.8) p: B(P1\X) — L(P\X)

w +— Ly (2),
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which is the identity on Ox. Theorem 3.26 implies that this map is an isomorphism.

COROLLARY 5.6. — The functions L, (2), for w € A*, are linearly independent over Os..
Every function in L(PY\X) has a primitive which is unique up to a constant.

The construction of the functions L., (z) used a decomposition of B(P'\X) into conver-
gent and non-convergent parts. This used the fact that the map
(u®v — unw) : Z{A:) ® Z{ag) — Z{A)
is an isomorphism of algebras. We can therefore define
(5.9) By, (P'\X) = Ox(A.)

to be the sub-algebra of convergent iterated integrals (indexed by words not ending in ag). It
is a differential algebra for the derivation d defined in (5.7). We have

B(P'\E) & By, (P'\X) ®k(z,1/(2—00)] B(P*\{00,00}).
There is a corresponding decomposition
L(PN\X)) = Loy (P'\Z) ®kfz,1/(:—00)) LP \{00, 00}),
where L(P\{0g, 00}) = k[2,1/(z — 0¢),log(z — 0p)]. Correspondingly, the hyperlogarithm

realisation (5.8) decomposes as a product p = p,, ® p’, where

Poo (W) = / w, forallw € A..

This is a convergent iterated integral, even though the base point oy does not lie in the
space P'\X. The logarithmic divergences are completely determined by the realisation
p': B(P'\{o0,00}) — L(P'\ {00, 00}), where 4/ (ao) = log(z — o).

REMARK 5.7. — In general, the points oy, . . . , o Will not be arranged symmetrically. In
this case, one needs to do a genuine analytic continuation of the functions L,,(z), since the
formula (5.3) is not valid outside its radius of convergence. Lappo-Danilevsky described a
technique for dealing with this situation, which is described in [8]. This extra complication
will not arise in the present context.

5.3. Quotients of the hyperlogarithm equation

Now we shall consider the case where the coefficients a; in (5.1) satisfy relations. There-
fore, let A = {ag, ...,an} be an alphabet with N + 1 letters as before, and consider an ideal

IC C(ao,...,aN>.

Typically, I will be generated by commutators of the form [a;, a;] for ¢ # j. It defines a closed
ideal we also denote by I in the completed algebra C({A)). Let

m: C{{4)) — C{AN/I

denote the quotient map. Consider the analogue of Equation (5.1):

N
(5.10) 0 F(z)=>_ MF(z),

0z z— o
i=0 v
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where, this time, F' takes values in the quotient ring C((A))/I. An equation of this type will
be called a hyperlogarithm quotient equation.

COROLLARY 5.8. — There exists a unique solution F' to the hyperlogarithm quotient equa-
tion (5.10) with solutions in C({A)) /I such that F(z) ~ (z — ¢)™(@) as z — a.

Proof. — The existence follows immediately from Proposition 5.1, on applying 7 to a so-
lution of (5.1). The uniqueness is proved in the same way. O

Now let L(I) denote the Ox-module of functions generated by the coefficients of a solu-
tion F to (5.10). It is a differential submodule of L(P'\X). More precisely,

L(I) = 05 ® (C(A)/I)” € 05 ® (C(A))” = L(PN\Z).
It follows that the coefficients of solutions to (5.10) are linear combinations of hyperloga-

rithms. If I is a Hopfideal, ie, I'T C 1 ® I + I ® 1, then L(I) is an algebra by duality.
Theorem 3.26 immediately implies the following corollary.

COROLLARY 5.9. — Suppose that I is a Hopf ideal. In this case, L(I) is a unipotent exten-
sion of Ox. In particular, it is a differentially simple polynomial algebra over Ox, whose ring of
constants is k.

As an example, consider the equation:
dF ap ai
o (2o F
dz ( z + z— 1)
on P1\{0,1,c00}, and let I C C(ag,a1) denote the ideal generated by [ag,a;]. Then
F = exp(aglogz + a1 log(z — 1)) is the unique solution satisfying F' ~ exp(ag log z) as
z — 0. The differential algebra L(I) is just C[z,1/2z,1/(z — 1),1og z,1og(z — 1)].

5.4. Multiple polylogarithms and hyperlogarithms
We recall the definition of the multiple polylogarithm functions, which were defined by

Goncharov [23, 24, 25, 26]. Let nq,...,n, € N, and consider the power series
k1 k
. Zit Lz
(5.11) Lin, .m.(21,...,2) = g T ...kz”’

0<ky <<k, 1
which converges absolutely for |z;| < 1if n,, > 2 and for |2;| < 1 in general.

Nowlet ¢ > 2, x1,...,24—1 € C, and set X = {0y, ..., 00,00}, Where
go =0, g1 = 1, and g; = (:Eg_i+1....’l?g_1)7l for ZSZSK
Let A = {ao,...,as} as previously, and let w = aj""'a;, ...ap* 'a; € C(A), where
1<is,...,4 < £. Wesuppose that the points o; are distinct and finite (compare (2.5)). Let
us consider the points 1, ..., T,_1 as being fixed, and let z, € P!\ denote a free variable.

By (5.3), the coefficients of the corresponding hyperlogarithm function with respect to xy,
are given near xy = 0 by the formula

-1 _ _
Lu(z) = ), ﬁ(%r-wz)ml(%-wﬂmz (@, )T
1<mi<---<m, - r

Ljy - Ty Tj. _,.--Tp
TT: J1 Jr—1
=(-1) le,-.-,m( ey X, T ),
Tjy ... Ty Tj. ... Ty
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where we have set j, = £ —ir+1for1 < k < r. It follows that such a multiple polylogarithm,
considered as a function of the single variable zy, is a hyperlogarithm function on P!\ %. The
relation between the multiple polylogarithm viewed as a hyperlogarithm in z,, and the mul-
tiple polylogarithm viewed as a function of all its variables, is given by the fibration sequence
between moduli spaces My ,, (§6.5).

5.5. Multiple zeta values and P*\{0, 1, 00}

In the case where o9 = 0 and 0; = 1, D is the projective line minus three points. Since
P1\{0,1, 00} also coincides with 9y 4, it is natural to make a change of sign and define
X = {xo,x1}, where g = ap and 1 = —ay. Let log z denote the principle branch of the
logarithm. By Proposition (5.1), the equations
dL(z) Zo z1
i S
L(z) ~ exp(zlog z)

(5.12) )L(z)

have a unique solution L(z) € C{{(X)), known as the generating series of multiple poly-
logarithms in one variable. Its coefficients are written Li,(z), for w € X*. We have
Li,,(z) = logz and Li,, (2) = —log(l — z). Now consider a word w € z¢X*z; which
begins in x and ends in x;. It can be written

-1 npy_1—1 -1
M T S S T He i TN

_.n
w =z
where n,. > 2. Equation (5.3) therefore gives a power series expansion:

Zkr

)
Kk

(5.13) Liy(z) = Lip, . . (1,...,1,2) =
0<k1 <<k,

which is regular at z = 1. The numbers Li,, (1) satisfy the shuffle relations by (5.5).

DEFINITION 5.10. — Let w € xzoX*xz; as above. The multiple zeta value of weight
n1 + - -+ + n, and depth r is the real number defined by the convergent sum:

. 1
¢(w) ={(n1,...,n,) =Li,(1) = Z T ne > 2.
0<ky <<k, L TTTOT

The function ¢ extends by linearity to the Q-vector space spanned by xo X *x;. We define Z
to be the Q-module generated by the set of all multiple zeta values:

(5.14) Z=Q[¢(w) : w e X x4].

Because the multiple zeta values satisfy the shuffle relation {(wmw’) = {(w){(w’), and be-
cause Qw : w € zoX*x;] is stable under the shuffle product, Z C R is an algebra. Itis
naturally filtered by the weight [51].

It is not difficult to verify that every word w € X* is a linear combination of shuffles of
xg, ¢1 and words n € o X*z1. The map w — ((w) extends to a unique function on Z{X)
which satisfies

Cm(ﬂio) =0, Cm(xl) =0,
Cu(wmw’) = (u(w)u(w’), forallw,w’ € X*.
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DEerINITION 5.11. — The Drinfeld associator [18] is the non-commutative series

290 = 3 Gulw)w € Z((X)).

weX*
It follows that Drinfeld’s associator is precisely the regularised value of L(z) at 1:

(5.15) Reg(L(2),1) = 2%,

6. The universal algebra of polylogarithms on 91 ,,

In this section, we give an explicit construction of the algebra of all homotopy-invariant
iterated integrals on My g in terms of multiple polylogarithms. By decomposing this alge-
bra as a tensor product of hyperlogarithm algebras, we compute its monodromy in terms of
multiple zeta values.

6.1. The cohomology ring of 9, 5

Recall that 901, ¢ was defined as the quotient of the configuration space of n = | S| dis-
tinct points (zs)ses € (P')°, modulo the action of PSL,. Let 4,7, k,l € S. The cross-ratio
[i j|k1] : (P')S — P! defines a function on (P!)?, and since [i j|k ] = 1 — [i k|5 I], we have:

*

(6.1) dlogli j|kl] A dloglik|j1] = 0.
We introduce the notation
dz; — dz; .
(6.2) A;; =dlog(z; — z;) = Zizzj, forall 1<i<j<n,
]

where A;; = Aj;,and A, = 0, forall 1 < ¢, 5 < n. Equation (6.1) gives a quadratic relation
between the A,;;, which can be simplified as follows. Since PSL,(C) acts transitively on the
projective line P! (C), and since the cross-ratio is invariant under its action, we can place the
point z; at infinity, and it follows that

(6.3) My,s(C) = C2~1/B,

where C?~! denotes the set of distinct n — 1-tuples 23, ...,2, € C,and B = C* x C is the
subgroup of PSLy(C) which stabilizes co. The projection map C?~ — 9y 5(C) is a trivial
fibration with fibres isomorphic to B, and it follows that

(6.4) H*(C) = H* (Mo 5(C)) ® H*(B).

We can therefore deduce the cohomology of Mg s (C) from the structure of H*(C?~1), which
can be described as follows. We apply (6.1) with = 1. Using the fact that z; = co, we deduce
that dlog[i j|k 1] = Asx — Aji, and dlog[i k|j 1] = A;;j — Agj, viewed as 1-forms on crt
Then (6.1) yields Arnold’s relation:

(6.5) Dy NG+ D ANy + A NA; =0,

for any distinct indices 2 < 4, j, k < n.

THEOREM 6.1 (Arnold [4]). — H*(C?~Y) is the quotient of the free exterior algebra
generated by A;; for 2 < i,j < n, by the quadratic relations (6.5).
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Now let us fix a dihedral structure § on S. In § 2 we defined 1-forms
w;j = dlogu;j, for{i,j} € xs,;.

Their cohomology classes [w;;] form a basis for H* (9 s(C)). Recall the definition of N
(§ 3.2) as the kernel of the exterior product:

N =ker (A: H'(Mo,5(C)) @ H' (Mo,5(C)) — H*(Myo,5(C))).

PROPOSITION 6.2. — N is spanned by the following elements:

6.6) (X wal)e( X lwa),

{i,j}€A {k,l}eB

where A, B C xgs,s are any two sets of chords which cross completely (§2.2). The coho-
mology ring H*(9My 5(C)) is isomorphic to the free exterior algebra generated by [w;;), for
{3,7} € xs,5, modulo the image of elements of the form (6.6).

Proof. — First we regard each dihedral coordinate u;; as a function on (P')”. By the
defining equations (2.10), we have 1 — [, 4 %a = [[pep us for all sets of chords A, B C x5,
which cross completely. This implies that dlog [ 4 us A dlog ] us = 0, which is precisely

( Z [wij])/\( Z [wkl]>=O.

{i,jteA {k,l}eB

Furthermore, every instance of (6.1) occurs in this way, since each cross ratio [¢ j|k ] can
be written as a product [] 4 u, or its inverse, by Lemma 2.2. We now place z; = oo as
above, and view the corresponding relations on C?~!. By Arnold’s theorem, this implies
that (6.6) generates the set of all relations on C?~!. In particular, (6.6) generates N, since
by (6.4), H*(9My,s(C)) C H*(C?~') and so any relation satisfied by the w;; is also satisfied
in H*(Cr—1).

Now, since B = C* x C is homotopy equivalent to a circle, H*(B) is the exterior algebra
generated by a single cohomology class which we denote 8 € H!(B). It follows from (6.4)
that H*(9My s(C)) is the subalgebra of H*(C"~1) of degree 0 in 3. We deduce from Arnold’s
theorem that H* (9 s(C)) is the quotient of the free exterior algebra generated by a basis
of H'(My 5(C)), modulo N. O

Similar results have been obtained by Getzler [22].

REMARK 6.3. — The quadratic relations (6.5) are equivalent to the existence of the
dilogarithm function, in the following sense. Let f = [ij|k!]. Then identity (6.5) is
precisely the integrability of the element

(dlog f|dlog(1 — f)] € W2 B(My.s).

The iterated integral (§ 3.6) corresponding to this element is the function Lis (f).
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6.2. The universal algebra of polylogarithms on 9, ¢

Recall that in simplicial coordinates (2.3), the space MMy s is the open complement of an
affine hyperplane arrangement. Its ring of regular functions is

1 1 1
O(My,s) = Qlugy, Uz_]l] = Q[(ti)gigé’ <7

ti)1§ige’ (1- ti)lgigz’ (ti — 1) 1cici<s ’

which is a differential algebra with respect to the partial differential operators 9/0t;. We
defined the abstract algebra of homotopy-invariant iterated integrals on 9t g using the re-
duced bar construction in § 3.2.

DEFINITION 6.4. — The universal algebra of polylogarithms on 9, s is the differential
graded algebra B(My, ) = B(O(Mo,s)).

Recall that B(9tg ) is the unipotent closure of O(9My s), and that its de Rham cohomol-
ogy is trivial, i.e., H3x (B(Mo s)) = Q, and Hi g (B(Mo,s)) = 0 for all i > 1. The structure
of B(My g) is particularly rich: it has a natural Hopf algebra structure over O(9%y ), and
also carries an action of the symmetric group &(S) by functoriality. The graded pieces of
the set of indecomposable elements in B(91; ) of fixed weight yield very interesting finite-
dimensional representations of &(S). Correspondingly, there is an action by the subgroup
of dihedral symmetries Ds,, of the n-gon (.5, §). This action is evident from the symmetric
description of H! (9 s) and N in terms of the forms w;;, for {4, 5} € xs.5, given in Propo-
sition 6.2.

