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MULTIPLE ZETA VALUES AND PERIODS
OF MODULI SPACES M0,n

ʙʏ Fʀ�ɴ�ɪ� C. S. BROWN

Aʙ��ʀ���. – We prove a conjecture due to Goncharov and Manin which states that the periods
of the moduli spaces M0,n of Riemann spheres with n marked points are multiple zeta values. We
do this by introducing a differential algebra of multiple polylogarithms onM0,n and proving that it is
closed under the operation of taking primitives. The main idea is to apply a version of Stokes’ formula
iteratively to reduce each period integral to multiple zeta values.

We also give a geometric interpretation of the double shuffle relations, by showing that they are two
extreme cases of general product formulae for periods which arise by considering natural maps between
moduli spaces.

R�����. – Nous démontrons une conjecture de Goncharov et Manin qui prédit que les périodes
des espaces de modulesM0,n des courbes de genre 0 avec n points marqués sont des valeurs zêta mul-
tiples. Nous introduisons une algèbre différentielle de fonctions polylogarithmes multiples sur M0,n

dans laquelle il existe des primitives. L’idée principale est d’appliquer une version de la formule de
Stokes récursivement pour réduire chaque intégrale de périodes à une combinaison linéaire de valeurs
zêta multiples.

Nous donnons également une interprétation géométrique des double relations de mélange pour les
valeurs zêta multiples. En considérant des applications naturelles entre les espaces des modules, on
déduit des formules de produit générales entre leurs périodes. Les doubles relations de mélange s’ob-
tiennent comme deux cas particuliers de cette construction.

1. Introduction

Let n = � + 3 ≥ 4, and letM0,n denote the moduli space of curves of genus 0 with n

marked points. There is a smooth compactificationM0,n, defined by Deligne, Knudsen and
Mumford, such that the complement

M0,n\M0,n
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372 F. C. S. BROWN

is a normal crossing divisor. Let A, B ⊂ M0,n\M0,n denote two sets of boundary divisors
which share no irreducible components. In [27], Goncharov and Manin show that the relative
cohomology group

(1.1) H
�(M0,n\A, B\B ∩A)

defines a mixed Tate motive which is unramified over Z.
On the other hand, let n1, . . . , nr ∈ N, and suppose that nr ≥ 2. The multiple zeta value

ζ(n1, . . . , nr) is the real number defined by the convergent sum

(1.2) ζ(n1, . . . , nr) =
�

0<k1<···<kr

1

k
n1
1 . . . k

nr
r

.

Its weight is the quantity n1 + · · ·+ nr, and its depth is the number of indices r. We will say
that the period 2iπ has weight 1. A very general conjecture [25] claims that the periods of
any mixed Tate motive unramified over Z are multiple zeta values. In the case of the motives
(1.1) arising from moduli spaces, this says the following. Consider a real smooth compact
submanifold XB ⊂M0,n of dimension �, whose boundary is contained in B and which does
not meet A. It represents a class in H�(M0,n, B). Let ωA ∈ Ω�(M0,n\A) denote an algebraic
form with singularities contained in A. In [27], Goncharov and Manin conjectured that the
integral

(1.3) I =

�

XB

ωA

is a linear combination of multiple zeta values, and proved that every multiple zeta value can
occur as such a period integral. In this paper, we develop some general methods for comput-
ing periods and prove this conjecture as an application.

Tʜ��ʀ�� 1.1. – The integral I is a Q[2πi]-linear combination of multiple zeta values of
weight at most �.

This theorem thus lends weight to the conjecture on the periods of all mixed Tate motives
which are unramified over Z.

The rough idea of our method is as follows. The set of real pointsM0,n(R) is tesselated
by a number of open cells Xn which can naturally be identified with a Stasheff polytope, or
associahedron. First consider the case where the domain of integration in (1.3) is a single cell
Xn (this actually suffices for the version of the conjecture considered in [27]). The key is then
to apply a version of Stokes’ theorem to the closed polytope Xn ⊂M0,n(R). Since each face
of Xn is itself a product of associahedra Xa × Xb, we repeatedly take primitives to obtain
a cascade of integrals over associahedra of smaller and smaller dimension. In order to do
this, we need to construct a graded algebra L(M0,n) of multiple polylogarithm functions on
M0,n in which primitives exist. At each stage of the induction, the dimension of the domain
of integration decreases by one, and the weight of the integrand increases by one. At the final
stage, we evaluate a multiple polylogarithm at the point 1, and this gives a linear combination
of multiple zeta values. This gives an effective algorithm for computing such integrals. Our
approach also works in greater generality, and our results should extend without difficulty,
for example, to the case of configuration spaces related to other Coxeter groups.
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MULTIPLE ZETA VALUES AND PERIODS OF MODULI SPACES M0,n 373

1.1. General overview

This paper is essentially a study of the de Rham theory of the motivic fundamental group
ofM0,n. Previously, the focus has mainly been on the projective line minus roots of unity,
and in particularM0,4

∼= P1\{0, 1,∞} ([13], [14], [25, 26], [45]). The advantage of consider-
ing the moduli spacesM0,n is that we can bring to bear the full richness of their geometry.
We show, for example, that the double shuffle relations for multiple zeta values are just two
special cases of generalised product relations arising naturally from functorial maps between
moduli spaces.

An essential part of this work is devoted to multiple polylogarithms, which are functions
first defined by Goncharov for all n1, . . . , n� ∈ N by the power series:

(1.4) Lin1,...,n�(x1, . . . , x�) =
�

0<k1<···<k�

x
k1
1 . . . x

k�
�

k
n1
1 . . . k

n�
�

, where |xi| < 1.

By analytic continuation, they define multi-valued functions onM0,n, where n = �+3. One
of our main objects of study in this paper is the larger set L(M0,n) of all homotopy-invariant
iterated integrals onM0,n. It forms a differential algebra of multi-valued functions onM0,n,
in which the set of functions (1.4) is strictly contained. From the point of view of differen-
tial Galois theory, L(M0,n) defines a maximal unipotent Picard-Vessiot theory onM0,n. We
then define the universal algebra of multiple polylogarithms B(M0,n) to be a modified ver-
sion of Chen’s reduced bar construction. It is a differential graded Hopf algebra which is an
abstract algebraic version of L(M0,n). One of our key results states that the de Rham coho-
mology of B(M0,n) is trivial. From this we deduce the existence of primitives in L(M0,n).
We also need to understand the regularised restriction of polylogarithms to the faces of Xn.
This requires a canonical regularisation theorem, and amounts to studying what happens
when singularities of an iterated integral collide. We are thus led to work on certain blow-ups
ofM0,n, described below. It follows that the structure of L(M0,n), and hence the function
theory of multiple polylogarithms, is intimately related to the combinatorics of the associa-
hedron.

1.2. Detailed summary of results

In Section 2, we review some aspects of the geometry of the moduli spacesM0,n, and study
certain blow-ups obtained from them. Let S denote a set with n elements, each labelling a
marked point on the projective line P1, and writeM0,S = M0,n. A dihedral structure on S

is an identification of S with the set of edges (or vertices) of an unoriented n-gon. For each
such dihedral structure δ, we embedM0,S in the affine space A�, where � = n− 3, and blow
up parts of the boundary in A�\M0,S to obtain an intermediary space

M0,S ⊂M
δ

0,S
⊂M0,S ,

whereM δ

0,S
is an affine scheme defined over Z. We prove that the set ofM δ

0,S
, for varying δ,

forms a set of smooth affine charts onM0,S . In order to define them, we introduce dihedral
coordinates, which are one of the key tools used throughout this paper. These are functions

uij :M0,S → P1
\{0, 1,∞}, where {i, j} ∈ χS,δ,
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374 F. C. S. BROWN

indexed by the set of chords χS,δ in the n-gon defined by δ. Together, they define an embed-
ding (uij)χS,δ :M0,S → An(n−3)/2, and the schemeM δ

0,S
is the Zariski closure of the image

of this map. For example, in the case n = 5, we can identifyM0,S = {(t1, t2) ∈ P1 × P1 :
t1t2(1− t1)(1− t2)(t1 − t2) �= 0, t1, t2 �= ∞}. The pentagon (S, δ) has five chords, labelled
{13, 24, 35, 41, 52} (fig. 1), and we have

u13 = 1− t1, u24 =
t1

t2
, u35 =

t2 − t1

t2(1− t1)
, u41 =

1− t2

1− t1
, u52 = t2.

The schemeM δ

0,5 is then defined by the five cyclically symmetric equations in A5:

u13 + u24u52 = 1, u24 + u35u13 = 1, . . . , u52 + u13u14 = 1.

F35F13

F52

F24

F41

t2

t1
5

1

0 1

1

4 3

2

(t1, t2) �→ (u13, u24, u35, u41, u52)

Fɪɢ�ʀ� 1. Dihedral coordinates onM0,5. The schemeM δ
0,5 (right) is defined to

be the Zariski closure of the image of the embedding {uij} :M0,5 �→ A5 defined by
the set of dihedral coordinates, which are indexed by chords in a pentagon (middle).
This map has the effect of blowing up the points (0, 0) and (1, 1). A cell XS,δ is given
by the region 0 < t1 < t2 < 1 (left). After blowing-up it becomes a pentagon with
sides Fij = {uij = 0}.

Now consider the set of real pointsM0,S(R). There is a bounded cell XS,δ ⊂ M0,S(R) de-
fined by the region {0 < uij < 1}. One shows thatM0,S(R) is the disjoint union of the open
cells XS,δ of dimension � = n− 3, as δ runs over the set of dihedral structures on S, so a di-
hedral structure corresponds to choosing a connected component ofM0,S(R). The closure
of the cell XS,δ satisfies

(1.5) XS,δ = {0 ≤ uij ≤ 1} ⊂M δ

0,S
(R),

andM δ

0,S
\M0,S is the union of all divisors meeting the boundary of XS,δ. Therefore XS,δ is

a convex polytope, and its boundary divisors give an explicit algebraic model of the associa-
hedron. It is well-known that the combinatorics of the associahedron is given by triangula-
tions of polygons. But because dihedral coordinates are already defined in terms of polygons,
the main combinatorial properties of the associahedron, and its dihedral symmetry, follow
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immediately from properties of the coordinates uij . In particular, the face Fij = {uij = 0}
of XS,δ is a product

(1.6) Fij
∼= XT1,δ1 ×XT2,δ2 ,

where (T1, δ1), (T2, δ2) are two smaller polygons obtained by cutting the n-gon S along
the chord {i, j} (fig. 3, § 2.2). In this way, a vertex v of XS,δ corresponds to a complete
triangulation α of the n-gon by � chords. We also introduce explicit vertex coordinates
x

α

1 , . . . , x
α

�
which are a certain subset of the set of all dihedral coordinates. These form a

system of normal parameters in the neighbourhood of the vertex v ∈ XS,δ corresponding
to α, such that M0,S(R) ⊂ M0,S(R) is locally the complement of the normal crossing
divisor x

α

1 . . . x
α

�
= 0. These systems of coordinates (in the sense of differential geometry)

are precisely what is needed for solving differential equations on M0,S and regularising
logarithmic singularities of multiple polylogarithms.

In Section 3, we define an abstract algebra of iterated integrals onM0,S using a variant of
Chen’s reduced bar construction. Since this construction exists in far greater generality, we
consider the complement of an arbitrary affine hyperplane arrangement defined over a field
k of characteristic 0. So let

M = A�
\

N�

i=1

Hi,

where H1, . . . ,HN is any set of hyperplanes in A�. Let t1, . . . , t� denote coordinates on A�,
and let OM denote the ring of regular functions on M . It is a differential k-algebra with
respect to the coordinate derivations ∂/∂ti, for 1 ≤ i ≤ �. Let

ωi =
dαi

αi

, for 1 ≤ i ≤ N,

denote the logarithmic 1-form corresponding to Hi, where αi is a defining equation for Hi.
The version of the bar construction B(M) we consider is defined as follows. Let Vm(M)
denote the k-vector space generated by linear combinations of symbols

(1.7)
�

I=(i1,...,im)

cI [ωi1 | . . . |ωim ], cI ∈ k,

which satisfy the integrability condition:

(1.8)
�

I

cI ωi1 ⊗ · · · ⊗ (ωij ∧ ωij+1)⊗ · · · ⊗ ωim = 0 for all 1 ≤ j < m.

We then set B(M) = OM ⊗k

�
m≥0 Vm(M), where V0(M) = k. This is a graded Hopf

algebra over OM which is related to the zeroth cohomology group of the bar complex
O(M) ⊗k H

0(B(Ω•OM )) studied by Chen [10] (see also [31]). We systematically drop the
H

0 from the notation and simply write B(M). Using the 1-part of the coproduct on B(M),
we define the action of � commuting derivations ∂i on B(M), and show that (B(M), ∂i) de-
fines a differential extension of (OM , ∂/∂ti). Its cohomology will be denoted H

•

DR(B(M)).
The possibility of using iterated integrals to construct a Picard-Vessiot theory on manifolds
was first suggested by Chen [9].
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Tʜ��ʀ�� 1.2. – B(M) is an infinite unipotent Picard-Vessiot extension of OM . In other
words, it has no non-trivial differential ideals and its ring of constants is k. It is therefore a
polynomial algebra. Furthermore, B(M) contains 1-primitives:

H
1
DR(B(M)) = 0.

It follows that every unipotent extension of B(M) is trivial, and it is the smallest extension
of OM with this property. Equivalently, B(M) is the limit

B(M) = lim
→

U,

where U ranges over all unipotent extensions U of OM . In this sense it is universal, and it
follows that its differential Galois group is a pro-unipotent group. Now if we identifyM0,S

with the affine hyperplane configuration

M0,S
∼= {(t1, . . . , t�) ∈ A� : ti �= 0, 1, ti − tj �= 0},

then we define the universal algebra of polylogarithms onM0,S to be B(M0,S). In general,
it is difficult to construct words (1.7) satisfying the integrability condition (1.8) since they
rapidly become very complicated as the weight increases. In order to overcome this problem,
we consider two affine hyperplane arrangements, one of which fibres linearly over the other.
Therefore, let M ⊂ A� and M

� ⊂ A�−1 denote two affine arrangements, and consider a linear
projection

π : M → M
�

with constant fibres F , where F is the affine line A1 minus a number of marked points. We
then prove that there is a tensor product decomposition

B(M) ∼= B(M �)⊗OM� BM �(F ),

where BM �(F ) is a free shuffle algebra which can be described explicitly. In the case of moduli
spacesM0,S , we apply this argument to the fibration map:

M0,n −→M0,n−1

and use induction to deduce that B(M0,S) is a tensor product of free shuffle algebras. As a
result, one can write down a basis for B(M0,S), and one deduces that the higher cohomology
groups of B(M0,S) vanish.

Tʜ��ʀ�� 1.3. – The de Rham cohomology of B(M0,S) is trivial:

H
i

DR(B(M0,S)) = 0 for all i ≥ 1.

A similar result holds for any hyperplane arrangement of fibre type, i.e., one which can be
obtained as a sequence of such fibrations. In an appendix we also prove that H

i

DR(B(M)),
for i ≥ 1, vanishes for all arrangements M which have quadratic cohomology. The proofs
only use simple arguments of differential algebra. Theorem 1.3 holds because M0,S is a
K(π, 1)-rational space. An equivalent theorem is due to Hain and MacPherson ([33], [38]).

Given any point z0 ∈M0,S(C) we define a realisation

ρz0 : B(M0,S)
∼
−→ Lz0(M0,S)(1.9)

�

I

fI [ωi1 | . . . |ωim ] �→
�

I

fI

�
z

z0

ωim . . . ωi1 ,
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given by iterated integration along any path γ : [0, 1] → M0,S(C) which begins at z0 and
ends at a variable point z ∈ M0,S(C). The integrability condition (1.8) ensures that the
iterated integral (1.9) only depends on the homotopy class of γ. It therefore defines a multi-
valued function of the parameter z, i.e., a holomorphic function on the universal covering
space ofM0,S(C). Here, Lz0(M0,S) is a differential graded algebra of multi-valued functions
onM0,S . We deduce from the previous theorem that �-forms with coefficients in Lz0(M0,S)
have primitives in Lz0(M0,S).

The realisation ρz0 is not quite good enough, however. We actually need a realisation
ρz0 : B(M0,S) → Lz0(M0,S), where the base point z0 does not lie inM0,S(C). The point z0

can be replaced with a tangential base point in the sense of [13], but our approach consists
instead of viewing z0 as the corner of a manifold with corners. This gives rise to divergent
integrals, and to deal with this requires a regularisation procedure. The best approach is to
consider the generating series of all such iterated integrals, and regularise them all simulta-
neously. Such a generating series satisfies a formal differential equation, and to solve it re-
quires a generalised Fuchs’ theorem in several variables in the unipotent case. For want of a
suitable reference, we develop the necessary theory from scratch in Section 4. We also study
the regularisation of logarithmic singularities along the boundary of any manifold with cor-
ners. Section 5 is devoted to a detailed study of the case of a one dimensional arrangement
P1\{σ0, . . . , σN ,∞}. In this case, the bar construction can be written down explicitly (it is a
free shuffle algebra), and the corresponding iterated integrals are known as hyperlogarithms,
which go back to Poincaré and Lappo-Danilevsky.

In Section 6, we apply all the results developed previously to the case of the moduli spaces
M0,S to obtain the necessary regularisation results. The generating series of multiple poly-
logarithms can be described as follows. To each dihedral coordinate, or chord, is associated
a logarithmic one-form

ωij = d log uij , for {i, j} ∈ χS,δ.

It is symmetric in i and j. Let δij , for {i, j} ∈ χS,δ, denote a set of symbols satisfying
δij = δji, and consider the formal 1-form

(1.10) ΩS,δ =
�

{i,j}∈χS,δ

δij ωij .

This is a homogeneous version of the Knizhnik-Zamolodchikov form [36, 37, 18]. The in-
tegrability of ΩS,δ is equivalent to certain quadratic relations in the δij , which we call the
dihedral braid relations. In the special caseM0,5, these reduce to the relations:

[δij , δkl] = 0,

for any pair of chords {i, j}, {k, l} which do not cross, and the pentagonal relation

[δ13, δ24] + [δ24, δ35] + [δ35, δ41] + [δ41, δ52] + [δ52, δ13] = 0.
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Let us fix a dihedral structure δ on S, and let “BS,δ(C) denote the ring of non-commutative
formal power series in the symbols δij with coefficients in C, modulo the dihedral braid re-
lations. Then we can consider the formal differential equation

(1.11) dL = ΩS,δL,

where L takes values in “BS,δ(C).

Tʜ��ʀ�� 1.4. – Let v denote a vertex of the associahedron XS,δ, and let Fv denote the set
of faces meeting v. Then there is a unique solution Lv,δ of (1.11) such that

Lv,δ(z) = fv,δ(z) exp

Å �

{i,j}:Fij∈Fv

δij log uij

ã
,

where fv,δ(z) is holomorphic in a neighbourhood of v ∈M δ

0,S
, and fv,δ(v) = 1.

In other words, the function Lv,δ(z) is holomorphic on an open set ofM δ

0,S
(C) which con-

tains the real cell XS,δ, and has explicitly given monodromy around each face uij = 0 of the
associahedron XS,δ which meets the vertex v. The differential equation (1.11) is closely re-
lated to the Knizhnik-Zamolodchikov equation. Solutions to the latter equation are usually
constructed by induction using fibration maps between configuration spaces. The previous
theorem, however, is proved directly using the generalised Fuchs’ theorem developed in Sec-
tion 4. This approach has many advantages: firstly, there are no coherence conditions to
verify; secondly, we obtain a direct geometric interpretation of Drinfeld’s asymptotic zones,
which were studied by Kapranov; and thirdly, the functoriality of the solution Lv,δ(z) with
respect to maps between moduli spaces follows automatically. As a result, we obtain a direct
definition of an associator onM0,S by considering the quotient of two different solutions:

Z
v,v

�
= (Lv,δ(z))−1

Lv�,δ(z) ∈ “BS,δ(C).

Here, z is any point in an open neighbourhood of XS,δ inM δ

0,S
. The quotient is necessarily

constant. The main properties of Drinfeld’s associator can be derived immediately. Using the
previous theorem, we deduce an expression for the monodromy of Lv,δ(z) and its regularisa-
tion in terms of the series Z

v,v
�

(§ 6.5). Then, using explicit expressions for hyperlogarithms,
we deduce the following result, which was first proved by Le and Murakami, following Kont-
sevich.

Tʜ��ʀ�� 1.5. – The coefficients of the series Z
v,v

�
are multiple zeta values.

It follows that the holonomy of the moduli spacesM0,S can be expressed using multiple zeta
values and the constant 2πi. Now define L

v,δ(M0,S) to be the differential algebra generated
by the coefficients of the series Lv,δ(z). We can then define the sought-after realisation ρv,δ

which is regularised at the vertex v of XS,δ:

ρv,δ : B(M0,S)
∼
−→ L

v,δ(M0,S),

and which is defined over the field k = Q. From this we deduce the main regularisation
theorem, which describes the regularised restriction of a multiple polylogarithm to the face
of the associahedron in terms of multiple zeta values.
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Tʜ��ʀ�� 1.6. – Let Fij denote a face of XS,δ isomorphic to a product XT1,δ1 × XT2,δ2

as in (1.6) above. Then if the vertex v corresponds to the pair (v1, v2),

Reg (Lv,δ(M0,S), Fij)⊗Q Z ∼= L
v1,δ1(M0,T1)⊗Q L

v2,δ2(M0,T2)⊗Q Z.

In other words, the regularisation of multiple polylogarithms along divisors at infinity is com-
pletely determined by the combinatorics of the associahedron.

In Section 7, we study period integrals onM0,S(R) in terms of dihedral coordinates. We
first show that, up to multiplication by a rational number, there is a unique algebraic �-form
ωS,δ, which has neither zeros nor poles onM δ

0,S
. This form is invariant under the natural

action of the dihedral group. We deduce that one can write an arbitrary integral (1.3) as a
linear combination of integrals

(1.12) IS,δ(αij) =

�

XS,δ

�

{i,j}∈χS,δ

u
αij

ij
ωS,δ,

for some fixed dihedral structure δ, where the indices αij ∈ Z. Such an integral converges
if and only if the coefficients αij are all non-negative. In explicit coordinates, (1.12) can be
written as a generalized Selberg integral

IS,δ(αij) =

�

[0,1]�

��

i=1

x
ai
i

(1− xi)
bi

�

i<j

(1− xixi+1 . . . xj)
cij dx1 . . . dx�.

Particular subfamilies of these kinds of integrals have been considered by various authors in
connection with the Diophantine approximation of zeta values (see, e.g., [54, 55, 21]). Tera-
soma has also computed the Taylor expansions (with respect to the exponents) of certain
families of such integrals, and proved they are multiple zeta values [49]. The advantage of the
blown-up integral representation (1.12) is that all poles of the integrand have been pushed
to infinity, which allows an algebraic interpretation of the integrals as periods, and a system-
atic procedure for computing them, which is detailed in Section 8 and summarised below.
As a further application of dihedral coordinates, we give an explicit formula for the order of
vanishing of any form �

{i,j}∈χS,δ

u
αij

ij
ωS,δ,

along the divisors at infinity inM0,S . Using this formula we retrieve a result, due to Gon-
charov and Manin, which gives the singular locus of a certain family of forms which cor-
respond directly to multiple zeta values. Our method exploits the action of the symmetric
group onM0,S , and completely avoids the delicate calculation of blow-ups and the cancel-
lation of singularities studied in [27]. In § 7.5, we show how functorial maps

f :M0,S −→M0,T1 ×M0,T2 ,

where T1 and T2 satisfy certain conditions (§2.10), give rise to generalised product formulae
between multiple zeta values. More precisely, given any such map f , there is a set of dihedral
structures Gf on S such that the following formula holds:

(1.13)
�

XT1,δ1

ω1 ×

�

XT2,δ2

ω2 =
�

γ∈Gf

�

XS,γ

f
∗(ω1 ⊗ ω2).
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This expresses a product of periods as a Q-linear combination of other periods. We compute
two explicit examples of such maps f ; one where Gf is as large as possible, and the other
when Gf reduces to a single element. In the first case, Gf is the set of (p, q) shuffles where
p = dimM0,T1 and q = dimM0,T2 , and (1.13) gives rise to the shuffle product for multiple
zeta values. In the second case, we show that (1.13), on applying an identity due to Cartier,
gives rise to the stuffle relations for multiple zeta values. Thus both shuffle and stuffle re-
lations can be regarded as two extreme cases of generalised product relations of geometric
origin on moduli spaces.

The above results are put together in Section 8, where we give a proof of Theorem 1.1 using
Stokes’ formula as described above. We summarise the main points of the argument here.
The regularisation results of Section 6 provide the existence of a graded algebra of multi-
valued functions L(M0,S) with the following properties:

1. The graded part of weight 0 of L(M0,S) consists of all regular algebraic functions on
M0,S with coefficients in Q.

2. Primitives of �-forms exist in L(M0,S), and increase the weight by one.
3. The restriction of a function f ∈ L(M0,S) to a face of XS,δ is a product of multiple

zeta values with functions in L(M0,T1)L(M0,T2).

The argument for computing the period integrals is then by an inductive application of
Stokes’ theorem over the associahedron XS,δ. At each stage, we must compute

I =

�

XS,δ

f ωS,δ,

where f ∈ L(M0,S) is a function which is allowed logarithmic singularities along the bound-
ary ∂XS,δ, but which has no polar singularities. Such an integral necessarily converges, and
it follows from property (2) that there exists a primitive F with coefficients in L(M0,S) such
that dF = f . However, such primitives are not unique, and we may inadvertently have in-
troduced extra poles. We show, however, that there exists a primitive F with no poles along
XS,δ, and it then follows that F extends continuously to the boundary ∂XS,δ. The essential
remark is that the one-form

log x dx where x ≥ 0,

has a logarithmic singularity at the point x = 0, but that its primitive x log x − x extends
continuously to the point 0. We can therefore restrict the primitive F to the faces of the asso-
ciahedron by property (3), and proceed by induction using Stokes’ formula and (1.6) with-
out any further difficulty. In § 8.5 we show how the same strategy can be used to compute
all relative periods (1.3) of moduli spacesM0,S when the integrand is an algebraic �-form,
and finish with some simple examples in § 8.6. The paper is completely self-contained, apart
from some properties of iterated integrals which are very clearly presented in [31], and some
remarks on framed motives in § 7.2.

We expect that the ideas and methods introduced in this paper should have applications
in the following situations. First of all, one can consider more general hyperplane configu-
rations associated to other root systems or Coxeter groups, and consider the corresponding
polylogarithm algebras, periods and associators. Notably, one can introduce N

th roots of
unity to obtain a tower of spaces over P1\{0, e

2iπk/N
,∞} which are finite covers ofM0,S

and construct a similar theory giving a higher dimensional version of [14, 45]. Furthermore,
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in perturbative quantum field theory, it is generally believed that certain renormalised pe-
riod integrals one derives from a large class of Feynman diagrams should give multiple zeta
values. After blowing up, these are integrals of rational algebraic forms over algebraic con-
vex polytopes. It would be very interesting to try to apply the methods of this paper to such
integrals.

This paper was written during my doctoral thesis at the university of Bordeaux. I am very
grateful to Richard Hain for his many detailed comments regarding an earlier version of this
manuscript, Joseph Oesterlé for a thorough reading of § 2, and especially to Pierre Cartier,
without whose many suggestions, good humour, and continuous encouragement, this paper
would not have reached its present form.

2. Dihedral coordinates onM0,n

2.1. – Let n ≥ 4, and let S denote a set with n elements. LetM0,S denote the moduli space
of curves of genus 0 with n points labelled with elements of S. If (P1)S

∗ denotes the set of all
n-tuples of distinct points zs ∈ P1, for s ∈ S, then

M0,S = PSL2\(P1)S

∗ ,

where PSL2 is the algebraic group of automorphisms of P1 and acts by Möbius transforma-
tions. The quotientM0,S is an affine variety of dimension � = n − 3. A point inM0,S(C)
is therefore an injective map S �→ P1(C) considered up to the action of PSL2(C). If
S = {s1, . . . , sn}, then we frequently write i instead of si, and denoteM0,S byM0,n.

We wish to write down the set of regular functions onM0,S , or, equivalently, the set of
PSL2-invariant regular functions on (P1)n

∗ . Let i, j, k, l denote any distinct indices in S. Re-
call that the cross-ratio is defined by the formula:

�
ij | kl

�
=

(zi − zk)(zj − zl)

(zi − zl)(zj − zk)
.

The cross-ratios do not depend on the choice of coordinates zi and are PSL2-invariant. We
therefore have a set of maps [ij | kl] : M0,S → M0,4

∼= P1\{0, 1,∞}. The symmetric
group on four lettersS4 acts on each cross-ratio via the group of anharmonic substitutions
�z �→ 1− z, z �→ 1/z� ∼= S3

∼= S4/V , where V is the Vierergruppe. We have:

(2.1)
�
ij | kl

�
= 1−

�
ik | jl

�
, and

�
ij | lk

�
=

�
ij | kl

�−1
=

�
ji | kl

�
,

and
�
ij | kl

�
=

�
kl | ij

�
=

�
ji | lk

�
=

�
lk | ji

�
.

For any five distinct indices i, j, k, l,m ∈ S there is also the multiplicative relation:

(2.2)
�
ij | k l

�
=

�
ij | k m

�
.
�
ij |m l

�
.

In order to make explicit computations, it will be convenient to fix a system of coor-
dinates on M0,S from the beginning. This breaks the symmetry, so we assume here that
S = {1, . . . , n}. Since the action of PSL2 is triply transitive on P1, we can place the coor-
dinates z1 at 1, z2 at ∞, and z3 at 0. We define simplicial coordinates t1, . . . , t� onM0,S by
setting

t1 = z4, . . . , t� = zn.
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This identifiesM0,S with the complement of the affine hyperplane configuration:

(2.3) M0,S
∼= {(t1, . . . , t�) ∈ A� : ti /∈ {0, 1}, ti �= tj for all i �= j} .

If we now perform the change of variables

(2.4) t1 = x1 . . . x�, t2 = x2 . . . x�, . . . , t� = x�,

then we can identifyM0,S with the open complement of hypersurfaces:

(2.5) M0,S
∼= {(x1, . . . , x�) ∈ A� : xi /∈ {0, 1}, xi . . . xj �= 1 for all i < j} .

The coordinates x1, . . . , x� will be referred to as cubical coordinates and are well-suited to
the study of polylogarithms onM0,S (§ 6). Simplicial and cubical coordinates are two ex-
tremal cases of more general systems of coordinates which we define in an invariant manner
in § 2.10. We shall pass freely between the two systems, especially when making compar-
isons with formulae existing in the literature. The change of coordinates (2.4) has the effect
of blowing up the origin; the boundary divisors at the origin in (2.5) cross normally, but do
not in (2.3).

2.2. Dihedral coordinates onM0,S

Let S be a finite set with n ≥ 4 elements.

D��ɪɴɪ�ɪ�ɴ 2.1. – A cyclic structure γ on S is a cyclic ordering of the elements of S, or
equivalently, an identification of the elements of S with the edges of an oriented n-gon mod-
ulo rotations. A dihedral structure δ on S is an identification with the edges of an unoriented
n-gon modulo dihedral symmetries.

When we write S = {s1, . . . , sn}, it will carry the obvious dihedral structure unless stated
otherwise. In this case, the group of permutations SS can be identified with the symmetric
group Sn. The set of cyclic (resp. dihedral) structures on S is then indexed by the set of
cosets Sn/Cn (resp. Sn/D2n), where Cn and D2n denote the cyclic and dihedral groups of
orders n and 2n respectively. We will often represent a dihedral structure as a regular n-gon
(S, δ) with edges labelled 1, 2, . . . , n in order. A number in parentheses (i), where i ∈ Z/nZ,
will denote the pair of adjacent edges {i, i + 1}. We will represent this on the n-gon (S, δ)
by labelling the vertices with the elements (1), (2), . . . , (n); the convention is that the vertex
labelled (i) meets the edges labelled i and i + 1 modulo n (Figures 2 and 3).

Given a dihedral structure δ on S, we define coordinates onM0,S using a certain subset of
the set of all cross-ratios as follows. Let χS,δ denote the set of all n(n−3)/2 unordered pairs
{i, j}, 1 ≤ i, j ≤ n such that i, j, i+1, j+1 are distinct modulo n (i.e., i, j are not consecutive
modulo n). Each element {i, j} ∈ χS,δ will be depicted as a chord joining the vertices i and
j in the regular n-gon (fig. 2). We set

(2.6) uij =
�
i i+1 | j+1 j

�
for each {i, j} ∈ χS,δ.

A priori, uij seems to depend on the ordered quadruple (i, i+1, j, j+1), but one verifies from
(2.1) that it is invariant on interchanging both i ↔ i+1 and j ↔ j +1, and is also invariant
under i ↔ j. It therefore only depends on the chord {i, j} and in particular is symmetric in
i and j. Consequently, we obtain a regular morphism

(2.7)
�
uij

�
{i,j}∈χS,δ

:M0,S −→M
n(n−3)/2
0,4 ⊂ An(n−3)/2

.
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A simple calculation in simplicial coordinates gives the explicit formulae:

(i)

j

j+1

(j) B

i

i+1

B

A

A

kl

i
(i)

(l)

(l−1)

(j)

j

(i−1)

(j−1)

(k)

(k−1)

Fɪɢ�ʀ� 2. Part of an oriented regular n-gon inscribed in a circle. Its edges are
labelled with the elements of S, and its vertices are labelled with elements of S in
parentheses. Left - a chord {i, j} ∈ χS,δ meets four edges i, i+1, j, j +1 which de-
fine the dihedral coordinate uij = [i i+1 | j+1 j]. Changing the orientation of the
n-gon does not alter uij by the last equation in (2.1). Right - a set of four edges
i, j, k, l breaks the n-gon into four regions as in Lemma 2.2, and defines a pair
A, B ⊂ χS,δ of completely crossing chords, depicted by the shaded rectangles
(Corollary 2.3).

u13 = 1− t1, u2 n = t�, u3 n =
t� − t1

t�(1− t1)
,(2.8)

u1 i =
1− ti−2

1− ti−3
, 4 ≤ i ≤ n− 1, u2i =

ti−3

ti−2
, 4 ≤ i ≤ n− 1,

u3i =
ti−2

ti−3

(ti−3 − t1)

(ti−2 − t1)
, 5 ≤ i ≤ n− 1, ui n =

(1− ti−3)(ti−2 − t�)

(t� − ti−3)(1− ti−2)
, 4 ≤ i ≤ n− 2

uij =
(ti−3 − tj−2)(ti−2 − tj−3)

(ti−3 − tj−3)(ti−2 − tj−2)
, 4 ≤ i < j ≤ n− 1 and j > i + 1.

We will also require the following useful formulae:

(2.9) t1 = u24 . . . u2n, . . . , t�−1 = u2 n−1u2 n, t� = u2n,

1− t1 = u13, 1− t2 = u13u14, . . . , 1− t� = u13 . . . u1 n−1.

Similarly, the set of cubical coordinates (x1, . . . , x�) = (u24, . . . , u2n) is completely deter-
mined by the functions uij , and the following lemma shows that every cross-ratio can be
written in terms of the functions uij , for {i, j} ∈ χS,δ.

L���� 2.2. – Let i, j, k, l be distinct indices modulo n in dihedral order. Then

�
ij | kl

�
=

j−1�

a=i

l−1�

b=k

u
−1
ab

.

Using (2.1), we can write any cross-ratio as a product of uab or their inverses.
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Proof. – Suppose first that 1 ≤ i < j < k < l ≤ n. Using the definition of uab,

uak . . . ua l−1 =
�
a a + 1 | k + 1 k

��
a a + 1 | k + 2 k + 1

�
. . .

�
a a + 1 | l l− 1

�
=

�
a a + 1 | l k

�
,

by repeated application of (2.2). Likewise, using (2.1) and (2.2),

j−1�

a=i

l−1�

b=k

uab =
�
i i + 1 | l k

��
i + 1 i + 2 | l k

�
. . .

�
j − 1 j | k + 1 k

�
=

�
ij | lk

�
.

The formula is clearly invariant under cyclic rotations. Therefore, given any four indices
i, j, k, l in arbitrary position, we can reduce to this case by applying the inversion (2.1), which
allows us to interchange i, j, or k, l or both pairs (i, j), (k, l).

It follows from invariant theory that every PSL2-invariant regular function on (P1)n

∗ is a
polynomial in the cross-ratios [ij | kl]. We deduce from Lemma 2.2 that the ring of regular
functions onM0,S is generated by the dihedral coordinates uij , for {i, j} ∈ χS,δ, and their
inverses.

We can write down a generating set for all algebraic relations between the coordinates uij

in a dihedrally-invariant manner. We say that two chords {i, j} and {k, l} ∈ χS,δ cross if
they intersect in the interior of the polygon (S, δ). We write this

{i, j} ∼x {k, l}.

Given a subset A ⊂ χS,δ, let A
x denote the set of chords in χS,δ which cross every chord in A.

We say that two sets A, B ⊂ χS,δ cross completely if A
x = B and B

x = A, i.e.,

a ∈ A ⇐⇒ a ∼x b for all b ∈ B,

and vice versa (fig. 2). If, for example, A is the single chord {i, j}, and B is the set of all
chords crossing {i, j}, then A and B cross completely.

C�ʀ�ʟʟ�ʀʏ 2.3. – For every two sets of chords A, B ⊂ χS,δ which cross completely,

(2.10) uA + uB = 1,

where uA =
�

a∈A
ua and uB =

�
b∈B

ub.

Proof. – One can verify that A and B cross completely if and only if there exist four ele-
ments {i, j, k, l} ⊂ S in dihedral order (fig. 2) such that

A = {{p, q} ∈ χS,δ : i ≤ p < j and k ≤ q < l},

B = {{p, q} ∈ χS,δ : j ≤ p < k and l ≤ q < i}.