Now if we pass to cubical coordinates, we can split B(9%, g) as a tensor product of
shuffle algebras, and subsequently decompose it into convergent and non-convergent pieces.
First, recall that we defined a base point at infinity (3.37), corresponding to the origin

xr1 = --- = xp = 0, which is locally a normal crossing divisor. The base point is given by
the map O(My s) — k{e1,. .., e} which maps z; to ¢;, for 1 < ¢ < £. The projection map
(x1,...,20) = (21,...,7¢_1) defines a linear fibration My (4, ... 5.3 — Mo {ss.,....s,.}» Which

forgets the point marked s;. In the notations of §2.4, it corresponds to the choice of sets
Tl = {Sn, 81,892, 83}, T2 = {82, 83y ..., Snfl}, and Tl n T2 = {82, 83}. By iterating in this
manner, we obtain a sequence of fibrations: My ¢4, . 5.3 — Mo {s.41,....5,}, Obtained by
forgetting the marked point s;, fori = 1,n,n—1,...,4. By applying Theorem 3.38 to these
fibrations, we deduce that there is a canonical isomorphism:

n—3
6.7) B(Mo,s) = (X) Ba, », (P'\Z),

=1
where ¥; = {s2,83...,8,_i+1}. Bach algebra B(P*\X;) is a universal algebra of hyper-
logarithms, and is a free shuffle algebra on n — ¢ — 1 generators by § 5.2.

COROLLARY 6.5. — B(My ) is isomorphic, as a O(My s)-algebra, to the tensor product
of the free shuffle algebras on 2,3, ..., n — 2 generators.

Using results of Radford, one can write down a basis of any free shuffle algebra in terms of
Lyndon words (see [46]). The corollary implies that a basis of B(9 s) is given by tensor
products of Lyndon words.
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We can now decompose each component of (6.7) into convergent and non-convergent
parts. We can define the subalgebra B?/mo,zi (P1\%;) C Bon, s, (P*\X;) of convergent words
in a similar manner to (5.9). We can then define

n—3
By(Mo,5) = O(Mo,5) @ Q) Bay, ., (P\T).
i=1

Then B(9MMy s) decomposes as a commutative tensor product
B(My,s) = Bo(Mo,s) Rg Q[[dlog x1],...,[dlog :1;[]].

The algebra on the right is the free commutative (polynomial) algebra on generators
[LUQH_3] = [leg.’lJl] fori = ]., e ,é.

LEMMA 6.6. — The subalgebra Bo(My,s) C B(My g) is generated as a vector space by the
set of integrable words, no element of which ends in a symbol way, for 4 < k < n.

Proof. — Let A denote the O(9y s)-subalgebra of B(My g) generated by the set of all
integrable words (i.e. which satisfy (3.8))

Z cf[wiljll s Iwir j'r']7 cr € Q,
I

where {i,, jr} ¢ {{2,4},...,{2,n}}. Itisclear that A C By(My,s) is a differential sub-
algebra. Furthermore, one easily checks that every element a € Ql(imms) ®0m0’s A of
weight at least 1 has a primitive in A. This follows from the proof of Theorem 3.26 or the
argument given in the appendix, since taking primitives involves adding symbols to the left
of each word. Using the techniques of § 3, Proposition 3.12, it follows immediately that the
map A — By(My,s) is surjective. O

Likewise, for every vertex v € V?, the set of vertex coordinates at v defines a base point at
infinity, and (by considering the action of the differential Galois group of U{ey, ..., €} over
k{e1, ..., €}, for example), one defines a subalgebra of convergent words B, (9 s) such
that

B(Mo,s) = Bu,s(Mo,s) ®q Qlwi, j,] ®q -+ - ®g Qwi, 5],
where {i1, 1}, ..., {is, je} € F, are the chords occurring in the triangulation corresponding
tov. Asabove, B, 5(IMy g) corresponds to the set of all integrable words which do not termi-
nate in any symbol w;, ;,. The case By(9y, ) corresponds to the vertex whose triangulation
is {{2,4},...,{2,n}}. This is just the point z; = - - - = x, = 0 in cubical coordinates.

6.3. The dihedral connection on 9, s

There is a canonical differential equation on 9y s whose solutions can be expressed in
terms of multiple polylogarithms. Let Z(d;;) denote the free non-commutative Hopf algebra
generated by the symbols 6;; = d;;, for {¢,j} € xs,5, Where §;; is primitive (see §3.1). It is
convenient to set d;; = d;;41 = O for all indices ¢ € Z/nZ. Consider the following formal
1-form on My s:

(68) Qs’é = Z (5”

{i,7}€xs,s

duij

Uiy
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The form g s is integrable if and only if dQ25s = Qg5 A Qg. Since g 5 is closed, this
reduces to Qg5 A Q55 = 0. We define the dihedral infinitesimal braid relations to be the
identities:

(6.9) [0i—1;+6ij—1 —di—1j-1 — 05, 0k—17 + Ok 1—1 — Ok—11—1 — Ort] = 0,
foralli,j,k,l € S.

For each 1 < 4,j < n, consider a set of formal symbols ¢;;, where ¢;; = 0 and ¢;; = t;;.
The Knizhnik-Zamolodchikov (KZ) form on (PL)™ is the 1-form:

(6.10) Qkz, = Y ti; Ay,

1<i<j<n

where A;; = Aj; is given by (6.2). Let us assume that
(6.11) > tu=0 foralll<I<n.
k=1

This variant of the KZ-equation has been considered by Thara, amongst others. It corre-
sponds to the usual KZ-equation on C?~! | except that it has an extra set of symbols at in-
finity, and one extra relation which kills the center of the braid algebra. One can prove that
Qg 7, is integrable if and only if the following single relation holds:

(6.12) [tij ti] =0 for all 4, 7, k, I distinct.

One verifies by computing [¢;;, > /=, txi] = 0, that this is equivalent to the usual infinitesimal
braid relations:

(6.13) [tij, tr] = 0,
[tij, tic +tik] = 0,

which hold for all distinct indices 2 < ¢, 5, k,I < n. Now, by (2.6), we have w;; = dlogu;; =
Aij+1 + A'H—lj — Ai+1 j4+1 — Aij, for {Z,]} € XS5 If we write

iz, = Qss,
then this is equivalent to the identities
(6.14) tij = 0ij—1+0i—15 — Gi—1j—1 — bij,

forall1 < 4,5 < n, as is easily verified. Since §;; = d;;41 = 0for1 < i < n, then (6.14)
implies that

(6.15) ti; = 5i—1j if j=1+1,
(616) tij = (51'_1]‘ — (51'_1]'_1 — 51']' if j= i+ 2.

The following lemma implies that the set of equations (6.14) are invertible over Z.

LEMMA 6.7. — Foralll <i< j<mn,

(6.17) Sij= Y ta

i<a<b<j
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Proof. — By Equation (6.15), §;—1;+1 = t;s4+1 for 1 < i < m. Substituting into (6.16)
gives ;142 = tii+o + tii+1 + tir1442. Let m > 4, and suppose by induction that (6.17)
holdsforall0 < j —i <m — 1. Thenfor j — i =m — 1, (6.14) gives

0i—1j =ty + 055 +0i—1j-1 — 0ij1,

= tij -+ Z tap + Z tap — Z tap,

i<a<b<j i—1<a<b<j—1 i<a<b<j—1
=tij+ Y. tat Y ta= Y ta.
i<a<b<j i<b<j—1 i—1<a<b<j
This proves (6.17) when j — ¢ = m. The result follows by induction. O

Now if we substitute the expressions (6.14) for ¢;; and ¢x; in terms of d,; in Equation
(6.12), then we obtain (6.9). This proves the following result.

PROPOSITION 6.8. — The form Qg s is integrable if and only if the dihedral braid relations
(6.9) hold.

LEMMA 6.9. — The dihedral braid relations imply that
(6.18) [6ij,0rt] = O,
Sor all chords {i,7}, {k,1} € xs,6 which do not cross.

Proof. — Without loss of generality, we can assume that 1 < i < j < k <l < n. Then,

by identity (6.12),
Bijs 0l =1 D ta, D tea =0,
i<a<b<j k<c<d<l
since all sets of four indices {a, b, ¢, d} occurring in the summation are distinct. O

ExXAMPLE 6.10. — In the case S = {1,2,3,4,5}, relation (6.9) withi =2, j =4,k = 3,
I = 5 implies that [614 — 013 — 024, J25 — d35 — d24,] = 0. By (6.18) this gives the following
five-term relation:

(6.19) [013, 024] + [024,035] + [035, 041] + [041, I52] + [52,13] = 0.

This is dual to the functional equation of the dilogarithm.

DEerFINITION 6.11. — Let R denote a commutative unitary ring, and let I denote the ideal
in R(d;; : {4,5} € xs,s) generated by the dihedral relations (6.9) above. The dihedral braid
algebra over R is the free non-commutative R-algebra

(6.20) Bss(R) = R(dij : {i,5} € xs,5)/1.

This is a co-commutative graded Hopf algebra over R (§3.1), where degd;; = 1. The
product is the concatenation product, and the coproduct IT" is the unique coproduct with
respect to which the generators 6;; are primitive (I is a Hopf ideal because it is generated
by commutators of primitive elements). It is the universal enveloping algebra of the free Lie
algebra generated by the symbols §;;, subject to relation (6.9). Asin § 3.1, its completion is
the R-Hopf algebra

(6.21) Bs,s(R) = R((0ij : {i,5} € x5, ))/T
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where T is the closed ideal generated by I. It follows from the previous calculations that
B s(R) is just the free non-commutative R-algebra generated by the symbols ¢;;, for
1 < 4,j < n, which satisfy (6.11), modulo the relations (6.12). This is isomorphic to the
ordinary infinitesimal braid algebra modulo its center. The difference here is that we have
fixed a set of generators for this algebra which depend on the dihedral structure 4.

Let ﬁo’s be a universal covering space for My g, and let p : ﬁo’s — 9y s denote the
projection map. A multi-valued function on 9 s is defined to be a holomorphic function
on ﬁo,s- Since the integrability conditions are satisfied in B 5(C) we can consider the fol-
lowing formal differential equation on 53\20, s

(6.22) dL = Qg5 L.

A solution L takes values in 8 5,6(C). Its coeflicients are multi-valued functions on My 5. We
can fix a solution to (6.22) by specifying its value at a point of M g, or its limiting value at
an intersection of boundary divisors. It suffices to define solutions at intersections of divisors
of maximal codimension. Therefore, we define

Vo= {a € Xé,a}

to be the set of all triangulations of the n-gon. By §2.7, each such triangulation determines
a unique vertex of the associahedron X s 5. For each vertex v € VO, let F, = {{i,j} € x5, :
u;j(v) = 0} denote the set of faces of the associahedron X g 5 which meet at v. Let log(u;;),
for {i,5} € xs,5, denote the principal branch of the logarithm on u;; > 0 (see §4.2).

THEOREM 6.12. — Letv € V. There exists a unique solution L., s to (6.22) such that in a
neighbourhood of v,

L, s(u) = fo,s(w) H exp(d;; log(uiz)),

{’i,j}EFv
where f, 5(u) € %s,a((c) extends to a holomorphic function in the neighbourhood of v € 9)?55, g

and takes the value 1 at v. The function f, s(u) extends holomorphically to an open neighbour-
hood of the interior of every face F meeting v.

REMARK 6.13. — The product [[y; j1ep, exp(di; log(ui;)) is well-defined, because by
(6.18), the symbols §;; and dx; commute whenever {¢, j} and {k, [} do not cross, and no two
chords {4, 5}, {k,l} € F, can cross because F, is a triangulation of the n-gon (S, ¢).

Proof. — Let SBE’%((C) C %Bg,5(C) denote the kernel of the counit e : B s(C) — C. For
each integer N > 1, define

Wy = B5,5(C)/ (B33(©)" .
If we write d;; for the map which acts by left multiplication by the symbol 6;;, for each
{%,7} € xs,s, then each ¢;; is a nilpotent operator on the space Wiy
In §4.1 we showed that X g s is a manifold with corners by constructing a specific atlas
{Ue(e)}. We will show that Qg s defines a unipotent equation of Fuchs’ type on each chart
(Definition 4.7), and apply the results of § 4.3. Therefore, let o € X’é, s denote a partial de-
composition of the n-gon, where 1 < k < £. To « corresponds the face F,, of X g 5. Choose
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any complete triangulation o’ € ng’ s which contains «. By Proposition (2.22), the vertex
coordinates
{z¢ 1 <i<l}={uy: {i,j} €a'}

form a system of normal coordinates in a neighbourhood of F,,. We can therefore write

QS,(; = Z 513% + Aijduij,
{ijrear Y

where A;; are holomorphic functions in a neighbourhood of F,,. Since the operators d;;
are nilpotent on Wy, and since the open neighbourhoods of every face F, (including
Fy = Xs,5) cover X g 5, it follows that (6.22) is unipotent of Fuchs’ type, as required.

By Theorem 4.6, we can find a local solution Lf}{\g) to (6.22) with values in Wy (C), which
satisfies the asymptotic condition stated above. By Corollary 4.8, this solution extends glob-
ally over the whole Stasheff polytope X s5. The theorem follows on taking the limit as N

tends to infinity, since B g 5(C) = lim B5,5(C)/(B3G(C)N. O

Any such solution L,, 5 to (6.22) extends by analytic continuation to give a multi-valued func-
tion on the whole of 1y 5. By construction, the theorem defines a unique real-valued branch
on the interior of the associahedron Xg 5. It is convenient to write the asymptotic boundary
condition

6”
Lys~ H u,  nearw.
{i,4}EF,

ij

F1GURE 14. Alocal picture ofﬁo,s(R) and a cell X5 5,. The dashed region depicts
the set of real points of a domain of holomorphy for the regularised function f, s
given in Theorem 6.12.

REMARK 6.14. — The formal equation (6.22) is a homogeneous version of the Knizhnik-
Zamolodchikov equation on C?~*. Drinfeld studied solutions to the KZ equation on C3, C?
with prescribed asymptotics in certain zones [18], which were subsequently generalised by
Kapranov [36]. Such a zone is determined by a permutation on n—1 letters, plus a bracketing
on the set with n — 1 letters. Combinatorially, a permutation on n — 1 letters corresponds to
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a cyclic structure on n letters, and a bracketing corresponds to a triangulation of an n-gon,
i.e., a vertex in the associahedron of dimension n — 3 (fig. 11). Kapranov interpreted each
zone as the region near a corner at infinity in a certain two-fold cover S of the compactified
real moduli space:
§ — ﬁms(R).