By Lemma 2.2 and (2.1), uA = [ij|kl]−1 = [ij|lk]. Likewise, uB = [li|jk]−1 = [il|jk]. It
follows that uA + uB = [ij|lk] + [il|jk] = 1 by (2.2).
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2.3. The dihedral extensionM δ

0,S

Recall thatM0,S is the affine scheme over Z in simplicial coordinates:

M0,S = Spec Z
�
ti,

1

ti
,

1

1− ti
,

1

ti − tj
, 1 ≤ i < j ≤ �

�
,

where � = |S| − 3, and we have the convention M0,S = Spec Z if |S| = 3. Its dihedral
extensionM δ

0,S
is the affine scheme defined by the equations (2.10).

D��ɪɴɪ�ɪ�ɴ 2.4. – Let I
χ

S,δ
⊂ Z[uij ] denote the ideal generated by the identities (2.10).

Let the dihedral extensionM δ

0,S
ofM0,S be the affine scheme

(2.11) M
δ

0,S
= Spec Z[uij : {i, j} ∈ χS,δ]/I

χ

S,δ
.

By Lemma 2.2, we could also defineM δ

0,S
as follows:

(2.12) M
δ

0,S
= Spec Z

�
[i j|l k], where i, j, k, l ∈ S are in dihedral order

�
/IS,δ,

where IS,δ is the ideal generated by the identities [i j|l k] + [i l|j k] = 1 and (2.2).

For every chord {i, j} ∈ χS,δ we define a divisor

(2.13) Dij = {uij = 0} ⊂M δ

0,S
.

The schemeM0,S is retrieved fromM δ

0,S
by removing all divisors Dij , {i, j} ∈ χS,δ.

L���� 2.5. – There is a canonical open immersion iδ :M0,S →M
δ

0,S
whose image is the

complementM δ

0,S
\ ∪{i,j}∈χS,δ

Dij .

Proof. – Let Ru = Z[uij , {i, j} ∈ χS,δ]/I
χ

S,δ
. Equations (2.8) define a map

φ : Ru[u−1
ij

, {i, j} ∈ χS,δ] −→ Z
�
ti,

1

ti
,

1

1− ti
,

1

ti − tj

�
.

The way φ(uij) is defined is first to map uij to the cross-ratio [i i + 1|j + 1 j], and then to
set z1 = 1, z2 = ∞, z3 = 0 and zi+3 = ti for 1 ≤ i ≤ �. The fact that φ is well-defined
then follows from the proof of Lemma 2.2: each relation

�
a∈A

ua +
�

b∈B
ub − 1 maps to

an identity on cross-ratios of the form [ij|lk] + [il|jk]− 1 = 0.
In the other direction, we define a map

ψ : Z
�
ti,

1

ti
,

1

1− ti
,

1

ti − tj

�
−→ Ru[u−1

ij
, {i, j} ∈ χS,δ]

by ψ(ti) = u2 i+3 . . . u2n, for 1 ≤ i ≤ �. It follows immediately from the second line of (2.8)
that φ ◦ψ = 1. That ψ ◦φ = 1 can be verified case by case. Here we only do the generic case
(the fourth line of (2.8)). Therefore, let 4 ≤ i < j ≤ n, and j > i + 1. Then ψ ◦ φ(uij) is
given by:

ψ

� (ti−3 − tj−2)(ti−2 − tj−3)

(ti−3 − tj−3)(ti−2 − tj−2)

�
=

(u2i . . . u2n − u2 j+1 . . . u2n)(u2 i+1 . . . u2 n − u2 j . . . u2n)

(u2i . . . u2n − u2 j . . . u2n)(u2 i+1 . . . u2 n − u2 j+1 . . . u2n)

=
(u2i . . . u2j − 1)(u2 i+1 . . . u2 j−1 − 1)

(u2i . . . u2 j−1 − 1)(u2 i+1 . . . u2j − 1)
=

�
I1

uab

�
I2

uab�
I3

uab

�
I4

uab

=
�

3≤a≤i−1

u
−1
aj

�

3≤a≤i

uaj = uij ,
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where I1 = {3 ≤ a ≤ i − 1, j + 1 ≤ b ≤ 1}, I2 = {3 ≤ a ≤ i, j ≤ b ≤ 1},
I3 = {3 ≤ a ≤ i − 1, j ≤ b ≤ 1}, and I4 = {3 ≤ a ≤ i, j + 1 ≤ b ≤ 1}, and where the
indices are taken modulo n. The other cases are similar.

In order to describe the configuration of the divisors Dij , consider cutting the regular
n−gon along the chord {i, j} joining vertices (i) and (j). This partitions the set of edges
of S into two sets S1 and S2 and breaks the n-gon into two smaller polygons. Their sets of
edges are S1 ∪ {e} and S2 ∪ {e}, where e is the new edge given by the chord {i, j} (fig. 3).
Each set inherits a dihedral structure δk for k = 1, 2, and χS,δ is a disjoint union:

(2.14) χS,δ = χS1∪{e},δ1
� χS2∪{e},δ2

� {i, j} �

�

{k,l}∼x{i,j}

{k, l}.

2

3

4

5

6

e
e

1

(4)

5

6

(2)

(6)

(3)

(1)

(5)

2

3

4

1

S1 ∪ {e}

S2 ∪ {e}

Fɪɢ�ʀ� 3. Decomposition of the hexagon on setting u25 = 0. The variables cor-
responding to chords which cross {2, 5}, namely u13, u46, u14, u36, are all equal
to 1 (left). The system (2.10) splits into the pair of equations, u15 = 1 − u26 and
u35 = 1− u24, which identifies D25 withM δ

0,4 ×M
δ
0,4.

L���� 2.6. – The decomposition (2.14) gives a canonical isomorphism

Dij
∼=Mδ1

0,S1∪{e}
×M

δ2

0,S2∪{e}
.

Proof. – Equations (2.10) imply in particular that

(2.15) uab +
�

{c,d}∼x{a,b}

ucd = 1 for all {a, b} ∈ χS,δ.

Therefore, setting uij = 0 implies that ukl = 1 for all chords {k, l} which cross {i, j}. The
system of equations (2.10) then decomposes into two disjoint sets, each one containing all
variables uab, where {a, b} ∈ χS1∪{e},δ1

, or χS2∪{e},δ2
respectively. To see this, consider the

equation

(2.16) uA + uB = 1,

where A, B ⊂ χS,δ cross completely, and where we write uI =
�

i∈I
ui for any subset

I ⊂ χS,δ. Consider the decomposition (2.14) above, and set Ai = A∩χSi∪{e},δi
for i = 1, 2.
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It follows from the calculation above that, since uij = 0,

(2.17) uA =

�
0 if {i, j} ∈ A,

uA1uA2 otherwise.

A similar formula holds for uB . The picture below depicts the three possible cases which can
occur, up to exchanging i, j or A, B. If neither A1 nor A2 is empty, the set A contains chords
on either side of the chord {i, j} (case I). It follows that {i, j} ∈ A, and therefore uA = 0.
Since B = A

x, it follows that B ⊂ {i, j}x, and so ukl = 1 for all {k, l} ∈ B. Thus (2.16)
reduces to 0 + 1 = 1. Therefore we can assume without loss of generality that A1 = ∅ (see
cases II and III), and so uA = uA2 by (2.17). It is clear that B1 = ∅, and so uB = uB2 .

B

A

A

BB

A

A

BB

A

B

A
I II III

It follows that Equation (2.16) reduces to uA2 + uB2 = 1, which is a defining equation for
M

δ2

0,S2∪{e}
. All pairs of completely crossing sets in each smaller polygon Sk∪{e}, for k = 1, 2,

arise in this way. This proves the result.

It follows from the proof of the lemma that Dij and Dkl have non-empty intersection if
and only if the chords {i, j} and {k, l} do not cross. By (2.15), uij and ukl cannot simulta-
neously be zero if {i, j} ∼x {k, l}. We are therefore led to consider partial decompositions
of the n−gon (S, δ) by k non-crossing chords.

D��ɪɴɪ�ɪ�ɴ 2.7. – For each integer 1 ≤ k ≤ �, let χ
k

S,δ
denote the set of k distinct chords

α = {{i1, j1}, . . . , {ik, jk}} in the n-gon (S, δ), such that no pair of chords in α cross. For
each such α ∈ χ

k

S,δ
, let Dα denote the subvariety defined by the equations ui1 j1 = · · · =

uik jk = 0, i.e., Dα =
�

k

m=1 Dim jm .

It follows by induction using the previous lemma that the codimension of Dα, for α ∈ χ
k

S,δ
,

is exactly k, and that every codimension-k intersection of divisors Dij arises in this manner.
Any set of k chords α ∈ χ

k

S,δ
splits the polygon into k + 1 pieces, and we have:

(2.18) Dα
∼=

k+1�

m=1

M
δm
0,Sm

,

where (Sm, δm) are given by the set of all edges of each small polygon in the k-decomposition
α, with the induced dihedral structures (fig. 4).
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e

1

8

7 6

5

4

32

2

1e

Fɪɢ�ʀ� 4. A partial decomposition α ∈ χ
2
8,δ of an octagon gives an isomorphism

of Dα withMδ1
0,5 ×M

δ2
0,4 ×M

δ3
0,3 =Mδ1

0,5 × A1
× {pt}.

R���ʀ� 2.8. – The set of all polygons equipped with the operation of gluing sides to-
gether forms what is known as the mosaic operad [15]. This says that, given two polygons
with edges labelled S1 ∪ {e} and S2 ∪ {e} respectively, there is an operation of gluing along
the common edge e, which gives rise to a map

χ
k

S1∪{e},δ1
× χ

l

S2∪{e},δ2
→ χ

k+l+1
S1∪S2,δ

.

This corresponds to the decomposition of Lemma 2.6.

2.4. Forgetful maps between moduli spaces and projections

Let T denote any subset of S such that |T | ≥ 3. There is a natural map

(2.19) fT :M0,S −→M0,T

obtained by forgetting the marked points of S which do not lie in T . Now suppose that S has
dihedral structure δ. Then T inherits a dihedral structure which we denote δT . Identifying
S with the set of edges of the n-gon (S, δ), we obtain a map:

fT : χS,δ → χT,δT

which contracts all edges in S\T and combines the corresponding chords (fig. 5).

L���� 2.9. – The map (2.19) extends to give a map fT :M δ

0,S
−→M

δT
0,T

such that

(2.20) f
∗

T
(ukl) =

�

{a,b}∈f
−1
T ({k,l})

uab.

Proof. – By (2.12), f
∗

T
is induced by the map:

f
∗

T
: Z

�
[i j|l k] : i, j, k, l ∈ T

δT
�
/IT,δT −→ Z

�
[i j|l k] : i, j, k, l ∈ S

δ
�
/IS,δ,

where i, j, k, l ∈ T
δT (resp. S

δ) denotes four elements in T (resp. S) in dihedral order. For-
mula (2.20) follows immediately from Lemma 2.2.

R���ʀ� 2.10. – If {i, j} ∈ χS,δ, let T denote the four element set T = {i, i+1, j, j+1}.
Then the dihedral coordinate uij is by definition a forgetful map:

M
δ

0,S

fT
−→M

δT
0,T

∼= A1
.
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5
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1

2

3

4

6

5 fT
−→

Fɪɢ�ʀ� 5. The forgetful map fT contracts edges labelled 3, 4, 6, 8. The dihedral
coordinates corresponding to the two chords in the square are pulled back by f

∗

T to
u15u16 and u27u37u47u28u38u48.

If T1, T2 are two subsets of S such that |T1 ∩ T2| ≥ 3, we obtain a map

(2.21) fT1 × fT2 :M δ

0,S
−→M

δ1
0,T1

×
Mδ�

0,T1∩T2

M
δ2
0,T2

,

where δ1 = δT1 , δ2 = δT2 , and δ
� = δT1∩T2 . Recall thatM δ

0,3 = Spec Z.

For future reference, we will need to consider what happens when |T1 ∩T2| = 2. Suppose
that the elements of Tk are consecutive with respect to δ, for k = 1, 2. Then two cases can
occur: either T1∩T2 consists of two consecutive elements {i, i+1}where i ∈ S, or T1∩T2 has
two components and T1∩T2 = {a, b}, where a, b ∈ S are non-consecutive. We only consider
the first case here. This corresponds to choosing a directed chord {i, j} ∈ χS,δ, and cutting
along it. Let S1 and S2 denote the corresponding partition of the set S viewed as edges of
the n-gon (fig. 3), and consider the larger overlapping sets defined by T1 = S1 ∪ {i, i + 1}
and T2 = S2 ∪ {i, i + 1}. A product of forgetful maps gives

(2.22) fT1 × fT2 :M δ

0,S
−→M

δ1
0,T1

×M
δ2
0,T2

.

The dimension of the product on the right hand side is (|T1|− 3)+ (|T2|− 3), which is �− 1,
one less than on the left. Suppose that the chord {i, j} = {i, i+2} is short. In that case, one
of the sets, say T2, has just three elements, andMδ2

0,T2
reduces to a point. The complement

S\T1 is a single point. We write S = {s1, . . . , sn}, and let {sn} = S\T1. In that case, the
restriction of fT1 toM0,S :

fT1 :M0,{s1,...,sn}
→M0,{s1,...,sn−1}

is a fibration with one-dimensional fibres which are isomorphic to the punctured projective
line P1\{s1, . . . , sn−1}. In general, the restriction of the map (2.22) to the open setM0,S is
not a fibration, but almost. Let us compute it in cubical coordinates. By applying a dihedral
symmetry, we can assume i = 2. By (2.9), we have u2j = xm, where m = j− 3. One verifies
that

M0,T1
∼= {(x1, . . . , xm−1) : xi /∈ {0, 1}, xi . . . xj �= 1 for i < j},

M0,T2
∼= {(xm+1, . . . , x�) : xi /∈ {0, 1}, xi . . . xj �= 1 for i < j},
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and the map fT1 × fT2 :M0,S →M0,T1 ×M0,T2 is just projection onto xm = 0 :

fT1 × fT2 : (x1, . . . , x�) �→
�
(x1, . . . , xm−1), (xm+1, . . . , x�)

�
.

We can therefore think of (2.22) as a coordinate projection in cubical coordinates. Referring
to Figure 10, we see that inM0,6 there are two such types of map, one given by projection
onto M0,5 (set x1 = 0 or x3 = 0), and the other given by projection onto M0,4 × M0,4

(set x2 = 0). Restricting (2.22) to the divisor uij = 0, we retrieve the isomorphism Dij
∼=

M
δ1
0,T1

×M
δ2
0,T2

which was defined in Lemma 2.6.

R���ʀ� 2.11. – One can make the map fT1 × fT2 : M0,S → M0,T1 ×M0,T2 into a
fibration by restricting it to an open subset US ⊂ M0,S . One obtains a map fT1 × fT2 :
US → VS , where VS ⊂ M0,T1 ×M0,T2 , whose fibres are isomorphic to A1 with N points
removed. The N removed points correspond to the set of chords {k, l} which cross {i, j},
plus the chord {i, j} itself.

For example, consider the caseM0,6, where we write the cubical coordinates (x1, x2, x3) as
(x, y, z). Then US =M0,6\{x = z}, and VS = {(x, z) ∈ A2 : x, z �= 0, 1 : x �= z

±1}. Then the
fibration map (x, y, z) �→ (x, z) : US → VS has fibres {y ∈ A1 : y /∈ {0, 1, x

−1
, z
−1

, (xz)−1
}}.

The removed points in the fibre are given by the five equations u25 = 0, u13 = u14 = u36 =
u46 = 1 (see Figure 3).

2.5. Smoothness and irreducibility ofM δ

0,S
.

Let S = {1, . . . , n}, with canonical dihedral structure δ, and let S1 = S\{n},
S2 = {1, 2, n− 1, n}, with induced dihedral structures δ1, δ2. This gives a product of
forgetful maps

fS1 × fS2 :M δ

0,S
−→M

δ1
0,S1

×M
δ2
0,S2

∼=Mδ1
0,S1

× A1
.

We will show that this map induces an isomorphism between an open subset ofM δ

0,S
and an

open subset ofMδ1
0,S1

× A1, and deduce thatM δ

0,S
is smooth and irreducible by induction.

Note that fS1 : M0,S → M0,S1 is just the map which forgets the n
th marked point, and its

fibre is isomorphic to the projective line minus n− 1 points.

Let us define

Ru = Z[uij : {i, j} ∈ χS,δ]/I
χ

S,δ
and Rv = Z[vij : {i, j} ∈ χS1,δ1 ]/I

χ

S1,δ1
,

so that uij , for 1 ≤ i, j ≤ n are dihedral coordinates on M δ

0,S
= Spec Ru and vij , for

1 ≤ i, j ≤ n− 1 are dihedral coordinates onMδ1
0,S1

= Spec Rv. Let

v = (1− v13v14 . . . v1 n−2 t) . . . (1− v1 n−3v1 n−2 t)(1− v1 n−2 t) ∈ Rv[t],

and write u = u2nu3n . . . un−3 n ∈ Ru. Note that u = 1− u1 n−1u1 n−2 in Ru.

Pʀ����ɪ�ɪ�ɴ 2.12. – The map fS1 × fS2 induces an isomorphism

(2.23) M
δ

0,S
\{u = 0} ∼=

�
M

δ1
0,S1

× A1
�
\{v = 0}.
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Proof. – Using (2.20), the morphism (fS1 × fS2)
∗ is given by:

φ : Rv[t][v−1] −→ Ru[u−1],(2.24)

φ(t) = u1 n−1,

φ(vi n−1) = ui n−1ui n, for 2 ≤ i ≤ n− 3,

φ(vij) = uij , if i, j �= n− 1.

One checks from the definitions that

φ(v) = (1− u13u14 . . . u1 n−1) . . . (1− u1 n−2u1 n−1) = u
n−4
2n

u
n−5
3n

. . . un−3 n.

We define an inverse map:

ψ : Ru[u−1] −→ Rv[t][v−1].(2.25)

ψ(u1 n−1) = t,

ψ(u2nu3n . . . uin) = 1− v1 i+1 . . . v1 n−2t, for 2 ≤ i ≤ n− 2,

ψ(ui n−1uin) = vi n−1 ,

ψ(uij) = vij , if i, j /∈ {n− 1, n}.

These equations determine ψ uniquely, using the fact that ψ is multiplicative, and the fact
that u and v are invertible. To prove that ψ is well-defined, one must show that ψ maps every
relation

�
a∈A

ua +
�

b∈B
ub − 1 to 0, where A, B are sets of completely crossing chords in

(S, δ). One checks that the image under ψ of such a relation is of degree at most one in the
variable t, so it suffices to check the cases t = 0, and t = 1. Setting t = 0 in the definition
of ψ gives rise to a map:

ψ0 : Ru[u−1] −→ Rv[v−1],

where ψ0(u1 n−1) = 0, ψ0(uij) = 1 if i = n or j = n, and ψ0(uij) = vij for all other i, j.
This map is well-defined since it is nothing other than the restriction to an open subset of the
inclusion map:

M
δ1
0,S1

∼= D1 n−1 = {u1 n−1 = 0} →M δ

0,S
.

Similarly, setting t = 1 in the definition of ψ gives rise to another map

ψ1 : Ru[u−1] −→ Rv[v−1],

where ψ1(un n−2) = 0, ψ(uij) = 1 if i = n − 1 or j = n − 1, and ψ(uin) = vi n−1 and
ψ(uij) = vij for all other i, j. This is just the inclusion Dn n−2 → M

δ

0,S
, which proves that

ψ1 is also well-defined.
It is clear from the definitions that ψ ◦φ is the identity on

�
Rv⊗Z Z[t]

�
[v−1]. To show that

φ ◦ ψ is the identity on Ru[u−1], it suffices to verify that

φ ◦ ψ(u2nu3n . . . uin) = φ(1− v1 i+1 . . . v1 n−2t) = 1− u1 i+1 . . . u1 n−1 = u2n . . . uin.

The last equality holds since {{1, i + 1}, . . . , {1, n − 1}} and {{2, n}, . . . , {i, n}} are com-
pletely crossing chords. Thus φ and ψ are isomorphisms, inverse to one another, which com-
pletes the proof.

For every vertex (i) in (S, δ), let Zi = ∪jDij , where the union is over all chords
{i, j} ∈ χS,δ meeting (i). Let Ui =M δ

0,S
\Zi denote the open complement.
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L���� 2.13. – The sets Ui, for i ∈ S, form an open cover ofM δ

0,S
.

Proof. – It suffices to show that
�

i∈S
Zi = ∅. Let S = {1, . . . , n}. We have

�

i∈S

Zi =
�

i∈S

�

j:{i,j}∈χS,δ

Dij =
�

j1,...,jn

�
D1 j1 ∩ · · · ∩Dn jn

�
,

where the union is over j1, . . . , jn such that {1, j1}, . . . , {n, jn} are chords of S. At least
two of these chords must necessarily cross (otherwise, there would exist a triangulation of
an n-gon with a chord passing through each vertex, which is clearly impossible). Since the
intersection of divisors Dij , Dkl corresponding to pairs of chords which cross is empty, it
follows that D1 j1 ∩ · · · ∩Dn jn = ∅, for all such j1, . . . , jn, and hence

�
i∈S

Zi = ∅.

C�ʀ�ʟʟ�ʀʏ 2.14. – The schemeM δ

0,S
is integral and smooth.

Proof. – If |S| = 4, thenM δ

0,S
∼= A1, which is clearly integral and smooth. By induction,

assume thatM δ

0,S
is integral and smooth for all |S| = n − 1. If |S| = n, then it follows

from Proposition 2.12 that the open setM δ

0,S
\{u = 0} is integral and smooth. The divisor

{u = 0} is by definition D2n ∪ · · · ∪Dn−3 n which is contained in Zn = D2n ∪ · · · ∪Dn−2 n,
and therefore Un ⊂ M

δ

0,S
\{u = 0}. It follows that Un is integral and smooth, and likewise

for every Ui for i ∈ S, by dihedral symmetry. By the previous lemma, these sets form an
open cover ofM δ

0,S
, which proves the corollary.

Tʜ��ʀ�� 2.15. – The affine schemeM δ

0,S
is integral and smooth, and the divisors Dij , for

{i, j} ∈ χS,δ, are smooth and normal crossing.

Proof. – We know from Lemma 2.6 that each divisor Dij is isomorphic to a product of
spacesMδ

�

0,S� and is therefore smooth. The fact that they cross normally follows by induction
from the isomorphism (2.23) of proposition 2.12.

Let α = {{i1, j1}, . . . , {ik, jk}} ∈ χ
k

S,δ
denote a decomposition of (S, δ), where

1 ≤ k ≤ �. It suffices to check that the divisors Dij , where {i, j} ∈ α, cross normally
in an open neighbourhood of Dα which is contained in Um, for each 1 ≤ m ≤ n. Without
loss of generality we can assume that m = n. There are three cases. First of all, if (n) ∈ (S, δ)
is a vertex which is an endpoint of a chord in α, then Dα ∩ Un = ∅, and there is nothing
to check. Therefore we can assume that the vertex (n) meets no chord in α. Suppose that
α contains the short chord {1, n − 1}, and suppose that {ik, jk} = {1, n − 1}. Under the
isomorphism (2.23), the divisor Dik jk\{u = 0} ⊂M δ

0,S
\{u = 0} maps to

M
δ1
0,S1

× {t = 0} ⊂ (Mδ1
0,S1

× A1)\{v = 0},

and the remaining divisors Dir jr ∩ U , for 1 ≤ r ≤ k − 1, map to a set of k − 1 divi-
sors (Di�r j�r × A1)\{v = 0} ⊂ (Mδ1

0,S1
× A1)\{v = 0} which cross normally, by induc-

tion hypothesis. Finally, if (n) meets no chord in α, and the short chord {1, n − 1} is not
in α, the same argument applies, except that all divisors in α map to divisors of the form
(Di�r j�r ×A1)\{v = 0}, and the conclusion is the same. Since the open sets U1, . . . , Un cover
M δ

0,S
, this proves that the divisors Dij are normal crossing.
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2.6. Normal vertex coordinates onM0,S(C)

The previous theorem gives normal coordinates in the neighbourhood of any intersection
of divisors Dα onM δ

0,S
. Unfortunately, these coordinates are not canonical. For example,

if S = {1, . . . , 6} and α = {{1, 3}, {1, 5}, {3, 5}}, then Proposition 2.12 yields, for example,
a set of normal coordinates of the form (u15, u13u36, u35), which are not symmetric. It is
therefore reasonable to ask whether the dihedral coordinates (u15, u13, u35) themselves form
a coordinate neighbourhood of Dα = {u15 = u13 = u35 = 0}. It turns out that they
actually define a 2:1 étale map to A3 on a certain open subset ofM δ

0,S
. In this section, we

study canonical normal coordinates in the neighbourhood of each subvariety Dα, for general
α ∈ χ

k

S,δ
.

We first consider two useful relations satisfied by the dihedral coordinates uij onM0,S .
We frequently use the following notation: for any two sets I, J ⊂ S, we write

(2.26) uIJ =
�

i∈I, j∈J

uij .

Also, given two consecutive indices i, i+1 modulo n, we adopt the convention that ui i+1 =
0. This is compatible with the decomposition of Lemma 2.6: after cutting along a chord
{i, j} ∈ χS,δ, the vertices i and j become adjacent in each small polygon, and indeed, uij = 0
is the equation of the corresponding divisor (Fig. 4).

L���� 2.16. – Let {p, q} ∈ χS,δ. Then any three of the four coordinates upq, up q+1,
up+1 q, up+1 q+1 determine the fourth, and we have the butterfly relation onM0,S:

(2.27)
upq(1− up q+1)

1− upqup q+1
=

1− up+1 q+1

1− up+1 q+1up+1 q

,

where up+1 q = 0 (up q+1 = 0) if p + 1 and q, (respectively q + 1, p) are consecutive.

Proof. – Let A and B be the subsets of vertices S pictured in the diagram below (left).
Then (2.10) implies the following equations:

1− up q+1 = uA p+1 uAB uAq,

1− upq up q+1 = uA p+1 uAB ,

1− up+1 q+1 = upB uAB uAq upq,

1− up+1 q+1 up+1 q = upB uAB .

Identity (2.27) follows by substitution.

L���� 2.17. – Let p, q, r denote three non-consecutive elements of S, and set
πr =

�
p<i<q

uir. Then the triangle relation holds onM0,S:

(2.28)
1− upq

(1− upr)(1− uqr)
=

πr

(1− πrupr)(1− πruqr)
.

If we regard this as a quadratic equation for πr in Q(upq, upr, uqr), then the discriminant is
non-zero in a Zariski-open neighbourhood of upr = uqr = upq = 0.
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(p+1)

A B

(p) (q)

B A

C(p)

(r)(q)(q+1)

Fɪɢ�ʀ� 6. Proof of the butterfly (left) and triangle relation (right).

Proof. – Let A, B and C be the subsets of vertices S pictured in the diagram above (right).
Then (2.10) implies the following equations:

1− upq = uBC πr uAC ,

1− upr = uBC uBq uAB ,

1− uqr = uAC uAp uAB ,

1− uprπr = uBq uAB ,

1− uqrπr = uAp uAB .

The identity (2.28) follows by substitution. One verifies by straightforward computation that
the discriminant of (2.28) is

(2.29) ∆pq,r = (1− upquqr + uqrupr − uprupq)
2
− 4(1− upq)

2
upruqr,

from which the last statement follows.

Let α ∈ χ
�

S,δ
denote a triangulation of the n-gon (S, δ). An internal triangle of α is a triple

p, q, r ∈ S such that p, q, r are non-adjacent, and {p, q}, {p, r}, and {q, r} are in α. A free
vertex of α is a vertex i ∈ S such that {i, k} /∈ α for all {i, k} ∈ χS,δ. If t denotes the number
of internal triangles in α, and v denotes the number of free vertices in α, then it is easy to
show that v = 2 + t. A triangulation of the n-gon has no internal triangles if and only if it
has exactly two free vertices.

D��ɪɴɪ�ɪ�ɴ 2.18. – Let α ∈ χ
�

S,δ
, and choose an ordering on the set of chords

{i1, j1}, . . . ,{i�, j�} in α. Then the set of vertex coordinates (1) corresponding to the or-
dered triangulation α is the set of variables:

x
α

1 , . . . , x
α

�
,

defined by setting x
α

k
= uikjk for 1 ≤ k ≤ �.

(1) The reason for this terminology will become apparent in § 2.7. A triangulation α corresponds to the point Dα

which is a vertex (corner) of the Stasheff polytope XS,δ ⊂M δ
0,S(R) (see Fig. 10).
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If α = {{2, 4}, . . . , {2, n}} with the natural ordering, then x
α

k
= xk = u2 k+3 for

1 ≤ k ≤ �, and we retrieve the cubical coordinates defined in (2.5) as a special case.

Let {i, j} ∈ χS,δ. Recall from (2.14) that there is a decomposition

χS,δ = χ
�
� {i, j} �

�

{k,l}∼x{i,j}

{k, l},

where χ
� consists of all chords {a, b} which do not cross {i, j}. The following lemma states

that we can eliminate all dihedral coordinates ukl, where {k, l} crosses {i, j}.

L���� 2.19. – Let {i, j} ∈ α. On the open setM δ

0,S
\{uij = 1}, every variable ukl, where

{k, l} ∈ χS,δ crosses {i, j}, can be expressed as a rational function of uij , and the variables uab

where {a, b} ∈ χ
�.

Proof. – The easiest way to see this is on the example α ∈ χ
5
8,δ

depicted in Figure 7 (left),
where {i, j} = {1, 5}. Consider the following equations given by (2.10):

u28 = 1− u17u16u15u14u13,

u28u27 = 1− u16u15u14u13,

u28u27u26 = 1− u15u14u13,

u38u28 = 1− u17u16u15u14,

u38u37u28u27 = 1− u16u15u14,

u38u37u36u28u27u26 = 1− u15u14,

. . .

The identities (2.10) imply that

1− uij =
�

{k,l}∼x{i,j}

ukl,

and therefore all the variables on the left hand side in the equations above are invertible on
M δ

0,S
\{uij = 1}. All the variables on the right hand side lie in χ

� ∪ {i, j}. We can therefore
solve for u28, u27, u26, u38, u37, u36 and so on, in turn. The general case is similar.

Let {i, j} ∈ χS,δ denote a chord. Then {i, j} partitions the set of edges of (S, δ) into two
sets, S1 and S2. The chord itself corresponds to the four edges E = {i, i + 1, j, j + 1}. The
sets T1 = S1∪E, and T2 = S2∪E overlap in precisely the set E, and therefore |T1∩T2| = 4.
Let δE denote the induced dihedral structure on E. By definition of the dihedral coordinate
uij , there is an isomorphism uij :MδE

0,E
∼= A1

. Therefore (2.21) defines a map:

(2.30) M
δ

0,S
−→M

δ1
0,T1

×A1 M
δ2
0,T2

.

The chord {i, j} is in both χT1,δ1 and χT2,δ2 (Fig. 7).

Pʀ����ɪ�ɪ�ɴ 2.20. – The map (2.30) defines an isomorphism

(2.31) M
δ

0,S
\{uij = 1} ∼= Mδ1

0,T1
\{uij = 1} ×A1\{1}M

δ2
0,T2

\{uij = 1}.
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Proof. – The map (fT1 × fT2)
∗ is given by:

Z
�
[i j|l k] : i, j, k, l ∈ T

δ1
1

�
/IT1,δ1 ⊗Z[uij ] Z

�
[i j|l k] : i, j, k, l ∈ T

δ2
2

�
/IT1,δ1

−→ Z
�
[i j|l k] : i, j, k, l ∈ S

δ
�
/IS,δ,

with the notation used in the proof of Lemma 2.9. It can also be regarded as a map:

Z[uab : {a, b} ∈ χT1,δ1 ]/I
χ

T1,δ1
⊗Z[uij ] Z[uab : {a, b} ∈ χT2,δ2 ]/I

χ

T2,δ2

−→ Z[uab : {a, b} ∈ χS,δ]/I
χ

S,δ
,

The previous lemma implies that the map (fT1 × fT2)
∗ is surjective when we invert the coor-

dinates ukl such that {k, l} crosses {i, j}, i.e., on the open set uij �= 1. Using this, one can
write down an inverse map to (fT1 × fT2)

∗, and check that it is indeed an inverse. We omit
the details.

(s)

(5)

6

(1)

7

2
(p) (q)

(r)

1

8

3

4

5

5
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2 3

6 7

2

6

581

T1 T2S

Fɪɢ�ʀ� 7. The induction step in the proof of Proposition 2.22. The chord {1, 5} in
the octagon on the left distinguishes the four thick edges E = {1, 2, 5, 6}. The two
sets T1 = {1, 2, 3, 4, 5, 6} and T2 = {5, 6, 7, 8, 1, 2} intersect in E and define the
hexagons on the right. The right hand hexagon can be further decomposed into
a pair of pentagons, but the middle hexagon has an internal triangle, so we have
to invoke the triangle lemma 2.17. In this way, we reduce to the case ofM δ

0,6 and
M δ

0,5 only.

Each set of vertex coordinates defines an étale map on a certain Zariski-open subset ob-
tained by iterating the map in the previous proposition. Let α ∈ χ

k

S,δ
denote any partial

k-decomposition of the n-gon and define:

(2.32) Uα =
�

{i,j}∈α

{uij �= 1} ⊂M δ

0,S
.

Since Dα = {uij = 0 : for {i, j} ∈ α}, it follows that Dα ⊂ Uα, and Uα is an open
neighbourhood of the subvariety Dα which contains the open setM0,S .

Now let {i, j} ∈ α, and consider the map (2.31). By restricting, we obtain two decompo-
sitions α1, α2, and Zariski-open sets Uα1 , Uα2 on T1, T2 respectively.

R���ʀ� 2.21. – The embedding (2.31) extends the isomorphism Dα
∼= Dα1×Dα2 . The

product structure on each boundary stratum ofM δ

0,S
therefore extends over a Zariski-open

subset of the variety.
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Now for each α ∈ χ
k

S,δ
, we define a Zariski-open set

(2.33) U
�

α
=

�

{p,q,r}∈α

{∆pq,r �= 0} ∩ Uα ⊂M
δ

0,S
,

where the intersection is over all sets of (ordered) internal triangles {p, q, r} ∈ α and ∆pq,r

is defined by (2.29). It follows from (2.29) that Dα ⊂ U
�
α

.

Pʀ����ɪ�ɪ�ɴ 2.22. – Let α ∈ χ
�

S,δ
denote any ordered triangulation of the n-gon (S, δ).

The set of vertex coordinates {xα

1 , . . . , x
α

�
} defines a map

(xα

1 , . . . , x
α

�
) : U

�

α
−→ A�

which is étale. It therefore defines a system of coordinates on U
�
α
(R) or U

�
α
(C).

Proof. – By iterating the decomposition (2.31), we obtain an embedding

(2.34) Uα �→

N�

i=1

Uαi ,

where each αi is a triangulation of a ki-gon which cannot be decomposed any further. We
can assume that each decomposition is strict, i.e., ki ≥ 5 for each i.

Two cases can occur. If there are no internal triangles, then necessarily ki = 5, and we
can assume that αi = {{1, 3}, {1, 4}}, so that x

αi
1 = u13, and x

αi
2 = u14. In that case, (2.10)

gives:
u25 = 1− u13u14, u24u25 = 1− u13, and u35u25 = 1− u14.

The variables on the left are invertible on Uαi = {u25 �= 0} ∩ {u24 �= 0} ∩ {u35 �= 0}, so it
follows that x

αi
1 , x

αi
2 is a coordinate system on this open set, i.e., the map

(xαi
1 , x

αi
2 ) : Uαi −→ A2

is certainly étale. On the other hand, if there is an internal triangle {p, q, r}, and the ki-gon
cannot be decomposed any further, then we are in the situation corresponding toM0,6 pic-
tured above (Fig. 6, middle). By symmetry, we can assume that x

αi
1 = u13, x

αi
2 = u15, and

x
αi
3 = u35. By Equation (2.28), the variable πr = u25 depends quadratically on x

αi
1 , x

αi
2 , x

αi
3 .

It follows from the triangle lemma (2.17) and the definition of U
�
αi

that the map

(xαi
1 , x

αi
2 , x

αi
3 ) : U

�

αi
−→ A3

is étale and two to one. This is because all remaining dihedral coordinates uij are uniquely
determined by x

αi
1 = u15, πr = u25, and x

αi
3 = u35 by applying the relation (2.10) and

inverting coordinates which do not vanish on U
�
αi

in much the same way as above. From
(2.34) we obtain an embedding U

�
α

�→
�

N

i=1 U
�
αi

, which in turn gives rise to a commutative
diagram

U
�
α

(xα
1 ,...,x

α
� )

−−−−−−−→ A�

↓ ↓

�
N

i=1 U
�
αi

�N

i=1
(x

αi
1 ,...,x

αi
ki

)
−−−−−−−−−−−−→

�
N

i=1 Aki .

The vertical maps on the left and on the right are diagonal maps. We have shown that the
horizontal map along the bottom is étale. It follows that the horizontal map along the top is
étale, which completes the proof.
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If the triangulation α contains no internal triangles, then U
�
α

= Uα, and the functions
x

α

1 , . . . , x
α

�
give an isomorphism ofM0,S with a Zariski open subset of A�.

C�ʀ�ʟʟ�ʀʏ 2.23. – Let α ∈ χ
�

S,δ
, such that α has no internal triangles (and therefore

two free vertices). Then the set x
α

1 , . . . , x
α

�
is a system of coordinates everywhere onM0,S , and

every cross-ratio uij is a rational function of the x
α

i
.

We could also defineM δ

0,S
using the set of equations (2.27). One can verify that if α ∈ χ

�

S,δ

has no internal triangles, then all dihedral coordinates can be expressed in terms of the vertex
coordinates {xα

i
} by repeatedly applying the butterfly lemma.

L���� 2.24. – The sets U
�
α

, for α ∈ χ
�

S,δ
, coverM δ

0,S
.

Proof. – For each partial decomposition β ∈ χ
k

S,δ
, set

Nβ = {uij = 0 for all {i, j} ∈ β} ∩ {upq �= 0 for all {p, q} /∈ β},

which is an open subset of Dβ = {uij = 0 for all {i, j} ∈ β}. It follows immediately from
this definition thatM δ

0,S
decomposes as a disjoint union:

(2.35) M
δ

0,S
=M0,S ∪

��

k=1

�

β∈χ
k
S,δ

Nβ .