In the previous theorem, we have constructed a canonical solution L, s near each corner
on My s(R). Therefore, each solution L, s corresponds to exactly two Drinfeld-Kapranov
zones. One way to see this is that the manifold S is obtained by gluing together a set of asso-
ciahedra which are parametrized by the set of all cyclic, rather than dihedral structures. The
number of cyclic structures on S, where |S| = n is exactly (n — 1)!. As an example, let us
consider the simplest case 9t 4. Then Equation (6.22) reads:

dL ) 1)
(6.23) o (ﬁ n i)L.

dx T r—1
Consider the solution Ly+ (z) which satisfies Lo+ (xz) ~ exp(dizlogz) asz — 0F. Re-
membering that x = w3 = [12]|43], and after placing the point z4 at co, we obtain

z = (20 — 23)/(21 — 23). If 0 < = < 1, theneither z; < 29 < zz30rz3 < 29 < 2.
These are the two cyclic structures on {21, 22, 23, 00} which map to the dihedral structure &
corresponding to the cell [0,1] = X g 5. The zone 0 < = < 1 therefore corresponds to the
pair of zones z1 (2223) and (z322)z; in Kapranov’s notations.

6.4. Functoriality with respect to projection maps

It is well-known that solutions to the KZ-equation decompose as products of hyper-
logarithm equations by considering fibration maps between configuration spaces. One
obtains a more general decomposition result for the homogeneous equation (6.22), by
using the projection maps considered in § 2.4. First, we fix a dihedral structure 6 on S and
choose a chord {i,j} € xs,. Recall from §2.4, that if we set Ty = {s;j11,...,8;,Sit1},
and T = {s;,Si+1,...,5;}, and denote the induced dihedral structures by 1, d2, then
Ty NTy = {s;, 8;+1}, and there is a projection map:

s 5

fT1 X fT2 : moé,s - mo}]ﬁ X mo?’]"z'

By Lemma 2.6, this map has a section whose image is the divisor D;; = {u,;; = 0}:
QMY X M2, — Dy € MY .

In order to fix solutions of (6.22), let v € V? be a vertex of the polytope X g s such that
v € Dy, i.e, u;j(v) = 0. By projecting down, we obtain vertices in X, s,

vk = fr,(v) € X1, 5, fork=1,2.
If v is given by a triangulation « € Xé, s of then-gon S, then vy, v, are given by the restrictions
a1, ag of this triangulation to 77 and T5 respectively (compare fig. 4). As sets of chords, we
have o = a3 U ap U {i,j}. We need an extra technical condition that the only chord in &
emanating from the vertex (j) is the chord {4, j} (the dihedral coordinate corresponding to
such a chord would not be preserved since fr, and fr, contract one of the edges j or j + 1).

Let
iy MYy, — Mol X M2, — Dy
Ty - %o, 1y 0,7} 0,T> ij
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denote the map which sends z to i(z, v2) € D;;. Define a map ¢, similarly, and set
(6.24) Tk = i1, © f1, fork=1,2.
Then 7, is a projection map

Ty Dﬁo‘is — Dq,ugi ) fork=1,2,

because fr, o ir, is the identity. We can write these maps explicitly in vertex coordinates

x¢,...,z¢, which form a local system of coordinates on 93?65’ 5(C) (see §2.6). We can
choose an ordering on « such that D,, = {zf = --- = z%,_; = 0}, u;; = z%,, and
D, = {zp, 1 =+ =z} = 0} for some m. In that case, we have
fT1 X fT2 : (wtlla s 7x?) - ((I%’ o 'axf;q,—l)7 (l‘%—kl’ .. ~7I7))a
and
m o (2f, ... ,2p) — (2%, ..., z0,_1,0,...,0)
mo (27, .., xy) — (0,0, 1, ..., T).

We shall write 0/0u;; to denote partial differentiation with respect to the vertex coordinate
%, = uij in a neighbourhood of v € MY 4(C).
Let L, s denote the unique solution to (6.22) on My g given by Theorem 6.12. We define

Lk:LOﬂ'k, fork:1,2.
Then the functions Ly, : S/D\To,s — %5)5(((3) satisfy the differential equation

(625) de = QkLk, for k = 1, 2,
where €, is given by:
duab
Qr = (m)«Ngs = da , fork=1,2.
k= (Tr)«Qs.s Z .

{a,b}exTy 5
By construction, the solutions Ly, satisfy the asymptotic condition
(6.26) Li=fr( Y Odalogug), fork=1,2,

{a,b}€ak

where f is holomorphic in a neighbourhood of vy on D,, , where it takes the value 1. It is
clear that Q and L only involve the symbols d,, where {a,b} € x1, s,. Since no chord in
XT, .6, Crosses any chord in xr, s,, it follows from (6.18) that L; and L, commute. Likewise,
we have [L1, Qg = [Lo, Q1] = [Q1, Q2] = 0. The three series L, s, L1, Lo are all formal power
series in ES,(;((C) whose coefficients are multi-valued functions on 9%, s. They are related as
follows.

PROPOSITION 6.15. — Let {i,j} € xs,5 be any chord, and let v € V' such that u;;(v) = 0.
With the notations above, there is a decomposition

(627) Lu,5 =h L1L27
where h is the unique solution in Es,g((C) to the hyperlogarithm quotient equation
oh 0 log ug;
6.28 = Opt ———— | h
(6.28) S > g, )b,
{k,l}€xs,s
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which satisfies the boundary condition
(6.29) h = gexp(d;; logu;;),
where g is a holomorphic function of w;j in a neighbourhood of 0, and g|.,;—o is the constant
Sfunction 1.

Proof. — Define a formal power series h € §5,5((C) by the equation h = L, 5 Ly' L7 OIf
we differentiate this equation, we deduce that

Qs 5Ly s =dh L1 Ly +hQq Ly Ly + h Qg Ly Lo,

where we have used the fact that [Q22, L1] = 0. It follows that
(6.30) dh = Qssh—h (0 + Q).

By definition, the functions L; do not depend on the variable w;;, i.e., 0Ly /0u;; = 0, for
k = 1,2. Therefore 8h/du;j = OL, 5/0u;j Ly * L7, and (6.22) implies that

Oh :< Z @3%1)’1
8uij (kY exs.s Ukl 8uij

By definition of the solution L, s and Equations (6.26), we have

h=fosexp (D daploguas) exp(— D Saploguas) f5 exp (= Y daploguas) fi’,
{a,b}ea {a,b}€as {a,b}€a;

where f, 5 is holomorphic in a neighbourhood of v, and a4, e, @ are the triangulations of

Ti,Ts, S corresponding to vy, ve, v respectively. Since L, and L, commute,

h = fosexp(6ijlogus;) f5 " fi' = fusfa ' f1*exp(d;;logus;).

Letg = fus f2_1 f1_1 = fus fl_1 f2_1, which is holomorphic in the neighbourhood of v.
In order to complete the proof, it suffices to show that the function gl,,;=o is the constant
function 1. This, along with the differential equation for A, will determine h uniquely. Let
G denote the restriction of g to the divisor D;; = {u;; = 0}. We already know by construc-
tion that G(v) = 1. Since g is holomorphic in the neighbourhood of u;; = 0, G satisfies a
differential equation which is obtained by projecting (6.30) onto u;; = 0, which amounts to
pulling back Qg 5 by (71 X m32).. By definition,

Qg5 =01 + Q.
D

ij
Equation (6.30) therefore restricts to give the following differential equation for G:
(6.31) dG = [ + O, G,

where G(v) = 1. This equation only has constant solutions. To see this, consider the con-
jugate H = (L1L3)"'G L1 L,. Substituting into (6.31) gives dH = 0. Therefore H is the
constant function 1, and so the same is true of G, which completes the proof. O

One can verify from the definitions that the map fr, induces a map

(ka)* : %575((:) — B, 5, ((C), fork=1,2,
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which sends d,5 to zero for all chords {a,b} which are not in x7, s5,, and is the identity
on 4,4y, for all chords {a,b} € xr,,. This also follows immediately from the fact that
O = (75)«Qs,s5 1s integrable. We can then consider

(fr )« Lk : Mo,1,, — %Tk,ék (©) fork =1,2.
By (6.26) and the uniqueness part of Theorem 6.12, we conclude that
Ly, 5. = (fr,)«L fork =1,2.

In conclusion, a solution L, s to (6.22) on smo, s is equivalent to a pair of solutions L,,, s,
on My 7, for k = 1,2 plus a solution to the hyperlogarithm quotient equation (6.28). Note
that many of the terms in the differential equation (6.28) vanish.

EXAMPLE 6.16. — Consider the case 96, and let {i,7} = {2,5} (see fig. 3). Then
n = {2,3,4,5} and T, = {6,1,2,3}. We shall work in cubical coordinates, and
write (z1,22,23) = (x,y,2). Then ugy = =, uss = y, and ugg = 2. The map
Mo — Das = Mor, x My 1, 1S given by projecting onto the divisor y = 0. There-
fore Ly (z,y,2) = L(z,0,0), and Lo(z,y, 2) = L(0,0, z) and we have:

dL, = (5241 ¥ 635 dml)Lla

dLy = (5267 + 515 1>L2

Thus L, L, are generating series of multiple polylogarlthms in one variable (but note that
there is a difference in sign in [7]). On the other hand, & is the unique solution to

oh 1) t t t t

72(&_’_ 56 46 LR 14 )h,

oy

6.32
(6.32) y  y-—1 y—x‘1+y—2‘1 y— (zz)~1

h ~ exp(d25 log y) as y—0,
where, according to (011), tsg = 546, ti5 = (514 — (515 — 646: tie = 636 — 646 — 535, and
t14 = 013 + d46 — 014 — d36. By (6.13), there are commutation relations

[tia,ts6] =0, and  [ti5,t46] = O.

Therefore (6.32) is a hyperlogarithm quotient equation on the punctured affine line
P'\{0,1,00,27 1,271, (x2)~!}. Compare Remark 2.11.

By applying the proposition repeatedly, we obtain an explicit decomposition of the gen-
erating series L,, 5 as products of hyperlogarithms. Let us apply the proposition in the case
where {i,5} = {2,n}. In cubical coordinates, uz, = x4, and one can check that h is the
unique function satisfying

oh 0o O1p—1 i+3n + 0i421 — Oigon — 0ig31
6.33 - h
( ) ag (Ig+xg—1+z Ty — ( e X 1)1 ) ’
h ~ exp(d2, log zy) as z, — 0,

where, as usual, §;; = §;_1; = 0 by convention. The function log z is the unique branch
satisfying log 1 = 0. This defines a multi-valued function on P*\¥ where ¥ = {0y, ..., 0.},
with

—1 -1
o0=0, o1=1, oa=ax,°4, ..., op_1=(T1...T4-1)
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The series h exp(—day, log ) is holomorphic in the neighbourhood of 2, = 0. In this case,
the projection map fr, X fr, is a fibration. It follows that h is a hyperlogarithm equation
(i.e., there are no relations between the coefficients in (6.33)). Notice also that the coefficient
Oiy3n + 0421 — Oiqyon — iy IS just t1443.

By substituting the above values of ¢; into the formula (5.3), we deduce that the coeffi-
cients of the formal power series h are the multiple polylogarithms (§ 5.4):

. Ti ...Ty T 4+ Ty
(6.34) Llnn( 1 I . x3x4>
Tjy - Ty Zj. ... Ty
where 1 < ji, ..., < £ are any indices. By applying the proposition inductively, we obtain

an explicit decomposition of L, 5 in terms of hyperlogarithm generating series h.

COROLLARY 6.17. — L, 5 is a product of hyperlogarithm generating series. Its coeffi-
cients are sums of products of multiple polylogarithms of the form (6.34) with the functions
logzy,...,logxy.

6.5. Regularised zeta series and monodromy

The monodromy of the KZ equation was first computed by Drinfeld [18]. We shall follow
the argument given in [34] for My 4 = P1\{0, 1,00} (see also [28]). Consider two vertices
u,v € V?. By Theorem 6.12, each vertex defines a generating series of multi-valued functions
L,.s, Ly,s on My g. The ratio of any two solutions to (6.22) is a constant series.

DEFINITION 6.18. — The regularised zeta series corresponding to u,v € V7 is
Z"" = (Lu,s(2)) " Los(z) € Bs,5(C),

forany z € Xg, i.e., x = (u;;), where 0 < u;; < 1.

Since L, s is real-valued on Xg 5, Z“" € %S,g(R) has real coefficients. Clearly
(6.35) ZvvZ0w = Z7%v

for all w,v,w € V9, and in particular, Z%?Z%% = 1. The zeta series describe the limiting
behaviour of a solution of (6.22) near the boundary of X g 5.

LEMMA 6.19. — Forallu,v € V9,

Z%" = lim H exp(—éij lOg ’U,i]‘) LU75 (x),
{i,j}€F.

where x = (u;;) € Xg5.
Proof. — Let x = (u;;) and let z — w along a path in X g 5. By Theorem 6.12,
(6.36) Lus(@) = Lus@ 2 = fus( T]  exp(élogusy)) 2,

{i,j}eFy
which implies that
Uv 13 s B —1
Z%Y = ;I_)IIL( H exp(—0;; loguw)) fus Los(@).
{i.j}eFy

But f é is a non-commutative series which is holomorphic in a neighbourhood of u where
it takes the value 1. We can write f,- ; = 1 + g(z), where g is holomorphic and vanishes at
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xz = u. Since zlog" z — 0 as z — 0 for all n € N, and since L, s(z) has at most logarith-
mic singularities at z = u, we deduce that only the constant term 1 in f,- } gives a non-zero
contribution in the limit, which proves the result. O

THEOREM 6.20. — The coefficients of the series Z“° are multiple zeta values:
Z% € Z((6ij: {4,5} € xs.6))/1 forallu,v € V°,
where I denotes the closed ideal generated by the dihedral braid relations (6.9).

Proof. — By the relations (6.35), it suffices to compute the coefficients of Z*¥, where u, v
are adjacent corners of X g . In other words, u, v are given by triangulations «, 8 € Xé, s
which differ by one chord only. Let us write {a,a'} = a\an B and {b,b'} = B\aN B. Since
D, np is of dimension 1, there is an isomorphism

Guw : MY 7 > Dong C MY g,
where |T'| = 4, which maps the cell X1 4 onto the 1-dimensional face of X g 5 which con-
nects u and v. Consider the solution L, s to (6.22) given by Theorem 6.12. We can identify
Mo, 7 with P1\{0, 1,00} and Xr s with the interval (0,1) in such a way that i,,(0) = u and
iyn(1) = v. The pull-back F' = (44, )+Ly, s then satisfies the differential equation:
dF Oy 0y
(6.37) el (— + )F
dx r x-—1
F ~ exp(6y log ) aszc — 0,

on P1\{0,1, 00}. This follows from Proposition 6.15. Here, &,,d, are the dihedral symbols
corresponding to the chords {a,a’}, and {b,b’'}. We have
(6.38) Z"" = Reg(Ly.5,v) = Reg(F,1) = Z°(8,,0,).

It follows from the calculations in § 5.5 that the coefficients of Z** lie in Z. O

As an example, consider the case 9y 5. Then X 5 is a pentagon with vertices vy, va, .., Vs
in order. It follows from (6.35) that ZvV1v2Zv2vs Zvsv4 Zv4vs Zvsv1 = 1. Applying (6.38), we
deduce the pentagonal relation due to Drinfeld [18]:

Z9Y (695, 614) 2% (824, 013) 2 (614, 635) 2% (813, 025) 2 (855, 624) = 1 € %5,5(3)-

REMARK 6.21. — One can prove the previous theorem directly using Corollary 6.17. In

cubical coordinates, the coefficients of L, s are sums of products of logarithms with the mul-
Ljq---Tg Zj,._1---Te
Tjp-Te? "7 X Ty

tiple polylogarithms Li,,, ... ». ( I ZE acg> . By taking suitable limits in

such coordinate systems, one can deduce that the coefficients of each regularised zeta series
are multiple zeta values.

We can compute the monodromy of a solution L, s(z) to (6.22) explicitly in terms of the
zeta series defined above. First, let us define

(6.39) 7 (Mo,5) = 71 (Mo, s, Xs,5)

to be the fundamental group of 9, g relative to the set Xg 5, which can be taken as a base
point because it is contractible. For each {i,j} € xs,s, let

Yij € (Mo, s)
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denote a small path which winds once around the face D;; = {u;; = 0} in the positive

direction, i.e., such that
dus
/ — = y2omi.
Yij uij

For each {7,j} € xs,s, let M;; denote the monodromy operator given by analytic contin-
uation of functions along a loop which is homotopy equivalent to «y;;. The operators M,;
commute with multiplication and differentiation. It follows that the M,;, for {i,j} € xs.s,
act on L, s(x) by right multiplication by constant series.

PROPOSITION 6.22. — Let {i,5} € xs,5, and letv € V' denote any vertex of X s 5. Choose
any vertex w € V% which lies on the face D;j, i.e., u;j(w) = 0. Then for all x € Xg 5,

Mij Ly 5() = Ly 5(x) 2% €270 7.

Proof. — By Theorem 6.12,

Lus(z) = fu(@) [] exp(drilogum),
{k,l}eFy

where f,,(x) is holomorphic in a neighbourhood of w € 27)?05, 5(C) which contains the interior
of the face D;;. By analytic continuation along a small loop ~;; which is contained in this
neighbourhood and winds once around D;;, we deduce that

M; Ly 5(x) = Ly 5(z) exp(2im d;;).

It follows from the definition of the zeta series that L, s(x) = Ly s(z)Z*" for all
z € Xgs. Since the quotient (L, 5(x)) 1Ly s(x) Z¥? is the constant function 1, which is
single-valued, the same equation must also hold for all = in the universal covering space of
Mo,s(C). Therefore,

Mij Ly 5(x) = Myj Ly 5(x) Z° = Ly 5(z) €705 Z¥ = L, s5(x) Z°™ ™05 7,
O
The previous lemma holds for any pair of vertices w,w’ € V° which meets D;;. We im-
mediately deduce that the following identity holds in B s(C):
(640) Zvw e2i7r(5ij Zw Zv,w' 62i7r6,-j Zw/,v.

This identity in fact follows from the commutation relation (6.18). It follows from the
previous theorem that the monodromy of 91, s can be completely expressed in terms of
multiple zeta values, and the constant 27ri.

COROLLARY 6.23. — The monodromy ring of My s is Z[2mi).
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6.6. Regularisation of polylogarithms on 9, s

DEFINITION 6.24. — For any v € V9, let LV (9 5) denote the O(My s)-module gen-
erated by the coefficients of the solution L, s to (6.22) given by Theorem 6.12. Now let us
define

(6.41) LE (Mo 5) = LY (My,5) ®q Z.

It does not depend, up to isomorphism, on the choice of the vertex v by Lemma 6.19
and Theorem 6.20. We write QFL*?(My,5) = L*°(Mo,s) @o(am, ) 2*(Mo,s) and
QkL‘sZ(gﬁo,S) = QkLU"s(gﬁo,S) ®q Z, fork > 0.

Since Z is filtered by the weight, we deduce a natural weight filtration on L% (90 ) which
we denote by W-. It follows immediately that any dihedral symmetry o € D, of the n-gon
(S, 8) induces an isomorphism of filtered algebras
(6.42) oy : L3 (Mo,5) = Ly (Mo,s)-

Each algebra L?° (M s) is in fact a graded Hopf algebra (§ 6.7), although we lose the grad-
ing when we pass to L% (9 5), because it is not yet known whether Z is graded by the
weight. The following theorem shows that the function theory of multiple polylogarithms
is dictated by the geometry of the Stasheff polytopes X g 5.

THEOREM 6.25. — Let {i,7} € xs,5. For any function f € L% (M s), let Reg(f, D;;) de-
note the regularised restriction of f to the divisor D;;, which maps not only logarithmic, but also
polar singularities to zero. Asin Lemma 2.6, let T UTy = S denote the partition corresponding
to the chord e = {i, 5}, such that

Dij = mO,T1Ue X mO,TQUe'
Then there is an isomorphism of filtered algebras:
Reg (L% (Mo,s), Dij) = LF (Mo,r,) ®z L (Mo,r,).
Proof. — Let us choose any vertex v € V? such that w;;(v) =0. The algebra

LY°(Mo.s) ®g Z is generated by the coefficients of the generating series L, 5() over Z. By
Proposition 6.15, there is a decomposition

Lys = hLiLs,

where L1, Ly can be viewed as solutions of (6.22) on M, 7, and M, 7, respectively, and do
not depend on u;;. Since the series h exp(—d;; log u;;) is holomorphic in w;; and is the con-
stant function 1 along D;; = {u;; = 0}, we have Reg(h, D;;) = 1. Therefore

Reg(LU’g, D”) = L1L2.
Likewise, for any coefficient f of L, s, and any k € Z,
Reg(uik, Dij) € L5 (Moz,) g L™ (Mo,
ij
where vy, vo are the images of v defined in § 6.5, and d1, &5 are the induced dihedral structures

on Ti,Ts. This proves that there is an isomorphism of filtered algebras
Reg(L"°(Mo,s), Dij) = LY°1(Mo,7,) ®g L% (Mo 1,). On taking the tensor product
with Z, we obtain the statement of the theorem. O
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The theorem states that if we restrict a multiple polylogarithm of weight m to the divisor
u;; = 0, then we obtain a linear combination of products of multiple zeta values and multiple
polylogarithms such that the total weight is at most m.

6.7. The regularised realisation of polylogarithms

Let S = {s1,...,5,} with the obvious dihedral structure §, and let v € V°. We can
now define a realisation of B(9 s) which is regularised at v. Let us first suppose that v
corresponds to the vertex ;1 = zo = --- = xy = 0 in cubical coordinates, in order to
exploit the decomposition of B(Mg 5) as a product of shuffle algebras. The corresponding
triangulation of the n-gon (.5, §) consists of all chords {{2,4},...,{2,n}}. The projection
map onto x, = 0 gives a fibration

S):n0,~[51,...,sn} — E):)IIO,{SQ,‘..,sn}
Correspondingly, we proved that there is a decomposition
B(Mo,s) = B(Mo,s7) @o(am, 5) By o (P\E),

where S' = {s3,...,5,},and X is given in § 5.4. Now let v’ denote the vertex corresponding
to the restricted trlangulauon o of S’ with induced dihedral structure §’. By Proposition
6.15, there is a decomposition L, s = h L, 5/, where h is a hyperlogarithm equation on P*\ X
in the variable x,. We deduce that

LY (My.5) = LV (Mo, ) ®o(m, o) Loy o (P\E),

where Loy, , (P'\X) denotes the O(9M s/)-algebra generated by the coefficients of h. From
the realisation (5.8) we obtain a realisation:

(6.43) ps: : Ban, o, (P'\X) == Loy, ., (P'\3),

which is regularised at z, = 0. It is an isomorphism of graded O (M s/ )[0/0x,]-algebras. If
we iterate this argument, we obtain two analogous decompositions

(6.44) B(Mo,s) = X) Bm, s, (P'\X)
1<:i<¥4

L (Mo,5) = Q) Lan, 5 (P\Z0),
1<i<¥4

for some subsets S; C Sy € --- € Sy C S where |S1]| = 3, and X; = S;. Taking the tensor
product of the fibre-wise isomorphisms (6.43), we obtain a map

pos : B(Mo,5)— L (Mo,s)-
THEOREM 6.26. — The map p,, 5 is an isomorphism of differential graded algebras. It fol-

lows that every O(9My s)-differential subalgebra of L° (9 ) is differentially simple, and that
Lv’é(gﬁo,s) is a polynomial algebra. Furthermore,

HO(L*’(Mos) =Q and HY(L*°(Mos)) =0 foralli>1.
The primitive of a closed form f € W® QE LV (9My ) is of weight at most b + 1.
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Proof. — The proof of Theorem 3.38 implies that the differential structure of the algebras
B(My 5) and LU (M 5) are uniquely determined from the tensor decompositions (6.44),
since we have a fixed base point at infinity corresponding to v. It follows that p,, 5 is a map
of differential graded algebras. The fact that it is an isomorphism then follows immediately
from Corollary 3.13. The rest of the theorem is a consequence of Theorem 3.26 and Corol-
lary 3.40. O

We obtain a similar decomposition for every vertex v € V.

COROLLARY 6.27. — For eachv € VO, there is a canonical realisation
pus : B(Mo s)—L"°(My,s),

which is regularised at the vertex v.

The map p,, s can be defined directly as follows. Recall from § 6.2 that there is a decompo-
sition B(My,s) = By,s(Mo,s) ® Q[[wiy 4], - - - » [wi, j,]] into convergent and non-convergent
words, where {i1,71}, ..., {%s,je} are the set of chords in the triangulation of the n-gon cor-
responding to v. Then p, s is the unique homomorphism such that

Po,s([wiy 5,,]) = logui, 5, foralll1 <k < ¢,
pv,&(ZCI[WiJ |win]) = ch/win cee Wiy
I T ¥

for all > ; crlwi,| - - - |wi, ] € By,s(Mo,s), where y is a smooth path such that v(0) = v and
v(1) = z € My s(C). Such an iterated integral converges, since B,, (Mo, s) is spanned by
the set of integrable words no element of which ever ends in a symbol w;, ;, for1 < k < £.
The integrability condition (3.8) ensures that it only depends on the homotopy class of v and
therefore defines a multi-valued function on 9ty s(C). Correspondingly, there is a decompo-
sition

LY (9Mo,s) = LY° (Mo,s) ®q Qllog i, 5, = 1<k < 4],

where Lg’é(f)ﬁo,s) = pu,5(By,s(Mo,5)) is the algebra generated by the coefficients of f, s
(defined in Theorem 6.12). They are holomorphic in a neighbourhood of v.

7. Period integrals on 9 ,,(R) and generalised shuffle products

Given a regular algebraic n — 3-form on 9%, g, we give necessary and sufficient conditions
for its integral over a fundamental cell X g 5 to converge. We obtain a formula for the order of
vanishing of any such form along any given divisor on 9%y s\9 5. Finally, we show how the
double shuffle relations for multiple zeta values are a special case of generalised multiplicative
structures on the set of all period integrals.
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7.1. — The set of all regular algebraic ¢-forms on 9ty s can be written in terms of a canonical
dihedrally-invariant form which we construct as follows. Let § be a fixed dihedral structure

on S, and correspondingly, write S = {s1,...,s,}. First we define the following form on
(PY)7, where the indices are taken modulo n:
~ \ dz;
(7.1) ws. s = /\ 7J.
j=17%3 T A2

The forms Wg s are PSLy(C)-invariant, since if we set

d=5F0  pi<i<n,  where (a ﬂ) € PSLy(C),
Yoyz+ 6 )
then dz] = (yz; 4+ 6)"2dz; and 2] — 2} = (vz; + 6) "' (vz; + 6) "' (2 — 2;), and therefore
Wg,s 1s unchanged on replacing each z; by z. In order to define a form on 9, g, consider
the quotient map p : (P1)* — My, s, which has fibres PSL,. Let v denote a fixed non-zero
algebraic invariant 3-form on PSL,(C) which is defined over Q. This is uniquely determined
up to a non-zero rational multiple. Then there exists a unique form wg s on My g such that

p* (ws’(s) ANv = 65,5.

The form wg ;5 is defined over Q, and is D, -invariant by construction. In simplicial coordi-
nates (2.3), and using the PSL,(C)-invariance of (7.1), we can normalise the rational coeffi-
cient of wg 5 such that:

dti N\ --- Ndty
to(ts —t1)(ta —t2) ... (te — te—2)(1 — te—1)’

if £ > 2, and wg s = dt; if £ = 1. In dihedral coordinates, one has wg 5 = duas if £ = 1, and
if £ > 2, one can write (7.2) using (2.9) as follows:

(7.2) ws,s =

dUQ4 AN dUQ5 VARERIVAN dUQ n—1 N dU,Qn

1 — ugqugs)(1 — ugsuge) - .- (1 — ugp_1usp)

(73) w5 =1

The latter representation is not unique because of the various relations between the func-
tions u;; and their differentials. The form wg s clearly defines a meromorphic form on the
compactification ﬁo,s. For any boundary divisor D C ﬁo, s\Mo,s we denote by ordp wg s
the order of vanishing of wg s along D.

LEMMA 7.1. — The form wg s has neither zeros nor poles on Dﬁg s\Mo.s.

Proof. — In cubical coordinates, wg s has the representation:

dri N+ ANdxy
1—z22) ... (1 —mp_170)

(7.4) ws,s = (

Itis clear that wg s is not identically zero nor infinite along the divisors z; = 0, for 1 <i < £.
In other words, the order of vanishing of wg s is zero along the divisor up; = 0 for each
4 <4 < n. But since wg s is Dap-invariant, it follows that the order of vanishing of wg ;5 is
zero along all divisors at finite distance u;; = 0, where {7, 5} € xs,5. O
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In other words, given any fixed dihedral structure § on .S, we can define wg s to be the
unique (up to multiplication by Q*) non-zero volume form on 9, s(R) which has no zeros
or poles at finite distance. Equivalently, it has no zeros or poles on the boundary of the closed
Stasheff polytope X 5.