Let β ∈ χ
k

S,δ
denote any partial decomposition of the n-gon (S, δ). By adding chords, we can

find a full triangulation α ∈ χ
�

S,δ
which contains β, without creating any new internal trian-

gles in α. It follows from (2.29) and Lemma 2.17 that Nβ ⊂ U
�
α

. Note that if β is the empty
triangulation, thenM0,S ⊂ U

�
α

for any α which has no internal triangles. The decomposition
(2.35) then implies that

M
δ

0,S
⊂

�

α∈χ
�
S,δ

U
�

α
.

In this manner, we obtain a second proof of the following theorem:

Tʜ��ʀ�� 2.25. – The affine varieties M δ

0,S
(R) or M δ

0,S
(C) are smooth and irreducible,

and the divisors Dij , for {i, j} ∈ χS,δ, are smooth and normal crossing.

Proof. – Let α ∈ χ
�

S,δ
. Proposition 2.22 states that the vertex coordinates x

α

1 , . . . , x
α

�

corresponding to α define an étale map U
�
α
→ A�

. The image ofM0,S ∩U
�
α

in U
�
α

is precisely
the complement of the normal crossing divisor

x
α

1 . . . x
α

�
= 0

(see Fig. 8). The theorem follows since the sets U
�
α

coverM δ

0,S
.
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Dα

x
α
1 x

α
2 = 0

U
�
α

Fɪɢ�ʀ� 8. The covering ofM δ
0,5. To each vertex α ∈ χ

�
S,δ, there is an open set

U
�
α on which the set of vertex coordinates {xα

i } cross normally. The sets U
�
α form a

covering, which gives a second proof that the divisors Dij are smooth and normal
crossing.

2.7. The real moduli spaceM δ

0,S
(R)

Consider the moduli space of projective circles with n ordered marked points:

M0,S(R) = PSL2(R)\P1(R)n

∗ .

The spaceM0,S(R) is not connected, but is a disjoint union of open cells which we define as
follows. First, we fix a dihedral structure δ on S, which defines a set of dihedral coordinates
uij for {i, j} ∈ χS,δ. Let

(2.36) XS,δ = {uij ≥ 0 : {i, j} ∈ χS,δ} ⊂M
δ

0,S
(R).

By (2.10), XS,δ is also defined by the equations 0 ≤ uij ≤ 1 for all {i, j} ∈ χS,δ, and is
therefore compact. We define the open cell XS,δ to be the interior of XS,δ:

(2.37) XS,δ = XS,δ ∩M0,S = {uij > 0 : {i, j} ∈ χS,δ} .

The sets XS,δ and XS,δ are clearly preserved by the dihedral symmetries of δ, so there is an
action of the dihedral group D2n×XS,δ → XS,δ. Using explicit simplicial coordinates (2.9),
one checks that the open set XS,δ is homeomorphic to the simplex

(2.38) XS,δ
∼= {(t1, . . . , t�) : 0 < t1 < · · · < t� < 1}.

It follows that XS,δ is contractible, and moreover, that XS,δ is a connected component of
M0,S(R). After changing to cubical coordinates, we see that XS,δ is the unit hypercube
{(x1, . . . , x�) : xi ∈ (0, 1)} = (0, 1)�

, which explains the nomenclature of each coordinate
system (Fig. 9).

Each cell XS,δ consists of the set of points s1, . . . , sn ∈ P1(R) such that s1, . . . , sn are in
the dihedral order determined by δ. Two components XS,δ, XS,δ� are disjoint if δ and δ

� are
distinct, and the set of dihedral structures are permuted transitively by the symmetric group
Sn. This implies the following tiling lemma. Devadoss has studied the exact gluing relations
between the cells XS,δ in this tiling [15].
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L���� 2.26. – The spaceM0,S(R) is the disjoint union of the n!/2n open cells XS,δ, as
δ ∈ Sn/D2n ranges over the set of all dihedral structures on S.

It is now clear that the choice of a dihedral structure δ on S is equivalent to the choice of
a fundamental cell XS,δ ∈ π0(M0,S(R)) ∼= Sn/D2n. The set of dihedral coordinates uij

corresponding to δ can be regarded as a natural set of functions which is stable under the
action of the symmetry group of XS,δ.

t1x1

x2 t2

D13 D35

D52D41

D24

1

0 10

1

1

Fɪɢ�ʀ� 9. The set of real points M0,5(R) in cubical (left), simplicial (middle),
and dihedral coordinates (right). The dotted circles denote points which are blown
up when passing to dihedral coordinates. There are 5!/10=12 regions XS,δ when
|S| = 5.

D��ɪɴɪ�ɪ�ɴ 2.27. – For each chord {i, j} ∈ χS,δ, we define the face Fij(XS,δ) of XS,δ

to be the closed subset Fij(XS,δ) = Dij ∩XS,δ ⊂M
δ

0,S
(R). Likewise, for each α ∈ χ

k

S,δ
, we

define the codimension-k face of XS,δ to be Fα(XS,δ) = Dα ∩XS,δ.

It follows from Lemma 2.5 that

(2.39) Fij(XS,δ) ∼= XT1∪{e},δ1
×XT2∪{e},δ2

,

where T1 ∪ T2 is the partition of (the set of edges) S corresponding to the chord e = {i, j}.
By Equation (2.18), each codimension-k face Fα(XS,δ) is a product

Fα(XS,δ) ∼=
k+1�

m=1

XSm,δm .

By repeatedly taking boundaries we obtain a stratification:

(2.40) XS,δ ⊇ ∂XS,δ ⊇ ∂
2
XS,δ ⊇ · · · ⊇ ∂

�
XS,δ,

where the codimension-k boundary of XS,δ is the union of its codimension-k faces:

∂
k
XS,δ =

�

α∈χ
k
S,δ

Fα(XS,δ) for 1 ≤ k ≤ �.

For each n ≥ 4, the associahedron Kn−1, or Stasheff polytope [48], is a convex polytope
of dimension n − 3 whose codimension-k faces are indexed by the partially ordered set of
compatible bracketings on a set of n− 1 elements.
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C�ʀ�ʟʟ�ʀʏ 2.28. – The lattice of faces XS,δ is combinatorially equivalent to the associa-
hedron Kn−1.

Proof. – The set of all codimension-k faces Fα(XS,δ) is indexed by k-triangulations of
a regular n-gon, and the inclusion of one face in another is given by removing a chord. By
taking the dual graph of a partial triangulation of an n-gon we obtain a planar tree. If we fix
an edge s1 of S, then each such tree is rooted, and defines, in a standard way, a bracketing
of the ordered set {s2, . . . , sn} (fig. 11). We obtain in this way a bijection between faces of
XS,δ and bracketings on a set of n− 1 elements (this is beautifully illustrated in [16]).

1x 3x

2x
=

=

=

Fɪɢ�ʀ� 10. The associahedron or Stasheff polytope X6,δ = K5 inM δ
0,6(R) ob-

tained by truncating the unit cube in R3, or blowing up along x1 = x2 = x3 = 1,
and then x1 = x2 = 1 and x2 = x3 = 1. It has six faces F13, F24, F35, F46, F51, F62

which are pentagons X5,δ, and three faces F14, F25, F36 which are quadrilaterals
X4,δ1 ×X4,δ1 . These are permuted by the group D12. There are three types of ver-
tices corresponding to three kinds of triangulation of a hexagon. The vertex coordi-
nates defined in § 2.6 for each triangulation provide local affine charts in the neigh-
bourhood of each vertex.

Since each face Fα is contractible, we can view XS,δ in the coordinates uij as a dihedrally-
symmetric algebraic model of the associahedron Kn−1. The fact that the divisors Dij cross
normally implies that the associahedron is a simple polytope, i.e., each vertex is the intersec-
tion of exactly � distinct faces.

R���ʀ� 2.29. – As remarked earlier,M δ

0,S
can be obtained by blowing up a set of di-

visors bounding XS,δ. Since the operation of blowing up is non-commutative, we have to
specify that the blow-ups occur along subvarieties in increasing order of dimension. A use-
ful intuitive picture of the polytopes XS,δ can be obtained by blowing up the unit hypercube
[0, 1]� along the divisors xi = · · · = xj = 1 for 1 ≤ i < j ≤ �. The set of real points
in the blow-up can be visualised by truncating the unit hypercube along the hypersurfaces
xi . . . xj = 1 − ε, where i < j for some fixed ε > 0 which is sufficiently small (see fig. 10).
Alternatively, one could truncate the simplicial model of XS,δ to obtain another explicit con-
struction of Kn−1 (see [16]). This involves a greater number of truncations, however.
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2.8. The compactificationM0,S and its divisors at infinity

The set of all cross-ratios defines an embedding:

(2.41) {[i j |k l]} :M0,S −→M
(n
4)

0,4
∼= (P1

\{0, 1,∞})(
n
4).

The coordinates {[i j|k l]} satisfy identities (2.1) and (2.2). These identities define a projec-
tive scheme we denote

M0,S ⊂ (P1)(
n
4),

which is defined over Z. This representation ofM0,S is degenerate since some coordinates
are the same, but it is clearly invariant under the action of the symmetric group. For every
cross-ratio [ij|kl], with i, j, k, l ∈ S, there is a divisor

D[ij|kl] = {[i j|k l] = 0} ⊂M0,S .

It follows from simple properties of the cross-ratio (2.1) that

(2.42) D[ij|kl] ∩D[ik|jl] = ∅, and D[ij|kl] ∩D[ij|lk] = ∅,

and D[ij|kl] = D[kl|ij] = D[ji|lk] = D[lk|ji]. For each dihedral structure δ on S, define an
open subset U

δ ⊂M0,S by:

U
δ = {[i j|k l] �= 0 for all i, j, k, l in dihedral order δ}.

Thus U
δ =M0,S\Zδ, where Zδ is the union of divisors D[ij|kl] for every quadruple (i, j, k, l)

in dihedral order δ.

L���� 2.30. – There is an isomorphism jδ :M δ

0,S

∼
−→ U

δ.

Proof. – By the relations (2.1), a set of coordinates on Uδ is given by the cross-ratios
[i j|l k] for all (i, j, k, l) in dihedral order δ. The result follows from the definition (2.12) of
M δ

0,S
.

For example, M0,4 is defined by 24 cross-ratios [i j|k l], with {i, j, k, l} = {1, 2, 3, 4},
each of which is equal to one of the 6 anharmonic ratios {x, 1−x,

1
x
,

x−1
x

,
x

x−1 ,
1

1−x
}, where

x = [1 2|4 3]. ThusM0,4 is isomorphic to P1. The three distinct dihedral structures on a set
with four elements give three embeddings ofM δ

0,4
∼= A1

�→ P1, whose images are P1\{0},
P1\{1}, and P1\{∞}.

L���� 2.31. – The compactificationM0,S is covered by affine chartsM δ

0,S
, as δ ranges

over the set of all dihedral structures on S:

(2.43) M0,S =
�

δ∈Sn/D2n

jδ

�
M

δ

0,S

�
.

Proof. – To show that the sets U
δ = jδ(M δ

0,S
) form an open affine covering ofM0,S is

equivalent to proving that
�

δ
Zδ = ∅, where δ ranges over all N = n!/2n dihedral structures

on S. But
�

δ

Zδ =
�

δ

�

(i,j,k,l)∈δ4

D[ij|kl] =
�

(im,jm,km,lm)∈δ4
m

(D[i1j1|k1l1] ∩ · · · ∩D[iN jN |kN lN ]),
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where δ
4 denotes the set of all 4-tuples (i, j, k, l) which are in dihedral order δ, and where

δ1, . . . , δN are representatives of every dihedral structure on S. It suffices to show that for
every (i1, j1, k1, l1) ∈ δ

4
1 , . . . , (iN , jN , kN , lN ) ∈ δ

4
N

, we have

(2.44) D[i1j1|k1l1] ∩ · · · ∩D[iN jN |kN lN ] = ∅ .

Since for all n ≥ 4,

#{dihedral structures} = N =
n!

2n
>

Ç
n

4

å
= #{4-tuples {i, j, k, l}},

there must, by the pigeonhole principle, be at least two sets of indices {ip, jp, kp, lp}, and
{iq, jq, kq, lq} in (2.44) which coincide. But since they necessarily occur in distinct dihedral
orders, we have by (2.42) that D[ipjp|kplp] ∩D[iqjq|kqlq ] = ∅, which proves (2.44).

Theorem (2.25) implies the following corollary.

C�ʀ�ʟʟ�ʀʏ 2.32. – M0,S is smooth andM0,S\M0,S is a normal crossing divisor.

The irreducible components at infinity ofM0,S\M0,S can be described as follows.

L���� 2.33. – Let δ denote a dihedral structure on S, and let {p, q} ∈ χS,δ. The chord
{p, q} partitions the set S, viewed as edges of the n-gon (S, δ), into two sets P1 ∪ P2. Then the
divisor jδ(Dpq) ⊂ jδ(M δ

0,S
) is determined by the equations [i j|k l] = 0 for all distinct indices

i, j, k, l such that
{i, k} ⊂ P1 and {j, l} ⊂ P2,

or {j, l} ⊂ P1 and {i, k} ⊂ P2.

Proof. – On the chart jδ(M δ

0,S
), these equations imply in particular that upq = 0, and

therefore determine the divisor jδ(Dpq). That the remaining cross-ratios also vanish on
jδ(Dpq) follows from Lemma 2.2.

It follows that two divisors jδ1(D1) and jδ2(D2) coincide on jδ1(M
δ1
0,S

)∩jδ2(M
δ2
0,S

) if and
only if the corresponding partitions of S agree.

D��ɪɴɪ�ɪ�ɴ 2.34. – A partition P1 ∪ P2 = S is stable if |P1| ≥ 2 and |P2| ≥ 2. A di-
hedral structure δ on S is compatible with P1 ∪ P2 if the elements of each set P1 and P2 are
consecutive with respect to δ. An irreducible divisor D ⊂ M0,S\M0,S is said to be at finite
distance with respect to a dihedral structure δ, if D ∩ jδ(M δ

0,S
) �= ∅.

Pʀ����ɪ�ɪ�ɴ 2.35. – There is a bijection between the irreducible components of the divi-
sors at infinity ofM0,S\M0,S , and stable partitions S = P1 ∪ P2. The component D corre-
sponding to this partition is canonically isomorphic to

M0,P1∪{e} ×M0,P2∪{e},

where e is a symbol. A divisor is at finite distance with respect to a dihedral structure δ if and
only if δ is compatible with the corresponding partition of S.
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Proof. – The bijection between stable partitions and divisors follows immediately from
the previous remarks and the covering (2.43). The last statement of the proposition holds
by definition. It remains to prove the decomposition. Suppose that we are given a stable
partition S = P1 ∪ P2, and let D denote the corresponding divisor. Note that a dihedral
structure δ on S, compatible with P1∪P2, induces dihedral structures δ1, δ2 on the sets P1∪

{e} and P2∪{e} (compare Fig. 3), and every pair of δ1, δ2 arises in this way. It follows from
Lemma 2.6 that:

D ∩ jδ(M
δ

0,S
) ∼=

�
jδ(M

δ1

0,P1∪{e}
×M

δ2

0,P2∪{e}
) if δ is compatible with P1 ∪ P2,

∅ otherwise.

If we identify jδ(M
δ1

0,P1∪{e}
× M

δ2

0,P2∪{e}
) with jδ1(M

δ1

0,P1∪{e}
) × jδ2(M

δ2

0,P2∪{e}
) in

M0,P1∪{e} ×M0,P1∪{e}, we obtain:

D = D ∩M0,S = D ∩

�

δ

jδ(M
δ

0,S
) ∼=

�

δ1,δ2

jδ(M
δ1

0,P1∪{e}
×M

δ2

0,P2∪{e}
)

∼=
�

δ1

jδ1(M
δ1

0,P1∪{e}
)×

�

δ2

jδ2(M
δ2

0,P2∪{e}
) =M0,P1∪{e} ×M0,P2∪{e}.

We introduce the following notation. Let D denote the divisor given by a stable partition
S = P1 ∪ P2. Then for any pair of indices i, j ∈ S, we set

(2.45) ID(i, j) = I({i, j} ⊂ P
1) + I({i, j} ⊂ P

2),

where I(A ⊂ B) is the indicator function which takes the value 1 if a set A is contained in B,
and 0 otherwise.

C�ʀ�ʟʟ�ʀʏ 2.36. – Let D denote the divisor corresponding to the stable partition
S = P1 ∪ P2. The order of vanishing of any cross-ratio along D is given by:

ordD [ij|kl] =
1

2

�
ID(i, k) + ID(j, l)− ID(i, l)− ID(j, k)

�
.

Proof. – The formula is invariant under the action of S(S) on divisors and cross-
ratios. We can therefore fix a dihedral structure δ on S and assume that D = D2a, where
a ∈ {4, . . . , n}. The formula is also compatible with (2.1) and additive with respect to (2.2).
By Lemma 2.2, it therefore suffices to verify the formula for [p p + 1|q + 1 q] = upq, where
{p, q} ∈ χS,δ. It follows from (2.10) that ordD2a upq is 1 if {p, q} = {2, a} and is 0 otherwise.
The partition corresponding to D2a is {3, 4, . . . , a} ∪ {a + 1, . . . , n, 1, 2}, and it is easy to
check that the formula holds in this case.

A stable partition S = P1 ∪ P2 is conveniently represented as the union of two circles,
joined at a point e, with marked points corresponding to P1 on the first circle, and those cor-
responding to P2 on the other. Taking iterated intersections of divisors, one obtains bubble
diagrams (fig. 11) [16]. Such a diagram defines a tree, and one retrieves the standard combi-
natorial description of strata inM0,S . If we take the dual graph, we obtain a partial decom-
position of a polygon. Note that we can find dihedral structures δ for which the labellings of
the outer edges are in dihedral order with respect to δ. In this way, any bubble diagram cor-
responds to an intersection of divisors at finite distance on a certain number of affine pieces
M δ

0,S
inM0,S .
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s1

s2

e2

e1 e3

s6

s5

s4s3

e1

e2

e3

s3 s4

s2
s1 s5

s6s7
s7

Fɪɢ�ʀ� 11. A partial decomposition of a heptagon (left), its dual graph (dotted
lines), and the corresponding bubble diagram (right). If the tree is rooted at s1, this
corresponds to the bracketing (s2, ((s3, s4), (s5, s6, s7))).

2.9. Comparison with the Deligne-Mumford-Knudsen construction

It remains to verify that our definition ofM0,S coincides with the constructionM
DMK
0,S

due to Deligne-Mumford and Knudsen. The universal property for the latter implies that
there is a morphism

M0,S −→M
DMK
0,S

.

One could probably check that this is an isomorphism using the combinatorial and geomet-
ric results proved forM0,S above, but it would be preferable to prove the universal property
directly forM0,S using our definition in terms of the affine schemesM δ

0,S
. We have not done

this.

2.10. Product maps

The projection maps onM0,S defined above decrease the dimension by one. We will also
need to consider various maps between products of moduli spacesM0,Ti which preserve the
dimensions. These give rise to special coordinate systems onM0,S and will be used to define
products on period integrals. Given two subsets T1, T2 ⊂ S such that |Ti| ≥ 4, we consider
maps of the form

(2.46) f = fT1 × fT2 :M0,S −→M0,T1 ×M0,T2 .

Such a map will be called a product map if

|T1 ∩ T2| = 3,(2.47)

S = T1 ∪ T2.

In this case the dimensions on both sides of (2.46) are equal, since the equalities (2.47) imply
that |S|−3 = |T1|−3+ |T2|−3. The map f is an embedding, because we can place the three
points in T1 ∩ T2 at 0, 1, and ∞, and each remaining marked point s ∈ S is then uniquely
determined by the map fTi where i ∈ {1, 2} and s ∈ Ti. We can iterate this construction
by further decomposing Ti as a union of sets satisfying (2.47). Since the composition of two
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forgetful maps fT is itself a forgetful map, we obtain a family of subsets T1, . . . , Tk ⊂ S such
that |Ti| ≥ 4, and a map

(2.48) f =
k�

i=1

fTi :M0,S −→

k�

i=1

M0,Ti .

This is an embedding by construction. The sets Ti cover S, i.e., S = ∪k

i=1Ti, and the equality
of dimensions on the left and right hand sides of (2.48) implies that

(2.49) |S|+ 3 (k − 1) =
k�

i=1

|Ti|.

We can then regard M0,S as a dense open subscheme of
�

k

i=1M0,Ti , and we say that f

is a non-degenerate coordinate system on M0,S . Any set of vertex coordinates {xα

i
} corre-

sponding to a triangulation α ∈ χ
�

S,δ
, when α has no internal triangles, is an example of

a non-degenerate coordinate system (this can be verified by induction). More precisely, if
x

α

i
= upiqi , then we can cover S with the sets Ti = {pi, pi + 1, qi, qi + 1}, and identifyM0,Ti

with P1\{0, 1,∞} using the coordinate x
α

i
, for 1 ≤ i ≤ �. If, however, α has internal trian-

gles, then the map f corresponding to the set of vertex coordinates x
α

i
is not an embedding,

and therefore cannot be a non-degenerate coordinate system.
Let us fix a dihedral structure δ on S. This is equivalent, by § 2.7, to choosing one of the

open cells XS,δ which coversM0,S(R). This induces a dihedral structure δi on each subset
Ti ⊂ S, which in turn defines a fundamental cell XTi,δi , for 1 ≤ i ≤ k. By construction,
fTi(XS,δ) ⊂ XTi,δi , and therefore f(XS,δ) ⊂

�
k

i=1 XTi,δi . We define Gf to be the set of
all dihedral structures on S which are compatible with the dihedral structures on each Ti

induced by δ: i.e.,

(2.50) Gf = {γ ∈ S(S)/D2n such that γ|Ti = δi}.

The precise relation between the domains
�

i
XTi,δi and XS,δ is given by:

(2.51) f
−1

� k�

i=1

XTi,δi

�
=

�

γ∈Gf

XS,γ .

Any point x ∈ XS,γ maps via f into
�

i
XTi,δi if and only if γ|Ti = δi. Identity (2.51) follows

because the set of cells XS,γ , for γ ∈ S(S)/D2n, coversM0,S(R) disjointly, by § 2.7.
We consider two examples of such a map f , one for which Gf is trivial, which gives rise

to cubical coordinates, and the other for which Gf is as large as possible, which defines sim-
plicial coordinates. We will see later in § 7 that these special cases give rise to the stuffle and
shuffle relations for multiple zeta values, respectively.

We fix a dihedral structure δ on S, and write S = {s1, . . . , sn}, as usual. Consider first of
all the covering S =

�
n

i=4 Ti, where

(2.52) Ti = {s2, s3, si, si+1} for 4 ≤ i ≤ n,

and all indices are modulo n, as usual. This defines a map

(2.53) f� :M0,S −→

n�

i=4

M0,Ti ,
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which satisfies condition (2.49). One verifies without difficulty that this is a non-degenerate
coordinate system as defined above (or use the fact that |Ti ∩ Ti+1| = 3 for 4 ≤ i ≤ n − 1).
We call f� a system of cubical coordinates onM0,S . In this case, Gf� is trivial, since if γ is a
dihedral structure on S compatible with all the dihedral structures s2 < s3 < si < si+1 on
Ti (or s2 > s3 > si > si+1), then we must have s1 < · · · < sn < s1 (or s1 > · · · > sn > s1).
Each moduli spaceM0,Ti

∼= M0,4 is isomorphic to P1\{0, 1,∞} in six natural ways, corre-
sponding to the six choices of cross-ratio onM0,4. If we identifyM0,Ti with P1\{0, 1,∞}

using the coordinate u2 i = [2 3|i + 1 i], for 4 ≤ i ≤ n, then, since xi−3 = u2 i by (2.9), we
retrieve the explicit cubical coordinates defined in §2.1. In other words, (2.53) is just

f� = (x1, . . . , x�) :M0,S →
�
A1
\{0, 1}

��

,

and coincides with (2.5). Each cell XTi,δi is the unit interval (0, 1) in these coordinates, and
XS,δ maps under f� to (0, 1)�. In this case, Equation (2.51) simply states that a product of
� unit intervals is the unit �-dimensional hypercube.

Cubical coordinates come from a product map. If k ≥ 4, we set

S1 =
k�

i=4

Ti = {s2, s3, . . . , sk+1} and S2 =
n�

i=k+1

Ti = {sk+1, . . . , sn, s1, s2, s3}.

Setting m = k − 3, we define the cubical product map m� to be

m� = fS1 × fS2 :M0,S −→M0,S1 ×M0,S2(2.54)

(x1, . . . , x�) �−→
�
(x1, . . . , xm), (xm+1, . . . , x�)

�
.

The cubical coordinates f� defined above are obtained by iterating such maps.
Now, the simplicial case arises by considering the covering S =

�
n

i=4 Ti, where

(2.55) Ti = {s1, s2, s3, si} for 4 ≤ i ≤ n .

This defines a map

(2.56) f� :M0,S −→

n�

i=4

M0,Ti ,

which satisfies condition (2.49) and is a non-degenerate coordinate system for the same rea-
sons as above (namely |Ti∩Tj | = 3 for all i �= j). We call f� a system of simplicial coordinates
onM0,S . It is easy to check that Gf� is in bijection with the symmetric group on � letters

Gf� = S({s4, . . . , sn}).

As above, we obtain an explicit set of simplicial coordinates by choosing the coordinate
ti = [i + 3 1|3 2] :M0,Ti+3

∼= P1\{0, 1,∞}, for 1 ≤ i ≤ �. Thus (2.56) can be written

f� = (t1, . . . , t�) :M0,S →
�
A1
\{0, 1}

��

,

and we retrieve the isomorphism (2.3). As before, the domains XTi,δi map to unit intervals
(0, 1) under ti−3, and XS,δ maps bijectively under f� to the unit simplex
{0 < t1 < · · · < t� < 1}. In this case, Equation (2.51) states that

�

σ∈S({σ4,...,σn})

XS,σ = f
−1
�

� �

i

XTi

�
,
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i.e., the unit cube (0, 1)� is tesselated with �! copies of the unit simplex, up to boundary terms.

Now let k ≥ 4, m = k − 3, and set

S1 =
k�

i=4

Ti = {s1, s2, s3, . . . , sk−1, sk} and S2 =
n�

i=k+1

Ti = {s1, s2, s3, sk+1, . . . , sn}.

We define the simplicial product map m� to be

m� = fS1 × fS2 :M0,S −→M0,S1 ×M0,S2(2.57)

(t1, . . . , t�) �−→
�
(t1, . . . , tm), (tm+1, . . . , t�)

�
.

In this case, the set Gm� is exactly the set S(m, � −m) of all possible ways of shuffling to-
gether the sets {s4, . . . , sk} and {sk+1, . . . , sn}whilst preserving the orderings s4 < · · · < sk

and sk+1 < · · · < sn. In explicit simplicial coordinates, which involves setting s1 = 1,
s2 = ∞, s3 = 0, and si+3 = ti for 1 ≤ i ≤ �, Equation (2.51) is the well-known formula for
the decomposition of a product of simplices:

(2.58) {0 < t1 < . . < tm < 1} × {0 < tm+1 < . . < t� < 1}\{ti = tj}
∼=

�

σ∈S(m,�−m)

{0 < tσ(1) < . . < tσ(�) < 1}.

This plays an important role in the shuffle product for iterated integrals. The product maps
defined above will be used to generalize such shuffle product formulae in § 7.5.

3. The reduced bar construction and Picard-Vessiot theory

The main tool for computing the periods of moduli spaces is a triviality theorem for the
cohomology of a variant of the bar construction on the de Rham complex of M0,S . Al-
though many of the results below hold in considerably greater generality, we consider the
complement of an affine hyperplane arrangement M , which is more than adequate for our
purposes. We first show that the reduced bar construction on Ω�(M) defines a Picard-Vessiot
extension of its ring of regular functions. This is an abstract algebraic analogue of the ring of
iterated integrals over M . Then, by showing that the bar construction decomposes as a ten-
sor product over a fibration, we prove that the cohomology of the bar construction is trivial
for fibre-type arrangements. This result is also proved for quadratic arrangements in the ap-
pendix. Our point of view, using differential Galois theory, is different from classical ap-
proaches to this subject [9, 10, 31, 32, 39]. The main technical idea is the notion of unipotent
extensions of differentially simple algebras, which is developed in §3.3. The exampleM0,5 is
discussed in § 3.8.

3.1. Shuffle algebras and non-commutative formal power series

Let R be a commutative unitary ring. Let k ≥ 1, let A = {a1, . . . , ak} denote an alphabet
with k symbols, and let A

∗ denote the free non-commutative monoid generated by A, i.e., the
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set of all words w in the symbols ai, along with the empty word 1. Let R�A� be the free non-
commutative R-algebra generated by A. If V1 is the free R-module with basis {a1, . . . , ak},
and if we set Vm = V

⊗m

1 and V0 = R, then clearly

R�A� =
�

m≥0

Vm.

It is well-known that R�A� can be given the structure of a cocommutative graded Hopf alge-
bra. The multiplication law on R�A� is given by concatenation of words, and the coproduct
Γ : R�A� → R�A� ⊗ R�A� is defined to be the unique coproduct for which the elements of
A are all primitive:

Γ(ai) = ai ⊗ 1 + 1⊗ ai.

The counit ε : R�A� → R is given by projection onto the unit word 1. If |w| denotes
the number of symbols occuring in a word w ∈ A

∗, then the antipode map is defined by
w �→ (−1)|w| �w, where the mirror map w �→ �w reverses the order of the symbols in each
word. One verifies that this defines a graded Hopf algebra structure.

Let V
∨
1 denote the R-module dual to V1, and let A

� = {a�1, . . . , a
�

k
} denote the basis dual

to A. Then R�A��, the free tensor algebra over V
∨
1 , is the graded dual of R�A�, and inherits

a commutative Hopf algebra structure by duality. The multiplication law is now given by the
shuffle product x : R�A�� ⊗ R�A�� → R�A�� which is defined recursively by the formulae:
wx1 = 1xw = w, and

a
�

i
w1xa

�

j
w2 = a

�

i
(w1xa

�

j
w2) + a

�

j
(a�

i
w1xw2),(3.1)

for all words w1, w2 ∈ A
�∗, and all a

�
i
, a
�
j
∈ A

�. This is a commutative, associative product
with no zero divisors. The algebra (R�A��,x) will be called the free shuffle algebra on the
generators a

�
1, . . . , a

�

k
. The coproduct is defined by the map

∆ : R�A
�
� → R�A

�
� ⊗R�A

�
�(3.2)

∆(w) =
�

uv=w

u⊗ v,

and the antipode is given by the map w �→ (−1)|w|w. The counit ε : R�A�� → R is given by
projection onto the graded part of weight 0, as previously.

Let R��A�� and R��A��� denote the completions of the graded algebras defined above with
respect to the augmentation ideals ker ε. These are just the algebras of formal power series
in A, A

� respectively. The Hopf algebra structures ∆,Γ, and ε extend in the natural way to
the completed algebras, and we shall denote them by the same symbols.

In addition, we introduce k truncation operators ∂a
�
i

for 1 ≤ i ≤ k:

∂a
�
i
: R�A

�
� → R�A

�
�(3.3)

∂a
�
i
(a�

j
w) = δijw,

for all a
�
j
∈ A

�, w ∈ A
�∗, where δij is the Kronecker delta. It is easy to verify that the

∂a
�
i

are derivations for the shuffle product, and furthermore, that this determines the shuffle
product uniquely if we assume that 1 is the unit. The operators ∂a

�
i

are dual to the operators
w �→ aiw : R�A� → R�A� which affix the letter ai to the left of words w ∈ A

∗. That ∂a
�
i

is a
derivation is equivalent to the fact that ai is primitive for the coproduct Γ by duality.
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3.2. Arrangements of hyperplanes and the bar construction

Consider an arrangement of N hyperplanes H1, . . . ,HN in affine space A�. Let k denote
a field of characteristic 0 over which the arrangement is defined. For each 1 ≤ i ≤ N , choose
a linear form αi ∈ k[x1, . . . , x�] such that Hi is the divisor of zeros of αi. Let

OM = k
�
x1, . . . , x�, {α

−1
i
}1≤i≤N

�

denote the ring of regular functions on the complement M = A�

k
\

�
i
Hi. We set

d =
��

i=1

∂

∂xi

dxi.

Consider the de Rham complex of OM :

(3.4) 0 −→ OM

d
−→ Ω1(OM )

d
−→ Ω2(OM )

d
−→ . . .

d
−→ Ω�(OM ) −→ 0,

where Ωr(OM ) =
�

1≤i1<···<ir≤N
OMdxi1 ∧ · · · ∧ dxir is placed in degree r. Let H

i(OM ),
for 0 ≤ i ≤ �, denote the corresponding cohomology groups. These are k-vector spaces.
Since M is affine, it follows that H

i(OM ) coincides with the de Rham hypercohomology of
M [30]. Consider the set of algebraic 1-forms:

(3.5) ωi = d log αi, for 1 ≤ i ≤ N .

The following theorem is due to Arnold and Brieskorn [43, § 5.4].

Tʜ��ʀ�� 3.1. – The cohomology ring H
�(M) is isomorphic to the graded k-algebra A

generated by the forms ωi, for 1 ≤ i ≤ N .

In particular, the cohomology classes of the forms ω1, . . . , ωN ∈ Ω1(OM ) are a k-basis for
H

1(OM ). In this section, all tensor products will be taken over the field k unless specified
otherwise. Let N denote the kernel of the exterior product

N = ker
�
∧ : H

1(OM )⊗H
1(OM ) −→ H

2(OM )
�
.

We will not require the full strength of Theorem 3.1, only the following corollary.

C�ʀ�ʟʟ�ʀʏ 3.2. – If a form ω ∈ A is a coboundary dφ, then it is zero.

It follows that N is also the kernel of the map

∧ :
�

1≤i,j≤N

k ωi ⊗ ωj −→ Ω2(OM ).

For each positive integer m ≥ 2, the vector space Vm(OM ) of integrable words in the forms
ωi of weight m is defined to be

(3.6) Vm(OM ) =
�

i+j=m−2

H
1(OM )⊗i

⊗N ⊗H
1(OM )⊗j

.

This is just the intersection of the kernels of the maps ∧i for 1 ≤ i ≤ m− 1:

∧i : H
1(OM )⊗m

−→ H
1(OM )⊗i−1

⊗H
2(OM )⊗H

1(OM )⊗m−i−1
,(3.7)

η1 ⊗ · · · ⊗ ηm �−→ η1 ⊗ · · · ⊗ (ηi ∧ ηi+1)⊗ · · · ⊗ ηm.
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Its elements can be written as linear combinations of symbols
�

I=(i1,...,im)

cI [ωi1 |ωi2 | . . . |ωim ],

where 1 ≤ ij ≤ N , and cI ∈ k, which satisfy the integrability condition:

(3.8)
�

I=(i1,...,im)

cI ωi1 ⊗ · · · ⊗ ωij−1 ⊗ (ωij ∧ ωij+1)⊗ ωij+2 ⊗ · · · ⊗ ωim = 0,

for each 1 ≤ j ≤ m − 1. We set V0(OM ) = k, and V1(OM ) = H
1(OM ) =

�
N

i=1 k ωi, and
define

(3.9) V (Om) =
�

m≥0

Vm(OM ).

The vector space of homotopy-invariant iterated integrals is then defined to be

(3.10) B(OM ) = OM ⊗ V (OM ),

with the obvious grading. This is similar to the zeroth cohomology group of Chen’s reduced
bar complex on OM , which is usually written H

0(B(Ω•OM )), with the difference that it is
made up of closed 1-forms only (see [32, 39, 10, 31]).

In order to define a differential on B(OM ), we let

Ωi
B(OM ) = Ωi(OM )⊗OM B(OM ) = Ωi(OM )⊗k V (OM ),

and define d : Ωi
B(OM ) → Ωi+1

B(OM ) by the formula

d

�

I=(i1,...,im)

φI ⊗ [ωi1 |ωi2 | . . . |ωim ] =
�

I=(i1,...,im)

(−1)deg φI φI ∧ ωi1 ⊗ [ωi2 | . . . |ωim ]

+
�

I=(i1,...,im)

dφI ⊗ [ωi1 |ωi2 | . . . |ωim ],(3.11)

where φI ∈ Ωi(OM ). It follows from the integrability condition (3.8) that d
2 = 0. We can

therefore consider the following complex

(3.12) 0 −→ B(OM )
d
−→ Ω1

B(OM )
d
−→ Ω2

B(OM )
d
−→ · · ·

d
−→ Ω�

B(OM ) −→ 0,

where Ωi
B(OM ) is placed in degree i. Its cohomology will be denoted H

i

DR(B(OM )). By
Definition (3.9), V (OM ) is contained in the free OM shuffle algebra generated by V1(OM ),
which is a commutative graded Hopf algebra:

V (OM ) ⊂ k�ω1, . . . , ωN �.

The product x is the shuffle product defined in (3.1), and the coproduct ∆ was defined in
(3.2). One can verify that V (OM ) is preserved by x and ∆, and is therefore a graded Hopf
subalgebra of OM �ω1, . . . , ωN �.

C�ʀ�ʟʟ�ʀʏ 3.3. – B(OM ) is a commutative graded algebra for the shuffle product x, and
has a natural coproduct ∆ : B(OM ) → B(OM )⊗OM B(OM ).
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3.3. Unipotent extensions of differentially simple algebras

Let k be a field of characteristic 0, and let R denote a commutative, unitary k-algebra with
� commuting derivations ∂1, . . . , ∂�. Its de Rham complex begins as follows:

0 −→ R−→

�

1≤i≤�

R −→

�

1≤i<j≤�

R −→ . . . ,

where the first map is given by f �→ (∂if)i, and the second map sends (f1, . . . , f�) to
(∂ifj − ∂jfi)i<j . The ring of constants of R is the k-algebra:

H
0(R) =

��

i=1

ker ∂i.

D��ɪɴɪ�ɪ�ɴ 3.4. – We say that R is differentially simple if H
0(R) = k, and if R is a simple

module over its ring of differential operators R[∂1, . . . , ∂�].