It follows from the fact that O(My ) = (@[uiij1 : {3,j} € xs,s], that every algebraic
volume form on 90§ ¢(R) can be written as a linear combination of forms

(7.5) H uZ” ws,s, Wherea;; € Z foreach {i,j} € xg,5.
{i,5}€xs,s

Now suppose that we are given a collection of coeflicients o = (ai;) i, j}exs; Which are all
non-negative. We define the following family of period integrals:

(7.6) Is,g(aij) :/ H uiajij wss-

Xs.6 {i,j}€xs,s

The integral is finite because each function u;; is continuous and bounded on the compact
set X 5,5. Since wg s is positive on X g 5 and invariant under the action of D, it follows that
Is 5(cuj) is also positive, and we have a dihedral transformation formula:

(7.7 Is’g(aij) = Ig,g(ag(i)a(j)) for all 0 € Dy,.

These integrals can be written explicitly in simplicial and cubical coordinates.

LEMMA 7.2. — In cubical coordinates, we have the following formula:

4
(78) Isyg(aij) = / Hmfl(l —.Z‘i)bi H (1 — TiTi41 ....Z'j)cij dil,'l ...dZUg,
[0,1}¢

i=1 1<i<j<e

where the indices a;, b;, c;; € 7 are given by:

(79) a; = 02 i+3
b; = Qi1 244-4,
Ciitl = Qit2i45 — Qi42i44 — Q43445 — 1,

Cij = Q13443+ Qig2jrda — Q2513 — Qi43;44, ifj>i+2.

Proof. — In cubical coordinates, the domain of integration is X g5 = [0, 1]*, and the only
factors that occur in the denominator of wg s are (1 — x;x;41) by (7.4). Using the definition
of the cross-ratios u;;, we can rewrite the function

f= I wiy=% II G-z
{i.7}€xs,s 1<p<g<n
where the indices sp,q are given by s, = ap_14 + 0pg—1 — Qp_14—1 — Qpgq, and where
we set a; ;41 = a;; = 0. In cubical coordinates, we have z; = 1, zo = 00, 23 = 0, and
Zirs = T;...xy, for 1 < ¢ < £. If we put the various elements together, we obtain the for-

mulae for b; and c;; given above. The formulae for a; are easily deduced using the fact that
L1 = U24y.-.,Tp = U2n- O
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Special sub-families of these integrals were considered in [55], [21], [54], where it was also
conjectured that they are expressible in terms of multiple zeta values. It is easy to verify that
the change of variables matrix given by (7.9) is invertible over Z.

Similarly, in simplicial coordinates one can verify that

4
a’ , o dty...dt,
Iss(ai;) = /A [Tea—-t) I @&-t) vy
=1

1<i<j<e o(ts —t1) ... (te — te—2)(1 = te—1)’

where A = {0 < t; < --- < ty < 1} denotes the unit simplex, and where

A .
a; = Q312 + Q243 — Q3443 — Q2442, 1<i<4
/ .
by = O it3 + Q142 — Qpit2 — 143, 1<i<Y?
7 . .
Cij = Q4243 + Qig3j+2 — Q3543 — Qit2542, 1<i<j<t

where we set o;;+1 = «a; = 0 as above. Once again, it is not difficult to verify that the
corresponding change of variables matrix is invertible over Z (this is implied by Equation

(6.17)).

7.2. Relative periods and mixed Hodge structures

Letn = |S| = £ + 3, and let A, B denote two sets of divisors at infinity on My 5\Mo s,
where we assume that A N B is of codimension at least 2, i.e., A and B have no shared irre-
ducible components. Consider the relative cohomology group

(7.10) H*(MMy s\A,B\BN A),

which has a canonical mixed Hodge structure [12]. Since the divisor A U B is globally nor-
mal crossing, this can be computed using the techniques of [29], [50], and it is easily verified
that it is of Tate type. Goncharov and Manin construct an object in the abelian category of
mixed Tate motives MT(Q) over Q [14], whose Hodge realisation is the mixed Hodge struc-
ture (7.10). They then show that this motive is unramified over Z. We shall write the cor-
responding motive and mixed Hodge structure with the same symbol, because the Hodge
realisation functor is fully faithful over Q ([14], proposition 2.9). Suppose that we are given
a relative homology cycle
[AB] € Hg(ﬁo,s, B)

We can assume that this class is represented by a smooth compact real submanifold with cor-
ners A g whose codimension-k boundary is contained in the k-stratum of B. More precisely,
if B consists of irreducible components B;, for 1 < ¢ < N, then

(7.11) *Ap=Apn () Bi,N--NB;,

which may be empty. Suppose that we are given an algebraic /-form 4 on 9y g which is
defined over Q and whose singularities are contained in A. Then the relative period integral
of Q4 along Ap is defined to be

(7.12) / Q4 €C.
Ap
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By a version of Cauchy’s theorem, this integral is invariant under continuous deformations
of Ap relative to B. We can thus assume that A g is disjoint from A, and therefore the in-
tegral is bounded, since €2 4 is continuous on A g, which is compact. Note that the integral
depends on the relative cohomology classes of Q4 in H¢(9y s\ A, B\B N A), and Ag in
Hg(ﬁo’s\A, B\B N A)

LEMMA 7.3. — grlV Hy(OMo s, B) is spanned by the homology classes of a number of cells
X5, where 6 is in a certain set of dihedral structures which depends upon B.

Proof. — The relative cohomology group H,(9My s, B) can be computed using the spec-
tral sequence of the complex

SD,tOS(_|_|B ZUB,]Z Z'_IBla
i, |I|=¢

where B is the union of a set of divisors B;, and By = (;c; Bi. The spectral sequence de-
generates on the E? level and it follows that

gry’ He(Mo,s, B) = ker @Ho Br) — @ Hy(By))
\I|=¢ |J|=t—1

In the simplicial complex defined by B, this is just ker(C? — C¢) where p is the number
of points, i.e., £-fold intersections of divisors, and e is the number of edges, i.e., £ — 1-fold
intersections. This also computes the number of independent cells in My s(R) bounded by
BNMy s (R). Since Mo s (R) is tesselated by the cells Xg 5 (Lemma 2.26), they must generate
gI‘gVHg(ﬁO’S,B). O

LEMMA 7.4. — Every relative period integral over a union of cells X s s, is a Q-linear com-
bination of Is 5(cvj), where the a;; are all non-negative.

Proof. — Fix a dihedral structure 6 on S. Any such integral I can be written:

where w € Qf(9M,s) is regular, and where o; is an element of &(.S) which maps the dihedral
structure §; onto ¢. The right-hand side can be written

I= | f ws. s,
Xs,5
where f € Q[u;;, ui_jl] is a regular function on M, g. Note that by Lemma 4.9 this integral
converges absolutely if and only if f wg s has no poles along 8X 5 5. Since X g 5 is the union
of divisors D;; = {u;; = 0}, and since ordp,, f ws,s = ordp,, f (by Lemma 7.1), this implies
that f € Q[u;;]. Since f is a polynomial in the u;;, it can be written as a linear combination
of monomials with positive exponents, or in other words, I is a finite Q-linear combination
of integrals I's 5(c;), with a;; all non-negative. O
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In order to rephrase the above in motivic terms, we need to recall the notion of framings
from [25, 26], [5]. Let m > 0 denote an integer. An m-framing on a mixed Tate motive (or
its Hodge realisation) is given by two morphisms

v:Q(—m) — gerM and f:Q(0)— (grgVM)v.

A morphism between two framed mixed Tate motives (M, v, f) and (M’,v’, f') is a mor-
phism M — M’ which respects the framings. This generates an equivalence relation, and
one can show that the equivalence classes of m-framed mixed Tate motives form an abelian
group. The framings on the motive (7.10) were defined in [27] as follows. There are isomor-
phisms

gro’ Hy(Mo,s\A, B\BN A) = gry Hy(My s, B),
gryy H' (Mo,s\A, B\BN A) = gryy H* (Mo 5\ A).
Therefore, the classes [Ag] € gry Hi(Mo,s, B) and [Q4] € griy H (Mo s\ A) define an

¢-framing on (7.10). Note that these framings could be zero.

We introduce a simplified variant of the above motives. Let § denote a fixed dihedral struc-
ture on S and let D;s denote the set of divisors at finite distance in Dﬂg’ g- These are the affine
varieties which bound the fundamental cell X g5. Let w € QM s) denote an algebraic
¢-form with no singularities along Ds, which is defined over Q. Let us define the ¢-framed
mixed Tate motive:

(7.13) mg,s(w) = (H (M 5, Ds), [(Xs,6], [w]),

equipped with the framings given by the class of the fundamental cell A = X g 5, and the
class of w. The framed motives mg s(w) are more convenient to work with because the vari-
eties M g are affine, and we do not need to keep track of the divisor data at infinity. Lemmas
7.3 and 7.4 imply that the framed mixed Tate motive (H*(9Mg s\ A, B\B N A),[Ag], [Q4]),
is equivalent to a linear combination of motives:

(o771
mg.s (fwg,(;), where f = H uij].
{i.i}€xs,s

The equivalence is given by natural inclusion maps between moduli spaces, the action of the
symmetric group, and the additivity of framed objects with respect to their framings.

7.3. Formulae for the divisor of singularities

In order to compute the divisor of singularities of an arbitrary form (7.5), it suffices to
compute the order of the canonical form wg s along each divisor at infinity. This is easily
done by exploiting the action of the symmetric group.

PROPOSITION 7.5. — Let |S| = n = £+ 3, and let D denote the divisor given by the stable
partition S U §% = S ( Proposition 2.35). Then

{—1
OI‘de(g—i—* Z Ip(i,i+2),
ZEZ/nZ

where the notation lp is defined by Equation (2.45) in §2.8.
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Proof. — Let k > 2 denote the number of elements in S. Let o denote a permutation
o € &(n) such that o=1(S?) = {1,2,...,k}. By (7.1), we have
o~ Zi — 24 ~
(o (ws’(;) =4+ H 7”) ws.5-
iezjnz o) T Foli+2)

S

By passing to the quotient p : (P1) — 9y g, we have

ordp wg,s = ordp 0*(wg,s) — ordp f,

f= H ( 2i:zi+2 )

icznz, 2o T Fo(i+2)

where the function

is homogeneous and PSL.(C)-invariant by the remarks in § 7.1. It can therefore be written
as a product of cross-ratios and is a well-defined function on 9y 5. Now ordp o*(ws,5) =
ordgy,.. k} ws,s = 0, since the divisor given by the stable partition {1, ..., k}U{k+1,...,n}
is Dy, = {ugn, = 0}, and we know by Lemma 7.1 that wg s has no zeros or poles at finite
distance. Therefore

(7.14) ordp ws,s = —ordp f,
and it suffices to compute the zeros and poles of f. Recall from Corollary 2.36 that

(2i — 21) (25 — 21)
(zi — 21) (25 — 21)

ordp - %[HD(i,k) +Ip0,0) = Ip(,0) — Ip(, k)]

We deduce that
1 .. . .
wof=5 ¥ (100, +2) = In(o (i), 06+ 2))).

But {o(i),o(i + 2)} C S'ifand only if {é,i + 2} C {1,...,k}. The number of such pairs
is exactly k — 2. Likewise, the number of 4 such that {o(i),0(i +2)} C S%isn —k —2. It
follows that the second quantity in the sum directly above is n — 4 = ¢ — 1. This completes
the proof on substituting into (7.14). O

We immediately deduce the following formula for the order of vanishing of an arbitrary form
along any divisor D C Mg s\My 5. Let

Qg4
f= H uij]’ QG5 € Z.
{i,j}€xs,s

COROLLARY 7.6. — Let D and f be as above. Then

20rdp fwss = » aij[Ip(i,j+1)+Ip(i+1,5) = Ip(i,j) — Ip(i + 1,5 + 1)]
{i,5}€xs,s

+(-1)— > Ip(i,i+2).

i€Z/nZ
Proof. — This follows immediately from the additivity of ordp and the fact that
2ordpu;; = 2ordplii+1|j+14] = Ip(,j+1) +Ip(i+1,5) = Ip(i,5) = Ip(i+ 1,5 +1).
O
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Note that along each divisor at finite distance D;; = {u;; = 0}, where {¢,j} € xs,5, We
clearly have ordp(f) = «;. In total, there are as many boundary divisors D € ﬁo,s as
there are partitions of S into two sets, each containing at least two elements. These number
2n=1 — n — 1, but there are only n(n — 3)/2 parameters «;;, which implies that there are
many relations between the quantities ordp f, for varying D. The following lemma gives an
alternative approach for computing the orders of functions along divisors.

LEMMA 7.7. — Let D be the divisor of Mo s\Mo,s corresponding to a stable partition
S1U Sy = S. For each two-element subset T = {s;,s;} C S1, let Dy denote the divisor given
by the partition T and its complement S\T'. Then for any function f € Q(My s),

(7.15) ordpf= Y ordp,f.

TCSy,|T|=2

Proof. — It suffices to verify the formula for the function f = wu;;, where {3, j} € xs.s,
since it is compatible with products. By Corollary 2.36,

d -1 if 4,5 €5, and i+ 1,j+1€ 5,
ordp u;; = :
’ 1 if 4,j+1€8 and i+1,5€So,

and is 0 otherwise. One can check that the identity holds for two-element subsets of
S1n{i,i+1, j, j+1}, from which it follows in general. For example, if SyN{i,i+1,j,j+1} =
{#,71+ 1,7 + 1}, then ord pu;; = 0 and this is equal to

ordDU’iH}uij + ordD{i‘jH}uij + ordD{iH’j“}uij =0+1-1.

7.4. Singularities of the Kontsevich multiple zeta value forms

There is a special set of /-forms on 9y s corresponding to the iterated integral represen-
tations of multiple zeta values due to Kontsevich. Let n > 5. We apply the previous proposi-
tion to compute the divisor of singularities of each such form and retrieve one of the results
of [27]. Let € = (€1, ..., €) Where €1, ..., ¢, € {0,1}. We define

(7.16) v =3-2¢€{1,3}, forl<i<,
and set
-1
(7.17) Qe)=1[5n[32] [2n[13]" J][i+5 vili+3 2] wss.
i=1
The term in the product corresponding to ¢ = £ — 1 requires explanation. We define

[n+17._1/n—12] =[13|n—1 2]if y,—1 = 3, and define it to be 1 if v,_; = 1. We can write
this expression in explicit simplicial coordinates (2.3) by setting z; = 1, z5 = oo and z3 = 0.
If we define ¢t 1 = 1, one can verify using (7.2) that

0—1 4
(7.18) Qle) = % (tetf 1) ¢ 1:[1 (%) ws,s = /_\1 eid}ti'
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Let X = {zo, z1} be an alphabet with two letters as considered in § 5.5. Assume thate; = 1
and ¢, = 0, and define a word w =z, ... 2., € xoX*z;. Letr. = Zle ¢;. It follows from
(2.38) and a well-known formula for {(w) that

)4

(7.19) /XS“s U = /0<t1<-~~<te<1 z/\

=1

T = (1)),

éi—ti

The integral converges if and only if e; = 1 and ¢, = 0. It follows that every multiple zeta
value of weight ¢ occurs as a relative period of g 43 (R) [27].