Recall that a differential ideal of R is an ideal I ⊂ R such that ∂iI ⊂ I for all 1 ≤ i ≤ �.
It is immediate that R is differentially simple if and only if it has no differential ideals apart
from 0 and R. An equivalent condition is that for every non-zero r ∈ R, there exists an
operator Dr ∈ R[∂1, . . . , ∂�] such that Dr r = 1. This is the analogue of the notion of a field
in differential algebra.

Now let us assume that R is differentially simple. Let B be a differential k-algebra con-
taining R, with differentials we also denote by ∂1, . . . , ∂�.

D��ɪɴɪ�ɪ�ɴ 3.5. – We say that B is unipotent if H
0(B) = k, and if there exists a filtration

by R[∂1, . . . , ∂�]-subalgebras W
i
B of B:

R = W
0
B ⊂ W

1
B ⊂ · · · ⊂ W

i+1
B ⊂ · · · ⊂ B,

such that B =
�

W
i
B, and W

i+1
B is generated, as an algebra over W

i
B, by finitely many

elements y such that ∂1y, . . . , ∂�y ∈ W
i
B.

In other words, B is obtained by adding successive primitives to R with respect to the
operators ∂1, . . . , ∂�. The following lemma is a variant of a well-known result concerning
extensions of differential fields by adjoining primitives.

L���� 3.6. – Let R be a differentially simple k-algebra, and let r1, . . . , r� ∈ R such that
∂irj = ∂jri for all 1 ≤ i, j ≤ �. On the polynomial ring R[y], we extend the derivations
∂1, . . . , ∂� by setting

∂iy = ri ∈ R for 1 ≤ i ≤ �.

The extended operators ∂i commute and are unique. Suppose that no element u ∈ R satisfies
∂iu = ri (i.e., the class of (r1, . . . , r�) is non-zero in H

1(R)). Then R[y] is differentially simple.

Proof. – Let I be a differential ideal in R[y], and suppose that f(y) ∈ I is a polynomial
in y of minimal degree n ≥ 1:

f(y) = any
n + an−1y

n−1 + · · ·+ a0 ∈ I,
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where ai ∈ R, an �= 0. Since R is differentially simple, there exists an operator D ∈ R[∂i]
such that D an = 1. After applying this operator to the equation above, we may assume that
an = 1. On applying ∂i, we obtain

(nri + ∂ian−1)y
n−1 + · · ·+ (a1ri + ∂ia0) ∈ I.

By the minimality of f(y), this polynomial is identically 0, so the set of equations ∂iu = ri,
for 1 ≤ i ≤ �, already has a solution u = −an−1/n ∈ R. This contradicts the assumption,
and proves that R[y] has no non-trivial differential ideals.

R���ʀ� 3.7. – Since R[y] is differentially simple, it has no non-trivial quotients. For
any differential R-algebra R[η], where ∂iη ∈ R for 1 ≤ i ≤ �, and η satisfies the conditions
of the lemma, the element η is therefore transcendental.

C�ʀ�ʟʟ�ʀʏ 3.8. – Let B denote a unipotent extension of R, where R is differentially sim-
ple. Then B is a polynomial algebra, and every differential R-subalgebra of B is differentially
simple.

Proof. – Let A denote a differential R-subalgebra of B. We can formally add primitives
y1, . . . , yp, . . . to R, where yp ∈ A, to obtain a sequence of differential algebras

R ⊂ R[y1] ⊂ R[y1, y2] ⊂ · · · ⊂ A = R[y1, . . . , yp, . . . ].

We can assume that each inclusion is strict, i.e., yp+1 is not in R[y1, . . . , yp] for each p ≥ 0.
Let

∂iyp+1 = rp+1,i ∈ R[y1, . . . , yp].

Since the ring of constants of B is k, it follows that the primitive yp+1 is the unique solution
to the equations ∂iu = rp+1,i for 1 ≤ i ≤ � in B, up to some constant in k. Applying the
previous lemma inductively, we deduce that R[y1, . . . , yp] is differentially simple and pure
transcendent for all p ≥ 1. It follows that A is differentially simple, and that A is a polynomial
algebra.

D��ɪɴɪ�ɪ�ɴ 3.9. – Let B denote a unipotent extension of a differentially simple
k-algebra R. We say that B is a unipotent closure of R if

H
0(B) = k, and H

1(B) = 0.

A unipotent closure is closed under the operation of taking 1-primitives: for all
f1, . . . , f� ∈ B such that ∂ifj = ∂jfi for all 1 ≤ i, j ≤ �, there exists a primitive F ∈ B such
that ∂1F = f1, . . . , ∂�F = f�.

D��ɪɴɪ�ɪ�ɴ 3.10. – A pointed differential k-algebra (R, ε) is a differential k-algebra R

and a k-linear homomorphism of algebras ε : R → k. Now suppose that R is differen-
tially simple. We define up(R, ε) to be the category of unipotent pointed extensions of (R, ε).
Its objects are (B, ε

�), where B is a unipotent extension of R, such that the composition
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R → B
ε
�
→ k coincides with ε : R → k. A morphism φ from (B1, ε1) to (B2, ε2), is given by

a commutative diagram:
R

��⑥ ⑥
⑥ ⑥
⑥ ⑥
⑥

��❆
❆❆
❆❆
❆❆
❆

φ : B1
��

ε1
��❆
❆❆
❆❆
❆❆
❆

ε

��

B2

ε2
��⑥ ⑥
⑥ ⑥
⑥ ⑥
⑥ ⑥

k

Any object B ∈ up(R, ε) is differentially simple by the previous corollary. It follows that
morphisms in up(R, ε) are necessarily injective.

L���� 3.11. – Morphisms in up(R, ε) are unique.

Proof. – Consider two morphisms φ, φ
� : (B1, ε1) → (B2, ε2) of pointed unipotent alge-

bras over (R, ε). If ∂i, for 1 ≤ i ≤ �, are the differentials on R, we denote their extensions to
B1 and B2 by the same symbols. Let W

•
B1 denote a filtration on B1 as in Definition 3.5,

and suppose by induction that φ = φ
� on W

p
B1. Let y ∈ W

p+1
B such that ∂iy ∈ W

p
B1

for all 1 ≤ i ≤ �. Then

∂i(φ− φ
�)(y) = (φ− φ

�)(∂iy) = 0, for all 1 ≤ i ≤ �,

and therefore φ(y) − φ
�(y) ∈ H

0(B2) = k. Since ε2φ(y) = ε2φ
�(y) = ε1y, it follows that

φ(y) = φ
�(y). Thus φ = φ

� on W
p+1

B and the uniqueness follows by induction.

Pʀ����ɪ�ɪ�ɴ 3.12. – Let (R, {∂i}1≤i≤�, ε) and (R�, {∂�
i
}1≤i≤�, ε

�) denote two differen-
tially simple pointed k-algebras, and let φ : (R, ε) −→ (R�, ε�) be a non-zero differential
homomorphism. Let (U, ε

�) be a unipotent closure of (R�, ε�), and let (B, ε) be any unipotent
extension of (R, ε). Then there is a unique morphism of differential algebras φ∗ : B −→ U

which extends φ and which is necessarily injective, such that the following diagram commutes:

R
φ ��

��

R
�

��
B

φ� ��

ε

��❄
❄❄
❄❄
❄❄

U

ε
�

��⑦ ⑦
⑦ ⑦
⑦ ⑦
⑦ ⑦

k

The map φ∗ preserves any given filtrations on B and U , i.e., φ(W p
B) ⊂ W

p
U for all p ≥ 0.

If, furthermore, H
1(B) = 0 and φ is an isomorphism, then φ∗ is also an isomorphism.

Proof. – Suppose by induction that φ∗ has been defined on W
p
B. Since B is unipotent,

W
p+1

B is generated by elements y such that ∂iy ⊂ W
p
B. For such y,

∂
�

j
φ∗(∂iy) = φ∗(∂j∂iy) = φ∗(∂i∂jy) = ∂

�

i
φ∗(∂jy).

Since H
1(U) = 0, there exists f ∈ U such that ∂

�
i
f = φ∗(∂iy) for all 1 ≤ i ≤ �. We extend the

definition of φ∗ by setting φ∗(y) = f +ky, where the constant of integration ky ∈ k is chosen
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such that ky + ε
�(f) = ε(y). By the previous lemma, y is transcendent, and therefore φ∗ is

well-defined. We obtain a map φ∗ on the whole of B by induction. The previous corollary
implies that B is differentially simple. It follows that φ∗ is injective because its kernel is a
differential ideal in B not equal to B itself. The fact that φ∗ preserves the filtrations is clear
from the construction.

Now suppose that φ is an isomorphism and that H
1(B) = 0. Applying the same construc-

tion to φ
−1, we obtain a map (φ−1)∗ : U → B. Because of the uniqueness of morphisms in

up(R, ε), φ∗(φ−1)∗ is the identity, and therefore φ∗ is an isomorphism.

C�ʀ�ʟʟ�ʀʏ 3.13. – A pointed unipotent closure (U, ε) over (R, ε) is a final object in
up(R, ε), i.e., every unipotent extension (U, ε) → (B, ε

�) is an isomorphism.

We can therefore speak of the unipotent closure U of a pointed differentially simple ring
(R, ε) whenever it exists. Since U is a union of polynomial algebras (Corollary 3.8), it neces-
sarily has a k-valued point over ε.

D��ɪɴɪ�ɪ�ɴ 3.14. – If U is the unipotent closure of a differentially simple k-algebra R,
let Gal(U/R) be the group of differential automorphisms φ : U → U over R.

It follows from the definitions that Gal(U/R) is a pro-unipotent group. Now let � : R → k

denote a k-valued point on Spec R. The set of k-valued points {φ ∈ Homk(U, k) : φ|R = ε}

on Spec U lying above ε, is a principal homogeneous space over Gal(U/R). There is thus a
complete analogy between the theory of unipotent differentially simple extensions and the
theory of covering spaces.

3.4. Base points at infinity

We need to repeat the theory of unipotent closures in the case where the base points are at
infinity. In order to do this, we need to generalise the notion of a k−valued point for certain
differential algebras.

D��ɪɴɪ�ɪ�ɴ 3.15. – Let k be a field. We define

(3.13) k{�1, . . . , ��} = k[[�1, . . . , ��]]
� 1

�1
, . . . ,

1

��

�
,

to be the differential k−algebra of Laurent series in �i, equipped with � commuting differen-
tials ∂�i , for 1 ≤ i ≤ �. Now define the extension

(3.14) U{�1, . . . , ��} = k{�1, . . . , ��}[L�1 , . . . , L�� ] ,

where L�i is the formal logarithm of �i, i.e., ∂�iL�i = �
−1
i

for 1 ≤ i ≤ �.

The ring of constants of k{�1, . . . , ��} is k, and the extension U{�1, . . . , ��} is easily
verified to be a unipotent closure of k{�1, . . . , ��}, since H

0(U{�1, . . . , ��}) = k, and
H

1(U{�1, . . . , ��}) = 0.
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D��ɪɴɪ�ɪ�ɴ 3.16. – Let R be a differentially simple k-algebra with � commuting differ-
entials ∂1, . . . , ∂�. We define a k{�1, . . . , ��}-point on R to be a k−linear homomorphism

p : R −→ k{�1, . . . , ��},

which satisfies
p ∂i = ∂�i p, for all 1 ≤ i ≤ �.

A k{�1, . . . , ��}-point p : R → k{�1, . . . , ��} defines an ordinary k-valued point if it factorises
through R → k[[�1, . . . , ��]]:

R −→ k[[�1, . . . , ��]]
�1=···=��=0
−−−−−−−−→ k

� ↓

k{�1, . . . , ��}.

At the other extreme, we say that the point p is at infinity if �
−1
1 , . . . , �

−1
�
∈ Im p.

E����ʟ� 3.17. – Consider the case where k = Q, and R = Q[x, 1/x, 1/(1 − x)] with
differential ∂/∂x. This corresponds to the projective line minus three points P1\{0, 1,∞} =
A1\{0, 1}. The set of k-valued points on R is the set k\{0, 1}. Each k{�}-point

p : Q
�
x,

1

x
,

1

1− x

�
−→ k{�}

satisfies ∂�p(x) = p(∂xx) = 1, and takes x to � + c, where c ∈ k. The set of k{�}-points
is therefore the set k. In this case, there are just two points at infinity, given by the maps
pλ : R → k{�}, where λ = 0, 1; defined as follows:

x �→ � + λ

1

x− λ
�→

1

�
.

More generally, every corner of the Stasheff polytope XS,δ ⊂ M
δ

0,S
defines a base-point at

infinity on the ring O(M0,S). Given a triangulation α ∈ χ
�

S,δ
of the n-gon (S, δ), a set of

vertex coordinates x
α

1 , . . . , x
α

�
(§ 2.6) gives rise to a map

�
O(M0,S), ∂/∂x

α

i

�
−→ k{�1, . . . , ��}

which sends x
α

i
to �i for 1 ≤ i ≤ �.

A point at infinity corresponds to a point which is the intersection of a number of normal
crossing divisors, and will play the role of a tangential base point.

D��ɪɴɪ�ɪ�ɴ 3.18. – Let R denote any differentially simple k-algebra, with derivations
∂1, . . . , ∂�. We define a logarithmic Laurent expansion to be a homomorphism of differential
k-algebras:

φ : R −→ U{�1, . . . , ��}.

There is a natural map λ : U{�1, . . . , ��} −→ k which projects on to the constant coefficient
in the logarithmic Laurent series. It factorises through

U{�1, . . . , ��} −→ k{�1, . . . , ��} −→ k,
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where the first map sends L�i to 0 for 1 ≤ i ≤ �, and the second map picks out the constant
term in the Laurent expansion

�

i1,...,i�≥−N

ai1,...,i��
i1
1 . . . �

i�
�

�→ a0,...,0.

The map λ has a certain number of formal properties, which we will not require explicitly.
Given a logarithmic Laurent expansion φ : R → U{�1, . . . , ��}, we define the map of
constants of φ to be the (k-linear, additive) map

λ ◦ φ : R → k.

L���� 3.19. – Let R be a differentially simple k-algebra, and let p : R → k{�1, . . . , ��}

denote a k{�1, . . . , ��}-point. Let B denote a unipotent extension of R. Consider any logarith-
mic Laurent expansion φ : B → U{�1, . . . , ��} over the point p, i.e., such that the following
diagram commutes:

B
φ

−→ U{�1, . . . , ��}

↑ ↑

R
p

−→ k{�1, . . . , ��}.

Then φ is uniquely determined by its map of constants λ ◦ φ : B → k.

Proof. – This follows immediately using the method of proof of Proposition 3.12.

A map of constants amounts to choosing a constant of integration for each successive
primitive in a unipotent extension B of R. We can now copy the results of the previous sec-
tions for base points at infinity.

D��ɪɴɪ�ɪ�ɴ 3.20. – Let R denote a differentially simple k-algebra, and let
p : R → k{�1, . . . , ��} be a k{�1, . . . , ��}-point. Let ut(R, p) denote the category of
pointed unipotent extensions of (R, p), whose objects are unipotent R-algebras (B,φ),
where φ : B → U{�1, . . . , ��} is a logarithmic Laurent expansion (or, equivalently, the corre-
sponding map of constants). Morphisms are defined in a similar manner to the category up.

The proof of Lemma 3.11 and Proposition 3.12 go through without any difficulty.

Pʀ����ɪ�ɪ�ɴ 3.21. – Morphisms are unique in ut(R, p), and a unipotent closure U of R

is a final object in the category ut(R, p).

If U is the unipotent closure of (R, p), where p is a k{�1, . . . , ��}-point, then

(3.15) {φ : U → U{�1, . . . , ��}, φ|R = p}.

is a principal homogeneous space over Gal(U/R).
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3.5. One-dimensional fibrations and their relative unipotent closures

Let R denote a differentially simple k-algebra, with commuting differentials ∂1, . . . , ∂�.
Suppose that we are given N elements f1, . . . , fN ∈ R which satisfy the condition

(3.16)
1

fi − fj

∈ R for all 1 ≤ i < j ≤ N .

Consider the R-algebra

(3.17) �R = R

�
y,

1

y − f1
, . . . ,

1

y − fN

�
,

equipped with the derivation ∂y which is the unique R-linear derivation satisfying ∂y y = 1.
Clearly ∂i, ∂y commute for all 1 ≤ i ≤ �. Consider the free shuffle algebra generated by the
symbols ω1, . . . , ωN over �R:

(3.18) U�R/R
= �R⊗k k�ω1, . . . , ωN �,

and let us extend the definition of ∂y to U�R/R
by setting

(3.19) ∂y = ∂y ⊗ 1 +
N�

i=1

1

y − fi

⊗ ∂ωi ,

where the left truncation operators ∂ωi were defined in § 3.1. This makes U�R/R
into a differ-

ential R-algebra. A similar algebra was considered in [41], and a specific case is studied in
detail in § 5. The symbol ωi represents the formal logarithm log(y − fi), for 1 ≤ i ≤ N . By
analogy with the bar construction, we will write [ωi1 | . . . |ωim ] for the tensor ωi1 ⊗· · ·⊗ωim .
The following proposition states that U�R/R

is a relative unipotent closure over the base R.

Pʀ����ɪ�ɪ�ɴ 3.22. – H
0(U�R/R

) = R and H
1(U�R/R

) = 0.

Proof. – It is a simple exercise to show that the ring of constants of U�R/R
is R. The ar-

gument is given in the proof of Lemma 3.31, and works in complete generality. The fact that
H

1(U�R/R
) vanishes is equivalent to the existence of primitives with respect to ∂y over the

base R. The key observation is the following identity, which is valid in U�R/R
, by assumption

(3.16):

(3.20)
1

(y − fi)(y − fj)
=

1

fi − fj

� 1

y − fi

−
1

y − fj

�
.

Using this, we can decompose elements of �R into partial fractions. It suffices, therefore, to
find primitives of expressions of the form

1

(y − fi)n
[ωi1 | . . . |ωim ],

where n ∈ Z, and 1 ≤ i1, . . . , im ≤ N . If n = −1, a primitive is given by

[ωi|ωi1 | . . . |ωim ]

by definition. For other values of n, we can reduce to this case by integrating by parts and
using induction. It follows that every element in U�R/R

has a primitive with respect to ∂y.
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Note that there is no integrability condition to be verified because the fibres of the map
Spec �R → Spec R are one-dimensional. We now show how to differentiate the symbols
[ωi1 | . . . |ωim ] with respect to the operators ∂1, . . . , ∂� of the base ring R (differentiation
under an iterated integral). To do this, consider an R-linear map

p : �R −→ R{�} = R[[�]]
�1

�

�

which satisfies p ∂y = ∂� p. Then there is a unique logarithmic Laurent expansion:

U�R/R

φ

−→ R{�}[L�]

↑ ↑

�R p

−→ R{�}

such that the map of constants is zero on the generators of U�R/R
, i.e.,

λ ◦ φ : U�R/R
−→ R(3.21)

�
ωi1 | . . . |ωim

�
�−→ 0.

This follows from the inductive method of proof of Proposition 3.12: if w = [ωi1 | . . . |ωim ],
and φ(∂yw) = a has already been defined, then φ(w) is defined to be a primitive of a with
respect to ∂�. The constant of integration is normalised by the condition λ(φ(w)) = 0, since
the map (3.21) is R-linear.

Pʀ����ɪ�ɪ�ɴ 3.23. – The action of the differential operators ∂i on R, for 1 ≤ i ≤ �,
extend uniquely to U�R/R

in such a way that the ∂i commute with each other, and such that:

[∂i, φ] = [∂i, ∂y] = 0 for all 1 ≤ i ≤ �.

For each element w = [ωi1 | . . . |ωim ] ∈ W
m

U�R/R
, ∂iw ∈ W

m−1
U�R/R

. It follows that U�R/R

is a unipotent differential algebra with respect to all the operators ∂1, . . . , ∂�, ∂y.

Proof. – The map φ is injective, since U�R/R
is differentially simple, and therefore the

action of the operators ∂i on U�R/R
are induced from R{�}[L�] by restriction. More pre-

cisely, suppose by induction that the action of the operators ∂i have already been defined on
W

p
U�R/R

, for some p ≥ 0. Let w ∈ W
p+1

U�R/R
such that ∂yw ∈ W

p
U�R/R

. If we view U�R/R

as a subalgebra of R{�}[L�], then we can write

∂y∂iw = ∂i∂yw ∈ U�R/R
.

The element ∂iw, which is a priori in R{�}[L�], in fact lies in U�R/R
. This is because it is a

primitive of ∂i∂yw ∈ U�R/R
, and we know that H

1(U�R/R
) = 0, and H

0(R{�}[L�]) = R.
More explicitly, if w = [ωi1 | . . . |ωim ], then we define

∂iw = (1− λ ◦ φ)A,

where A is any solution in U�R/R
to ∂yA = ∂i∂yw. The fact that the operators ∂i decrease

the weight of each such element w is easily proved by induction and is left to the reader.
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For each 1 ≤ i ≤ N , there is a unique R-linear map

p : �R → R{�}(3.22)

y − fi �→ �,

such that ∂�p = p ∂y. It satisfies:

p

� 1

y − fj

�
=

1

fi − fj

�

k≥0

�
k

(fj − fi)k
for all j �= i.

C�ʀ�ʟʟ�ʀʏ 3.24. – Suppose that UR is the unipotent closure of R. Then the algebra
UR ⊗R U�R/R

is the unipotent closure of �R.

Proof. – By choosing any map p given by Equation (3.22) above, we obtain a differential
�R[∂1, . . . , ∂�, ∂y]-structure on UR ⊗R U�R/R

. It is clear that a tensor product of unipotent
algebras is unipotent, and that H

0(UR ⊗R U�R/R
) = k. Since the operator ∂y is zero on

UR, it follows that H
1(UR ⊗R U�R/R

) = 0. Concretely, in order to find 1-primitives in this
algebra, first take a primitive with respect to ∂y and then adjust the constant of integration
in UR using the fact that H

1(UR) = 0.

By iterating the previous corollary, we deduce that any differentially simple algebra R

which is of fibre-type (i.e., an iterated sequence of fibrations) has an explicit unipotent closure
which is a tensor product of shuffle algebras.

Tʜ��ʀ�� 3.25. – Let R denote a differentially simple k-algebra, which can be expressed
as a finite series of extensions of the type (3.17) satisfying (3.16):

(3.23) k = R0 ⊂ R1 ⊂ · · · ⊂ Rn = R,

where

(3.24) Rt = Rt−1

�
yt,

� 1

yt − ft,i

�

1≤i≤Nt

�
,

and ft,i − ft,j is invertible in Rt−1 for all 1 ≤ i < j ≤ Nt, and all t = 1, . . . , n. Then the
unipotent closure UR of (R, p) exists, and is isomorphic (as an algebra) to the tensor product
of free shuffle algebras on Nt generators, for 1 ≤ t ≤ n:

(3.25) UR
∼= R⊗k

n�

t=1

k�ωt,1, . . . , ωt,Nt�.

Its differential structure is uniquely determined by such a tensor decomposition.

Proof. – This follows immediately from the previous corollary by induction. The differ-
ential structure is determined by the construction in Proposition 3.23.

We therefore have an explicit description of the algebraic structure of the unipotent clo-
sure of R for any R which is of fibre type. Note that there may be several natural isomor-
phisms of the form (3.25), even after fixing base-points.
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3.6. Iterated integrals

Let OM denote the ring of regular functions on an affine hyperplane arrangement as con-
sidered in §3.2. OM is a differential algebra with � commuting differentials ∂/∂x1, . . . , ∂/∂x�.
Suppose that I ⊂ OM is any non-zero differential ideal. It must contain a polynomial
P ∈ k[x1, . . . , x�], since we can multiply by suitable powers of the hyperplane equations αi

to clear denominators. It is clear that there exists a polynomial DP in the ∂/∂xi such that
DP P = 1, and therefore I = OM . It follows that OM is differentially simple.

Tʜ��ʀ�� 3.26. – The de Rham cohomology of B(OM ) satisfies:

H
0
DR(B(OM )) = k, and H

1
DR(B(OM )) = 0,

and B(OM ) is the unipotent closure ofOM . It follows that every differentialOM -subalgebra of
B(OM ) is differentially simple, and B(OM ) is a polynomial algebra.

The proof of this theorem is postponed until §3.7.

R���ʀ� 3.27. – The theorem in fact holds in much greater generality. Let F denote any
differential algebra such that H

1(F ) ∼=
�

N

i=1 k ωi, where ωi ∈ Ω1(F ) satisfy
� �

i,j

k ωi ∧ ωj

�
∩ dΩ1(F ) = 0.

If k is the field of constants of F , and if B(F ) is defined as in § 3.2, then it is clear from the
proof (§ 3.7), that H

0(B(F )) = k and H
1(B(F )) = 0. Furthermore, when F is differen-

tially simple, every differential F -subalgebra of B(F ) is differentially simple, and B(F ) is a
polynomial algebra.

We now recall the definition of Chen’s iterated integrals, which will give an isomorphism
of the abstract algebra B(F ) with an algebra of multi-valued functions. Let �M be a univer-
sal covering for M , and let p : �M → M denote the projection map. Let b ∈ M denote a
base point for M . Given any smooth path γ : [0, 1] → M beginning at b, and holomorphic
1-forms η1, . . . , ηm ∈ Ω1(M), the iterated integral of the word ηm . . . η1 (note the reversed
order of symbols) along γ is defined by

�

γ

η1 . . . ηm =

�

0<t1<···<tm<1
γ
∗
η1(t1) ∧ · · · ∧ γ

∗
ηm(tm).

One can show using the calculus of variations [10] that the iterated integral of a linear combi-
nation of forms f =

�
I
cI ωi1 . . . ωim only depends on the homotopy class of γ if and only if

the integrability condition (3.8) is satisfied. In this case, an iterated integral varies holomor-
phically as a function of the endpoint z = γ(1) of γ, and therefore defines a holomorphic
function on the universal covering �M . We can realise Ω∗(OM ) as an algebra of differential
forms on �M by taking the pull-back along the covering map p : �M → M . When we refer to
a multi-valued function (or form) on M it will be a linear combination of such iterated inte-
grals with coefficients in OM (resp. Ω∗(OM )) (compare the multi-valued de Rham complex
defined in [33]).

L���� 3.28 ([32, 10, 31]). – Let η1, . . . , ηl ∈ Ω1(M).
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1. Let 1 ≤ m ≤ l, and letS(m, l−m) denote the set of (m, l−m)-shuffles defined in § 2.10.
Then the shuffle product formula holds:

�

γ

η1 . . . ηm

�

γ

ηm+1 . . . ηl =
�

σ∈S(m,l−m)

�

γ

ησ(1) . . . ησ(l).

2. Let γz : [0, 1] → M denote a smooth family of paths such that γz(0) = b, and
γz(1) = z ∈ M . If

�
I
cI ωi1 . . . ωim satisfies the integrability condition (3.8), we have:

d

dz

�

γz

�

I

cIωim . . . ωi1 =
�

I

cIωi1

�

γz

ωim . . . ωi2 .

D��ɪɴɪ�ɪ�ɴ 3.29. – Let Lb(M) denote theOM -module generated by all such homotopy-
invariant iterated integrals on �M . We write Ωi(Lb(M)) = Lb(M)⊗OM Ωi(OM ).

By the previous lemma, Ω∗(Lb(M)) is a differential algebra, and there is a map:

ρb : Ω∗B(OM )
∼
−→ Ω∗Lb(�M)(3.26)

�

I

φI [ωi1 | . . . |ωim ] �−→
�

I

φI

�

γ

ωim . . . ωi1 ,

which is a surjective map of differential algebras by (3.11). As above, γ denotes a smooth
path beginning at the point b ∈ M . The kernel of ρb is a differential ideal, and therefore must
reduce to zero since B(OM ) is differentially simple. Therefore (3.26) is an isomorphism.

C�ʀ�ʟʟ�ʀʏ 3.30. – If {ei} is a basis for B(OM ) over OM , then the functions ρb(ei) are
linearly independent over OM . All algebraic relations between the functions ρb(ei) are deter-
mined by the shuffle product.

One can determine a basis for B(OM ) in the fibre-type case (see § 6.2).

3.7. Proof of Theorem 3.26

We first show that the ring of constants of B(OM ) is k. For any ψ ∈ B(OM ), n ≥ 0, we
write ψn = grw

n
ψ for its graded part of weight n.

L���� 3.31. – H
0
DR(B(OM )) = k.

Proof. – Let ψ ∈ B(OM ) of weight m ≥ 1 such that dψ = 0. We write

ψr =
�

I=(i1,...,ir)

fI [ωi1 | . . . |ωir ] for 0 ≤ r ≤ m,

where each fI ∈ OM . Then the graded weight m part of dψ is zero:

(dψ)m =
�

|I|=m

dfI [ωi1 | . . . |ωim ] = 0.

Therefore dfI = 0 and so fI ∈ H
0
DR(OM ) = k for all ordered sets I such that |I| = m. The

weight m− 1 part of dψ is also zero:

(dψ)m−1 =
�

|I|=m

fI ωi1 [ωi2 | . . . |ωir ] +
�

J=(i2,...,im)

dfJ [ωi2 | . . . |ωim ] = 0,
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which implies that

fi1,i2,...,imωi1 + dfi2,...,im = 0 for all i2, . . . , im.

Therefore the forms fi1,...,imωi1 are exact for all i1, . . . , im. But since we have shown that
fi1,...,im ∈ k is constant, this can only occur if fi1,...,im = 0. This implies that the weight
of ψ is at most m − 1, which contradicts the initial assumption. Therefore, any ψ such that
dψ = 0 is of weight 0, and lies in OM . Hence ψ ∈ H

0
DR(OM ) = k.

The following lemma states that we can replace a closed 1−form in B(OM ) with an element
in its cohomology class of strictly lower weight.

L���� 3.32. – Let ψ ∈ Ω1(B(OM )) be an element of weight m such that dψ = 0. Then
there exists θ ∈ B(OM ) such that κ = ψ − dθ is of weight at most m− 1.

Proof. – Let

ψ =
m�

r=0

�

I=(i1,...,ir)

φI [ωi1 | . . . |ωir ],

where φI ∈ Ω1OM for all indexing sets I. Since dψ = 0, we deduce that

0 =
�

|I|=m

dφI [ωi1 | . . . |ωim ]−
�

|I|=m

φI ∧ ωi1 [ωi2 | . . . |ωim ] +
m−1�

r=0

d(ψr).

This implies firstly that dφI = 0 for all sets I with |I| = m, and secondly that

(3.27)
m−1�

r=0

d(ψr)−
�

I=(i1,...,im)

φI ∧ ωi1 [ωi2 | . . . |ωim ] = 0.

Taking the graded part of this equation of weight m− 1, we deduce that

−

�

I=(i1,...,im)

φI ∧ ωi1 [ωi2 | . . . |ωim ] +
�

i2,...,im

dφi2,...,im [ωi2 | . . . |ωim ] = 0 ,

and so

(3.28)
�

i1

φi1,...,im ∧ ωi1 = dφi2,...,im ,

for all I = (i1, . . . , im). We have shown that φI is closed for |I| = m, so we can write

(3.29) φI =
�

j

αI,j ωj + dgI ,

where αI,j ∈ k, and gI ∈ OM . Substituting into (3.28) above, we have
�

i1,j

αi1,...,im,j ωj ∧ ωi1 +
�

i1

dgi1,...,im ∧ ωi1 = dφi2,...,im ,

for all i2, . . . , im. The corollary to Theorem 3.1 implies that any linear combination
of exterior products of forms ωi which is exact, is necessarily zero. Using the fact that
dgi1,...,im ∧ ωi1 = d(gi1,...,im ∧ ωi1) is exact, we have

(3.30)
�

i1,j

αi1,...,im,j ωj ∧ ωi1 = 0, for all i2, . . . , im.
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Let

θ1 =
�

I=(i1,...,im)

�

j

αI,j [ωj |ωi1 | . . . |ωim ] .

Since the integrability condition (3.8) is homogeneous with respect to the weight, the inte-
grability of ψ implies the integrability of ψm =

�
|I|=m

φI [ωi1 | . . . |ωim ]. This is equivalent
to a number of linear equations of the form

�
|I|=m

λIφI = 0, where λI ∈ k. Using the
decomposition (3.29), and the fact that Im

� �
i<j

k ωi∧ωj → Ω1(OM )
�

and dOM are com-
plementary spaces (this follows from Theorem (3.1)), we deduce that

(3.31)
�

I=(i1,...,im)

�

j

αI,j ωj [ωi1 | . . . |ωim ],

is integrable, as is
�

|I|=m
dgI [ωi1 | . . . |ωim ]. By adding constants, we can assume that the

primitives gI of dgI satisfy the same linear equations
�

|I|=m
λIgI = 0. This ensures that

θ2 =
�

|I|=m

gI [ωi1 | . . . |ωim ]

satisfies the integrability criterion also. The integrability of θ1 follows from (3.31) and (3.30).
We set θ = θ1 + θ2 ∈ B(OM ). By construction, we have

dθ − ψ = d
� �

I=(i1,...,im)

�

j

αI,j [ωj |ωi1 | . . . |ωim ] + gI [ωi1 | . . . |ωim ]
�
− ψ

=
�

|I|=m

� �

j

αI,j ωj + dgI

�
[ωi1 | . . . |ωim ] + gI ∧ ωi1 [ωi2 | . . . |ωim ]− ψ

=
�

|I|=m

gI ∧ ωi1 [ωi2 | . . . |ωim ]− (ψ0 + · · ·+ ψm−1),

which is of weight at most m− 1, since all terms of weight m cancel by (3.29).

Given a closed form ψ ∈ Ω1(OM ) of weight m, we defined an explicit θ ∈ B(OM ) such
that ψ = dθ + ψ1, and ψ1 is of weight ≤ m − 1. In fact, θ is of weight at most m + 1.
Applying the lemma repeatedly, we obtain a series of forms ψ1, . . . , ψm ∈ Ω1(OM ) and
θ1, . . . , θm ∈ B(OM ), where ψi is of weight at most m− i, such that

ψi = dθi + ψi+1.

At the final stage, ψm = dθm. Thus ψ = d(θ + θ1 + · · · + θm), and θ + θ1 + · · · + θm is a
primitive of ψ of weight at most m + 1.

As remarked earlier, the argument in the proof of the lemma can be both generalised and
simplified using spectral sequence arguments (see the appendix).

C�ʀ�ʟʟ�ʀʏ 3.33. – H
1
DR(B(OM )) = 0.

This completes the proof of Theorem 3.26. The fact that everyOM -subalgebra of B(OM )
is differentially simple, and the fact that B(OM ) is a polynomial algebra, follows from the
results of § 3.3.
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3.8. Fibrations of hyperplane arrangements

We recall necessary and sufficient conditions for an affine hyperplane arrangement to de-
compose as a fibration over an arrangement of smaller dimension [43]. We deduce from the
results of § 3.5 that the reduced bar construction has trivial cohomology for fibre-type ar-
rangements.

Let H = {H1, . . . ,HN} denote any affine hyperplane arrangement in A�. Choose any
affine subspace W ∼= Ae contained in A� and let V0 ⊂ A� denote a complementary subspace
such that

A� ∼= V0 ⊕W.

For each z ∈ Ae ∼= W , let Vz = V0 + z denote the affine space parallel to V passing through
the point z ∈ W . The spaces Vz define a vertical direction normal to the base W . We define
the set of vertical hyperplanes to be

H
v = {H ∈ H : H contains Vz for some z ∈ W},

and let Hh denote the set of all remaining hyperplanes. There is a decomposition

H = Hv
� H

h
,

and it is clear that every horizontal hyperplane H ∈ Hh intersects each Vz properly. Consider
the complements

M = A�
\

�

H∈H

H, and M
� = W\

�

H∈Hv

H ∩W.

The linear projection A� → W with kernel V0 induces a surjective map p : M → M
�.

L���� 3.34. – The map p is a fibration if and only if the following condition holds: for all
H,H

� ∈ H such that H ∩H
� �= ∅, there exists H

�� ∈ Hv such that

H
��
⊇ H ∩H

�
.

The fibre over z ∈ M
� is the complement Vz\∪H∈Hh(H ∩ Vz).

The proof is left as an exercise.

D��ɪɴɪ�ɪ�ɴ 3.35. – An affine hyperplane arrangement is said to be of fibre-type if it can
be expressed as an iterated sequence of linear fibrations whose fibres are of dimension 1.
Thus there is a sequence of fibrations

(3.32) M
E1
−→ M1, . . . , M�−2

E�−1
−→ M�−1,

where E1, . . . , E�−1, and E� = M�−1, are of dimension 1.

We consider in greater detail the case where the dimension of the fibres is 1. Then each
fibre is isomorphic to A1 minus a finite number of points. Let us choose coordinates compat-
ible with the direct sum decomposition A� = W⊕V0. In other words, let x1, . . . , x�−1 denote
coordinates on A�−1 = W , and let y denote the vertical coordinate on A1 = V0. LetOM and
OM � denote the rings of regular functions on the affine schemes M and M

� respectively. Let
us write the equations of all horizontal hyperplanes in the form y− fi = 0, where fi ∈ OM � ,
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f1 = f2f2 = 0

f1 = 0

y = f1 y = f2

y = 0

M

E

M
�

Fɪɢ�ʀ� 12. An arrangement M in A� which fibres over M
�
⊂ A�−1 (the thick line

at the bottom). A vertical hyperplane (dashed) passes through every point where
horizontal hyperplanes intersect.

and 1 ≤ i ≤ Nh, for some integer Nh. Thus Hi = ker(y − fi) for 1 ≤ i ≤ Nh. By the
previous lemma, the fact that M is a fibration is equivalent to the equations (see Figure 12):

(3.33)
1

fi − fj

∈ OM � for all 1 ≤ i, j ≤ Nh.

We have

(3.34) OM = OM �

�
y,

1

y − f1
, . . . ,

1

y − fNh

�
.

We have already shown that the rings OM and OM � are differentially simple over k. We are
therefore in the situation considered in § 3.5 (compare (3.16) and (3.17)).

D��ɪɴɪ�ɪ�ɴ 3.36. – Let us write βi = dy/(y−fi) for 1 ≤ i ≤ Nh. We define the relative
bar construction of M over the base M

� to be the free OM -shuffle algebra:

(3.35) BM �(E) = OM �β1, . . . , βNh�.

The relative bar construction is a differential OM -algebra with respect to the operator
∂/∂y. Note that since E is of dimension 1, there is no integrability condition. Proposition
3.22 gives:

(3.36) H
0(BM �(E)) = OM � , and H

1(BM �(E)) = 0.

Proposition 3.23 and its corollary imply the following result.

C�ʀ�ʟʟ�ʀʏ 3.37. – For each OM �-linear map p : OM → OM � [[�]][1/�] which satisfies
p ∂y = ∂�p, there is a natural action of the operators ∂/∂x1, . . . , ∂/∂x�−1 on BM �(E), such
that the ∂/∂xi commute with p. As a result, B(M �)⊗OM� BM �(E) is the unipotent closure of
OM . We deduce that there is an isomorphism of differential OM [∂/∂x1, . . . , ∂/∂x�−1, ∂/∂y]
algebras:

B(M) ∼= B(M �)⊗OM� BM �(E).

The following theorem follows by induction.
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Tʜ��ʀ�� 3.38. – Let M be a fibre-type affine hyperplane arrangement with fibrations
(3.32). There is a (non-unique) isomorphism of differential algebras

B(M) ∼= BM1(E1)⊗OM1
· · · ⊗BM�−1(E�−1)⊗OM�−1

B(E�).

C�ʀ�ʟʟ�ʀʏ 3.39. – The de Rham cohomology of the reduced bar construction on a fibre-
type affine hyperplane arrangement defined over a field k is trivial:

H
0
DR(B(M)) ∼= k and H

i

DR(B(M)) = 0 for all i ≥ 1.

The reason why this result is true is essentially because arrangements of fibre type are ra-
tional K(π, 1) spaces (see [20], [33]). By (2.3),M0,S is a fibre-type affine hyperplane arrange-
ment over Q.

C�ʀ�ʟʟ�ʀʏ 3.40. – In the case of moduli spacesM0,S this gives:

H
0
DR(B(M0,S)) = Q, and H

i

DR(B(M0,S)) = 0 for all i ≥ 1.

The primitive of a closed form f ∈ W
bΩi

B(M0,S) is of weight at most b + 1.

This result can be proved directly using the fact that the hyperplane arrangementM0,S

is quadratic (see Appendix, Section 9). This is equivalent to Corollary 8.7 in [33], since
M0,p+2 = Y

p

1 in the notation of that paper. The fact that primitives increase the weight by
at most one is clear from the definition of the differential (3.11) on B(OM ).

In the case of the moduli spacesM0,S , we can make the decomposition of Theorem 3.38
totally canonical by working in cubical coordinates (2.5). The corresponding fibrations are
given by the maps (x1, . . . , x�) �→ (x1, . . . , x�−1) (§ 2.4). Furthermore, there is a base-point
at infinity corresponding to the origin, which is compatible with this sequence of fibrations.
It is given by the map:

O(M0,S) ∼= Q
�
(x±1

i
)1≤i≤�,

� 1

1− xi . . . xj

�

1≤i≤j≤�

�
−→ k{�1, . . . , ��}

xi �−→ �i.

There is a corresponding logarithmic Laurent expansion over this point, whose map of
constants is trivial:

B(M0,S) −→ U{�1, . . . , ��}(3.37)
�

I=(i1,...,im)

cI [ωi1 | . . . |ωim ] �−→ 0.

Because we have fixed a k{�1, . . . , ��}-point, the isomorphism in Theorem 3.38 is unique.

C�ʀ�ʟʟ�ʀʏ 3.41. – In cubical coordinates, there is a canonical isomorphism

B(M0,S) ∼= O(M0,S)⊗Q

��

k=1

Q�[d log xk], [d log(1− xi . . . xk)]1≤i≤k�,

where the algebras on the right are free shuffle algebras.

There is a similar decomposition for any set of vertex coordinates x
α

1 , . . . x
α

�
, where

α ∈ χ
�

S,δ
does not contain an internal triangle.
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R���ʀ� 3.42. – In order to compute the periods ofM0,S , we shall only require the fact
that H

�(B(M0,S)) = 0, where � = |S| − 3. In cubical coordinates, this is equivalent to
finding a primitive to

f dx1 . . . dx� for all f ∈ B(M0,S).

We have in fact proved a much stronger result. Corollary 3.41 implies that we can find
F ∈ B(M0,S) such that ∂F/∂x� = f . The constant term of F is uniquely determined by
the map of constants (3.37). In other words, there is a primitive of the form

F dx1 . . . dx�−1,

where the weight of F is at most one more than the weight of f . The primitive F constructed
in this way has the advantage that it is unique.

x2

x10

1

1
W

V0

Fɪɢ�ʀ� 13. In cubical coordinates, there is a natural base point at infinity onM0,5

corresponding to (0, 0).

E����ʟ� 3.43. – Consider the fibrationM0,5 → M0,4, whose fibres are isomorphic to
A1 minus 3 points (fig. 13). In cubical coordinates, we have:

OM � ∼= Q
�
x,

1

x
,

1

1− x

�
,

OM
∼= OM �

�
y,

1

y
,

1

1− y
,

x

1− xy

�
,

where the fibration map is the projection onto the x-axis:

(x, y) �→ x :M0,5 → P1
\{0, 1,∞}.

There is a natural k{�1, �2}-point at the origin which sends

p : OM −→ k{�1, �2}(3.38)

x �−→ �1

y �−→ �2,

and which maps, for example, x/(1 − xy) to
�

i≥0 �
i+1
1 �

i

2. The differential algebra
B(M �) = B(P1\{0, 1,∞}) is the universal algebra of multiple polylogarithms in one
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variable defined in [7], and BM �(E) is the relative bar construction over O�
M

. As algebras,
each one is the free non-commutative algebra on two (respectively three) symbols:

B(M �) = OM �

≠
dx

x
,

dx

1− x

∑
, and BM �(E) = OM

≠
dy

y
,

dy

1− y
,

xdy

1− xy

∑
.

Corollary 3.41 gives a canonical isomorphism

B(M �)⊗OM� BM �(E)
∼
−→ B(M),

and enables us to write down a basis of integrable words in B(M). However, the map
BM �(E) → B(M) is far from trivial. For example, it gives

1⊗
�

dy

1− y

���
xdy

1− xy

�
�→

�
dy

1− y
−

dx

1− x
−

dx

x

���
xdy + ydx

1− xy

�
+

�
dx

1− x

���
dy

1− y

�
.

A similar formula was given in [53] and [32]. It is obvious that the left-hand side is integrable,
the right-hand side not so. The left-hand coding can be retrieved from the one on the right
by formally setting dx = 0. The map BM �(E) → B(M) is canonically normalised in such
a way that, apart from all terms of the form [dy

y
]x . . .x[dy

y
], its image vanishes on setting

dy = y = 0. The logarithmic Laurent expansion of this example is given by the multiple
logarithm (see § 5.4):

Li1,1(x, y) =
�

0<k<l

x
k
y

l

kl
,

where we have written x, y instead of �1, �2. The coding on the left-hand side of the equa-
tion above only takes into account the differential equations which Li1,1(x, y) satisfies with
respect to the variable y (which are very simple), the right-hand side encodes the differential
equations with respect to both variables x and y. The coproduct of Li1,1(x, y) can be read
off the right-hand coding directly:

∆Li1,1(x, y) = Li1,1(x, y)⊗ 1 + (log(1− y)− log(1− x) + log x)⊗ log(1− xy)

+ log(1− x)⊗ log(1− y) + 1⊗ Li1,1(x, y).

One can compare this with the coproduct for the motivic multiple polylogarithms defined by
Goncharov [25].

The integrable words corresponding to the function Li2,1(x, y) are likewise:

1⊗
�

dy

1− y

���
dy

y

���
xdy

1− xy

�
�→

�
dy

1− y

���
dx

x
+

dy

y

���
xdy + ydx

1− xy

�

+
�
dx

x

���
dy

1− y
−

dx

1− x
−

dx

x

���
xdy + ydx

1− xy

�
+

�
dx

x

���
dx

1− x

���
dy

1− y

�
.

We therefore have two different points of view on B(M0,S). On the one hand, there is a
direct definition in terms of hyperplane configurations, from which the differential structure
and the action of the symmetric group are evident. The problem is that the complexity of the
set of integrable words grows rapidly, and the algebraic structure is obscured. On the other
hand, using the fibration map above, we have a description of B(M0,S) as a product of free
shuffle algebras, from which its algebraic structure is completely evident. But this point of
view breaks the symmetry and only part of the differential structure is visible. By exploiting
both points of view, one can deduce a lot of information about the structure of B(M0,S). In
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particular, by regarding it as a representation of the symmetric group, one obtains many in-
teresting functional relations between multiple polylogarithms. This will be studied in detail
in a future paper.

4. Manifolds with corners and Fuchsian differential equations

Let X denote a real analytic manifold with corners. We consider functions on X which
have logarithmic singularities along the boundary of X, and we define the regularised limit
of such a function along components of the boundary ∂X. Next, we state and prove a gener-
alised Fuchs theorem in many variables, and show that, in the unipotent case, we obtain so-
lutions on X which are precisely of this type, i.e., which have logarithmic singularities along
∂X. Finally, we state a version of Stokes’ theorem in the case when X is compact. This re-
quires some regularity results which allow the integration of functions with logarithmic di-
vergences along the boundary of X. The example to bear in mind throughout this section is
when X = XS,δ is the closed Stasheff polytope defined in § 2.7.

4.1. Manifolds with corners

A manifold with corners X is a differentiable manifold whose charts are diffeomorphic to
sets of the form

Up,q = Rp
× Rq

+,

where R+ = {x ∈ R : x ≥ 0}, and p, q ≥ 0 [6]. If q ≥ 1, the boundary of Up,q is

(4.1) ∂Up,q =
�

i+j=q−1

Rp
× Ri

+ × {0} × Rj

+,

which is a union of sets diffeomorphic to Up,q−1, and is empty if q = 0. Let ∂
i
Up,q denote

the successive submanifolds with corners obtained by iteration. There is a stratification

Up,q ⊇ ∂Up,q ⊇ · · · ⊇ ∂
q
Up,q,

which has the combinatorial structure of a face of a hypercube. There are many different
ways to define maps between charts depending on how rigid we wish to make the manifold
X. We require that derivatives of maps between charts do not vanish along boundary compo-
nents, and in order for logarithmic regularisation to be well-defined, we must rule out maps
of the form x �→ kx : R+ → R+, where k �= 1.

D��ɪɴɪ�ɪ�ɴ 4.1. – Let n = p+ q ≥ 1, and let x1, . . . , xn be coordinates on Rn such that
Up,q = Rp × Rq

+ = {x1 ≥ 0, . . . , xq ≥ 0}. Let Sq denote the symmetric group on q letters
which permutes the indices 1, . . . , q. We define Homan(Up,q, Up,q) to be the ring of analytic
isomorphisms (i.e., whose Jacobian does not vanish anywhere along Up,q):

φ = (φ1, . . . , φn) : Up,q −→ Up,q

which permute the components of the boundary ∂Up,q, i.e.,

φi

��
xσ(i)=0

= 0, for 1 ≤ i ≤ q,
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where σ ∈ Sq, and which satisfy

∂φi

∂xσ(i)

���
xσ(i)=0

= 1.

In other words, φ = (xσ(1)f1, . . . , xσ(q)fq, φq+1, . . . , φn), where fi are analytic functions
such that fi is identically equal to 1 along the boundary component {xσ(i) = 0} ⊂ ∂Up,q,
for 1 ≤ i ≤ q. For example, if n = 2 and U0,2 = {(x1, x2) : x1, x2 ≥ 0}, the map
φ(x1, x2) = (x1 + x

2
1x2, x2 + x

2
2) is in Homan(U0,2, U0,2).

We define an analytic manifold with corners to be a manifold with corners whose transition
maps lie in Homan(Up,q, Up,q).

It follows from this definition that any φ ∈ Homan(Up,q, Up,q) preserves the boundary
stratification of Up,q (4.1). Any analytic manifold with corners therefore admits a global
stratification

X = X0 ⊇ X1 ⊇ X2 ⊇ · · · ⊇ Xn,

where each Xi is a manifold with corners, and Xi+1 = ∂Xi is the union of the boundary
components of Xi.

Consider the closed Stasheff polytope X = XS,δ contained inM δ

0,S
(R). Then X is a man-

ifold with corners whose stratification is given by (2.40). To see this, let 0 < ε � 1 denote a
small constant, and let e ∈ χ

k

S,δ
denote a k-decomposition of the regular n-gon (S, δ), where

k can be zero. This can be completed, in a non-unique way, to a full triangulation α ∈ χ
�

S,δ
.

Then Fα is a corner contained in the face Fe = {uij = 0 : {i, j} ∈ e}. Define

(4.2) Ue,α(ε) = {0 ≤ uij < ε for {i, j} ∈ e, 0 < ukl < 1 for {k, l} ∈ α\e} ⊂M
δ

0,S
(R).

Since we know that {uij , {i, j} ∈ α} defines a local coordinate system onM δ

0,S
(R) (Propo-

sition 2.22), Ue,α(ε) is diffeomorphic to a chart U�−k,k = R�−k × Rk

+ when ε is sufficiently
small. We have (cf. (2.35)):

XS,δ = XS,δ ∪

�

k≥1

�

e∈χ
k
S,δ

Ue,α(ε), for some ε > 0.

This proves that XS,δ is indeed an analytic manifold with corners, since all transition maps
between boundary components of charts are given by permutations of coordinates. The ac-
tion of the dihedral group of symmetries on XS,δ is a morphism of analytic manifolds with
corners.

4.2. Logarithmic singularities and regularisation

We define three sheaves of functions on an analytic manifold with corners X which have
singularities along its boundary ∂X. They are:

F
an
⊂ F

log
⊂ F

log
p

,

where Fan denotes the sheaf of analytic functions on X, F log denotes the sheaf of functions
with logarithmic singularities along ∂X, and F log

p
denotes the sheaf of functions with both

logarithmic singularities and ordinary poles along ∂X.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



432 F. C. S. BROWN

More precisely, let p, q ≥ 0 where n = p + q ≥ 1, and let x1, . . . , xn be coordinates on Rn

such that Up,q = Rp × Rq

+ = {x1 ≥ 0, . . . , xq ≥ 0}. Then we define

F
an(Up,q) ⊂ R[[x1, . . . , xn]],

to be the ring of convergent Taylor series in the variables x1, . . . , xn. Next, we define

F
log(Up,q) = F

an(Up,q)[log x1, . . . , log xq],(4.3)

F
log
p

(Up,q) = F
an(Up,q)[x

−1
1 , . . . , x

−1
q

, log x1, . . . , log xq],

where log xi is the principal branch of the logarithm along R+. It follows by a monodromy
argument that the functions log xi are linearly independent over the ring Fan(Up,q). Simi-
lar rings of functions in one variable (polynomials in log x with analytic coefficients) were
considered in [42].

For each 1 ≤ i ≤ n, let vi denote the valuation map on Fan(Up,q) which associates to any
function the order of its vanishing along xi = 0. It extends to a valuation

vi : F log
p

(Up,q) −→ Z,

once we have adopted the convention that vi(log xi) = 0.

L���� 4.2. – Let X denote an analytic manifold with corners. Then Fan, F log, and F log
p

define sheaves on X, and for each boundary component D of ∂X, the valuation map vD onF log
p

is well-defined.

Proof. – Let φ ∈ Homan(Up,q, Up,q). It suffices to check that the composition with φ

preserves F log(Up,q). Let φ = (φ1, . . . , φn). By Definition 4.1, and by permuting the coor-
dinates if necessary, we have

(4.4) φi(x1, . . . , xn) = xifi(x1, . . . , xn), for 1 ≤ i ≤ q,

where fi ∈ Fan(Up,q). This implies that fi(x1, . . . , xn) ≥ 0 for all (x1, . . . , xn) ∈ Up,q, and
furthermore, vi(fi) = 0. It follows that

log(φi(x1, . . . , xn)) = log(xi) + log(fi(x1, . . . , xn)), for 1 ≤ i ≤ q,

where log fi ∈ Fan(Up,q) is analytic. It follows that φ
∗F log(Up,q) ⊂ F log(Up,q), and, simi-

larly, φ
∗F log

p
(Up,q) ⊂ F log

p
(Up,q). The fact that the valuations are well-defined along the

components of ∂X follows immediately from (4.4).

We can define the regularised value of a function along boundary components of X by
formally setting the functions log xi to 0, for 1 ≤ i ≤ q, on each chart Up,q of X.

D��ɪɴɪ�ɪ�ɴ 4.3. – Let f ∈ F log(Up,q), and let 1 ≤ l ≤ q. We can write

f =
�

I=(i1,...,il)∈Nl

fI logi1
x1 . . . logil xl, where fI ∈ F

log(Up+l,q−l),

and fI is zero for all but finitely many indices I. The regularized value of f along
D = {(x1, . . . , xn) : x1 = · · · = xl = 0} ⊂ ∂

l
Up,q is defined to be:

Reg(f, D) = f(0,...,0)(0, . . . , 0, xl+1, . . . , xq, xq+1, . . . , xn),

viewed as a function on D ∼= Up,q−l. By construction, Reg(f, D) ∈ F log(D).
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D��ɪɴɪ�ɪ�ɴ-Pʀ����ɪ�ɪ�ɴ 4.4. – Let X denote an analytic manifold with corners, and
let D ⊂ ∂

l
X denote any boundary component of X. Then there is a well-defined regulari-

sation map along the component D:

Reg(•, D) : F log(X) −→ F
log(D).

Proof. – The transition maps are compatible with logarithmic regularisation by Defini-
tion 4.1. Let φ ∈ Homan(Up,q, Up,q). Then, up to permuting coordinates, φ is of the form
φ = (x1(1 + x1g1), . . . , xq(1 + xqgq), φq+1, . . . , φn). It follows that

log φi = log xi + log(1 + xigi), for 1 ≤ i ≤ q,

and the term log(1+xigi) vanishes at xi = 0. It follows that logarithmic regularisation along
xi = 0 is well-defined for 1 ≤ i ≤ q. By regularising with respect to one variable at a time, it
follows that regularisation along an arbitrary boundary component D ⊂ ∂

l
X is well-defined

also.

R���ʀ� 4.5. – Clearly we can extend the regularisation map for polar singularities

Reg(•, D) : F log
p

(X) −→ F
log
p

(D),

by mapping all negative powers of coordinates x1, . . . , xl to zero also (this is just a map of
constants as defined in § 3.4).

4.3. Fuchsian differential equations in several complex variables

Consider the open complex affine space obtained by complexifying Up,q:

Cp+q
\{z1 . . . zq = 0},

and let Vp,q denote an open polydisk neighbourhood of the origin contained in
Cp+q\{z1 . . . zq = 0}. We require a generalised Fuchs’ theorem which we solve locally
on the spaces Vp,q. Let m ≥ 1, and consider the differential equation:

(4.5) dF = ΩF,

where F takes values in the set of m×m complex matrices Mm(C), and where

(4.6) Ω =
p+q�

i=1

Ni

dzi

zi

+ Aidzi.

Here, Ni ∈ Mm(C) are constant matrices, and each Ai is a holomorphic function on Vp,q,
which takes values in Mm(C). Assume that Ω is integrable, i.e.,

dΩ = Ω ∧ Ω.

This implies, in particular, that the matrices Ni commute:

(4.7) [Ni, Nj ] = 0 for all 1 ≤ i, j ≤ n.

Let us write n = p + q ≥ 1, and suppose that Ni = 0 for all q + 1 ≤ i ≤ n. The form Ω
is continuous on Vp,q. Let us fix branches of the logarithm log zi for i = 1, . . . , q on Vp,q.
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In practice, we will choose a real subspace Rp × Rq

+
∼= Up,q ⊂ Vp,q and take the principal

branches of the logarithm as previously. The function

D = exp(
q�

i=1

Ni log zi)

is a well-defined multi-valued function on Vp,q because the matrices Ni commute. The fol-
lowing result is a generalized Fuchs’ theorem in many complex variables. Similar situations
have been considered in [11, 52].

Tʜ��ʀ�� 4.6. – Suppose that for each 1 ≤ i ≤ n, no pair of eigenvalues of the matrix
Ni differs by an non-zero integer. Let H0 ∈ Mm(C) be any constant matrix. Then (4.5) has a
unique solution

F = H D,

where H : Vp,q → Mm(C) is holomorphic and takes the value H0 at the origin.

Proof. – The matrix D is invertible, and is a solution to the differential equation

dD =
� n�

i=1

Ni

dzi

zi

�
D.

It follows that F = HD is a solution of (4.5) if and only if

(4.8) dH =
n�

i=1

�
Ni, H

�dzi

zi

+ AiH dzi.

If we write ∂k = ∂/∂zk, then this is equivalent to the set of equations

(4.9) ∂k H =
�
Nk, H

� 1

zk

+ AkH, for 1 ≤ k ≤ n.

A solution H is holomorphic on Vp,q if and only if it can be written as a power series

(4.10) H =
�

0≤i1,...,0≤in

H(i1,...,in)z
i1
1 . . . z

in
n

,

where the coefficients H(i1,...,in) ∈ Mm(C) satisfy a growth condition. By substituting such
a power series expansion into (4.9) and considering the coefficient of z

i1
1 . . . z

in
n

, we obtain
the following recurrence relations:
(4.11)�

ik + 1− ad (Nk)
�
H(i1,...,ik+1,...,in) =

�

0≤j1≤i1,...,0≤jn≤in

(Ak)(j1,...,jn) H(i1−j1,...,in−jn)

for each 1 ≤ k ≤ n, where (Ak)(j1,...,jn) are the coefficients in the power series expansion of
Ak. Now consider a matrix M ∈ Mm(C). If we denote the eigenvalues of M by α1, . . . , αm,
then the eigenvalues of ad M are αi−αj . The assumption on the eigenvalues of Ni is there-
fore equivalent to the invertibility of the operators

�
m− ad (Nk)

�
for all m ∈ N,

and for each 1 ≤ k ≤ n. The operator on the left-hand side of (4.11) is therefore invertible, so
we can solve (4.11) iteratively, provided that these equations are compatible. This means that
we must show that the two different ways of obtaining H(i1,...,ik+1,...,il+1,...,in) by applying
(4.11) first for k and then for l, or the other way round, both lead to the same answer. This is
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equivalent to the integrability of the form Ω. In order to see this, write Ω =
�

i
Ωidzi, where

Ωi = Ri + Ai, and Ri = Ni/zi, for 1 ≤ i ≤ n. The integrability of Ω and the commutativity
of the Ri imply the following equations for all 1 ≤ i, j ≤ n:

∂jΩi = ∂iΩj + [Ωj ,Ωi],

∂jRi = ∂iRj + [Rj , Ri].

It follows that the expression

φij(M) = (∂jΩi + ΩiΩj)M − ΩiMRj − ΩjMRi + M(RjRi − ∂jRi)

is symmetric in i, j for all matrices M ∈ Mm(C). But Equations (4.9) are precisely the set
of equations ∂iH = ΩiH −HRi for 1 ≤ i ≤ n. It follows, on applying ∂j to each equation,
that

∂j∂i H = φijH for all 1 ≤ i, j ≤ n.

One can check by differentiating a truncated power series expansion for H that the compat-
ibility of the Equations (4.11) up to a given weight is a consequence of the symmetry of the
operators φkl, for all 1 ≤ k, l ≤ n. We can therefore solve (4.11) recursively to obtain a
solution of (4.8) of the form (4.10). It remains to check that the function H defined in this
manner is holomorphic on Vp,q. Since the series Ak for 1 ≤ k ≤ n are holomorphic on the
polydisk Vp,q, there exist constants r1, . . . , rn > 0 and a constant c > 0 such that

(4.12) ||(Ak)(i1,...,in)|| ≤ c r
i1
1 . . . r

in
n

for all 1 ≤ k ≤ n.

For m ≥ 1, let εm = sup1≤k≤n
||(m− adNk)||−1. By the assumption on the eigenvalues of

Nk and the remarks above, εm → 0 as m →∞. It follows from (4.11) that

(4.13) ||H(i1,...,ik+1,...,in)|| ≤ εik+1

�

0≤jl≤il

||(Ak)(j1,...,jn)|| ||H(i1−j1,...,in−jn)||.

Now let sk > rk, for 1 ≤ k ≤ n, and let m be sufficiently large such that
εm c

�
n

i=1(
si

si−ri
) < 1. Set

e = sup
0≤i1,...,in≤mr

||H(i1,...,in)||

s
i1
1 . . . s

in
n

< ∞.

Let M ≥ m, and suppose by induction that ||H(i1,...,in)|| ≤ e s
i1
1 . . . s

in
n

for all
0 ≤ i1, . . . , in ≤ M . This is true when M = m by the definition of e. Then, by apply-
ing (4.12), we deduce from (4.13) that

||H(i1,...,M+1,...,in)|| ≤ εM+1

�

0≤j1≤i1,...,0≤jn≤in

c e

�
r1

s1

�j1

. . .

�
rn

sn

�jn

s
i1
1 . . . s

in
n

≤ εM+1c e

n�

i=1

�
si

si − ri

�
s

i1
1 . . . s

in
n
≤ e s

i1
1 . . . s

in
n

.

By induction we deduce that ||H(i1,...,in)|| ≤ e s
i1
1 . . . s

in
n

for all (i1, . . . , in). This holds for
any set of constants s1, . . . , sn satisfying si > ri, which proves that H is holomorphic on
Vp,q, as required.
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We will be interested in the case where the matrices Ni are all nilpotent. It then follows
that the matrix

D = exp
� q�

i=1

Ni log zi

�

has coefficients which are polynomials in log zi. Since all eigenvalues of Ni are 0, the con-
dition of the previous theorem is satisfied, and therefore there exists a matrix solution F to
Equation (4.5) whose entries Fab are polynomials in log z1, . . . , log zq whose coefficients are
convergent Taylor series in z1, . . . , zn:

Fab ⊂ C[[z1, . . . , zn]][log z1, . . . , log zq].

D��ɪɴɪ�ɪ�ɴ 4.7. – Let X denote an analytic manifold with corners. An integrable
1-form Ω defined on X is unipotent of Fuchs’ type if, locally on each chart of the form Up,q,
Ω restricts to a 1-form of type (4.6), where the matrices Ni are nilpotent.

As remarked in § 4.2, there are canonical branches of the functions log zi on local charts
of X. The solutions to (4.5) will therefore be real-valued on X.

C�ʀ�ʟʟ�ʀʏ 4.8. – Let Ω be a real-valued unipotent integrable 1-form of Fuchs’ type on
X. Suppose that X is simply connected. Then any solution (Fab) to (4.5) defined in the neigh-
bourhood of any point x ∈ X extends over the whole of the interior of X. This gives a global
solution of (4.5) whose coefficients satisfy Fab ∈ Γ(X,F log).

4.4. Stokes’ theorem with logarithmic singularities

The key argument in our proof of the main theorem is to apply a version of Stokes’ theo-
rem to the manifold with corners XS,δ. This requires integrating functions which have loga-
rithmic singularities along the boundary.

L���� 4.9. – Let X denote a compact analytic manifold with corners of dimension n. Let
ψ ∈ Ωn(X) denote an n-form on X whose coefficients lie in F log

p
. Then ψ is absolutely inte-

grable on X if and only if ψ has no poles along ∂X.

Proof. – If ψ has a pole of order k ≥ 1 along some component of ∂X, then there is a
chart on X of the form Up,1 such that ψ = f dx1 . . . dxn, where f can be written

f(x1, . . . , xn) =
1

x
k

1

N�

i=0

fi(x2, . . . , xn) logi
x1 +

1

x
k−1
1

M�

i=0

gi(x1, . . . , xn) logi
x1,

where fi, gi ∈ Fan(Up,q) are analytic on x1 > 0, . . . , xn > 0, and fN is not identically zero.
Since the term (log x1)N dominates the other powers of log x1 near x1 = 0, it follows by
continuity that there is a small box

B(ε) = {(x1, . . . , xn) : x1 ∈ [0, ε], x2 − α2, . . . , xn − αn ∈ [−ε, ε]},

where α2, . . . , αn > 0, and a constant c > 0 such that

|f | ≥
c

x
k

1

| log x1|
N

,
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for all (x1, x2, . . . , xn) ∈ B(ε) whenever ε > 0 is sufficiently small. It follows that
�

X

|f | dx1 . . . dxn ≥ c (2ε)n−1

�
ε

0

1

x
k

1

| log x1|
N

dx1 = ∞,

and therefore ψ is not absolutely integrable.

Now suppose that ψ has no poles along ∂X. Then in each small chart of the form Up,q,
we can write ψ = f(x1, . . . , xn)dx1 . . . dxn, where

f(x1, . . . , xn) =
�

I=(i1,...,iq)

(log x1)
i1 . . . (log xq)

iqfI(x1, . . . , xn),

where fI(x1, . . . , xn) ∈ Fan(Up,q), and almost all fI are identically zero. But the function
log x is integrable on any interval [0, t), where t > 0, and since sums and products of inte-
grable functions are integrable, it follows that f is integrable locally. Since X is compact, we
can find a finite partition of unity on X, and deduce that f is absolutely integrable over the
whole of X.

We can therefore integrate functions which have at most logarithmic singularities. The
following lemma implies that primitives of functions on X which have at most logarithmic
singularities extend continuously to ∂X. The essential point is that the 1-form log x dx on
R+ has a logarithmic singularity at 0, but its primitive, x log x−x+c, is continuous at x = 0.

L���� 4.10. – Let X be an analytic manifold with corners. Let ψ ∈ Ωn(X) have at most
logarithmic singularities along ∂X, and let Ψ ∈ Ωn−1(X) denote a primitive of ψ which has no
poles along ∂X. Then Ψ is continuous on the interior of ∂X.

Proof. – It suffices to prove the result on each chart of X isomorphic to Up,q with co-
ordinates x1, . . . , xn as above. Let ψ = fdx1 . . . dxn, where f ∈ F log(Up,q). We write
Ψ =

�
n

i=1(−1)i−1
Fidx1 . . . �dxi . . . dxn, where Fi ∈ F log(Up,q) for 1 ≤ i ≤ n. Let

Fi =
�

k≥0

logk
xi Fi,k,

where Fi,k ∈ F log(Up,q) is analytic in the coordinate xi and is zero for all but finitely many
indices k. Since

�
n

i=1 ∂Fi/∂xi = f , we have
n�

i=1

�

k≥1

k logk−1
xi

xi

Fi,k(x1, . . . , xi−1, 0, xi+1, . . . , xn) ∈ F
log(Up,q).

This implies that Fi,k(x1, . . . , xi−1, 0, xi+1, . . . , xn) = 0 for all 1 ≤ i ≤ n, k ≥ 1, and
therefore Fi ∈ C[log x1, . . . , xi log xi, . . . , log xq][[x1, . . . , xn]]. It follows that

Ψ
���
xi=0

= (−1)i−1
Fi

���
xi=0

dx1 . . . �dxi . . . dxn

is continuous for all 1 ≤ i ≤ n. Thus Ψ is continuous along the interior of ∂X.

We can now state the following version of Stokes’ theorem.
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Tʜ��ʀ�� 4.11. – Let X denote a compact analytic manifold with corners of dimension n.
Let ψ ∈ Ωn(X) be an n-form such that ψ has no poles along ∂X, and let Ψ ∈ Ωn−1(X) be a
primitive of ψ such that Ψ has no poles along ∂X either. Then Ψ extends continuously to ∂X,
and �

X

ψ =

�

∂X

Ψ,

where both integrals are finite.

Proof. – Let Up,q(ε) = Rp × Rq

ε
where Rε = {x ∈ R : x ≥ ε}. By Lemma 4.9, ψ is

integrable on X. We know that Ψ extends continuously to ∂X by the previous lemma. On
each small chart of X we can apply Stokes’ theorem:

�

Up,q

ψ = lim
ε→0

�

Up,q(ε)
ψ = lim

ε→0

�

∂Up,q(ε)
Ψ =

�

∂Up,q

Ψ,

and all terms are finite. Since X is compact, we can find a finite partition of unity and apply
the above identity locally. The result then follows in exactly the same way as the usual proof
of Stokes’ theorem.

In the case which interests us, when X = XS,δ, we can define the following exhaustion of
the polytopes XS,δ. For all small ε > 0, we set

X
ε

S,δ
= {uij ≥ ε, {i, j} ∈ χS,δ}.

The required version of Stokes’ theorem is then immediate:
�

XS,δ

ψ = lim
ε→0

�

X
ε
S,δ

ψ = lim
ε→0

�

∂X
ε
S,δ

Ψ =

�

∂XS

Ψ.

5. Hyperlogarithms

We give an explicit description of the constructions in the previous two sections when the
dimension is 1, i.e., when M is the affine line A1 minus N + 1 fixed points σ0, . . . , σN . How-
ever, we need to consider iterated integrals whose path of integration has endpoints at one of
the removed points σi, and so does not necessarily converge. This requires a regularisation
procedure which can be solved for all iterated integrals simultaneously by considering their
generating series.

5.1. Hyperlogarithms and differential equations

Let N ≥ 1, and let A = {a0, . . . , aN} be an alphabet with N + 1 letters. We fix any
injective map of sets j : A �→ C, and set σ0 = j(a0), . . . , σN = j(aN ). Let Σ denote the set
j(A) ∪ {∞}, and let D = P1(C)\Σ denote the complex plane with the points σk removed.
Consider the following formal differential equation:

(5.1)
∂

∂z
F (z) =

N�

i=0

ai

z − σi

F (z),
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which is an equation of Fuchs type, whose singularities are simple poles in Σ. Let F (z) be a
solution on D taking values in C��A��. If we write

F (z) =
�

w∈A∗

Fw(z) w,

then (5.1) is equivalent to the system of equations

(5.2)
∂

∂z
Fakw(z) =

Fw(z)

z − σk

,

for all 0 ≤ k ≤ N and all w ∈ A
∗, together with the initial equation ∂F1(z)/∂z = 0, where

1 denotes the empty word in A
∗. The term F1(z) is therefore constant.

One can construct explicit holomorphic solutions Lw(z) to (5.2) on a certain domain U

obtained by cutting C. These functions extend by analytic continuation to multi-valued func-
tions on the punctured plane D, and can equivalently be regarded as holomorphic functions
on a universal covering space p : “D → D. Since no confusion arises, we shall always de-
note these functions by the same symbol Lw(z). For each 0 ≤ k ≤ N , choose closed half-
lines �(σk) ⊂ C starting at σk, such that no two intersect. Let U = C\�

σk∈Σ �(σk) be the
simply-connected open subset of C obtained by cutting along these half-lines. Fix a branch
of log(z − σ0) on C\�(σ0).

Pʀ����ɪ�ɪ�ɴ 5.1. – Equation (5.1) has a unique solution L(z) on U such that

L(z) = f0(z) exp(a0 log(z − σ0)),

where f0(z) is a holomorphic function on C\�
k �=0 �(σk) which satisfies f0(σ0) = 1. We write

this L(z) ∼ (z − σ0)a0 as z → σ0. Furthermore, every solution of (5.1) which is holomorphic
on U can be written L(z) C, where C ∈ C��X�� is a constant series (i.e., depending only on Σ,
and not on z).

The proposition can be deduced from Theorem 4.6, and a direct solution is given in
Gonzalez-Lorca’s thesis [28]. We use another approach here, since we require an explicit
formula for the functions Lw(z) which is originally due to Poincaré and Lappo-Danilevsky
[40, 44]. First, let A

∗
c

denote the subset of all words in A
∗ which do not end in the letter a0,

and let C�Ac� ⊂ C�A� denote the sub-vector space they generate. It is easy to verify that
C�Ac� is preserved by the shuffle product. If w ∈ A

∗
c

and w �= 1, the limiting condition given
in the proposition is just limz→σ0 Lw(z) = 0. If we write w = a

nr
0 aira

nr−1

0 air−1 . . . a
n1
0 ai1 ,

where 1≤ i1, . . . , ir≤N , then Lw(z) is defined in a neighbourhood of σ0 by the formula

(5.3)
�

1≤m1<···<mr

(−1)r

m
n1+1
1 . . . m

nr+1
r

�
z−σ0

σi1−σ0

�m1
�

z−σ0

σi2−σ0

�m2−m1

. . .

�
z−σ0

σir−σ0

�mr−mr−1

which converges absolutely for |z − σ0| < inf{|σi1 − σ0|, . . . , |σir − σ0|}. One can easily
check that this defines a family of holomorphic functions satisfying the Equations (5.2) in
this open disk, and that the limiting condition is trivially satisfied.

The functions Lw(z) extend analytically to the whole of U by the recursive integral for-
mula:

(5.4) Lakw(z) =

�
z

σ0

Lw(t)

t− σk

dt ,
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which is valid for all 0≤k≤N and all w ∈ A
∗
c
. Since iterated integrals are homomorphisms

for the shuffle product (Lemma 3.28), we also have

(5.5) Lw(z)Lw�(z) = Lwxw�(z) for all w, w
�
∈ A

∗

c
,

where L is extended by linearity to all words w ∈ C�Ac�. It follows from the definition of
the shuffle product that any word in A

∗ can be uniquely written as a linear combination of
shuffles of a

n

0 with words in A
∗
c
:

w =
�

n≥0

a
n

0xvn, where vn ∈ C�Ac�.

We can therefore set
La0(z) = log(z − σ0),

and extend the definition of Lw(z) to all words w ∈ A
∗ by demanding that Lw(z) satisfy the

shuffle relations Lw(z)L�
w
(z) = Lwxw�(z) for all w, w

� in A
∗
. One verifies that the functions

Lw(z) can be written in the form (5.4) for all words w ∈ A
∗, for w �= a

n

0 , and are solutions
to (5.2). In order to prove that f0(z) = L(z) exp(−a0 log(z−σ0)) is holomorphic at z = σ0,
we use the following lemma.

L���� 5.2. –
�

n

i=0(−1)i
wa

n−i

0 xa
i

0 ≡ 0 mod C�A∗
c
� for all w ∈ A

∗
c
.