LEMMA 7.8. — Let € = (€1,...,€) withe; € {0,1} forall 1 < i < (. Then

4
20rdp Qe) =L —1+ Y [Ip(2,%) —Ip(i+3,%)] = >_Ip(2,k) — Ip(1,3),
i=1 k#£2

where v; € {1, 3} is defined in (7.16).

Proof. — First we assume that e, = 0, and therefore v, = 3. It follows from (7.17) that

-1
20rdp Qe) = > Ip(i+3,i+5)+1p(2,7) —Ip(2,i+5) — Ip(i + 3,7)
=1
(7.20) +1p(3,5) +Ip(2,n) —Ip(2,5) — Ip(3,n) + ordp ws,s,

and the formula stated above follows on substituting the expression for ordp wg s given in
Proposition 7.5. In the case where ¢, = 1, v, = 1, a similar formula for (e) holds except
that one must multiply by an extra cross-ratio [2n|1 3]. This contributes

Ip(2,1) = Ip(n,1) — (Ip(2,3) — Ip(n,3))

in the expression above, and this is precisely what is required for the formula to hold in this
case also. O

LetD C ﬁ(), s\PMo s be the divisor corresponding to a stable partition S; US> of S. Then,
up to permuting the sets S; and Sz, D is one of the following four types, where A U B is a
partition of {sq4, ..., sp}:

1. Sl :{81,82,83}UA, SQZB.

2. Sl :{81,83}UA, SQZ{SQ}UB

3. S1 :{81,52}UA, 522{33}UB.

4. Sl :{82,83}UA, 52:{81}UB

COROLLARY 7.9. — Let Ag = AN {s;13 forl < i < Lsuchthate; = 0}, A = A\ Ay,
and define By, By, similarly. Then, according to each of the cases above,
|B| —2 ifDisasincase (1),
-1 if Disasincase (2),
|Bi| =1 ifDisasincase(3),
|Bo| —1 if Disasincase (4).

ordp Q(e) =

4¢ SERIE — TOME 42 — 2009 — N° 3



MULTIPLE ZETA VALUES AND PERIODS OF MODULI SPACES My, ,, 471

Proof. — In case (1), the formula stated in the previous lemma gives, term by term,
20rdp(Qe)) =L —1+C— |A| — (|JA| +2) — 1,
and the formula follows, since £ = |A| + | B|. In case (2), it gives
20rdp(Qe)) =€ —1+0—|A|— |B|—-1=-2.

In case (3), we have S1 = {s1, 82} U Ag U Ay and So = {s3} U By U By. The formula in the
previous lemma gives, term by term:

20rdp(Qe)) = £ — 1+ (|As] + [B1]) = (|Bol + [As]) = (1 + [Ao| + [A1]) = O,

but since £ = |Ag| + |A1| + |Bo| + |B1], this is just 2| B; | — 2, as required. The formula for
case (4) follows by symmetry. O

Incase (1), we must have | Sz| = |B| > 2, otherwise the partition S; US5 is not stable, so no
singularity ever occurs along such a divisor. It follows that the divisors of singularities of Q(¢)
are precisely those divisors of type (2), and those of type (3) (resp. (4)) for which B, (resp.
By) is empty. Let usset s; = 1, s = 00, and s3 = 0, as usual. Then the divisors of type (2)
correspond to the divisors which are called ‘type co” in[27]. The divisors of type (3) for which
there is a pole are partitions of the form {1, 00} U A and {0} U B, where B = By and hence
B C {si+3: € = 0}. These are exactly the divisors of ‘type 0’ according to [27]. Similarly,
our type (4) above corresponds to ‘type 1 and the previous result implies Proposition 3.1 of
[27]. Note that the above proof only uses the action of the symmetric group and does not use
any blow-ups.

7.5. Generalised products and the double shuffle relations

In § 2.10 we considered non-degenerate coordinate systems

k k
f= HfTi :My,s — Hfmo,Ti,

i=1 i=1
where the sets T; cover S and the dimensions satisfy (2.49). Since 9, , is affine of algebraic
dimension |T;| — 3, the Kiinneth formula gives an isomorphism

k

k
® HIT=3(0m ) = Hlsl*g(H Mo, )-

=1 =1
We deduce the existence of a multiplication map for forms:

k
(7.21) Fr o QHTI (90 1) — HISI73 (9 5).

=1
This in turn gives a product formula for period integrals on the spaces M g. If S has dihedral
structure ¢, then it induces dihedral structures §; on T;. Recall that the fundamental domains
15, Xr1,.5 and X 5 are related by the set G; defined in (2.50) via the formula (2.51).

COROLLARY 7.10. — Let w; € H'Ti‘_?’(mo,Ti),for 1<i<k Then

k
M) w-% [ rwe-suw.
i=1"XT;.8;

YEGy X5,y
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It follows that a product of period integrals on real moduli spaces is itself a period of real
moduli spaces.

REMARK 7.11. — We know that f extends to give a map zmg{ s — [1, imngi. The pre-
vious corollary therefore implies the following multiplication formula for the framed mixed
Tate motives defined in § 7.2:

k
(7.22) Q) mr, s, (wi) = @ msy(f w1 @ @wr)).
=1

’YEGf

We can apply the product formula above to the set of multiple zeta forms (¢) defined in
§7.4. Asin § 5.5, let X denote an alphabet with two letters {z¢, z1}. Letw =z, ...z, and
w' =z, ...z, denote two words in o X *x1, where ¢; € {0,1}, such thate; = €41 =1
and €,, = €, = 0. Let us write e = (€1,...,€y,) and € = (p41, .. -, €7). Recall the simplicial
product map defined in §2.10:

ma moﬁ — 9)1()751 X 93?0,52,

where S = {81, 82,0y Sm+3} and Sy = {81, 82,83, Sm44y-- - Sn} We deduce that
[ oo e [ m@esae).
Xsy,61 Xs55,69 YEGm 5 Xs,y

Recall from § 2.7 that G, , is the set of (m, {—m)-shuffles, and that, in simplicial coordinates,
X, 1s the unit simplex. We therefore deduce that

Lt

m
dt;
X
0<ti<<tm<l j_y € Tt Jo<tppr<o<te<l Uy 6 T b

Loat

- / € —t;
€6 (m f—m) ” O<to() < <to<l =1 ** —

)

which, by (7.19), gives the shuffle product formula:
(723) C(w) C(’LU/) = Z C(xa(eg)xa(q,l) s xd(q)) = ((wmw’)

ceS(m,l—m)
Now let us see what happens in the case of the cubical product map (2.54):
mp : Mo s — Mo,5, X Mo, s,,

where S7 = {s2,83,...,Sm+a and So = {Sm44, ..., 8n, $1, S2, s3}. We deduce that

[ o0 f e@r=[ mieeee),

So,89 S,8
since in this case G, is the single element {¢}. In cubical coordinates, each fundamental
cell is a hypercube, and thus we obtain the formula:

7.24 Qe(e Q(€) = Qc(e) Q(€),
(7.24) /W © /[o,l]e-m () /H (6) Qu(€))
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where

Nod(z ... xy)
7.25 Qc(eryeoyem) = [\ —————=—.
( ) (61 ¢ ) i:/\lei—:vi...xg
One can write the product €. (e) Q. (€’) as a sum of terms Q.(¢”) either using an identity due
to Cartier (see [55]) or using a power series expansion due to Goncharov ([24], Lemma 9.6).
We use the latter approach. Let n; = (1,0,...,0) denote a 1 followed by a sequence ¢ — 1
zeros. Then

Qe(ery e osem) = QLe(Mnyy - sMn,) = Z Y ykrdey L dyy,
0<ky < <ky

Iy N
where y1 = Z1...Znys Y2 = Tpytl---Tngsees Yr = Tp,4+1--.Lm. Expanding Q.(¢') in a
similar way, we obtain

ko
Qe(e)Q(€) = Z Y yk Z Yo yPdry .. day
0<ks < <hy 0<kp 1< <k
= Z Z yfl...yftdajl...d:cg: Z Qc(o(e,€)),
€S m o m Ox (K1, k) €S t—m

where %, ;—, is the set of stuffles in the stuffle product for quasi-symmetric power series
[35], and o4 (k1, ..., k¢) is the corresponding domain of summation. Substituting this into
(7.24), we deduce the stufile product formula (see [51]):

(7.26) C(w)(w') = ((wrw').

Note, however, that the variables x1, ...,z in the expressions Q.(o (¢, €')) above can ap-
pear in the ‘wrong order’. Thus (7.26) is proved after allowing permutations of the variables
z1,...,%s, Which clearly preserves the unit cube [0, 1]”, and does not affect the integrals. The
map which permutes the set of cubical coordinates z1, ..., zy, however, does not preserve
the boundary components of the moduli space 9t ,, starting from n > 6.

REMARK 7.12. — This approach can be used to derive any number of elementary prod-
ucts between multiple zeta values. To make such a product explicit, one needs to fix a rule for
decomposing a product of ¢-forms into a sum of /—forms of a preferred type (for example,
Q(e) or Q.(g) in the above examples). The motivic origin of such a product formula fol-
lows immediately from Remark 7.11 above (note that this does not quite suffice to prove the
motivic nature of the classical stuffle product (7.26) due to complications coming from the
permutation of cubical coordinates). We see by looking at the sets G, and Gy, . , that the
shuffle and stuffle product formulae are extreme cases of a range of intermediary product for-
mulae, obtained by shuffling together two subsets of {s3, ..., sy} relative to s; = 1, s3 = o0,
and s3 = 0. Such modular products will be studied elsewhere.
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7.6. Product formulae for integrals of generalised polylogarithms

More generally, we can apply the product formulae to convergent iterated integrals
of functions of arbitrary weight, rather than just regular algebraic forms. If f is a non-
degenerate coordinate system (§2.10), there is a commutative diagram

" QL1 B@Mor) — B(Mos)
R R
®iz1 L% (Mo,z,) — L™ (Mo ),
where f* is a map of differential graded algebras. The vertices v, vy, . .., vx are chosen such
that f(v) = (v1,...,v%) € Hle smgT The vertical maps are given by canonical regularisa-
tion maps py_s, pu;,; defined in § 6.7. Since each B(9My 1) is differentially simple, and since
the map f7, is non-zero for each 1 < i < £k, it follows that f* is injective. The horizontal
map along the bottom is given by composition and multiplication of functions:

(P1,.--sPK) = D1O fr, X - X pro fr,.

In the same way as § 7.5, we deduce the product formula:

(7.27) f[l /X o m=X /X [[o: o fn.

V€Gy Sy =1
where we suppose that all integrals are convergent. In this way, we can obtain product for-
mulae for generalised period integrals (integrals of polylogarithms).
In § 6.6 we defined an action of the dihedral group of symmetries on the space of functions
L% (9My,5). We therefore have the following formula for any function f € L?®(9M s) such
that the integral converges:

(7.28) /7 f=1 of forall o € Do,.
Xs,6 Xs,6

If we combine dihedral symmetries with such product formulae, we have much freedom for
manipulating integrals of generalised polylogarithms over X g 5. In particular, we can replace
a period integral over any given face of the Stasheff polytope X g5 with one over a face of
fixed combinatorial type.

LEMMA 7.13. — Let Fy C 90X g5 denote a fixed face of the Stasheff polytope X g5 which
corresponds to a short chord {i,i + 1} in the n-gon (S, ). Given any other face F C 80X g5,

and any form w € Q1L (F), there exists another form o' € Qz_lLfSZ‘FO (Fy) such that

F Fy

where the weight of w is less than or equal to the weight of w'.

Proof. — By using a product (7.27) we can replace the integral of w over
F = Yk,(;l X anfk,@ with an integral over a face of afs,(; of combinatorial type

X n—1,s. Since the group of dihedral symmetries Ds,, acts transitively on the set of all such
faces, we can replace this with an integral over the face F by applying (7.28). O
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7.7. Examples of period integrals in small dimensions

First of all, consider the case SDT(‘,S’ g(R), where S = {s1,..., s5}, with the obvious dihedral
structure which we denote §. We shall work in cubical coordinates (z1, z3), which we write
(z,y). The set of chords xg,s is {13, 24, 35,41, 52}, and the dihedral coordinates are
l1—=z 1-y

Uq1

(7.29) uiz=1—2y, uy=2z, uzgs=-—"—, = )
1—zy 1—2ay

Us2 =Y.

The domain X g 5 is bounded by the five sets of equations u;; = 0, uj41 41 = ©j—1j-1 = 1
for each pair {3, j} € xs,s, and these form the sides of a pentagon whose interior is Xg . In
all, there are ten stable partitions of the set {sq, ..., s5}, which means that there are another
five divisors at infinity given by the five equations u;; = 00, u;—2—2 = Ujt2j+2 = 0, where
{i,7} € S. These too form a pentagon.

The volume form wg s = dlog u1z Adloguss = (1—zy)~*dzdy, and every period integral
on Y&g is a sum of integrals

) — @13 , Q24 , 35 , Q41 , Q52
IXS,E(al])_/ Upg” Ugq Uzg™ Uyy Use™ WS4
Xs,5

which in cubical coordinates is just
1 1,k i,k j
1-— 1—y)? dzd
Is(h,i, 4, k,1) =/ / 2 -2y L —y) dedy
o Jo (1 — wy)i+i=t 1—zy

where we have set aoy = h, azs = i, g1 = j, asa = k, ayz = [. This exactly coincides
with the family of integrals first defined by Dixon, and studied by Rhin and Viola [47, 17].
The dihedral group D4 preserves the integral and permutes the indices {h, i, j, k,1}. It is
generated by a cyclic rotation of order five 75, and a reflection of order two o5, where

1-—
m(ey) = (L-ay, 7). os(ey) = (u2),

REMARK 7.14. — By combining the action of the dihedral symmetry group D5 on M ¢
and the product formula for integrals on Mt 4 x M 5 one can deduce the ‘hypergeometric
transformation formula’ for the integrals above. This remarkable identity was discovered by
Dixon in 1905, and was exploited by Rhin and Viola to obtain the best irrationality measures

for {(2) known to date. It is:
1 1
7.30 —1I(h,i,7,k,1) = I(hyi,k+1—14,9+75—11).
( ) ]‘k' ( ’17]7 7) (k+l_z)'(l+j_l)' ( 77’7 + ’L,Z+_] 7)
Before proving this identity, first observe that the real period integral Is on 9 4 is the
following beta integral:

. ! o o B a13! agy!
(7.31) Iy(an3, a2q) —/0 (1 — z)*3dx = m €Q.
Now consider the case Mg ¢. In cubical coordinates (z,y, z) = (z1, 2, x3) we have:
l1-z (1—zyz)(1-y) 1-2
u1z3 = 1 —xyz, ugq = T, uzs = m, Uge = m7 Us1 = 1—vz’ Ue2 = 2,
(732) O i I s
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Let h,i,j,k,l,m,r, s,t be any nine non-negative integers. Let Is(h,4,j,k,I,m; r,s,t) de-
note the period integral of weight three on 9%, ¢ which is therefore given by

tortrd (1 —z)iyt(1 — y)T2H(1 — 2)k dxdydz
(7.33) /0 /O /0 (

T—ay) i (1—y2)i T (1—ayz)+> ™ (1—ay)(1—-y2)

The dihedral group of symmetries D5 for Mg ¢ is generated by a cyclic permutation we
denote 7 = (hij klm)(r st), and the reflection o = (h1)(i k)(r s). In the degenerate case
wherer + s = j+mand r = ¢ + j + 1, the terms (1 — zy) and (1 — zyz) vanish in the
integrand and (7.33) splits as a product I4(h,4) Is(l, k, j,t,s). This is precisely a cubical
product. Similarly, if the terms (1 — yz) and (1 — xyz) vanish, then we obtain a different
splitting of the integral.