Proof. – Let �∂a0 denote the truncation operator with respect to the letter a0 defined in
§ 3.1, but which acts by truncation on the right, i.e., �∂a0wai = δ0iw, where δ0i is the Kro-
necker delta. It is a derivation with respect to x. If we apply it to the left-hand side of the
equation, we obtain zero, by the Leibniz formula. This implies that the left-hand side is a
linear combination of words not ending in a0.

R���ʀ� 5.3. – The operators �∂ai are related to the ‘dérivations étrangères’ defined by
Écalle [19].

Using the fact that a
xi

0 = i! ai

0, we have

f0(z) = L(z) exp(−a0 log(z − σ0)) =
�

w∈A∗

Lw(z) w

�

i≥0

(−1)i
a

i

0 La
i
0
(z).

It follows from the previous lemma and the shuffle relations for the functions Lw(z), that the
coefficient of each word wa

n

0 , where w ∈ A
∗
c

and n ≥ 0, is a linear combination of Lw�(z),
where w

� ∈ A
∗
c
. These are holomorphic at z = σ0 by construction, and this proves the regu-

larity condition for f0(z).
In order to prove the uniqueness statement in the proposition, let K(z) be any other so-

lution of (5.1) which is holomorphic on U . The series L(z) defined above is invertible, as its
leading coefficient is the constant function 1. Let F (z) = L(z)−1

K(z). On differentiating
the equation K(z) = L(z)F (z), we obtain

N�

i=0

ai

z − σi

K(z) =
N�

i=0

ai

z − σi

L(z)F (z) + L(z)F �(z),

by (5.1), and therefore L(z)F �(z) = 0. Since L(z) is invertible, F
�(z) = 0, and so F (z) is

constant. This completes the proof of the proposition.
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R���ʀ� 5.4. – The functions Lw(z) are known as hyperlogarithms and were originally
defined by Poincaré and Lappo-Danilevsky. They were recently resurrected by Aomoto
[1, 2, 3], Écalle [19], and Goncharov [24, 25, 26]. It is clear that L1(z) = 1, and

La
n
i
(z) =

1

n!
logn

�
z − σi

σ0 − σi

�
if i ≥ 1,

La
n
0
(z) =

1

n!
logn(z − σ0),

for all n ∈ N. Note that La
n
0
(z) depends on the choice of branch of log(z − σ0) which was

fixed previously, but that the functions La
n
i
(z) do not. They are the unique branches which

satisfy the limiting condition La
n
i
(σ0) = 0.

Given a branch of log(z− σk) on C\�(σk) for each 1 ≤ k ≤ N , we obtain by symmetry a
solution to (5.1) corresponding to each singularity.

C�ʀ�ʟʟ�ʀʏ 5.5. – For every 0 ≤ k ≤ N , there exists a unique solution L
σk(z) of Equa-

tion (5.2) on U such that

L
σk(z) = fk(z) exp(ak log(z − σk)),

where fk(z) is holomorphic on C\�
i �=k

�(σi) and satisfies fk(σk) = 1.

The quotient of any two such solutions is a constant non-commutative series known as a
regularised zeta series. Using these series, one can determine the monodromy of hyperloga-
rithms explicitly ([8]).

5.2. The bar construction on P1\Σ

In this situation, the variant of the bar construction defined in § 3 is very easy to describe.
Let k denote any subfield of C which contains σ0, . . . , σN . The ring of regular functions on
P1\Σ is simply

OΣ = k

�
z,

� 1

z − σj

�

0≤j≤N

�
.

Since P1\Σ is of dimension one, the integrability condition is trivially satisfied. Let
A
∨ = {ψ0, . . . , ψN}, where ψi = d log(z − σi), for 0 ≤ i ≤ N . The cohomology classes of

the forms ψi form a k-basis for H
1(P1\Σ). Clearly ψi ∧ ψj = 0 for all 0 ≤ i, j ≤ N , and

therefore B(P1\Σ) is a shuffle algebra

(5.6) B(P1
\Σ) = OΣ ⊗k k�A

∨
�,

equipped with the derivation

(5.7) d =
d

dz
⊗ 1 +

N�

i=0

� 1

z − σi

�
⊗ ∂ψi ,

where the truncation operators ∂ψi were defined in §3.1. Let L(P1\Σ) denote theOΣ-algebra
generated by the coefficients of a solution L to (5.1). The analogue of the map (3.26) is the
differential homomorphism:

ρ : B(P1
\Σ) −→ L(P1

\Σ)(5.8)

w �−→ Lw(z),
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which is the identity on OΣ. Theorem 3.26 implies that this map is an isomorphism.

C�ʀ�ʟʟ�ʀʏ 5.6. – The functions Lw(z), for w ∈ A
∗, are linearly independent over OΣ.

Every function in L(P1\Σ) has a primitive which is unique up to a constant.

The construction of the functions Lw(z) used a decomposition of B(P1\Σ) into conver-
gent and non-convergent parts. This used the fact that the map

(u⊗ v �→ uxv) : Z�Ac� ⊗ Z�a0� → Z�A�

is an isomorphism of algebras. We can therefore define

(5.9) Bσ0(P1
\Σ) = OΣ�Ac�

to be the sub-algebra of convergent iterated integrals (indexed by words not ending in a0). It
is a differential algebra for the derivation d defined in (5.7). We have

B(P1
\Σ) ∼= Bσ0(P1

\Σ)⊗k[z,1/(z−σ0)] B(P1
\{σ0,∞}).

There is a corresponding decomposition

L(P1
\Σ)) = Lσ0(P1

\Σ)⊗k[z,1/(z−σ0)] L(P1
\{σ0,∞}),

where L(P1\{σ0,∞}) ∼= k[z, 1/(z−σ0), log(z−σ0)]. Correspondingly, the hyperlogarithm
realisation (5.8) decomposes as a product ρ = ρσ0 ⊗ ρ

�, where

ρσ0(w) =

�
z

σ0

w, for all w ∈ Ac.

This is a convergent iterated integral, even though the base point σ0 does not lie in the
space P1\Σ. The logarithmic divergences are completely determined by the realisation
ρ
� : B(P1\{σ0,∞}) → L(P1\{σ0,∞}), where ρ

�(a0) = log(z − σ0).

R���ʀ� 5.7. – In general, the points σ0, . . . , σN will not be arranged symmetrically. In
this case, one needs to do a genuine analytic continuation of the functions Lw(z), since the
formula (5.3) is not valid outside its radius of convergence. Lappo-Danilevsky described a
technique for dealing with this situation, which is described in [8]. This extra complication
will not arise in the present context.

5.3. Quotients of the hyperlogarithm equation

Now we shall consider the case where the coefficients ai in (5.1) satisfy relations. There-
fore, let A = {a0, . . . , aN} be an alphabet with N + 1 letters as before, and consider an ideal

I ⊂ C�a0, . . . , aN �.

Typically, I will be generated by commutators of the form [ai, aj ] for i �= j. It defines a closed
ideal we also denote by I in the completed algebra C��A��. Let

π : C��A�� −→ C��A��/I

denote the quotient map. Consider the analogue of Equation (5.1):

(5.10)
∂

∂z
F (z) =

N�

i=0

π(ai)

z − σi

F (z),
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where, this time, F takes values in the quotient ring C��A��/I. An equation of this type will
be called a hyperlogarithm quotient equation.

C�ʀ�ʟʟ�ʀʏ 5.8. – There exists a unique solution F to the hyperlogarithm quotient equa-
tion (5.10) with solutions in C��A��/I such that F (z) ∼ (z − σ0)π(a0) as z → σ0.

Proof. – The existence follows immediately from Proposition 5.1, on applying π to a so-
lution of (5.1). The uniqueness is proved in the same way.

Now let L(I) denote the OΣ-module of functions generated by the coefficients of a solu-
tion F to (5.10). It is a differential submodule of L(P1\Σ). More precisely,

L(I) ∼= OΣ ⊗
�
C�A�/I

�∨
⊂ OΣ ⊗

�
C�A�

�∨ ∼= L(P1
\Σ).

It follows that the coefficients of solutions to (5.10) are linear combinations of hyperloga-
rithms. If I is a Hopf ideal, i.e., ΓI ⊂ 1 ⊗ I + I ⊗ 1, then L(I) is an algebra by duality.
Theorem 3.26 immediately implies the following corollary.

C�ʀ�ʟʟ�ʀʏ 5.9. – Suppose that I is a Hopf ideal. In this case, L(I) is a unipotent exten-
sion of OΣ. In particular, it is a differentially simple polynomial algebra over OΣ whose ring of
constants is k.

As an example, consider the equation:
dF

dz
=

�
a0

z
+

a1

z − 1

�
F

on P1\{0, 1,∞}, and let I ⊂ C�a0, a1� denote the ideal generated by [a0, a1]. Then
F = exp(a0 log z + a1 log(z − 1)) is the unique solution satisfying F ∼ exp(a0 log z) as
z → 0. The differential algebra L(I) is just C[z, 1/z, 1/(z − 1), log z, log(z − 1)].

5.4. Multiple polylogarithms and hyperlogarithms

We recall the definition of the multiple polylogarithm functions, which were defined by
Goncharov [23, 24, 25, 26]. Let n1, . . . , nr ∈ N, and consider the power series

(5.11) Lin1,...,nr (z1, . . . , zr) =
�

0<k1<···<kr

z
k1
1 . . . z

kr
r

k
n1
1 . . . k

nr
r

,

which converges absolutely for |zi| ≤ 1 if nr ≥ 2 and for |zi| < 1 in general.
Now let � ≥ 2, x1, . . . , x�−1 ∈ C, and set Σ = {σ0, . . . , σ�,∞}, where

σ0 = 0, σ1 = 1, and σi = (x�−i+1 . . . x�−1)
−1 for 2 ≤ i ≤ �.

Let A = {a0, . . . , a�} as previously, and let w = a
nr−1
0 air . . . a

n1−1
0 ai1 ∈ C�A�, where

1 ≤ i1, . . . , ir ≤ �. We suppose that the points σi are distinct and finite (compare (2.5)). Let
us consider the points x1, . . . , x�−1 as being fixed, and let x� ∈ P1\Σ denote a free variable.
By (5.3), the coefficients of the corresponding hyperlogarithm function with respect to x�,
are given near x� = 0 by the formula

Lw(x�) =
�

1≤m1<···<mr

(−1)r

m
n1
1 . . . m

nr
r

(xj1 . . x�)
m1(xj2 . . x�)

m2−m1 . . (xjr . . x�)
mr−mr−1

= (−1)r Lin1,...,nr

�
xj1 . . . x�

xj2 . . . x�

, . . . ,
xjr−1 . . . x�

xjr . . . x�

, xjr . . . x�

�
,
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where we have set jk = �−ik+1 for 1 ≤ k ≤ r. It follows that such a multiple polylogarithm,
considered as a function of the single variable x�, is a hyperlogarithm function on P1\Σ. The
relation between the multiple polylogarithm viewed as a hyperlogarithm in x�, and the mul-
tiple polylogarithm viewed as a function of all its variables, is given by the fibration sequence
between moduli spacesM0,n (§ 6.5).

5.5. Multiple zeta values and P1\{0, 1,∞}

In the case where σ0 = 0 and σ1 = 1, D is the projective line minus three points. Since
P1\{0, 1,∞} also coincides with M0,4, it is natural to make a change of sign and define
X = {x0, x1}, where x0 = a0 and x1 = −a1. Let log z denote the principle branch of the
logarithm. By Proposition (5.1), the equations

dL(z)

dz
=

�
x0

z
+

x1

1− z

�
L(z)(5.12)

L(z) ∼ exp(x0 log z)

have a unique solution L(z) ∈ C��X��, known as the generating series of multiple poly-
logarithms in one variable. Its coefficients are written Liw(z), for w ∈ X

∗. We have
Lix0(z) = log z and Lix1(z) = − log(1 − z). Now consider a word w ∈ x0X

∗
x1 which

begins in x0 and ends in x1. It can be written

w = x
nr−1
0 x1x

nr−1−1
0 x1 . . . x

n1−1
0 x1,

where nr ≥ 2. Equation (5.3) therefore gives a power series expansion:

(5.13) Liw(x) = Lin1,...,nr (1, . . . , 1, z) =
�

0<k1<···<kr

z
kr

k
n1
1 . . . k

nr
r

,

which is regular at z = 1. The numbers Liw(1) satisfy the shuffle relations by (5.5).

D��ɪɴɪ�ɪ�ɴ 5.10. – Let w ∈ x0X
∗
x1 as above. The multiple zeta value of weight

n1 + · · ·+ nr and depth r is the real number defined by the convergent sum:

ζ(w) = ζ(n1, . . . , nr) = Liw(1) =
�

0<k1<···<kr

1

k
n1
1 . . . k

nr
r

, nr ≥ 2.

The function ζ extends by linearity to the Q-vector space spanned by x0X
∗
x1. We define Z

to be the Q-module generated by the set of all multiple zeta values:

(5.14) Z = Q[ζ(w) : w ∈ x0X
∗
x1].

Because the multiple zeta values satisfy the shuffle relation ζ(wxw
�) = ζ(w)ζ(w�), and be-

cause Q[w : w ∈ x0X
∗
x1] is stable under the shuffle product, Z ⊂ R is an algebra. It is

naturally filtered by the weight [51].

It is not difficult to verify that every word w ∈ X
∗ is a linear combination of shuffles of

x0, x1 and words η ∈ x0X
∗
x1. The map w �→ ζ(w) extends to a unique function on Z�X�

which satisfies

ζx(x0) = 0, ζx(x1) = 0,

ζx(wxw
�) = ζx(w)ζx(w�), for all w, w

�
∈ X

∗
.
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D��ɪɴɪ�ɪ�ɴ 5.11. – The Drinfeld associator [18] is the non-commutative series

Z
0,1 =

�

w∈X∗

ζx(w)w ∈ Z��X��.

It follows that Drinfeld’s associator is precisely the regularised value of L(z) at 1:

(5.15) Reg(L(z), 1) = Z
0,1

.

6. The universal algebra of polylogarithms onM0,n

In this section, we give an explicit construction of the algebra of all homotopy-invariant
iterated integrals onM0,S in terms of multiple polylogarithms. By decomposing this alge-
bra as a tensor product of hyperlogarithm algebras, we compute its monodromy in terms of
multiple zeta values.

6.1. The cohomology ring ofM0,S

Recall thatM0,S was defined as the quotient of the configuration space of n = |S| dis-
tinct points (zs)s∈S ∈ (P1)S , modulo the action of PSL2. Let i, j, k, l ∈ S. The cross-ratio
[i j|k l] : (P1)S

∗ → P1 defines a function on (P1)S

∗ , and since [i j|k l] = 1− [i k|j l], we have:

(6.1) d log[i j|k l] ∧ d log[i k|j l] = 0.

We introduce the notation

(6.2) ∆ij = d log(zi − zj) =
dzi − dzj

zi − zj

, for all 1 ≤ i < j ≤ n,

where ∆ij = ∆ji, and ∆ii = 0, for all 1 ≤ i, j ≤ n. Equation (6.1) gives a quadratic relation
between the ∆ij , which can be simplified as follows. Since PSL2(C) acts transitively on the
projective line P1(C), and since the cross-ratio is invariant under its action, we can place the
point z1 at infinity, and it follows that

(6.3) M0,S(C) = Cn−1
∗ /B,

where Cn−1
∗ denotes the set of distinct n − 1-tuples z2, . . . , zn ∈ C, and B ∼= C× � C is the

subgroup of PSL2(C) which stabilizes ∞. The projection map Cn−1
∗ →M0,S(C) is a trivial

fibration with fibres isomorphic to B, and it follows that

(6.4) H
�(Cn−1

∗ ) ∼= H
�(M0,S(C))⊗H

�(B).

We can therefore deduce the cohomology ofM0,S(C) from the structure of H
�(Cn−1

∗ ), which
can be described as follows. We apply (6.1) with l = 1. Using the fact that z1 = ∞, we deduce
that d log[i j|k l] = ∆ik −∆jk, and d log[i k|j l] = ∆ij −∆kj , viewed as 1-forms on Cn−1

∗ .
Then (6.1) yields Arnold’s relation:

∆ij ∧∆jk + ∆jk ∧∆ki + ∆ki ∧∆ij = 0,(6.5)

for any distinct indices 2 ≤ i, j, k ≤ n.

Tʜ��ʀ�� 6.1 (Arnold [4]). – H
�(Cn−1

∗ ) is the quotient of the free exterior algebra
generated by ∆ij for 2 ≤ i, j ≤ n, by the quadratic relations (6.5).
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Now let us fix a dihedral structure δ on S. In § 2 we defined 1-forms

ωij = d log uij , for {i, j} ∈ χS,δ.

Their cohomology classes [ωij ] form a basis for H
1(M0,S(C)). Recall the definition of N

(§ 3.2) as the kernel of the exterior product:

N = ker
�
∧ : H

1(M0,S(C))⊗H
1(M0,S(C)) −→ H

2(M0,S(C))
�
.

Pʀ����ɪ�ɪ�ɴ 6.2. – N is spanned by the following elements:

(6.6)
� �

{i,j}∈A

[ωij ]
�
⊗

� �

{k,l}∈B

[ωkl]
�
,

where A, B ⊂ χS,δ are any two sets of chords which cross completely (§ 2.2). The coho-
mology ring H

�(M0,S(C)) is isomorphic to the free exterior algebra generated by [ωij ], for
{i, j} ∈ χS,δ, modulo the image of elements of the form (6.6).

Proof. – First we regard each dihedral coordinate uij as a function on (P1)n

∗ . By the
defining equations (2.10), we have 1−

�
a∈A

ua =
�

b∈B
ub for all sets of chords A, B ⊂ χS,δ

which cross completely. This implies that d log
�

A
ua ∧ d log

�
B

ub = 0, which is precisely
� �

{i,j}∈A

[ωij ]
�
∧

� �

{k,l}∈B

[ωkl]
�

= 0.

Furthermore, every instance of (6.1) occurs in this way, since each cross ratio [i j|k l] can
be written as a product

�
A

ua or its inverse, by Lemma 2.2. We now place z1 = ∞ as
above, and view the corresponding relations on Cn−1

∗ . By Arnold’s theorem, this implies
that (6.6) generates the set of all relations on Cn−1

∗ . In particular, (6.6) generates N , since
by (6.4), H

�(M0,S(C)) ⊂ H
�(Cn−1

∗ ) and so any relation satisfied by the ωij is also satisfied
in H

�(Cn−1
∗ ).

Now, since B ∼= C×� C is homotopy equivalent to a circle, H
∗(B) is the exterior algebra

generated by a single cohomology class which we denote β ∈ H
1(B). It follows from (6.4)

that H
∗(M0,S(C)) is the subalgebra of H

∗(Cn−1) of degree 0 in β. We deduce from Arnold’s
theorem that H

∗(M0,S(C)) is the quotient of the free exterior algebra generated by a basis
of H

1(M0,S(C)), modulo N .

Similar results have been obtained by Getzler [22].

R���ʀ� 6.3. – The quadratic relations (6.5) are equivalent to the existence of the
dilogarithm function, in the following sense. Let f = [i j |k l]. Then identity (6.5) is
precisely the integrability of the element

[d log f
��d log(1− f)] ∈ W

2
B(M0,S).

The iterated integral (§ 3.6) corresponding to this element is the function Li2(f).
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6.2. The universal algebra of polylogarithms onM0,S

Recall that in simplicial coordinates (2.3), the spaceM0,S is the open complement of an
affine hyperplane arrangement. Its ring of regular functions is

O(M0,S) = Q[uij , u
−1
ij

] ∼= Q
��

ti

�
1≤i≤�

,

� 1

ti

�

1≤i≤�

,
1

(1− ti) 1≤i≤�

,
1

(ti − tj) 1≤i<j≤�

�
,

which is a differential algebra with respect to the partial differential operators ∂/∂ti. We
defined the abstract algebra of homotopy-invariant iterated integrals onM0,S using the re-
duced bar construction in § 3.2.

D��ɪɴɪ�ɪ�ɴ 6.4. – The universal algebra of polylogarithms on M0,S is the differential
graded algebra B(M0,S) = B

�
O(M0,S)

�
.

Recall that B(M0,S) is the unipotent closure ofO(M0,S), and that its de Rham cohomol-
ogy is trivial, i.e., H

0
DR(B(M0,S)) ∼= Q, and H

i

DR(B(M0,S)) = 0 for all i ≥ 1. The structure
of B(M0,S) is particularly rich: it has a natural Hopf algebra structure over O(M0,S), and
also carries an action of the symmetric group S(S) by functoriality. The graded pieces of
the set of indecomposable elements in B(M0,S) of fixed weight yield very interesting finite-
dimensional representations of S(S). Correspondingly, there is an action by the subgroup
of dihedral symmetries D2n of the n-gon (S, δ). This action is evident from the symmetric
description of H

1(M0,S) and N in terms of the forms ωij , for {i, j} ∈ χS,δ, given in Propo-
sition 6.2.

Now if we pass to cubical coordinates, we can split B(M0,S) as a tensor product of
shuffle algebras, and subsequently decompose it into convergent and non-convergent pieces.
First, recall that we defined a base point at infinity (3.37), corresponding to the origin
x1 = · · · = x� = 0, which is locally a normal crossing divisor. The base point is given by
the map O(M0,S) → k{�1, . . . , ��} which maps xi to �i, for 1 ≤ i ≤ �. The projection map
(x1, . . . , x�) �→ (x1, . . . , x�−1) defines a linear fibrationM0,{s1,...,sn}

→M0,{s2,...,sn}
, which

forgets the point marked s1. In the notations of § 2.4, it corresponds to the choice of sets
T1 = {sn, s1, s2, s3}, T2 = {s2, s3, . . . , sn−1}, and T1 ∩ T2 = {s2, s3}. By iterating in this
manner, we obtain a sequence of fibrations: M0,{si,...,sn}

−→ M0,{si+1,...,sn}
, obtained by

forgetting the marked point si, for i = 1, n, n− 1, . . . , 4. By applying Theorem 3.38 to these
fibrations, we deduce that there is a canonical isomorphism:

(6.7) B(M0,S) ∼=
n−3�

i=1

BM0,Σi
(P1

\Σi),

where Σi = {s2, s3 . . . , sn−i+1}. Each algebra B(P1\Σi) is a universal algebra of hyper-
logarithms, and is a free shuffle algebra on n− i− 1 generators by § 5.2.

C�ʀ�ʟʟ�ʀʏ 6.5. – B(M0,S) is isomorphic, as a O(M0,S)-algebra, to the tensor product
of the free shuffle algebras on 2, 3, . . . , n− 2 generators.

Using results of Radford, one can write down a basis of any free shuffle algebra in terms of
Lyndon words (see [46]). The corollary implies that a basis of B(M0,S) is given by tensor
products of Lyndon words.
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We can now decompose each component of (6.7) into convergent and non-convergent
parts. We can define the subalgebra B

�

M0,Σi
(P1\Σi) ⊂ BM0,Σi

(P1\Σi) of convergent words
in a similar manner to (5.9). We can then define

B0(M0,S) = O(M0,S)⊗
n−3�

i=1

B
�

M0,Σi
(P1

\Σi).

Then B(M0,S) decomposes as a commutative tensor product

B(M0,S) ∼= B0(M0,S)⊗Q Q
�
[d log x1], . . . , [d log x�]

�
.

The algebra on the right is the free commutative (polynomial) algebra on generators
[ω2 i+3] = [d log xi] for i = 1, . . . , �.

L���� 6.6. – The subalgebra B0(M0,S) ⊂ B(M0,S) is generated as a vector space by the
set of integrable words, no element of which ends in a symbol ω2k, for 4 ≤ k ≤ n.

Proof. – Let A denote the O(M0,S)-subalgebra of B(M0,S) generated by the set of all
integrable words (i.e. which satisfy (3.8))

�

I

cI [ωi1j1 | . . . |ωir jr ], cI ∈ Q,

where {ir, jr} /∈ {{2, 4}, . . . , {2, n}}. It is clear that A ⊂ B0(M0,S) is a differential sub-
algebra. Furthermore, one easily checks that every element a ∈ Ω1(M0,S) ⊗OM0,S

A of
weight at least 1 has a primitive in A. This follows from the proof of Theorem 3.26 or the
argument given in the appendix, since taking primitives involves adding symbols to the left
of each word. Using the techniques of § 3, Proposition 3.12, it follows immediately that the
map A → B0(M0,S) is surjective.

Likewise, for every vertex v ∈ V
δ, the set of vertex coordinates at v defines a base point at

infinity, and (by considering the action of the differential Galois group of U{�1, . . . , ��} over
k{�1, . . . , ��}, for example), one defines a subalgebra of convergent words Bv,δ(M0,S) such
that

B(M0,S) ∼= Bv,δ(M0,S)⊗Q Q[ωi1 j1 ]⊗Q · · · ⊗Q Q[ωi� j� ],

where {i1, j1}, . . . , {i�, j�} ∈ Fv are the chords occurring in the triangulation corresponding
to v. As above, Bv,δ(M0,S) corresponds to the set of all integrable words which do not termi-
nate in any symbol ωik jk . The case B0(M0,S) corresponds to the vertex whose triangulation
is {{2, 4}, . . . , {2, n}}. This is just the point x1 = · · · = x� = 0 in cubical coordinates.

6.3. The dihedral connection onM0,S

There is a canonical differential equation onM0,S whose solutions can be expressed in
terms of multiple polylogarithms. Let Z�δij� denote the free non-commutative Hopf algebra
generated by the symbols δij = δji, for {i, j} ∈ χS,δ, where δij is primitive (see §3.1). It is
convenient to set δii = δi i+1 = 0 for all indices i ∈ Z/nZ. Consider the following formal
1-form onM0,S :

(6.8) ΩS,δ =
�

{i,j}∈χS,δ

δij

duij

uij

.
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The form ΩS,δ is integrable if and only if d ΩS,δ = ΩS,δ ∧ ΩS,δ. Since ΩS,δ is closed, this
reduces to ΩS,δ ∧ ΩS,δ = 0. We define the dihedral infinitesimal braid relations to be the
identities:

(6.9) [δi−1 j + δi j−1 − δi−1 j−1 − δij , δk−1 l + δk l−1 − δk−1 l−1 − δkl] = 0,

for all i, j, k, l ∈ S.

For each 1 ≤ i, j ≤ n, consider a set of formal symbols tij , where tii = 0 and tij = tji.
The Knizhnik-Zamolodchikov (KZ) form on (P1

∗)
n is the 1-form:

(6.10) ΩKZn =
�

1≤i<j≤n

tij ∆ij ,

where ∆ij = ∆ji is given by (6.2). Let us assume that

(6.11)
n�

k=1

tkl = 0 for all 1 ≤ l ≤ n.

This variant of the KZ-equation has been considered by Ihara, amongst others. It corre-
sponds to the usual KZ-equation on Cn−1

∗ , except that it has an extra set of symbols at in-
finity, and one extra relation which kills the center of the braid algebra. One can prove that
ΩKZn is integrable if and only if the following single relation holds:

(6.12) [tij , tkl] = 0 for all i, j, k, l distinct.

One verifies by computing [tij ,
�

n

l=1 tkl] = 0, that this is equivalent to the usual infinitesimal
braid relations:

[tij , tkl] = 0,(6.13)

[tij , tik + tjk] = 0,

which hold for all distinct indices 2 ≤ i, j, k, l ≤ n. Now, by (2.6), we have ωij = d log uij =
∆i j+1 + ∆i+1 j −∆i+1 j+1 −∆ij , for {i, j} ∈ χS,δ. If we write

ΩKZn = ΩS,δ,

then this is equivalent to the identities

(6.14) tij = δi j−1 + δi−1 j − δi−1 j−1 − δij ,

for all 1 ≤ i, j ≤ n, as is easily verified. Since δii = δi i+1 = 0 for 1 ≤ i ≤ n, then (6.14)
implies that

tij = δi−1 j if j = i + 1,(6.15)

tij = δi−1 j − δi−1 j−1 − δij if j = i + 2.(6.16)

The following lemma implies that the set of equations (6.14) are invertible over Z.

L���� 6.7. – For all 1 ≤ i < j ≤ n,

(6.17) δij =
�

i<a<b≤j

tab.
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Proof. – By Equation (6.15), δi−1 i+1 = ti i+1 for 1 < i < n. Substituting into (6.16)
gives δi−1 i+2 = ti i+2 + ti i+1 + ti+1 i+2. Let m ≥ 4, and suppose by induction that (6.17)
holds for all 0 < j − i ≤ m− 1. Then for j − i = m− 1, (6.14) gives

δi−1 j = tij + δij + δi−1 j−1 − δi j−1,

= tij +
�

i<a<b≤j

tab +
�

i−1<a<b≤j−1

tab −

�

i<a<b≤j−1

tab,

= tij +
�

i<a<b≤j

tab +
�

i<b≤j−1

tib =
�

i−1<a<b≤j

tab.

This proves (6.17) when j − i = m. The result follows by induction.

Now if we substitute the expressions (6.14) for tij and tkl in terms of δab in Equation
(6.12), then we obtain (6.9). This proves the following result.

Pʀ����ɪ�ɪ�ɴ 6.8. – The form ΩS,δ is integrable if and only if the dihedral braid relations
(6.9) hold.

L���� 6.9. – The dihedral braid relations imply that

(6.18) [δij , δkl] = 0,

for all chords {i, j}, {k, l} ∈ χS,δ which do not cross.

Proof. – Without loss of generality, we can assume that 1 ≤ i < j < k < l ≤ n. Then,
by identity (6.12),

[δij , δkl] = [
�

i<a<b≤j

tab,

�

k<c<d≤l

tcd] = 0,

since all sets of four indices {a, b, c, d} occurring in the summation are distinct.

E����ʟ� 6.10. – In the case S = {1, 2, 3, 4, 5}, relation (6.9) with i = 2, j = 4, k = 3,
l = 5 implies that [δ14 − δ13 − δ24, δ25 − δ35 − δ24, ] = 0. By (6.18) this gives the following
five-term relation:

(6.19) [δ13, δ24] + [δ24, δ35] + [δ35, δ41] + [δ41, δ52] + [δ52, δ13] = 0.

This is dual to the functional equation of the dilogarithm.

D��ɪɴɪ�ɪ�ɴ 6.11. – Let R denote a commutative unitary ring, and let I denote the ideal
in R� δij : {i, j} ∈ χS,δ� generated by the dihedral relations (6.9) above. The dihedral braid
algebra over R is the free non-commutative R-algebra

(6.20) BS,δ(R) = R� δij : {i, j} ∈ χS,δ�/I.

This is a co-commutative graded Hopf algebra over R (§3.1), where deg δij = 1. The
product is the concatenation product, and the coproduct Γ is the unique coproduct with
respect to which the generators δij are primitive (I is a Hopf ideal because it is generated
by commutators of primitive elements). It is the universal enveloping algebra of the free Lie
algebra generated by the symbols δij , subject to relation (6.9). As in § 3.1, its completion is
the R-Hopf algebra

(6.21) “BS,δ(R) = R�� δij : {i, j} ∈ χS,δ, ��/
�I
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where �I is the closed ideal generated by I. It follows from the previous calculations that
BS,δ(R) is just the free non-commutative R-algebra generated by the symbols tij , for
1 ≤ i, j ≤ n, which satisfy (6.11), modulo the relations (6.12). This is isomorphic to the
ordinary infinitesimal braid algebra modulo its center. The difference here is that we have
fixed a set of generators for this algebra which depend on the dihedral structure δ.

Let �M0,S be a universal covering space forM0,S , and let p : �M0,S → M0,S denote the
projection map. A multi-valued function onM0,S is defined to be a holomorphic function
on �M0,S . Since the integrability conditions are satisfied inBS,δ(C) we can consider the fol-
lowing formal differential equation on �M0,S :

(6.22) dL = ΩS,δ L.

A solution L takes values in “BS,δ(C). Its coefficients are multi-valued functions onM0,S . We
can fix a solution to (6.22) by specifying its value at a point ofM0,S , or its limiting value at
an intersection of boundary divisors. It suffices to define solutions at intersections of divisors
of maximal codimension. Therefore, we define

V
δ = {α ∈ χ

�

S,δ
}

to be the set of all triangulations of the n-gon. By §2.7, each such triangulation determines
a unique vertex of the associahedron XS,δ. For each vertex v ∈ V

δ, let Fv = {{i, j} ∈ χS,δ :
uij(v) = 0} denote the set of faces of the associahedron XS,δ which meet at v. Let log(uij),
for {i, j} ∈ χS,δ, denote the principal branch of the logarithm on uij > 0 (see § 4.2).

Tʜ��ʀ�� 6.12. – Let v ∈ V
δ. There exists a unique solution Lv,δ to (6.22) such that in a

neighbourhood of v,

Lv,δ(u) = fv,δ(u)
�

{i,j}∈Fv

exp(δij log(uij)),

where fv,δ(u) ∈ “BS,δ(C) extends to a holomorphic function in the neighbourhood of v ∈M δ

0,S
,

and takes the value 1 at v. The function fv,δ(u) extends holomorphically to an open neighbour-
hood of the interior of every face F meeting v.

R���ʀ� 6.13. – The product
�

{i,j}∈Fv
exp(δij log(uij)) is well-defined, because by

(6.18), the symbols δij and δkl commute whenever {i, j} and {k, l} do not cross, and no two
chords {i, j}, {k, l} ∈ Fv can cross because Fv is a triangulation of the n-gon (S, δ).

Proof. – LetB>0
S,δ

(C) ⊂ BS,δ(C) denote the kernel of the counit ε : BS,δ(C) → C. For
each integer N ≥ 1, define

WN = BS,δ(C)/
�
B

>0
S,δ

(C)
�N+1

.

If we write δij for the map which acts by left multiplication by the symbol δij , for each
{i, j} ∈ χS,δ, then each δij is a nilpotent operator on the space WN .

In § 4.1 we showed that XS,δ is a manifold with corners by constructing a specific atlas
{Ue(ε)}. We will show that ΩS,δ defines a unipotent equation of Fuchs’ type on each chart
(Definition 4.7), and apply the results of § 4.3. Therefore, let α ∈ χ

k

S,δ
denote a partial de-

composition of the n-gon, where 1 ≤ k ≤ �. To α corresponds the face Fα of XS,δ. Choose
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any complete triangulation α
� ∈ χ

�

S,δ
which contains α. By Proposition (2.22), the vertex

coordinates
{x

α
�

i
: 1 ≤ i ≤ �} = {uij : {i, j} ∈ α

�
}

form a system of normal coordinates in a neighbourhood of Fα. We can therefore write

ΩS,δ =
�

{i,j}∈α�

δij

duij

uij

+ Aijduij ,

where Aij are holomorphic functions in a neighbourhood of Fα. Since the operators δij

are nilpotent on WN , and since the open neighbourhoods of every face Fα (including
F∅ = XS,δ) cover XS,δ, it follows that (6.22) is unipotent of Fuchs’ type, as required.

By Theorem 4.6, we can find a local solution L
(N)
v,δ

to (6.22) with values in WN (C), which
satisfies the asymptotic condition stated above. By Corollary 4.8, this solution extends glob-
ally over the whole Stasheff polytope XS,δ. The theorem follows on taking the limit as N

tends to infinity, since “BS,δ(C) = lim
←
BS,δ(C)/(B>0

S,δ
(C))N .

Any such solution Lv,δ to (6.22) extends by analytic continuation to give a multi-valued func-
tion on the whole ofM0,S . By construction, the theorem defines a unique real-valued branch
on the interior of the associahedron XS,δ. It is convenient to write the asymptotic boundary
condition

Lv,δ ∼

�

{i,j}∈Fv

u
δij

ij
near v .

u  = 035

u  = 052

13u  = 0

Fɪɢ�ʀ� 14. A local picture ofM0,5(R) and a cell X5,δi . The dashed region depicts
the set of real points of a domain of holomorphy for the regularised function fv,δ

given in Theorem 6.12.

R���ʀ� 6.14. – The formal equation (6.22) is a homogeneous version of the Knizhnik-
Zamolodchikov equation on Cn−1

∗ . Drinfeld studied solutions to the KZ equation on C3
∗, C4

∗

with prescribed asymptotics in certain zones [18], which were subsequently generalised by
Kapranov [36]. Such a zone is determined by a permutation on n−1 letters, plus a bracketing
on the set with n− 1 letters. Combinatorially, a permutation on n− 1 letters corresponds to
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a cyclic structure on n letters, and a bracketing corresponds to a triangulation of an n-gon,
i.e., a vertex in the associahedron of dimension n − 3 (fig. 11). Kapranov interpreted each
zone as the region near a corner at infinity in a certain two-fold cover �S of the compactified
real moduli space:

�S →M0,S(R).

In the previous theorem, we have constructed a canonical solution Lv,δ near each corner
onM0,S(R). Therefore, each solution Lv,δ corresponds to exactly two Drinfeld-Kapranov
zones. One way to see this is that the manifold �S is obtained by gluing together a set of asso-
ciahedra which are parametrized by the set of all cyclic, rather than dihedral structures. The
number of cyclic structures on S, where |S| = n is exactly (n − 1)!. As an example, let us
consider the simplest caseM0,4. Then Equation (6.22) reads:

dL

dx
=

�
δ13

x
+

δ24

x− 1

�
L.(6.23)

Consider the solution L0+(x) which satisfies L0+(x) ∼ exp(δ13 log x) as x → 0+. Re-
membering that x = u13 = [12|43], and after placing the point z4 at ∞, we obtain
x = (z2 − z3)/(z1 − z3). If 0 < x < 1, then either z1 < z2 < z3 or z3 < z2 < z1.
These are the two cyclic structures on {z1, z2, z3,∞} which map to the dihedral structure δ

corresponding to the cell [0, 1] = XS,δ. The zone 0 < x � 1 therefore corresponds to the
pair of zones z1(z2z3) and (z3z2)z1 in Kapranov’s notations.

6.4. Functoriality with respect to projection maps

It is well-known that solutions to the KZ-equation decompose as products of hyper-
logarithm equations by considering fibration maps between configuration spaces. One
obtains a more general decomposition result for the homogeneous equation (6.22), by
using the projection maps considered in § 2.4. First, we fix a dihedral structure δ on S and
choose a chord {i, j} ∈ χS,δ. Recall from § 2.4, that if we set T1 = {sj+1, . . . , si, si+1},
and T2 = {si, si+1, . . . , sj}, and denote the induced dihedral structures by δ1, δ2, then
T1 ∩ T2 = {si, si+1}, and there is a projection map:

fT1 × fT2 :M δ

0,S
−→M

δ1
0,T1

×M
δ2
0,T2

.

By Lemma 2.6, this map has a section whose image is the divisor Dij = {uij = 0}:

i :Mδ1
0,T1

×M
δ2
0,T2

∼
−→ Dij ⊂M

δ

0,S
.

In order to fix solutions of (6.22), let v ∈ V
δ be a vertex of the polytope XS,δ such that

v ∈ Dij , i.e., uij(v) = 0. By projecting down, we obtain vertices in XTk,δk :

vk = fTk(v) ∈ XTk,δk for k = 1, 2.

If v is given by a triangulation α ∈ χ
�

S,δ
of the n-gon S, then v1, v2 are given by the restrictions

α1, α2 of this triangulation to T1 and T2 respectively (compare fig. 4). As sets of chords, we
have α = α1 � α2 � {i, j}. We need an extra technical condition that the only chord in α

emanating from the vertex (j) is the chord {i, j} (the dihedral coordinate corresponding to
such a chord would not be preserved since fT1 and fT2 contract one of the edges j or j + 1).
Let

iT1 :Mδ1
0,T1

−→M
δ1
0,T1

×M
δ2
0,T2

−→ Dij
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denote the map which sends x to i(x, v2) ∈ Dij . Define a map iT2 similarly, and set

(6.24) πk = iTk ◦ fTk for k = 1, 2.

Then πk is a projection map

πk :M δ

0,S
→ Dαk�{i,j} for k = 1, 2,

because fTk ◦ iTk is the identity. We can write these maps explicitly in vertex coordinates
x

α

1 , . . . , x
α

�
, which form a local system of coordinates on M δ

0,S
(C) (see § 2.6). We can

choose an ordering on α such that Dα2 = {xα

1 = · · · = x
α

m−1 = 0}, uij = x
α

m
, and

Dα1 = {xα

m+1 = · · · = x
α

�
= 0} for some m. In that case, we have

fT1 × fT2 : (xα

1 , . . . , x
α

�
) −→

�
(xα

1 , . . . , x
α

m−1), (x
α

m+1, . . . , x
α

�
)
�
,

and

π1 : (xα

1 , . . . , x
α

�
) �−→ (xα

1 , . . . , x
α

m−1, 0, . . . , 0)

π2 : (xα

1 , . . . , x
α

�
) �−→ (0, . . . , 0, x

α

m+1, . . . , x
α

�
).

We shall write ∂/∂uij to denote partial differentiation with respect to the vertex coordinate
x

α

m
= uij in a neighbourhood of v ∈M δ

0,S
(C).

Let Lv,δ denote the unique solution to (6.22) onM0,S given by Theorem 6.12. We define

Lk = L ◦ πk, for k = 1, 2.

Then the functions Lk : �M0,S →
“BS,δ(C) satisfy the differential equation

(6.25) dLk = ΩkLk, for k = 1, 2,

where Ωk is given by:

Ωk = (πk)∗ΩS,δ =
�

{a,b}∈χTk,δk

δab

duab

uab

, for k = 1, 2.

By construction, the solutions Lk satisfy the asymptotic condition

(6.26) Lk = fk

� �

{a,b}∈αk

δab log uab

�
, for k = 1, 2,

where fk is holomorphic in a neighbourhood of vk on Dαk , where it takes the value 1. It is
clear that Ωk and Lk only involve the symbols δab where {a, b} ∈ χTk,δk . Since no chord in
χT1,δ1 crosses any chord in χT2,δ2 , it follows from (6.18) that L1 and L2 commute. Likewise,
we have [L1,Ω2] = [L2,Ω1] = [Ω1,Ω2] = 0. The three series Lv,δ, L1, L2 are all formal power
series in “BS,δ(C) whose coefficients are multi-valued functions onM0,S . They are related as
follows.

Pʀ����ɪ�ɪ�ɴ 6.15. – Let {i, j} ∈ χS,δ be any chord, and let v ∈ V
δ such that uij(v) = 0.

With the notations above, there is a decomposition

(6.27) Lv,δ = h L1L2,

where h is the unique solution in “BS,δ(C) to the hyperlogarithm quotient equation

(6.28)
∂h

∂uij

=
� �

{k,l}∈χS,δ

δkl

∂ log ukl

∂uij

�
h,
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which satisfies the boundary condition

(6.29) h = g exp(δij log uij),

where g is a holomorphic function of uij in a neighbourhood of 0, and g|uij=0 is the constant
function 1.

Proof. – Define a formal power series h ∈ “BS,δ(C) by the equation h = Lv,δ L
−1
2 L

−1
1 . If

we differentiate this equation, we deduce that

ΩS,δLv,δ = dh L1 L2 + h Ω1 L1 L2 + h Ω2 L1L2,

where we have used the fact that [Ω2, L1] = 0. It follows that

(6.30) dh = ΩS,δ h− h
�
Ω1 + Ω2

�
.

By definition, the functions Lk do not depend on the variable uij , i.e., ∂Lk/∂uij = 0, for
k = 1, 2. Therefore ∂h/∂uij = ∂Lv,δ/∂uij L

−1
2 L

−1
1 , and (6.22) implies that

∂h

∂uij

=
� �

{k,l}∈χS,δ

δkl

ukl

∂ukl

∂uij

�
h.

By definition of the solution Lv,δ and Equations (6.26), we have

h = fv,δ exp
� �

{a,b}∈α

δab log uab

�
exp

�
−

�

{a,b}∈α2

δab log uab

�
f
−1
2 exp

�
−

�

{a,b}∈α1

δab log uab

�
f
−1
1 ,

where fv,δ is holomorphic in a neighbourhood of v, and α1, α2, α are the triangulations of
T1, T2, S corresponding to v1, v2, v respectively. Since L1 and L2 commute,

h = fv,δ exp(δij log uij) f
−1
2 f

−1
1 = fv,δ f

−1
2 f

−1
1 exp(δij log uij).

Let g = fv,δ f
−1
2 f

−1
1 = fv,δ f

−1
1 f

−1
2 , which is holomorphic in the neighbourhood of v.

In order to complete the proof, it suffices to show that the function g|uij=0 is the constant
function 1. This, along with the differential equation for h, will determine h uniquely. Let
G denote the restriction of g to the divisor Dij = {uij = 0}. We already know by construc-
tion that G(v) = 1. Since g is holomorphic in the neighbourhood of uij = 0, G satisfies a
differential equation which is obtained by projecting (6.30) onto uij = 0, which amounts to
pulling back ΩS,δ by (π1 × π2)∗. By definition,

ΩS,δ

���
Dij

= Ω1 + Ω2.

Equation (6.30) therefore restricts to give the following differential equation for G:

(6.31) dG = [Ω1 + Ω2, G],

where G(v) = 1. This equation only has constant solutions. To see this, consider the con-
jugate H = (L1L2)−1

G L1L2. Substituting into (6.31) gives dH = 0. Therefore H is the
constant function 1, and so the same is true of G, which completes the proof.

One can verify from the definitions that the map fTk induces a map

(fTk)∗ : BS,δ(C) −→ BTk,δk(C), for k = 1, 2,
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which sends δab to zero for all chords {a, b} which are not in χTk,δk , and is the identity
on δab for all chords {a, b} ∈ χTk,δk . This also follows immediately from the fact that
Ωk = (πk)∗ΩS,δ is integrable. We can then consider

(fTk)∗Lk :M0,Tk −→
“BTk,δk(C) for k = 1, 2.

By (6.26) and the uniqueness part of Theorem 6.12, we conclude that

Lvk,δk = (fTk)∗Lk for k = 1, 2.

In conclusion, a solution Lv,δ to (6.22) onM0,S is equivalent to a pair of solutions Lvk,δk

onM0,Tk for k = 1, 2 plus a solution to the hyperlogarithm quotient equation (6.28). Note
that many of the terms in the differential equation (6.28) vanish.

E����ʟ� 6.16. – Consider the case M0,6, and let {i, j} = {2, 5} (see fig. 3). Then
T1 = {2, 3, 4, 5} and T2 = {6, 1, 2, 3}. We shall work in cubical coordinates, and
write (x1, x2, x3) = (x, y, z). Then u24 = x, u25 = y, and u26 = z. The map
M0,6 → D25

∼= M0,T1 × M0,T2 is given by projecting onto the divisor y = 0. There-
fore L1(x, y, z) = L(x, 0, 0), and L2(x, y, z) = L(0, 0, z) and we have:

dL1 =
�
δ24

dx

x
+ δ35

dx

x− 1

�
L1,

dL2 =
�
δ26

dz

z
+ δ15

dz

z − 1

�
L2.

Thus L1, L2 are generating series of multiple polylogarithms in one variable (but note that
there is a difference in sign in [7]). On the other hand, h is the unique solution to

∂h

∂y
=

�
δ25

y
+

t56

y − 1
+

t46

y − x−1
+

t15

y − z−1
+

t14

y − (xz)−1

�
h,(6.32)

h ∼ exp(δ25 log y) as y → 0,

where, according to (6.14), t56 = δ46, t15 = δ14 − δ15 − δ46, t46 = δ36 − δ46 − δ35, and
t14 = δ13 + δ46 − δ14 − δ36. By (6.13), there are commutation relations

[t14, t56] = 0, and [t15, t46] = 0.

Therefore (6.32) is a hyperlogarithm quotient equation on the punctured affine line
P1\{0, 1,∞, x

−1
, z
−1

, (xz)−1}. Compare Remark 2.11.

By applying the proposition repeatedly, we obtain an explicit decomposition of the gen-
erating series Lv,δ as products of hyperlogarithms. Let us apply the proposition in the case
where {i, j} = {2, n}. In cubical coordinates, u2n = x�, and one can check that h is the
unique function satisfying

∂h

∂x�

=
�

δ2n

x�

+
δ1 n−1

x� − 1
+

�−1�

i=1

δi+3 n + δi+2 1 − δi+2 n − δi+3 1

x� − (xi . . . x�−1)−1

�
h,(6.33)

h ∼ exp(δ2n log x�) as x� → 0,

where, as usual, δii = δi−1i = 0 by convention. The function log x is the unique branch
satisfying log 1 = 0. This defines a multi-valued function on P1\Σ where Σ = {σ0, . . . , σ�},
with

σ0 = 0, σ1 = 1, σ2 = x
−1
�−1, . . . , σ�−1 = (x1 . . . x�−1)

−1
.
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The series h exp(−δ2n log x�) is holomorphic in the neighbourhood of x� = 0. In this case,
the projection map fT1 × fT2 is a fibration. It follows that h is a hyperlogarithm equation
(i.e., there are no relations between the coefficients in (6.33)). Notice also that the coefficient
δi+3 n + δi+2 1 − δi+2 n − δi+3 1 is just t1 i+3.

By substituting the above values of σi into the formula (5.3), we deduce that the coeffi-
cients of the formal power series h are the multiple polylogarithms (§ 5.4):

(6.34) Lin1,...,nr

�
xj1 . . . x�

xj2 . . . x�

, . . . ,
xjr−1 . . . x�

xjr . . . x�

, xjr . . . x�

�
,

where 1 ≤ j1, . . . , jr ≤ � are any indices. By applying the proposition inductively, we obtain
an explicit decomposition of Lv,δ in terms of hyperlogarithm generating series h.

C�ʀ�ʟʟ�ʀʏ 6.17. – Lv,δ is a product of hyperlogarithm generating series. Its coeffi-
cients are sums of products of multiple polylogarithms of the form (6.34) with the functions
log x1, . . . , log x�.

6.5. Regularised zeta series and monodromy

The monodromy of the KZ equation was first computed by Drinfeld [18]. We shall follow
the argument given in [34] forM0,4

∼= P1\{0, 1,∞} (see also [28]). Consider two vertices
u, v ∈ V

δ. By Theorem 6.12, each vertex defines a generating series of multi-valued functions
Lu,δ, Lv,δ onM0,S . The ratio of any two solutions to (6.22) is a constant series.

D��ɪɴɪ�ɪ�ɴ 6.18. – The regularised zeta series corresponding to u, v ∈ V
δ is

Z
u,v = (Lu,δ(x))−1

Lv,δ(x) ∈ “BS,δ(C),

for any x ∈ XS,δ, i.e., x = (uij), where 0 < uij < 1.

Since Lv,δ is real-valued on XS,δ, Z
u,v ∈ “BS,δ(R) has real coefficients. Clearly

(6.35) Z
u,v

Z
v,w = Z

u,w

for all u, v, w ∈ V
δ, and in particular, Z

u,v
Z

v,u = 1. The zeta series describe the limiting
behaviour of a solution of (6.22) near the boundary of XS,δ.

L���� 6.19. – For all u, v ∈ V
δ,

Z
u,v = lim

x→u

�

{i,j}∈Fu

exp(−δij log uij) Lv,δ(x),

where x = (uij) ∈ XS,δ.

Proof. – Let x = (uij) and let x → u along a path in XS,δ. By Theorem 6.12,

(6.36) Lv,δ(x) = Lu,δ(x)Zu,v = fu,δ

� �

{i,j}∈Fu

exp(δij log uij)
�

Z
u,v

,

which implies that

Z
u,v = lim

x→u

� �

{i,j}∈Fu

exp(−δij log uij)
�

f
−1
u,δ

Lv,δ(x).

But f
−1
u,δ

is a non-commutative series which is holomorphic in a neighbourhood of u where
it takes the value 1. We can write f

−1
u,δ

= 1 + g(x), where g is holomorphic and vanishes at
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x = u. Since z logn
z → 0 as z → 0 for all n ∈ N, and since Lv,δ(x) has at most logarith-

mic singularities at x = u, we deduce that only the constant term 1 in f
−1
u,δ

gives a non-zero
contribution in the limit, which proves the result.

Tʜ��ʀ�� 6.20. – The coefficients of the series Z
u,v are multiple zeta values:

Z
u,v
∈ Z�� δij : {i, j} ∈ χS,δ��/I for all u, v ∈ V

δ
,

where I denotes the closed ideal generated by the dihedral braid relations (6.9).

Proof. – By the relations (6.35), it suffices to compute the coefficients of Z
u,v, where u, v

are adjacent corners of XS,δ. In other words, u, v are given by triangulations α, β ∈ χ
�

S,δ

which differ by one chord only. Let us write {a, a
�} = α\α∩ β and {b, b�} = β\α∩ β. Since

Dα∩β is of dimension 1, there is an isomorphism

iuv :Mδ
�

0,T

∼
−→ Dα∩β ⊂M

δ

0,S
,

where |T | = 4, which maps the cell XT,δ� onto the 1-dimensional face of XS,δ which con-
nects u and v. Consider the solution Lu,δ to (6.22) given by Theorem 6.12. We can identify
M0,T with P1\{0, 1,∞} and XT,δ� with the interval (0, 1) in such a way that iuv(0) = u and
iuv(1) = v. The pull-back F = (iuv)∗Lu,δ then satisfies the differential equation:

dF

dx
=

�
δu

x
+

δv

x− 1

�
F,(6.37)

F ∼ exp(δu log x) as x → 0,

on P1\{0, 1,∞}. This follows from Proposition 6.15. Here, δu, δv are the dihedral symbols
corresponding to the chords {a, a

�}, and {b, b�}. We have

(6.38) Z
u,v = Reg(Lu,δ, v) = Reg(F, 1) = Z

0,1(δu, δv).

It follows from the calculations in § 5.5 that the coefficients of Z
u,v lie in Z.

As an example, consider the caseM0,5. Then X5,δ is a pentagon with vertices v1, v2, .., v5

in order. It follows from (6.35) that Z
v1v2Z

v2v3Z
v3v4Z

v4v5Z
v5v1 = 1. Applying (6.38), we

deduce the pentagonal relation due to Drinfeld [18]:

Z
0,1(δ25, δ14)Z

0,1(δ24, δ13)Z
0,1(δ14, δ35)Z

0,1(δ13, δ25)Z
0,1(δ35, δ24) = 1 ∈ “B5,δ(Z).

R���ʀ� 6.21. – One can prove the previous theorem directly using Corollary 6.17. In
cubical coordinates, the coefficients of Lv,δ are sums of products of logarithms with the mul-

tiple polylogarithms Lin1,...,nr

�
xj1 ...x�

xj2 ...x�
, . . . ,

xjr−1 ...x�

xjr ...x�
, xjr . . . x�

�
. By taking suitable limits in

such coordinate systems, one can deduce that the coefficients of each regularised zeta series
are multiple zeta values.

We can compute the monodromy of a solution Lv,δ(x) to (6.22) explicitly in terms of the
zeta series defined above. First, let us define

(6.39) π
δ

1(M0,S) = π1(M0,S , XS,δ)

to be the fundamental group ofM0,S relative to the set XS,δ, which can be taken as a base
point because it is contractible. For each {i, j} ∈ χS,δ, let

γij ∈ π
δ

1(M0,S)
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denote a small path which winds once around the face Dij = {uij = 0} in the positive
direction, i.e., such that

�

γij

duij

uij

= +2πi.

For each {i, j} ∈ χS,δ, let Mij denote the monodromy operator given by analytic contin-
uation of functions along a loop which is homotopy equivalent to γij . The operators Mij

commute with multiplication and differentiation. It follows that the Mij , for {i, j} ∈ χS,δ,
act on Lv,δ(x) by right multiplication by constant series.

Pʀ����ɪ�ɪ�ɴ 6.22. – Let {i, j} ∈ χS,δ, and let v ∈ V
δ denote any vertex of XS,δ. Choose

any vertex w ∈ V
δ which lies on the face Dij , i.e., uij(w) = 0. Then for all x ∈ XS,δ,

Mij Lv,δ(x) = Lv,δ(x)Z
v,w

e
2iπδij Z

w,v
.

Proof. – By Theorem 6.12,

Lw,δ(x) = fw(x)
�

{k,l}∈Fw

exp(δkl log ukl),

where fw(x) is holomorphic in a neighbourhood of w ∈M δ

0,S
(C) which contains the interior

of the face Dij . By analytic continuation along a small loop γij which is contained in this
neighbourhood and winds once around Dij , we deduce that

MijLw,δ(x) = Lw,δ(x) exp(2iπ δij).

It follows from the definition of the zeta series that Lv,δ(x) = Lw,δ(x) Z
w,v for all

x ∈ XS,δ. Since the quotient (Lv,δ(x))−1
Lw,δ(x) Z

w,v is the constant function 1, which is
single-valued, the same equation must also hold for all x in the universal covering space of
M0,S(C). Therefore,

Mij Lv,δ(x) = Mij Lw,δ(x) Z
w,v = Lw,δ(x) e

2iπδij Z
w,v = Lv,δ(x) Z

v,w
e
2iπδij Z

w,v
.

The previous lemma holds for any pair of vertices w, w
� ∈ V

δ which meets Dij . We im-
mediately deduce that the following identity holds in “BS,δ(C):

(6.40) Z
v,w

e
2iπδij Z

w,v = Z
v,w

�
e
2iπδij Z

w
�
,v

.

This identity in fact follows from the commutation relation (6.18). It follows from the
previous theorem that the monodromy of M0,S can be completely expressed in terms of
multiple zeta values, and the constant 2πi.

C�ʀ�ʟʟ�ʀʏ 6.23. – The monodromy ring ofM0,S is Z[2πi].
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6.6. Regularisation of polylogarithms onM0,S

D��ɪɴɪ�ɪ�ɴ 6.24. – For any v ∈ V
δ, let L

v,δ(M0,S) denote the O(M0,S)-module gen-
erated by the coefficients of the solution Lv,δ to (6.22) given by Theorem 6.12. Now let us
define

(6.41) L
δ

Z(M0,S) = L
v,δ(M0,S)⊗Q Z.

It does not depend, up to isomorphism, on the choice of the vertex v by Lemma 6.19
and Theorem 6.20. We write Ωk

L
v,δ(M0,S) = L

v,δ(M0,S)⊗O(M0,S) Ωk(M0,S) and
Ωk

L
δ

Z
(M0,S) = Ωk

L
v,δ(M0,S)⊗Q Z, for k ≥ 0.

SinceZ is filtered by the weight, we deduce a natural weight filtration on L
δ

Z
(M0,S) which

we denote by W
�. It follows immediately that any dihedral symmetry σ ∈ D2n of the n-gon

(S, δ) induces an isomorphism of filtered algebras

(6.42) σ∗ : L
δ

Z(M0,S)
∼
→ L

δ

Z(M0,S).

Each algebra L
v,δ(M0,S) is in fact a graded Hopf algebra (§ 6.7), although we lose the grad-

ing when we pass to L
δ

Z
(M0,S), because it is not yet known whether Z is graded by the

weight. The following theorem shows that the function theory of multiple polylogarithms
is dictated by the geometry of the Stasheff polytopes XS,δ.

Tʜ��ʀ�� 6.25. – Let {i, j} ∈ χS,δ. For any function f ∈ L
δ

Z
(M0,S), let Reg(f, Dij) de-

note the regularised restriction of f to the divisor Dij , which maps not only logarithmic, but also
polar singularities to zero. As in Lemma 2.6, let T1∪T2 = S denote the partition corresponding
to the chord e = {i, j}, such that

Dij
∼=M

δ1

0,T1∪e
×M

δ2

0,T2∪e
.

Then there is an isomorphism of filtered algebras:

Reg
�
L

δ

Z(M0,S), Dij

�
∼= L

δ1
Z

(M0,T1)⊗Z L
δ2
Z

(M0,T2).

Proof. – Let us choose any vertex v ∈ V
δ such that uij(v) = 0. The algebra

L
v,δ(M0,S)⊗Q Z is generated by the coefficients of the generating series Lv,δ(x) over Z. By

Proposition 6.15, there is a decomposition

Lv,δ = h L1L2,

where L1, L2 can be viewed as solutions of (6.22) onM0,T1 andM0,T2 respectively, and do
not depend on uij . Since the series h exp(−δij log uij) is holomorphic in uij and is the con-
stant function 1 along Dij = {uij = 0}, we have Reg(h, Dij) = 1. Therefore

Reg(Lv,δ, Dij) = L1L2.

Likewise, for any coefficient f of Lv,δ, and any k ∈ Z,

Reg
�

f

u
k

ij

, Dij

�
∈ L

v1,δ1(M0,T1)⊗Q L
v2,δ2(M0,T2),

where v1, v2 are the images of v defined in § 6.5, and δ1, δ2 are the induced dihedral structures
on T1, T2. This proves that there is an isomorphism of filtered algebras
Reg(Lv,δ(M0,S), Dij) ∼= L

v1,δ1(M0,T1) ⊗Q L
v2,δ2(M0,T2). On taking the tensor product

with Z, we obtain the statement of the theorem.
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The theorem states that if we restrict a multiple polylogarithm of weight m to the divisor
uij = 0, then we obtain a linear combination of products of multiple zeta values and multiple
polylogarithms such that the total weight is at most m.

6.7. The regularised realisation of polylogarithms

Let S = {s1, . . . , sn} with the obvious dihedral structure δ, and let v ∈ V
δ. We can

now define a realisation of B(M0,S) which is regularised at v. Let us first suppose that v

corresponds to the vertex x1 = x2 = · · · = x� = 0 in cubical coordinates, in order to
exploit the decomposition of B(M0,S) as a product of shuffle algebras. The corresponding
triangulation of the n-gon (S, δ) consists of all chords {{2, 4}, . . . , {2, n}}. The projection
map onto x� = 0 gives a fibration

M0,{s1,...,sn}
−→M0,{s2,...,sn}

.

Correspondingly, we proved that there is a decomposition

B(M0,S) = B(M0,S�)⊗O(M0,S� ) BM0,S� (P
1
\Σ),

where S
� = {s2, . . . , sn}, and Σ is given in § 5.4. Now let v

� denote the vertex corresponding
to the restricted triangulation α

� of S
� with induced dihedral structure δ

�. By Proposition
6.15, there is a decomposition Lv,δ = h Lv�,δ� , where h is a hyperlogarithm equation on P1\Σ
in the variable x�. We deduce that

L
v,δ(M0,S) = L

v
�
,δ
�
(M0,S�)⊗O(M0,S� ) LM0,S� (P

1
\Σ),

where LM0,S� (P1\Σ) denotes the O(M0,S�)-algebra generated by the coefficients of h. From
the realisation (5.8) we obtain a realisation:

(6.43) ρS� : BM0,S� (P
1
\Σ)

∼
−→ LM0,S� (P

1
\Σ),

which is regularised at x� = 0. It is an isomorphism of graded O(M0,S�)[∂/∂x�]-algebras. If
we iterate this argument, we obtain two analogous decompositions

B(M0,S) =
�

1≤i≤�

BM0,Si
(P1

\Σi)(6.44)

L
v,δ(M0,S) =

�

1≤i≤�

LM0,S� (P
1
\Σi),

for some subsets S1 � S2 � · · · � S� � S where |S1| = 3, and Σi
∼= Si. Taking the tensor

product of the fibre-wise isomorphisms (6.43), we obtain a map

ρv,δ : B(M0,S)−→L
v,δ(M0,S).

Tʜ��ʀ�� 6.26. – The map ρv,δ is an isomorphism of differential graded algebras. It fol-
lows that everyO(M0,S)-differential subalgebra of L

v,δ(M0,S) is differentially simple, and that
L

v,δ(M0,S) is a polynomial algebra. Furthermore,

H
0(Lv,δ(M0,S)) = Q and H

i(Lv,δ(M0,S)) = 0 for all i ≥ 1.

The primitive of a closed form f ∈ W
b Ωk

L
v,δ(M0,S) is of weight at most b + 1.
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Proof. – The proof of Theorem 3.38 implies that the differential structure of the algebras
B(M0,S) and L

v,δ(M0,S) are uniquely determined from the tensor decompositions (6.44),
since we have a fixed base point at infinity corresponding to v. It follows that ρv,δ is a map
of differential graded algebras. The fact that it is an isomorphism then follows immediately
from Corollary 3.13. The rest of the theorem is a consequence of Theorem 3.26 and Corol-
lary 3.40.

We obtain a similar decomposition for every vertex v ∈ V
δ.

C�ʀ�ʟʟ�ʀʏ 6.27. – For each v ∈ V
δ, there is a canonical realisation

ρv,δ : B(M0,S)−→L
v,δ(M0,S),

which is regularised at the vertex v.

The map ρv,δ can be defined directly as follows. Recall from § 6.2 that there is a decompo-
sition B(M0,S) ∼= Bv,δ(M0,S)⊗Q[[ωi1 j1 ], . . . , [ωi� j� ]] into convergent and non-convergent
words, where {i1, j1}, . . . , {i�, j�} are the set of chords in the triangulation of the n-gon cor-
responding to v. Then ρv,δ is the unique homomorphism such that

ρv,δ([ωik jk ]) = log uik jk for all 1 ≤ k ≤ �,

ρv,δ

� �

I

cI [ωi1 | . . . |ωin ]
�

=
�

I

cI

�

γ

ωin . . . ωi1 ,

for all
�

I
cI [ωi1 | . . . |ωin ] ∈ Bv,δ(M0,S), where γ is a smooth path such that γ(0) = v and

γ(1) = z ∈ M0,S(C). Such an iterated integral converges, since Bv,δ(M0,S) is spanned by
the set of integrable words no element of which ever ends in a symbol ωik jk for 1 ≤ k ≤ �.
The integrability condition (3.8) ensures that it only depends on the homotopy class of γ and
therefore defines a multi-valued function onM0,S(C). Correspondingly, there is a decompo-
sition

L
v,δ(M0,S) = L

v,δ

c
(M0,S)⊗Q Q[log uik jk : 1 ≤ k ≤ �],

where L
v,δ

c
(M0,S) = ρv,δ(Bv,δ(M0,S)) is the algebra generated by the coefficients of fv,δ

(defined in Theorem 6.12). They are holomorphic in a neighbourhood of v.

7. Period integrals onM0,n(R) and generalised shuffle products

Given a regular algebraic n−3-form onM0,S , we give necessary and sufficient conditions
for its integral over a fundamental cell XS,δ to converge. We obtain a formula for the order of
vanishing of any such form along any given divisor onM0,S\M0,S . Finally, we show how the
double shuffle relations for multiple zeta values are a special case of generalised multiplicative
structures on the set of all period integrals.
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7.1. – The set of all regular algebraic �-forms onM0,S can be written in terms of a canonical
dihedrally-invariant form which we construct as follows. Let δ be a fixed dihedral structure
on S, and correspondingly, write S = {s1, . . . , sn}. First we define the following form on
(P1)n

∗ , where the indices are taken modulo n:

(7.1) �ωS,δ =
n�

j=1

dzj

zj − zj+2
.

The forms �ωS,δ are PSL2(C)-invariant, since if we set

z
�

i
=

αzi + β

γzi + δ
, for 1 ≤ i ≤ n, where

�
α β

γ δ

�
∈ PSL2(C),

then dz
�
i

= (γzi + δ)−2
dzi and z

�
i
− z

�
j

= (γzi + δ)−1(γzj + δ)−1(zi − zj), and therefore
�ωS,δ is unchanged on replacing each zi by z

�
i
. In order to define a form onM0,S , consider

the quotient map p : (P1
∗)

n → M0,S , which has fibres PSL2. Let v denote a fixed non-zero
algebraic invariant 3-form on PSL2(C) which is defined over Q. This is uniquely determined
up to a non-zero rational multiple. Then there exists a unique form ωS,δ onM0,S such that

p
∗(ωS,δ) ∧ v = �ωS,δ.

The form ωS,δ is defined over Q, and is D2n-invariant by construction. In simplicial coordi-
nates (2.3), and using the PSL2(C)-invariance of (7.1), we can normalise the rational coeffi-
cient of ωS,δ such that:

(7.2) ωS,δ =
dt1 ∧ · · · ∧ dt�

t2(t3 − t1)(t4 − t2) . . . (t� − t�−2)(1− t�−1)
,

if � ≥ 2, and ωS,δ = dt1 if � = 1. In dihedral coordinates, one has ωS,δ = du24 if � = 1, and
if � ≥ 2, one can write (7.2) using (2.9) as follows:

(7.3) ωS,δ =
du24 ∧ du25 ∧ · · · ∧ du2 n−1 ∧ du2n

(1− u24u25)(1− u25u26) . . . (1− u2 n−1u2n)
.

The latter representation is not unique because of the various relations between the func-
tions uij and their differentials. The form ωS,δ clearly defines a meromorphic form on the
compactificationM0,S . For any boundary divisor D ⊂M0,S\M0,S we denote by ordD ωS,δ

the order of vanishing of ωS,δ along D.

L���� 7.1. – The form ωS,δ has neither zeros nor poles onM δ

0,S
\M0,S .

Proof. – In cubical coordinates, ωS,δ has the representation:

(7.4) ωS,δ =
dx1 ∧ · · · ∧ dx�

(1− x1x2) . . . (1− x�−1x�)
.

It is clear that ωS,δ is not identically zero nor infinite along the divisors xi = 0, for 1 ≤ i ≤ �.
In other words, the order of vanishing of ωS,δ is zero along the divisor u2 i = 0 for each
4 ≤ i ≤ n. But since ωS,δ is D2n-invariant, it follows that the order of vanishing of ωS,δ is
zero along all divisors at finite distance uij = 0, where {i, j} ∈ χS,δ.
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In other words, given any fixed dihedral structure δ on S, we can define ωS,δ to be the
unique (up to multiplication by Q×) non-zero volume form onM0,S(R) which has no zeros
or poles at finite distance. Equivalently, it has no zeros or poles on the boundary of the closed
Stasheff polytope XS,δ.

It follows from the fact that O(M0,S) = Q[u±1
ij

: {i, j} ∈ χS,δ], that every algebraic
volume form onM δ

0,S
(R) can be written as a linear combination of forms

(7.5)
�

{i,j}∈χS,δ

u
αij

ij
ωS,δ, where αij ∈ Z for each {i, j} ∈ χS,δ.

Now suppose that we are given a collection of coefficients α = (αij){i,j}∈χS,δ
which are all

non-negative. We define the following family of period integrals:

(7.6) IS,δ(αij) =

�

XS,δ

�

{i,j}∈χS,δ

u
αij

ij
ωS,δ.

The integral is finite because each function uij is continuous and bounded on the compact
set XS,δ. Since ωS,δ is positive on XS,δ and invariant under the action of D2n, it follows that
IS,δ(αij) is also positive, and we have a dihedral transformation formula:

(7.7) IS,δ(αij) = IS,δ(ασ(i) σ(j)) for all σ ∈ D2n.

These integrals can be written explicitly in simplicial and cubical coordinates.

L���� 7.2. – In cubical coordinates, we have the following formula:

(7.8) IS,δ(αij) =

�

[0,1]�

��

i=1

x
ai
i

(1− xi)
bi

�

1≤i<j≤�

(1− xixi+1 . . . xj)
cij dx1 . . . dx�,

where the indices ai, bi, cij ∈ Z are given by:

ai = α2 i+3,(7.9)

bi = αi+2 i+4,

ci i+1 = αi+2 i+5 − αi+2 i+4 − αi+3 i+5 − 1,

cij = αi+3 j+3 + αi+2 j+4 − αi+2 j+3 − αi+3 j+4, if j ≥ i + 2.

Proof. – In cubical coordinates, the domain of integration is XS,δ
∼= [0, 1]�, and the only

factors that occur in the denominator of ωS,δ are (1−xixi+1) by (7.4). Using the definition
of the cross-ratios uij , we can rewrite the function

f =
�

{i,j}∈χS,δ

u
αij

ij
= ±

�

1≤p<q≤n

(zp − zq)
spq ,

where the indices spq are given by spq = αp−1 q + αp q−1 − αp−1 q−1 − αp q, and where
we set αi i+1 = αi i = 0. In cubical coordinates, we have z1 = 1, z2 = ∞, z3 = 0, and
zi+3 = xi . . . x�, for 1 ≤ i ≤ �. If we put the various elements together, we obtain the for-
mulae for bi and cij given above. The formulae for ai are easily deduced using the fact that
x1 = u24, . . . , x� = u2n.
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Special sub-families of these integrals were considered in [55], [21], [54], where it was also
conjectured that they are expressible in terms of multiple zeta values. It is easy to verify that
the change of variables matrix given by (7.9) is invertible over Z.

Similarly, in simplicial coordinates one can verify that

IS,δ(αij) =

�

∆

��

i=1

t
a
�
i

i
(1− ti)

b
�
i

�

1≤i<j≤�

(tj − ti)
c
�
ij

dt1 . . . dt�

t2(t3 − t1) . . . (t� − t�−2)(1− t�−1)
,

where ∆ = {0 < t1 < · · · < t� < 1} denotes the unit simplex, and where

a
�

i
= α3 i+2 + α2 i+3 − α3 i+3 − α2 i+2, 1 ≤ i ≤ �

b
�

i
= αn i+3 + α1 i+2 − αn i+2 − α1 i+3, 1 ≤ i ≤ �

c
�

ij
= αi+2 j+3 + αi+3 j+2 − αi+3 j+3 − αi+2 j+2, 1 ≤ i < j ≤ �

where we set αi i+1 = αii = 0 as above. Once again, it is not difficult to verify that the
corresponding change of variables matrix is invertible over Z (this is implied by Equation
(6.17)).

7.2. Relative periods and mixed Hodge structures

Let n = |S| = � + 3, and let A, B denote two sets of divisors at infinity onM0,S\M0,S ,
where we assume that A ∩ B is of codimension at least 2, i.e., A and B have no shared irre-
ducible components. Consider the relative cohomology group

(7.10) H
�(M0,S\A, B\B ∩A) ,

which has a canonical mixed Hodge structure [12]. Since the divisor A ∪ B is globally nor-
mal crossing, this can be computed using the techniques of [29], [50], and it is easily verified
that it is of Tate type. Goncharov and Manin construct an object in the abelian category of
mixed Tate motives MT(Q) over Q [14], whose Hodge realisation is the mixed Hodge struc-
ture (7.10). They then show that this motive is unramified over Z. We shall write the cor-
responding motive and mixed Hodge structure with the same symbol, because the Hodge
realisation functor is fully faithful over Q ([14], proposition 2.9). Suppose that we are given
a relative homology cycle

[∆B ] ∈ H�(M0,S , B).

We can assume that this class is represented by a smooth compact real submanifold with cor-
ners ∆B whose codimension-k boundary is contained in the k-stratum of B. More precisely,
if B consists of irreducible components Bi, for 1 ≤ i ≤ N , then

(7.11) ∂
k∆B = ∆B ∩

�

i1,...,ik

Bi1 ∩ · · · ∩Bik ,

which may be empty. Suppose that we are given an algebraic �-form ΩA onM0,S which is
defined over Q and whose singularities are contained in A. Then the relative period integral
of ΩA along ∆B is defined to be

(7.12)
�

∆B

ΩA ∈ C.
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By a version of Cauchy’s theorem, this integral is invariant under continuous deformations
of ∆B relative to B. We can thus assume that ∆B is disjoint from A, and therefore the in-
tegral is bounded, since ΩA is continuous on ∆B , which is compact. Note that the integral
depends on the relative cohomology classes of ΩA in H

�(M0,S\A, B\B ∩ A), and ∆B in
H�(M0,S\A, B\B ∩A).

L���� 7.3. – grW

0 H�(M0,S , B) is spanned by the homology classes of a number of cells
XS,δ, where δ is in a certain set of dihedral structures which depends upon B.

Proof. – The relative cohomology group H�(M0,S , B) can be computed using the spec-
tral sequence of the complex

M0,S ←

�

i

Bi ⇔
�

i,j

Bi,j ⇔ · · · ⇔
�

|I|=�

BI ,

where B is the union of a set of divisors Bi, and BI =
�

i∈I
Bi. The spectral sequence de-

generates on the E
2 level and it follows that

grW

0 H�(M0,S , B) ∼= ker
� �

|I|=�

H0(BI) −→
�

|J|=�−1

H0(BJ)
�
.