Proof of (7.30). Let h,1,j, k,l be non-negative integers. We can assume without loss of
generality that¢ < . Seta =k + 1 —i,and § =4 — [ — 1. Consider

I4(Ol,ﬂ)[5(h,7,,_],k,l) = Iﬁ(halajvﬂ,avl""ﬁ'i' 17 lv] +/B+ 17k)

We apply the cyclic permutation 74 and use the fact thata + 8+ 1=k, a+i =k + 1 to
obtain a different splitting. This gives

IG(]?/Baaal+ﬂ+17ha7’v kalv.7+/3+1) =I4(],/8)I5(h,l+ﬁ+1,0l,]+ﬂ+1,l)

Replacing the I, terms with factorials using (7.31), we obtain the identity (7.30).

These examples illustrate how many important identities between multiple zeta values and
Euler integrals can be proved by simple geometric considerations on moduli spaces Mg .
Kontsevich and Zagier have made the very general and ambitious conjecture that every iden-
tity between periods can be proved using three elementary operations on integrals: changes
of variables, the linearity of integration, and Stokes’ theorem. In our situation, we have an
infinite family of period integrals, but we have a fixed set of algebraic operations which we
can perform on these integrals (e.g., the action of dihedral symmetries and the multiplication
rules we defined above). It would be interesting to see which of the many known identities
between multiple zeta values can be proved by using just these operations.

8. Calculation of the periods of 90 ,,

We prove that the integral of a convergent algebraic ¢-form over an associahedron Xg 5
can be written as a linear combination of multiple zeta values of weight at most ¢. The key
to the argument is the interplay between logarithmic singularities (which are permitted), and
polar singularities (which are forbidden), along the boundaries of the associahedron X g 5.

8.1. Pole-free primitives

In order to apply Stokes’ theorem to the manifold with corners X g 5, we need to verify
that the algebra of generalised polylogarithms on smg g satisfies the required properties.
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First of all, it follows from the regularization results of § 6.7 that the coefficients of the
generating series of generalized polylogarithms L,, 5(z) have at most logarithmic singularities
along the boundary of the Stasheff polytope X g 5. This implies that

(8.1) LE(Mo5) CT(Xs,5, F%).

Theorem 6.26 tells us that primitives exist in L5Z (Mo, s). One difficulty, however, is that prim-
itives of n-forms on a manifold of dimension n are not unique, and we may inadvertently
introduce extra poles, which would give rise to divergent integrals. We show how to remove
these extra poles below. In order to do this, we define

(8.2) Ly (M) = LE(Mo.s) NT(X 5.5, F %)

to be the sub-algebra of polylogarithms on 91y ¢ which have at most logarithmic singular-
ities on the boundary faces of the Stasheff polytope X 55. Observe that every generalised
polylogarithm has a canonical branch on Xg s, and is therefore a well-defined, real-valued
function.

ProrosIiTION 8.1. — Let f € W’“QZL‘;},+(DJZO,S). There exists a pole-free primitive
Fe Wk-‘rl (Qe_1L52}+(93?0,5))

such that dF = f, which implies that the restriction of F to 8?5’5 is continuous. In other words,
the conditions of Theorem 4.11 hold.

Proof. — We know from Theorem 6.26 that LS (90 ) has trivial de Rham cohomology.
It follows that we can find a primitive G € Qe_lL‘sZ(D)IO,S) for f, of weight at most & + 1,
which may have polar singularities along 0X g 5.

In order to remove spurious poles in G, we work on a single chart of X g 5 at a time. There-
fore, let e € x‘é, s denote a partial decomposition of the n-gon (5, 4), and let a € XeS’(; be
a full triangulation which contains e. For every small ¢ > 0, recall that there is a chart
Ue(e) (see (4.2)), which has local (vertex) coordinates ¢, ..., zy, which are canonical up
to permutations. Recall that U.(¢) = U,, where p + ¢ = ¢ (§4). It contains the face
Fe = {u;; = 0: {i,j} € e}, and we can assume, by reordering the coordinates if neces-
sary, that F, = {z{ = --- = 7 = 0}. We remove polar singularities with respect to each
coordinate z¥, ..., zg in turn. First, there is a decomposition G = G, + G’, where G’ has at
most logarithmic singularities in z¢, and G, is the divergent part of G along {z§ = 0}:

G, = Z lc()gT)xbl 9a,b(T5, .., X7 ) Wap + Zlogc x$ he(zs, ..., z7)dzs ... dzF,
a>0,b>1 1 e>1
where gq5(2%,...,27), he(xs,...,27) € f;og(Up,q,l), and where w, j are any £ — 1 forms
Siaidzy ... c@ ...dx¢, where a; € R. By differentiating this expression, and using the
fact that dG = f hasno poles, it is easy to verify that dG, = 0 (in other words, poles can only
get worse on differentiating). Therefore dG’ = f, and so G’ is a primitive of f which has no
polesalong z§ = 0. Using the fact that LS (9 s) is closed under differentiation with respect
to z{*, and closed under taking regularised limits at ¥ = 0, for 1 < 4 < £ (Theorem 6.25),
one can easily check that G’ lies in L% (9 ), i.e., G' is still a generalised polylogarithm.
Repeating this argument for z,..., z7, in turn, we obtain a primitive of f with no poles on
the local chart U, (¢). The whole argument can then be repeated on each local chart of Xg 5,
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and we end up with a primitive F' of f which has no poles anywhere along 0X s 5. This is
because, whenever we remove a polar singularity along the divisor D;;, {i,5} € xs,6, nO
new poles are created along any other boundary component Dy, where {k,l} € xs.s, and
the total weight is not increased. This proves the proposition. The fact that the restriction
of F' to each component of the boundary is continuous follows from Lemma 4.10. O

In §8.3 we show how to construct canonical primitives which are automatically free of
poles along 0X s 5.

8.2. Proof of the main theorem

Let S denote a set of order n = ¢ + 3 with a fixed dihedral structure §.

THEOREM 8.2. — For all sets of indices a;; > 0,

Is’g(aij) = /7 H UZ'MWS,S S WZZ
Xs.5 {i,7}€xs,s
Proof. — The proof is by induction and by repeated application of Stokes’ theorem
(Theorem 4.11). We write S = S,, = {s1, ..., s, }. First observe that the regular /-form
fo= J[ uiwsse WOQLL(My.s))
{i,5}€xs,5
has no poles on the compact set X g 5. Let us write
Si:{sl,...,si} for all 3§Z§’I’L,
and let §, denote the dihedral structure on S, C S induced by §. This is equivalent to choos-

ing a nested sequence of sub-faces of X 55 in its stratification. Let 0 < b < ¢, and suppose
by induction that there exists an £ — b form

fo € WHQITPLEY (Mo s, ),

which has no poles on X 5 such that

n—b76n—b’

Ts.s(a;) = / fo.

Xsnfb"snfb

By Proposition 8.1, there exists a primitive P € Qz_b_ngJ“(fmo,sn_b) of weight at most
b+ 1, which has no poles in st_b,(;n_b, and is continuous on the interior of X g
By the version of Stokes’ formula stated in Theorem 4.11,

Iss(ouj) = /7 fo= P.
Xs,_

b:0n—b X5, 48,y

n—bsOn—b"

By the geometry of the Stasheff polytopes (§ 2.2), we know that
0X S, 1600 = U Fij,
{4,5}€xs,,_4.60_p
where F;; = F;;(Xs, , 5, ,) is the face corresponding to the chord {i, j}, and therefore
(8.3) Is s(0u;) = > / P

.. F:
{i.5}Y€xs, 4.6,y 7
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Given a chord {i,j} € xs,_,.5,_,, there exists a partition of S,_, = Ty U T3 such that
Fij = X1 Uer: X XTou{e},s,» Where e corresponds to the chord {i, j} (Equation (2.39))
and 41, 02 are the induced dihedral structures. By Theorem 6.25, we have

P|F,-j € WbHQe*bfl(Lézl (Mo, 1,u{e}) ® L(sz2 (Mo, 10ge}))-

By Lemma 7.13, there exists g;; € WH1(Q¢=°=1L% (Mo 5, _,_,)) such that

/— P Fij - /X 9ij-
Sp_

X1yu{e}, 81 XX TpU{e} 6, b—1:8n_b_1

Thus each integral in the sum (8.3) can be written as an integral over the fixed face
X5, 1,600, by applying product formulae and using dihedral symmetries. Since
P|F,, is continuous with at most logarithmic singularities along 0Fj;, it follows that
9i; € Qé_b_l(LgJr (Mo,s,_,_,))- Taking the sum over all {7,5} € xs in (8.3),
we obtain a form f,,, € WoHH(QE-P-1L%T (9 g )) such that

n—b—1,0n—b—1

n—b—1

Iss(ij) = L Jos1-
Xs

n—b—19n—-b—1
This completes the induction step. At the final stage of the induction, we deduce that Ig s
is given by evaluating a multiple polylogarithm in one variable in W*L% (90 4) at a single
point. We conclude (see § 5.5) that Is s(cv;;) € W*Z. O

Note that it is not strictly necessary in the course of the above proof to use the product for-
mula (Lemma 7.13). This replaces the sum of a product of integrals with a single integral at
each stage, and only serves to simplify notations. Lemma 7.4 implies the following result.

COROLLARY 8.3. — Every relative period integral over a union of cells Xg 5, can be written
as a linear combination of multiple zeta values of weight at most dim 9y s(R).

8.3. Canonical primitives - an algorithmic approach

The existence of primitives uses the fact that 91, s is a fibre-type hyperplane arrangement.
By exploiting the hyperlogarithm fibration, we can find canonical primitives, as in Remark
3.42, which have no spurious poles. This gives rise to a simplified series of integrals occurring
in the proof of Theorem 8.2 above, and yields an effective algorithm for computing period
integrals on M s algebraically.

Let fe WPQLYT (Mo ). Working in cubical coordinates, we can write
f=g(x1,...,x¢)dx;y ...dxs, where g € L%Jr(?)ﬁms) is of weight at most b. Recall that by
Remark 3.42, there exists a primitive F' € W*T1Qf~1 L (9, 5) such that

F = G(CIZ]_, oo ,(I,'g) d$1 .o .d.Z‘g_l,

where G /0xy = g. More concretely, let S = {s1,...,s,}and let S’ = {ss,..., s, }. Recall
from § 6.7 that the hyperlogarithm fibration given by projection onto z, = 0:

Mo,s — Mo, s/,
gives rise to a decomposition of filtered algebras

LY (My,5) = Lo, ., (PI\%) Qo(m, ¢) LY (Mo, ),
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where ¥ = {0,1,2,",,...,(z1...2¢—1)"*} asin § 5.4, and ¢’ is the induced dihedral struc-
ture on S’. We can therefore write the function g as a finite sum of products

9(x1,..., ) = Zai(l‘z) bi(21,.- -, 20-1),

3

where each b; € L‘SZ/ (Mo, s/) is a function of £ — 1 variables z1, ..., x,—; only, and each a;,
considered as a function of the single variable z,, is a hyperlogarithm with singularities in
> U co. We can assume that the a; are linearly independent. The weight of each product of
a;(ze) and b;(z1,...,ze—1) is at most b. Now by Proposition 3.22, each function a;(z,) has
a primitive (with respect to the variable x,) which we denote

A;i(zy) € Lfmo,s' (Pl\z)’

which is of weight at most one more than the weight of a;(z,). We can choose the constant
of integration in such a way that A;(z,) either vanishes at 0, or is log® (z,) for some k > 1
(see § 5.2). In the latter case, a;(z,), and hence g(z1, ..., z,) would have a pole at the origin,
so this cannot occur (this is precisely the argument in the proof of Lemma 4.10). It follows
that the function

F = ZAi(mg) bi(xly . .,:Eg_l)d.%'l . ..d:l?g_l

is a primitive of f, and is identically zero on all faces of X g 5 except the single face given
by z, = 1. The primitive F' has no poles since this would contradict the convergence of the
integral by Lemma 4.9. It is therefore continuous on the interior of this face, and we can
apply Stokes’ theorem directly. This approach to the induction step in the proof of the main
theorem has the advantage that it does not involve any regularisation, or having to apply a
product formula (Lemma 7.13).

8.4. Taylor expansions of Selberg integrals and multi-beta functions

The method of proof of Theorem 8.2 works much more generally, and enables us to com-
pute integrals of arbitrary generalised polylogarithms on 9, g, which are allowed logarith-
mic singularities along the boundary of the domain of integration.

THEOREM 8.4. — Let f € W’“L;Jr (Mo,s) denote a generalised polylogarithm on My s of
weight at most k, which has no poles along 8X g 5. Then
I(f) = fwss e WHkZ,

Xs,s

The proof is identical to the proof of Theorem 8.2. Note that the integrand is always well-
defined on the real domain Xg s at each stage of the induction. If we apply this theorem in
the case where f is an O (g g)-linear combination of products of powers of logarithms, then
we deduce the following corollary.

COROLLARY 8.5. — Let {s;;} denote a set of complex parameters. It follows from the calcu-
lations in § 4 that the following integral, viewed as a function of the variables s;;, is holomorphic
in the region Re s;; > —1:

(8.4) Bs.s({s5}) = /X [ uwss

S0 {i,j}exs,s
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The coefficients of its Taylor expansion (with respect to the variables s;;) at any integral point
sij € Z, where s;; > 0 for all {i,j} € xg,s, are multiple zeta values.

Similar kinds of results have been obtained by Terasoma [49]. The integral (8.4) defines a
multi-beta function, since in the case M 4 it reduces to the ordinary beta function. It satis-
fies many functional identities coming from the dihedral relations (2.10), the product maps
(7.27), and also the action of the dihedral symmetry group, and would merit further study.

8.5. Computation of relative periods of the moduli spaces 90y 5

Let A, B denote two sets of divisors in 9%y s\Mo s which do not share any irreducible
components (§ 7.2), and consider a period integral of the form (7.12), whose integrand is an
algebraic ¢-form on M s\ A defined over Q. We sketch a proof of the following theorem
in this case. Using hypercohomological methods, one should be able to deduce with a little
extra work that all the periods of H¢(90% s\ A, B\B N A), for any A, B, are expressible in
terms of multiple zeta values and 2i.

THEOREM 8.6. — Any such period of H* (Mg s\ A, B\B N A) is a Q-linear combination of
multiple zeta values and the constant 2iw, of total weight at most ¢.

Let Ap C My 5(C) denote any real smooth compact submanifold with corners of dimen-
sion £, whose boundary is contained in the set of complex points of B. Letw € Qf(9%y s\ A)
be an algebraic ¢-form as above. We can assume that A g is disjoint from A, and that Ap is
stratified by B according to (7.11). Let A be a union of distinct divisors A;, for 1 < ¢ < N.

By decomposing the relative homology class [Ap] € H,(9Mo s\ A, B\B N A) into differ-
ent pieces, we can first consider the case when A does not wind non-trivially around any
component A; of A. In this case, write X = Ap, and observe that the argument given in
§ 8.2 goes through as before. In other words, we can take primitives in the algebra of poly-
logarithms L% (9 5), and repeatedly apply Stokes’ formula (Theorem 4.11) to the manifold
with corners X, and proceed by induction. Note that, although X is not necessarily simply-
connected, the argument goes through as long as the functions we integrate remain single-
valued along X . Since X does not wind around A, we can ensure that this is the case. This

proves that
/ weWZ.
X

In the case when Ap winds around some component of A, we apply a residue formula
and induction. To make this precise, let A7 = | J;; A; forall 1 <4 < ¢, and consider the
residue map

N
H*(MMo,s\A, B\BN A) — P H 7 (A;\(Ai N A5), (BN A)\(B N A; N AS)),
=1
and its dual map
N
Hy(Mo,5\A, B\B N A) «— @D Hy_1(A\(A; N AS), (BN A)\(B N A; N AY)).
i=1
Suppose  that [Apg] € Hy(9Mps\A,B\BNA) is the image of a class
Y] € Hp1(AN\(A; N AS), (B N A)\(B N A; N AS)), for some 1 < i < N, where

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



482 F. C. S. BROWN

Y C A;\(A; N AS) is a smooth compact submanifold with corners of dimension £ — 1, i.e.,
a tubular neighbourhood of A;. By taking the residue along A;, we get:

/ wzQiW/Resw
Ap Y A

The corresponding period is therefore 2mi times a period of Hy_1(A4;\(4; N AS),
(BN A)\(B N A; N A%)). Since A4; is itself isomorphic to a product of moduli spaces,
we can repeat the argument inductively. We conclude that, in all cases,

/ w € W*Z2in],
Ap

i

where Z[2¢n] has the natural filtration which gives 2¢m weight 1.

8.6. Some simple examples

In the following examples, it is convenient to work in cubical coordinates z1, ..., xy. At
each stage we take canonical primitives (as described in § 8.3) with respect to x; or x,. This
is because the projection maps onto z; = 0 or xy = 0 are fibrations (§ 2.4), and so we can use
the method of partial fractions to find primitives. At each stage, one can re-confirm (using
dihedral coordinates) that the primitives have no poles along the boundary of the domain of
integration X g 5. First, assume |S| = 5, thatis S = {s1,..., s5}. We compute

Yot dedy
Il = |  Wss= .
Xs.s 0o Jo 1—=y

Following §8.3, we take the primitive of wg s with respect to the variable y. This is

d
F=—log(1-xy)
x
which vanishes at y =0 as required. In dihedral coordinates (7.29), this is
F = —logui3 dlog usys, which has no poles at finite distance. Then
L wgs = Z / —loguis dlog uay.
Xs.s {i,j}€xs,s Dij

The only face on which the form does not vanish is the face D14 which is defined by u14 = 0,
ugs = ugs = 1, which implies that u15 = 1 — ugy4 by (2.10). We obtain

! dx
[ wss = — log(l — $)7
Xs,s 0 z

Notice that the form log(1 — ) dz/x is continuous on the interval [0, 1) but has a logarithmic
singularity at z = 1. It has a unique primitive which vanishes at 0, namely Lis(z), which is
now bounded at z = 1 by Lemma 4.10. We conclude that

(8.5) I = /X ws,s = [Lia(x)}; = ((2).

S,8

Now let |S| = 6. Consider the following integral on 9 ¢:
I / dtl dtg dtg / dzr dy dz / Urnw
= _— = = S,(S'
? 0<ti<ta<ts<1 L —t1 T2 t3 —t 0,1 (1 —zyz)(1 —zy) Xs.s H
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The last formula shows that I converges. Working in cubical coordinates, we have

I _/ [—log(l—xyz)}l dz dy _/ —log(1l — zy) dxdy
2 [0,1]2 xy 0l—=xy [0,1]2 xy 1—zy’

Using partial fractions with respect to the variable y,

I _/ —log(1 —wzy) log(1— zy)
2 [0,1]2 Ty 1— Ty

"1 1 L
dxdy = / - [Lig(xy) + ~log?(1 — zy)| da.
0o % 2

0

We conclude that

1r; 201 _ g
(8.6) IQZ/O Ll"’x(m)ﬂog (;x ) o — [Li3(x)+Li1,2(x)E:C(3)+C(1,2).

At each stage one can verify that the canonical primitives we have used above do not intro-
duce any new poles along the boundary of the associahedron X g 5. For example, the first
primitive can be written using (7.32):

—log(1 — dzd 1
8.7) og(l — zyz) dzdy _ og(u13) ws.s,
Ty 1—xy U24U25

where ws 5 = (1—zy) ™" dx dy is the pull-back of the canonical 2-form on Dag C M 5 along
the map (z,y,2) — (z,y) : Moe — Mo,5. It has no poles at finite distance by definition
(Lemma 7.1). Furthermore, we know by (2.10) that 1 — w13 = ugquss5uss, sO (8.7) has no
poles along X g 5 as required.
We give one final example for 90t 7, where the calculation is given entirely in cubical co-
ordinates, and is still sufficiently simple to be checked by hand. Consider
I / z(1—2)y(1 —y)z(1 — 2)w(l — w)
’ [0,1]4 (1 - zyzw)?

dxdydzdw.

After integration with respect to w, we have

(1-2)(1- )1 -2) |
I3 = /[071]3 (@y2)? [ —2zyz + (2 — zyz2) Lll(xyz)} drdydz.

A further integration with respect to z gives

(-0 -y | |
Is = \/[071]2 W |:5 Ty — (3 — 3-’13y) L11(:1:y) - (2 + xy)ng(xy)} dxdy.

At the following stage, one obtains:

I3 = / (1 _2”7) { — 162 + (9 — 92) Liy (z) + (5 4 42)Lig(z) + (2 — :v)Lig(af)]dw-
[0,1]

T

Finally, this gives:
I3 = 55 —30¢(2) — 2¢(3) — 3¢(4).

REMARK 8.7. — It would be interesting to determine the values of the simplest possible

integrals
/ ws,s
Xs,s

explicitly in terms of multiple zeta values, for all n = |S].
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9. Appendix

Let M be the complement of an affine hyperplane configuration, as defined in § 3, and
let F' denote its ring of regular functions. In the case where the de Rham cohomology ring
H*(F) only has quadratic relations, we can prove directly that all higher cohomology groups
of B(F') vanish.

THEOREM 9.1. — Let F be the ring of regular functions on an affine hyperplane arrange-
ment M such that H*(F) is a quadratic algebra. Then

HOR(B(F)) =k, and Hjgr(B(F))=0 foralli> 1.
Proof. — Let A C Q*(F) denote the algebra generated by the 1-forms
wi,...,wy € HY(F), where w; = dloga; as defined in §3.2. Let Vi(F) = EBZJL kw;.
Let T denote the free tensor algebra over V;. We can view A as a quotient algebra of T' of

the form A = T/TQT, where @ consists of finitely many quadratic relations ¢, ..., g of
the form

©.1) =) Mw®w; for1 <1<t
,J

Now recall that Q*(B(F)) = Q*(F) ® @0 Vin (F). The weight filtration on Q*(B(F)),
defined by W,,,Q'B(F) = Q'(F) ® Pj_, V;(F), gives rise to a spectral sequence with E
terms
EfU(B(F) = QPH(F) ® V,(F),
which is bounded below and exhaustive, and therefore converges to the cohomology of B(F').
Consider the differential subalgebra A(F) = A®@D,,>¢ Vin (F) of @*(B(F')). It also defines
a spectral sequence with E; terms -
EPU(A(F)) = HP™(A) @ Vo (F) = HPTU(F) ® V,(F) = EY(B(F)).

It follows that H*(B(F)) = H'(A(F)) for all i > 0, and it suffices to show that H*(A(F))
is trivial. Therefore consider an element

f= > S argwy A Awy w - wi, ] € A® Vo(F),
I=(i1,-.sim) J=(j1,---,5n)
such that df = 0. This implies that
ZO‘I’J“)J'I A Awj, Aw;, =0 forall ig,...,%5,.
i1,J
Because A is quadratic, this expression (viewed in the tensor algebra T') decomposes as a

sum of relations of the form w;q'w,, where wy,wy € T. If wy is of degree # 0 in T, the
corresponding relation is already zero in f. We deduce that f is a sum of terms

t
Z ZZAZ wri Aw; [wilwi, |- Jwi,,],

I=(iz,ecrsim) I=1 4,

where wr; € A. Each such expression has a primitive

t
S0 D wni N wilwslwi, |- Jws,, -

I=(i27~-vim) =1 4,
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This is integrable: it maps to 0 under A for k£ > 2, because f is integrable, and it maps to 0
under A; because of the quadratic relations (9.1). It follows that every element f € A(F)
of weight > 1 such that df = 0 has a primitive. It is easy to write down a primitive of any
element of weight 0. Thus H*(A(F)) = 0 for all i > 1, which completes the proof of the
theorem. O

10. Index of notations

We list the most frequently used notations, along with the section in which they are first
defined. The integers n = ¢ + 3, where £ > 0, are fixed.

Section 2
) A dihedral structure on a set S with n elements.
(PH? The set of n distinct points in the projective line.
Mo, s The moduli space of curves of genus 0 with points marked by S.
im(i s The dihedral extension of My 5.
Mo, s The full compactification of My, 5.
O (Mo, s) The ring of regular functions on Mo, 5.
X8,8 The set of all chords in the n-gon (S, ).
X5 The set of all partial k-triangulations of (S, 4).

{,7} ~x {k,1} The chords {3, j}, {k, !} € xs,s5 cross.
{usj : {4,7} € xs,s} The set of dihedral coordinates on My, s.

(z1,...,2¢) The set of cubical coordinates on My, 5.
(t1,...,te)  Theset of simplicial coordinates on Mo, 5.
(z%,...,z¢) The set of vertex coordinates corresponding to o € XZS,(;.
Xs,s The open associahedron Xg s C Mo, s(R).
Xs,s The closed associahedron X g5 C MM 5(R).
Fy; The face of X 55 corresponding to the chord {i, j} € xs.5.
F, The intersection of faces ﬂ{m}Ea F;; corresponding to o € xg’é.
fr The forgetful map fr : Mo,s — Mo, 7.
mQ The cubical multiplication map.
ma The simplicial multiplication map.

Section 3
A An alphabet.
Z(A) The free tensor algebra on A.
m The shuffle product.
A The coproduct on the shuffle algebra.
€ The counit on the shuffle algebra.
Oa, The operator acting by truncation on the left.
M = A®\ UY, H; The complement of an affine hyperplane arrangement.
Om The ring of regular functions on M.
B(On) = B(M) The reduced bar construction on M.
Bo,, (E) The relative bar construction on E with coefficients in Op,.
k{e1,...,e} The differential k—algebra of Laurent series in €1, . . . , €.
U{ei,..., e} The differential k-algebra of logarithmic Laurent series.
up(R, ) The category of unipotent pointed extensions of (R, ¢).
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ut(R,p)
R/R

UP »q
Vi,
Fan
flog
log
‘7:17

Cn71
Aij

QKZ
5”'

Qs,5

Bs,s
Bs,s

Lv,5
Lv,é(mo’s)

Pv,é

ws,s

Is s(auj)
ms,s(w)
Q(e)
L%(Mo,s)
L3 (Mo,s)

F. C. S. BROWN

The category of unipotent pointed extensions of (R, p), where p is a base point at infin-
ity.
The relative unipotent closure with respect to a one-dimensional fibration R — R.

Section 4

The open real complement of the coordinate hyperplanes in R” x RY .
The open complex complement of g coordinate hyperplanes in CP19,
The sheaf of analytic functions.

The sheaf of analytic functions with logarithmic singularities.

The sheaf of analytic functions with ordinary and logarithmic poles.

Section 5

A set of points {oo,...,on} C P'.
The ring of regular functions on P*\X.

Section 6

The configuration space of n — 1 distinct points in C.

Logarithmic 1-forms A;; = dlog(z; — z;) on (P')7.

Generators of the infinitesimal braid algebra, where 1 < ¢ < j < n.
The Knizhnik-Zamolodchikov 1-form on (P*)7.

Infinitesimal dihedral braid elements, indexed by {7, j} € xs,s.
Logarithmic 1-forms w;; = dlogu;;.

The canonical dihedral 1-form on M, s.

The dihedral braid algebra.

The completion of the dihedral braid algebra.

The set of vertices of the associahedron X s 5.

The generating series of polylogarithms on My, 5.

The Q(9Mo,s)-algebra of polylogarithms on Mg, s whose regularised value at the vertex
v € V? is zero.

The realisation isomorphism p,, s : B(Mo,5) — L% (Mo.s).

The ring Q[¢(2), ¢(3), . . . ] generated by all multiple zeta values.

Section 7

The canonical volume form on My, s (R).

The period integral over X s.

The framed mixed Tate motive defined by w.

The multiple zeta volume form.

The algebra of polylogarithms on 9t s with Z coefficients.
The subalgebra of polylogarithms with no poles along 0Xs,s.
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