In the simplicial complex defined by B, this is just ker(Cp → Ce) where p is the number
of points, i.e., �-fold intersections of divisors, and e is the number of edges, i.e., � − 1-fold
intersections. This also computes the number of independent cells inM0,S(R) bounded by
B∩M0,S(R). SinceM0,S(R) is tesselated by the cells XS,δ (Lemma 2.26), they must generate
grW

0 H�(M0,S , B).

L���� 7.4. – Every relative period integral over a union of cells XS,δi is a Q-linear com-
bination of IS,δ(αij), where the αij are all non-negative.

Proof. – Fix a dihedral structure δ on S. Any such integral I can be written:

I =
N�

i=1

�

XS,δi

ω =

�

XS,δ

N�

i=1

σ
∗

i
(ω),

where ω ∈ Ω�(M0,S) is regular, and where σi is an element ofS(S) which maps the dihedral
structure δi onto δ. The right-hand side can be written

I =

�

XS,δ

f ωS,δ,

where f ∈ Q[uij , u
−1
ij

] is a regular function onM0,S . Note that by Lemma 4.9 this integral
converges absolutely if and only if f ωS,δ has no poles along ∂XS,δ. Since ∂XS,δ is the union
of divisors Dij = {uij = 0}, and since ordDij f ωS,δ = ordDij f (by Lemma 7.1), this implies
that f ∈ Q[uij ]. Since f is a polynomial in the uij , it can be written as a linear combination
of monomials with positive exponents, or in other words, I is a finite Q-linear combination
of integrals IS,δ(αij), with αij all non-negative.
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In order to rephrase the above in motivic terms, we need to recall the notion of framings
from [25, 26], [5]. Let m ≥ 0 denote an integer. An m-framing on a mixed Tate motive (or
its Hodge realisation) is given by two morphisms

v : Q(−m) → grW

2m
M and f : Q(0) → (grW

0 M)∨.

A morphism between two framed mixed Tate motives (M,v, f) and (M �
, v
�
, f
�) is a mor-

phism M → M
� which respects the framings. This generates an equivalence relation, and

one can show that the equivalence classes of m-framed mixed Tate motives form an abelian
group. The framings on the motive (7.10) were defined in [27] as follows. There are isomor-
phisms

grW

0 H�(M0,S\A, B\B ∩A) ∼= grW

0 H�(M0,S , B),

grW

2�
H

�(M0,S\A, B\B ∩A) ∼= grW

2�
H

�(M0,S\A).

Therefore, the classes [∆B ] ∈ grW

0 H�(M0,S , B) and [ΩA] ∈ grW

2�
H

�(M0,S\A) define an
�-framing on (7.10). Note that these framings could be zero.

We introduce a simplified variant of the above motives. Let δ denote a fixed dihedral struc-
ture on S and let Dδ denote the set of divisors at finite distance inM δ

0,S
. These are the affine

varieties which bound the fundamental cell XS,δ. Let ω ∈ Ω�(M0,S) denote an algebraic
�-form with no singularities along Dδ, which is defined over Q. Let us define the �-framed
mixed Tate motive:

mS,δ(ω) =
�
H

�(M δ

0,S
, Dδ), [XS,δ], [ω]

�
,(7.13)

equipped with the framings given by the class of the fundamental cell ∆B = XS,δ, and the
class of ω. The framed motives mS,δ(ω) are more convenient to work with because the vari-
etiesM δ

0,S
are affine, and we do not need to keep track of the divisor data at infinity. Lemmas

7.3 and 7.4 imply that the framed mixed Tate motive (H�(M0,S\A, B\B ∩ A), [∆B ], [ΩA]),
is equivalent to a linear combination of motives:

mS,δ

�
f ωS,δ

�
, where f =

�

{i,j}∈χS,δ

u
αij

ij
.

The equivalence is given by natural inclusion maps between moduli spaces, the action of the
symmetric group, and the additivity of framed objects with respect to their framings.

7.3. Formulae for the divisor of singularities

In order to compute the divisor of singularities of an arbitrary form (7.5), it suffices to
compute the order of the canonical form ωS,δ along each divisor at infinity. This is easily
done by exploiting the action of the symmetric group.

Pʀ����ɪ�ɪ�ɴ 7.5. – Let |S| = n = � + 3, and let D denote the divisor given by the stable
partition S

1 ∪ S
2 = S (Proposition 2.35). Then

ordωS,δ =
�− 1

2
−

1

2

�

i∈Z/nZ
ID(i, i + 2),

where the notation ID is defined by Equation (2.45) in § 2.8.
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Proof. – Let k ≥ 2 denote the number of elements in S
1. Let σ denote a permutation

σ ∈ S(n) such that σ
−1(S1) = {1, 2, . . . , k}. By (7.1), we have

σ
∗(�ωS,δ) = ±

�

i∈Z/nZ

�
zi − zi+2

zσ(i) − zσ(i+2)

�
�ωS,δ.

By passing to the quotient p : (P1)S

∗ →M0,S , we have

ordD ωS,δ = ordD σ
∗(ωS,δ)− ordDf,

where the function
f =

�

i∈Z/nZ

�
zi − zi+2

zσ(i) − zσ(i+2)

�

is homogeneous and PSL2(C)-invariant by the remarks in § 7.1. It can therefore be written
as a product of cross-ratios and is a well-defined function onM0,S . Now ordD σ

∗(ωS,δ) =
ord{1,...,k} ωS,δ = 0, since the divisor given by the stable partition {1, . . . , k}∪{k+1, . . . , n}

is Dkn = {ukn = 0}, and we know by Lemma 7.1 that ωS,δ has no zeros or poles at finite
distance. Therefore

(7.14) ordD ωS,δ = −ordD f,

and it suffices to compute the zeros and poles of f . Recall from Corollary 2.36 that

ordD

(zi − zk)(zj − zl)

(zi − zl)(zj − zk)
=

1

2

�
ID(i, k) + ID(j, l)− ID(i, l)− ID(j, k)

�
.

We deduce that

ordD f =
1

2

�

i∈Z/nZ

�
ID(i, i + 2)− ID(σ(i), σ(i + 2))

�
.

But {σ(i), σ(i + 2)} ⊂ S
1 if and only if {i, i + 2} ⊂ {1, . . . , k}. The number of such pairs

is exactly k − 2. Likewise, the number of i such that {σ(i), σ(i + 2)} ⊂ S
2 is n − k − 2. It

follows that the second quantity in the sum directly above is n− 4 = �− 1. This completes
the proof on substituting into (7.14).

We immediately deduce the following formula for the order of vanishing of an arbitrary form
along any divisor D ⊂M0,S\M0,S . Let

f =
�

{i,j}∈χS,δ

u
αij

ij
, αij ∈ Z.

C�ʀ�ʟʟ�ʀʏ 7.6. – Let D and f be as above. Then

2 ordD fωS,δ =
�

{i,j}∈χS,δ

αij

�
ID(i, j + 1) + ID(i + 1, j)− ID(i, j)− ID(i + 1, j + 1)

�

+ (�− 1)−
�

i∈Z/nZ
ID(i, i + 2).

Proof. – This follows immediately from the additivity of ordD and the fact that

2 ordDuij = 2ordD[i i + 1|j + 1 j] = ID(i, j + 1) + ID(i + 1, j)− ID(i, j)− ID(i + 1, j + 1).
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Note that along each divisor at finite distance Dij = {uij = 0}, where {i, j} ∈ χS,δ, we
clearly have ordD(f) = αij . In total, there are as many boundary divisors D ∈ M0,S as
there are partitions of S into two sets, each containing at least two elements. These number
2n−1 − n − 1, but there are only n(n − 3)/2 parameters αij , which implies that there are
many relations between the quantities ordDf , for varying D. The following lemma gives an
alternative approach for computing the orders of functions along divisors.

L���� 7.7. – Let D be the divisor of M0,S\M0,S corresponding to a stable partition
S1 ∪ S2 = S. For each two-element subset T = {si, sj} ⊂ S1, let DT denote the divisor given
by the partition T and its complement S\T . Then for any function f ∈ Q(M0,S),

(7.15) ordDf =
�

T⊂S1,|T |=2

ordDT f.

Proof. – It suffices to verify the formula for the function f = uij , where {i, j} ∈ χS,δ,
since it is compatible with products. By Corollary 2.36,

ordD uij =

�
−1 if i, j ∈ S1, and i + 1, j + 1 ∈ S2,

1 if i, j + 1 ∈ S1 and i + 1, j ∈ S2,

and is 0 otherwise. One can check that the identity holds for two-element subsets of
S1∩{i, i+1, j, j+1}, from which it follows in general. For example, if S1∩{i, i+1, j, j+1} =
{i, i + 1, j + 1}, then ordDuij = 0 and this is equal to

ordD{i,i+1}uij + ordD{i,j+1}uij + ordD{i+1,j+1}uij = 0 + 1− 1.

7.4. Singularities of the Kontsevich multiple zeta value forms

There is a special set of �-forms onM0,S corresponding to the iterated integral represen-
tations of multiple zeta values due to Kontsevich. Let n ≥ 5. We apply the previous proposi-
tion to compute the divisor of singularities of each such form and retrieve one of the results
of [27]. Let � = (�1, . . . , ��) where �1, . . . , �� ∈ {0, 1}. We define

(7.16) γi = 3− 2�i ∈ {1, 3}, for 1 ≤ i ≤ �,

and set

(7.17) Ω(�) =
�
5 n | 3 2

� �
2 n|1 3

�ε�

�−1�

i=1

�
i + 5 γi | i + 3 2

�
ωS,δ.

The term in the product corresponding to i = � − 1 requires explanation. We define
[n + 1 γ�−1|n−1 2] = [1 3|n−1 2] if γ�−1 = 3, and define it to be 1 if γ�−1 = 1. We can write
this expression in explicit simplicial coordinates (2.3) by setting z1 = 1, z2 = ∞ and z3 = 0.
If we define t�+1 = 1, one can verify using (7.2) that

(7.18) Ω(�) =
t2

t�

�
t�

t� − 1

�ε�
�−1�

i=1

�
ti+2 − ti

�i − ti

�
ωS,δ =

��

i=1

dti

�i − ti
.
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Let X = {x0, x1} be an alphabet with two letters as considered in § 5.5. Assume that �1 = 1
and �� = 0, and define a word w = x�� . . . x�1 ∈ x0X

∗
x1. Let r� =

�
�

i=1 �i. It follows from
(2.38) and a well-known formula for ζ(w) that

(7.19)
�

XS,δ

Ω(�) =

�

0<t1<···<t�<1

��

i=1

dti

�i − ti
= (−1)�−r

ζ(w).

The integral converges if and only if �1 = 1 and �� = 0. It follows that every multiple zeta
value of weight � occurs as a relative period ofM0,�+3(R) [27].

L���� 7.8. – Let � = (�1, . . . , ��) with �i ∈ {0, 1} for all 1 ≤ i ≤ �. Then

2 ordD Ω(�) = �− 1 +
��

i=1

�
ID(2, γi)− ID(i + 3, γi)

�
−

�

k �=2

ID(2, k)− ID(1, 3),

where γi ∈ {1, 3} is defined in (7.16).

Proof. – First we assume that �� = 0, and therefore γ� = 3. It follows from (7.17) that

2 ordD Ω(�) =
�−1�

i=1

ID(i + 3, i + 5) + ID(2, γi)− ID(2, i + 5)− ID(i + 3, γi)

+ ID(3, 5) + ID(2, n)− ID(2, 5)− ID(3, n) + ordD ωS,δ,(7.20)

and the formula stated above follows on substituting the expression for ordD ωS,δ given in
Proposition 7.5. In the case where �� = 1, γ� = 1, a similar formula for Ω(�) holds except
that one must multiply by an extra cross-ratio [2 n|1 3]. This contributes

ID(2, 1)− ID(n, 1)− (ID(2, 3)− ID(n, 3))

in the expression above, and this is precisely what is required for the formula to hold in this
case also.

Let D ⊂M0,S\M0,S be the divisor corresponding to a stable partition S1∪S2 of S. Then,
up to permuting the sets S1 and S2, D is one of the following four types, where A ∪ B is a
partition of {s4, . . . , sn}:

1. S1 = {s1, s2, s3} ∪A, S2 = B.
2. S1 = {s1, s3} ∪A, S2 = {s2} ∪B.
3. S1 = {s1, s2} ∪A, S2 = {s3} ∪B.
4. S1 = {s2, s3} ∪A, S2 = {s1} ∪B.

C�ʀ�ʟʟ�ʀʏ 7.9. – Let A0 = A ∩ {si+3 for 1 ≤ i ≤ � such that �i = 0}, A1 = A\A0,
and define B0, B1, similarly. Then, according to each of the cases above,

ordD Ω(�) =






|B| − 2 if D is as in case (1),

−1 if D is as in case (2),

|B1| − 1 if D is as in case (3),

|B0| − 1 if D is as in case (4).
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Proof. – In case (1), the formula stated in the previous lemma gives, term by term,

2 ordD(Ω(�)) = �− 1 + �− |A| − (|A|+ 2)− 1,

and the formula follows, since � = |A|+ |B|. In case (2), it gives

2 ordD(Ω(�)) = �− 1 + 0− |A| − |B| − 1 = −2.

In case (3), we have S1 = {s1, s2} ∪A0 ∪A1 and S2 = {s3} ∪B0 ∪B1. The formula in the
previous lemma gives, term by term:

2 ordD(Ω(�)) = �− 1 + (|A1|+ |B1|)− (|B0|+ |A1|)− (1 + |A0|+ |A1|)− 0,

but since � = |A0| + |A1| + |B0| + |B1|, this is just 2|B1| − 2, as required. The formula for
case (4) follows by symmetry.

In case (1), we must have |S2| = |B| ≥ 2, otherwise the partition S1∪S2 is not stable, so no
singularity ever occurs along such a divisor. It follows that the divisors of singularities of Ω(�)
are precisely those divisors of type (2), and those of type (3) (resp. (4)) for which B1 (resp.
B0) is empty. Let us set s1 = 1, s2 = ∞, and s3 = 0, as usual. Then the divisors of type (2)
correspond to the divisors which are called ‘type∞’ in [27]. The divisors of type (3) for which
there is a pole are partitions of the form {1,∞}∪A and {0} ∪B , where B = B0 and hence
B ⊂ {si+3 : �i = 0}. These are exactly the divisors of ‘type 0’ according to [27]. Similarly,
our type (4) above corresponds to ‘type 1’ and the previous result implies Proposition 3.1 of
[27]. Note that the above proof only uses the action of the symmetric group and does not use
any blow-ups.

7.5. Generalised products and the double shuffle relations

In § 2.10 we considered non-degenerate coordinate systems

f =
k�

i=1

fTi :M0,S −→

k�

i=1

M0,Ti ,

where the sets Ti cover S and the dimensions satisfy (2.49). SinceM0,Ti is affine of algebraic
dimension |Ti| − 3, the Künneth formula gives an isomorphism

k�

i=1

H
|Ti|−3(M0,Ti) ∼= H

|S|−3(
k�

i=1

M0,Ti).

We deduce the existence of a multiplication map for forms:

(7.21) f
∗ :

k�

i=1

H
|Ti|−3

�
M0,Ti

�
−→ H

|S|−3
�
M0,S

�
.

This in turn gives a product formula for period integrals on the spacesM0,S . If S has dihedral
structure δ, then it induces dihedral structures δi on Ti. Recall that the fundamental domains�

k

i=1 XTi,δi and XS,δ are related by the set Gf defined in (2.50) via the formula (2.51).

C�ʀ�ʟʟ�ʀʏ 7.10. – Let ωi ∈ H
|Ti|−3(M0,Ti), for 1 ≤ i ≤ k. Then

k�

i=1

�

XTi,δi

ωi =
�

γ∈Gf

�

XS,γ

f
∗(ω1 ⊗ · · · ⊗ ωk) .
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It follows that a product of period integrals on real moduli spaces is itself a period of real
moduli spaces.

R���ʀ� 7.11. – We know that f extends to give a mapM δ

0,S
−→

�
k

i=1M
δi
0,Ti

. The pre-
vious corollary therefore implies the following multiplication formula for the framed mixed
Tate motives defined in § 7.2:

(7.22)
k�

i=1

mTi,δi(ωi) =
�

γ∈Gf

mS,γ(f∗(ω1 ⊗ · · · ⊗ ωk)) .

We can apply the product formula above to the set of multiple zeta forms Ω(�) defined in
§ 7.4. As in § 5.5, let X denote an alphabet with two letters {x0, x1}. Let w = x�m . . . x�1 and
w
� = x�� . . . x�m+1 denote two words in x0X

∗
x1, where �i ∈ {0, 1}, such that �1 = �m+1 = 1

and �m = �� = 0. Let us write � = (�1, . . . , �m) and �
� = (�m+1, . . . , ��). Recall the simplicial

product map defined in § 2.10:

m� :M0,S −→M0,S1 ×M0,S2 ,

where S1 = {s1, s2, . . . , sm+3} and S2 = {s1, s2, s3, sm+4, . . . , sn}. We deduce that
�

XS1,δ1

Ω(�)

�

XS2,δ2

Ω(��) =
�

γ∈Gm�

�

XS,γ

m
∗

�

�
Ω(�)⊗ Ω(��)

�
.

Recall from § 2.7 that Gm� is the set of (m, �−m)-shuffles, and that, in simplicial coordinates,
XS,δ is the unit simplex. We therefore deduce that

�

0<t1<···<tm<1

m�

i=1

dti

�i − ti
×

�

0<tm+1<···<t�<1

��

i=m+1

dti

�i − ti

=
�

σ∈S(m,�−m)

�

0<tσ(1)<···<tσ(�)<1

��

i=1

dti

�i − ti
,

which, by (7.19), gives the shuffle product formula:

(7.23) ζ(w) ζ(w�) =
�

σ∈S(m,�−m)

ζ(xσ(��)xσ(��−1) . . . xσ(�1)) = ζ(wxw
�).

Now let us see what happens in the case of the cubical product map (2.54):

m� :M0,S −→M0,S1 ×M0,S2 ,

where S1 = {s2, s3, . . . , sm+4} and S2 = {sm+4, . . . , sn, s1, s2, s3}. We deduce that
�

XS1,δ1

Ω(�)

�

XS2,δ2

Ω(��) =

�

XS,δ

m
∗

�
�
Ω(�)⊗ Ω(��)

�
,

since in this case Gm� is the single element {δ}. In cubical coordinates, each fundamental
cell is a hypercube, and thus we obtain the formula:

(7.24)
�

[0,1]m
Ωc(�)

�

[0,1]�−m

Ωc(�
�) =

�

[0,1]�
Ωc(�) Ωc(�

�
�
,
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where

(7.25) Ωc(�1, . . . , �m) =
m�

i=1

d(xi . . . x�)

�i − xi . . . x�

.

One can write the product Ωc(�) Ωc(��
�

as a sum of terms Ωc(���) either using an identity due
to Cartier (see [55]) or using a power series expansion due to Goncharov ([24], Lemma 9.6).
We use the latter approach. Let ηi = (1, 0, . . . , 0) denote a 1 followed by a sequence i − 1
zeros. Then

Ωc(�1, . . . , �m) = Ωc(ηn1 , . . . , ηnr ) =
�

0≤k1<···<kr

y
k1
1 . . . y

kr
r

dx1 . . . dxm,

where y1 = x1 . . . xn1 , y2 = xn1+1 . . . xn2 ,. . . , yr = xnr+1 . . . xm. Expanding Ωc(��) in a
similar way, we obtain

Ωc(�)Ωc(�
�) =

�

0≤k1<···<kr

y
k1
1 . . . y

kr
r

�

0≤kr+1<···<kt

y
kr+1

r+1 . . . y
kt
t

dx1 . . . dx�

=
�

σ∈Σm,�−m

�

σ∗(k1,...,kt)

y
k1
1 . . . y

kt
t

dx1 . . . dx� =
�

σ∈Σm,�−m

Ωc(σ(�, ��)) ,

where Σm,�−m is the set of stuffles in the stuffle product for quasi-symmetric power series
[35], and σ∗(k1, . . . , kt) is the corresponding domain of summation. Substituting this into
(7.24), we deduce the stuffle product formula (see [51]):

(7.26) ζ(w)ζ(w�) = ζ(w � w
�).

Note, however, that the variables x1, . . . , x� in the expressions Ωc(σ(�, ��)) above can ap-
pear in the ‘wrong order’. Thus (7.26) is proved after allowing permutations of the variables
x1, . . . , x�, which clearly preserves the unit cube [0, 1]r, and does not affect the integrals. The
map which permutes the set of cubical coordinates x1, . . . , x�, however, does not preserve
the boundary components of the moduli spaceM0,n starting from n ≥ 6.

R���ʀ� 7.12. – This approach can be used to derive any number of elementary prod-
ucts between multiple zeta values. To make such a product explicit, one needs to fix a rule for
decomposing a product of �-forms into a sum of �−forms of a preferred type (for example,
Ω(ε) or Ωc(ε) in the above examples). The motivic origin of such a product formula fol-
lows immediately from Remark 7.11 above (note that this does not quite suffice to prove the
motivic nature of the classical stuffle product (7.26) due to complications coming from the
permutation of cubical coordinates). We see by looking at the sets Gm� and Gm� , that the
shuffle and stuffle product formulae are extreme cases of a range of intermediary product for-
mulae, obtained by shuffling together two subsets of {s3, . . . , s�} relative to s1 = 1, s2 = ∞,
and s3 = 0. Such modular products will be studied elsewhere.
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7.6. Product formulae for integrals of generalised polylogarithms

More generally, we can apply the product formulae to convergent iterated integrals
of functions of arbitrary weight, rather than just regular algebraic forms. If f is a non-
degenerate coordinate system (§ 2.10), there is a commutative diagram

f
∗ :

�
k

i=1 B(M0,Ti) −→ B(M0,S)

↓� ↓�
�

k

i=1 L
vi,δi(M0,Ti) −→ L

v,δ(M0,S),

where f
∗ is a map of differential graded algebras. The vertices v, v1, . . . , vk are chosen such

that f(v) = (v1, . . . , vk) ∈
�

k

i=1M
δi
0,Ti

. The vertical maps are given by canonical regularisa-
tion maps ρv,δ, ρvi,δi defined in § 6.7. Since each B(M0,Ti) is differentially simple, and since
the map f

∗

Ti
is non-zero for each 1 ≤ i ≤ k, it follows that f

∗ is injective. The horizontal
map along the bottom is given by composition and multiplication of functions:

(p1, . . . , pk) �→ p1 ◦ fT1 × · · · × pk ◦ fTk .

In the same way as § 7.5, we deduce the product formula:

(7.27)
k�

i=1

�

XTi,δi

pi =
�

γ∈Gf

�

XS,γ

k�

i=1

pi ◦ fTi ,

where we suppose that all integrals are convergent. In this way, we can obtain product for-
mulae for generalised period integrals (integrals of polylogarithms).

In § 6.6 we defined an action of the dihedral group of symmetries on the space of functions
L

δ

Z
(M0,S). We therefore have the following formula for any function f ∈ L

v,δ(M0,S) such
that the integral converges:

(7.28)
�

XS,δ

f =

�

XS,δ

σ
∗
f for all σ ∈ D2n.

If we combine dihedral symmetries with such product formulae, we have much freedom for
manipulating integrals of generalised polylogarithms over XS,δ. In particular, we can replace
a period integral over any given face of the Stasheff polytope XS,δ with one over a face of
fixed combinatorial type.

L���� 7.13. – Let F0 ⊂ ∂XS,δ denote a fixed face of the Stasheff polytope XS,δ which
corresponds to a short chord {i, i + 1} in the n-gon (S, δ). Given any other face F ⊂ ∂XS,δ,
and any form ω ∈ Ω�−1

L
δ|F

Z
(F ), there exists another form ω

� ∈ Ω�−1
L

δ|F0
Z

(F0) such that
�

F

ω =

�

F0

ω
�
,

where the weight of ω is less than or equal to the weight of ω
�.

Proof. – By using a product (7.27) we can replace the integral of ω over
F ∼= Xk,δ1 × Xn−1−k,δ2 with an integral over a face of ∂XS,δ of combinatorial type
Xn−1,δ� . Since the group of dihedral symmetries D2n acts transitively on the set of all such
faces, we can replace this with an integral over the face F0 by applying (7.28).
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7.7. Examples of period integrals in small dimensions

First of all, consider the caseM δ

0,S
(R), where S = {s1, . . . , s5}, with the obvious dihedral

structure which we denote δ. We shall work in cubical coordinates (x1, x2), which we write
(x, y). The set of chords χS,δ is {13, 24, 35, 41, 52}, and the dihedral coordinates are

(7.29) u13 = 1− xy, u24 = x, u35 =
1− x

1− xy
, u41 =

1− y

1− xy
, u52 = y.

The domain XS,δ is bounded by the five sets of equations uij = 0, ui+1 j+1 = ui−1 j−1 = 1
for each pair {i, j} ∈ χS,δ, and these form the sides of a pentagon whose interior is XS,δ. In
all, there are ten stable partitions of the set {s1, . . . , s5}, which means that there are another
five divisors at infinity given by the five equations uij = ∞, ui−2 j−2 = ui+2 j+2 = 0, where
{i, j} ∈ S. These too form a pentagon.

The volume form ωS,δ = d log u13∧d log u24 = (1−xy)−1
dxdy, and every period integral

on XS,δ is a sum of integrals

IχS,δ(αij) =

�

XS,δ

u
α13
13 u

α24
24 u

α35
35 u

α41
41 u

α52
52 ωS,δ,

which in cubical coordinates is just

I5(h, i, j, k, l) =

� 1

0

� 1

0

x
h(1− x)i

y
k(1− y)j

(1− xy)i+j−l

dxdy

1− xy
,

where we have set α24 = h, α35 = i, α41 = j, α52 = k, α13 = l. This exactly coincides
with the family of integrals first defined by Dixon, and studied by Rhin and Viola [47, 17].
The dihedral group D10 preserves the integral and permutes the indices {h, i, j, k, l}. It is
generated by a cyclic rotation of order five τ5, and a reflection of order two σ5, where

τ5(x, y) =
�
1− xy,

1− y

1− xy

�
, σ5(x, y) = (y, x).

R���ʀ� 7.14. – By combining the action of the dihedral symmetry group D12 onM0,6

and the product formula for integrals onM0,4 ×M0,5 one can deduce the ‘hypergeometric
transformation formula’ for the integrals above. This remarkable identity was discovered by
Dixon in 1905, and was exploited by Rhin and Viola to obtain the best irrationality measures
for ζ(2) known to date. It is:

(7.30)
1

j! k!
I(h, i, j, k, l) =

1

(k + l − i)!(i + j − l)!
I(h, i, k + l − i, i + j − l, l).

Before proving this identity, first observe that the real period integral I4 onM0,4 is the
following beta integral:

(7.31) I4(α13, α24) =

� 1

0
x

α24(1− x)α13dx =
α13!α24!

(α13 + α24 + 1)!
∈ Q .

Now consider the caseM0,6. In cubical coordinates (x, y, z) = (x1, x2, x3) we have:

u13 = 1− xyz, u24 = x, u35 =
1−x

1−xy
, u46 =

(1−xyz)(1−y)

(1−xy)(1−yz)
, u51 =

1−z

1−yz
, u62 = z,

(7.32) u14 =
1− yz

1− xyz
, u25 = y, u36 =

1− xy

1− xyz
.
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Let h, i, j, k, l, m, r, s, t be any nine non-negative integers. Let I6(h, i, j, k, l, m ; r, s, t) de-
note the period integral of weight three onM0,6 which is therefore given by

(7.33)
� 1

0

� 1

0

� 1

0

x
h(1− x)i

y
t(1− y)j

z
l(1− z)k

(1−xy)i+j−r(1−yz)j+k−s(1−xyz)r+s−j−m

dxdydz

(1−xy)(1−yz)
.

The dihedral group of symmetries D12 for M0,6 is generated by a cyclic permutation we
denote τ6 = (h i j k l m)(r s t), and the reflection σ6 = (h l)(i k)(r s). In the degenerate case
where r + s = j + m and r = i + j + 1, the terms (1 − xy) and (1 − xyz) vanish in the
integrand and (7.33) splits as a product I4(h, i) I5(l, k, j, t, s). This is precisely a cubical
product. Similarly, if the terms (1 − yz) and (1 − xyz) vanish, then we obtain a different
splitting of the integral.

Proof of (7.30). Let h, i, j, k, l be non-negative integers. We can assume without loss of
generality that i < l. Set α = k + l − i, and β = i− l − 1. Consider

I4(α, β) I5(h, i, j, k, l) = I6(h, i, j, β, α, l + β + 1 ; l, j + β + 1, k).

We apply the cyclic permutation τ
4
6 and use the fact that α + β + 1 = k, α + i = k + l to

obtain a different splitting. This gives

I6(j, β, α, l + β + 1, h, i ; k, l, j + β + 1) = I4(j, β) I5(h, l + β + 1, α, j + β + 1, l).

Replacing the I4 terms with factorials using (7.31), we obtain the identity (7.30).

These examples illustrate how many important identities between multiple zeta values and
Euler integrals can be proved by simple geometric considerations on moduli spacesM0,n.
Kontsevich and Zagier have made the very general and ambitious conjecture that every iden-
tity between periods can be proved using three elementary operations on integrals: changes
of variables, the linearity of integration, and Stokes’ theorem. In our situation, we have an
infinite family of period integrals, but we have a fixed set of algebraic operations which we
can perform on these integrals (e.g., the action of dihedral symmetries and the multiplication
rules we defined above). It would be interesting to see which of the many known identities
between multiple zeta values can be proved by using just these operations.

8. Calculation of the periods ofM0,n

We prove that the integral of a convergent algebraic �-form over an associahedron XS,δ

can be written as a linear combination of multiple zeta values of weight at most �. The key
to the argument is the interplay between logarithmic singularities (which are permitted), and
polar singularities (which are forbidden), along the boundaries of the associahedron XS,δ.

8.1. Pole-free primitives

In order to apply Stokes’ theorem to the manifold with corners XS,δ, we need to verify
that the algebra of generalised polylogarithms onMδ

0,S
satisfies the required properties.
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First of all, it follows from the regularization results of § 6.7 that the coefficients of the
generating series of generalized polylogarithms Lv,δ(z) have at most logarithmic singularities
along the boundary of the Stasheff polytope XS,δ. This implies that

(8.1) L
δ

Z(M0,S) ⊂ Γ(XS,δ,F
log
p

).

Theorem 6.26 tells us that primitives exist in L
δ

Z
(M0,S). One difficulty, however, is that prim-

itives of n-forms on a manifold of dimension n are not unique, and we may inadvertently
introduce extra poles, which would give rise to divergent integrals. We show how to remove
these extra poles below. In order to do this, we define

(8.2) L
δ,+
Z

(M0,S) = L
δ

Z(M0,S) ∩ Γ(XS,δ,F
log)

to be the sub-algebra of polylogarithms onM0,S which have at most logarithmic singular-
ities on the boundary faces of the Stasheff polytope XS,δ. Observe that every generalised
polylogarithm has a canonical branch on XS,δ, and is therefore a well-defined, real-valued
function.

Pʀ����ɪ�ɪ�ɴ 8.1. – Let f ∈ W
kΩ�

L
δ,+
Z

(M0,S). There exists a pole-free primitive

F ∈ W
k+1

�
Ω�−1

L
δ,+
Z

(M0,S)
�

such that dF = f , which implies that the restriction of F to ∂XS,δ is continuous. In other words,
the conditions of Theorem 4.11 hold.

Proof. – We know from Theorem 6.26 that L
δ

Z
(M0,S) has trivial de Rham cohomology.

It follows that we can find a primitive G ∈ Ω�−1
L

δ

Z
(M0,S) for f , of weight at most k + 1,

which may have polar singularities along ∂XS,δ.
In order to remove spurious poles in G, we work on a single chart of XS,δ at a time. There-

fore, let e ∈ χ
q

S,δ
denote a partial decomposition of the n-gon (S, δ), and let α ∈ χ

�

S,δ
be

a full triangulation which contains e. For every small ε > 0, recall that there is a chart
Ue(ε) (see (4.2)), which has local (vertex) coordinates x

α

1 , . . . , x
α

�
, which are canonical up

to permutations. Recall that Ue(ε) ∼= Up,q where p + q = � (§ 4). It contains the face
Fe = {uij = 0 : {i, j} ∈ e}, and we can assume, by reordering the coordinates if neces-
sary, that Fe = {xα

1 = · · · = x
α

q
= 0}. We remove polar singularities with respect to each

coordinate x
α

1 , . . . , x
α

q
in turn. First, there is a decomposition G = Gp + G

�, where G
� has at

most logarithmic singularities in x
α

1 , and Gp is the divergent part of G along {xα

1 = 0}:

Gp =
�

a≥0,b≥1

loga
x

α

1

(xα

1 )b
ga,b(x

α

2 , . . . , x
α

�
) ωa,b +

�

c≥1

logc
x

α

1 hc(x
α

2 , . . . , x
α

�
)dx

α

2 . . . dx
α

�
,

where ga,b(xα

2 , . . . , x
α

�
), hc(xα

2 , . . . , x
α

�
) ∈ F log

p
(Up,q−1), and where ωa,b are any �− 1 forms

�
i
ai dx

α

1 . . . �dx
α

i
. . . dx

α

�
, where ai ∈ R. By differentiating this expression, and using the

fact that dG = f has no poles, it is easy to verify that dGp = 0 (in other words, poles can only
get worse on differentiating). Therefore dG

� = f , and so G
� is a primitive of f which has no

poles along x
α

1 = 0. Using the fact that L
δ

Z
(M0,S) is closed under differentiation with respect

to x
α

i
, and closed under taking regularised limits at x

α

i
= 0, for 1 ≤ i ≤ � (Theorem 6.25),

one can easily check that G
� lies in L

δ

Z
(M0,S), i.e., G

� is still a generalised polylogarithm.
Repeating this argument for x

α

1 ,. . . , x
α

q
, in turn, we obtain a primitive of f with no poles on

the local chart Uα(ε). The whole argument can then be repeated on each local chart of XS,δ,
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and we end up with a primitive F of f which has no poles anywhere along ∂XS,δ. This is
because, whenever we remove a polar singularity along the divisor Dij , {i, j} ∈ χS,δ, no
new poles are created along any other boundary component Dkl, where {k, l} ∈ χS,δ, and
the total weight is not increased. This proves the proposition. The fact that the restriction
of F to each component of the boundary is continuous follows from Lemma 4.10.

In § 8.3 we show how to construct canonical primitives which are automatically free of
poles along ∂XS,δ.

8.2. Proof of the main theorem

Let S denote a set of order n = � + 3 with a fixed dihedral structure δ.

Tʜ��ʀ�� 8.2. – For all sets of indices αij ≥ 0,

IS,δ(αij) =

�

XS,δ

�

{i,j}∈χS,δ

u
αij

ij
ωS,δ ∈ W

�
Z.

Proof. – The proof is by induction and by repeated application of Stokes’ theorem
(Theorem 4.11). We write S = Sn = {s1, . . . , sn}. First observe that the regular �-form

f0 =
�

{i,j}∈χS,δ

u
αij

ij
ωS,δ ∈ W

0(Ω�
L

δ

Z(M0,S))

has no poles on the compact set XS,δ. Let us write

Si = {s1, . . . , si} for all 3 ≤ i ≤ n,

and let δb denote the dihedral structure on Sb ⊂ S induced by δ. This is equivalent to choos-
ing a nested sequence of sub-faces of XS,δ in its stratification. Let 0 ≤ b ≤ �, and suppose
by induction that there exists an �− b form

fb ∈ W
b(Ω�−b

L
δ,+
Z

(M0,Sn−b)),

which has no poles on XSn−b,δn−b , such that

IS,δ(αij) =

�

XSn−b,δn−b

fb.

By Proposition 8.1, there exists a primitive P ∈ Ω�−b−1
L

δ,+
Z

(M0,Sn−b) of weight at most
b + 1, which has no poles in XSn−b,δn−b , and is continuous on the interior of ∂XSn−b,δn−b .

By the version of Stokes’ formula stated in Theorem 4.11,

IS,δ(αij) =

�

XSn−b,δn−b

fb =

�

∂XSn−b,δn−b

P.

By the geometry of the Stasheff polytopes (§ 2.2), we know that

∂XSn−b,δn−b =
�

{i,j}∈χSn−b,δn−b

Fij ,

where Fij = Fij(XSn−b,δn−b) is the face corresponding to the chord {i, j}, and therefore

(8.3) IS,δ(αij) =
�

{i,j}∈χSn−b,δn−b

�

Fij

P
��
Fij

.
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Given a chord {i, j} ∈ χSn−b,δn−b , there exists a partition of Sn−b = T1 ∪ T2 such that
Fij

∼= XT1∪{e},δ1
× XT2∪{e},δ2

, where e corresponds to the chord {i, j} (Equation (2.39))
and δ1, δ2 are the induced dihedral structures. By Theorem 6.25, we have

P
��
Fij
∈ W

b+1Ω�−b−1(Lδ1
Z

(M0,T1∪{e})⊗ L
δ2
Z

(M0,T2∪{e})).

By Lemma 7.13, there exists gij ∈ W
b+1(Ω�−b−1

L
δ

Z
(M0,Sn−b−1)) such that

�

XT1∪{e},δ1
×XT2∪{e},δ2

P
��
Fij

=

�

XSn−b−1,δn−b−1

gij .

Thus each integral in the sum (8.3) can be written as an integral over the fixed face
XSn−b−1,δn−b−1 by applying product formulae and using dihedral symmetries. Since
P |Fij is continuous with at most logarithmic singularities along ∂Fij , it follows that
gij ∈ Ω�−b−1(Lδ,+

Z
(M0,Sn−b−1)). Taking the sum over all {i, j} ∈ χSn−b−1,δn−b−1 in (8.3),

we obtain a form fb+1 ∈ W
b+1(Ω�−b−1

L
δ,+
Z

(M0,Sn−b−1)) such that

IS,δ(αij) =

�

XSn−b−1,δn−b−1

fb+1.

This completes the induction step. At the final stage of the induction, we deduce that IS,δ

is given by evaluating a multiple polylogarithm in one variable in W
�
L

δ

Z
(M0,4) at a single

point. We conclude (see § 5.5) that IS,δ(αij) ∈ W
�Z.

Note that it is not strictly necessary in the course of the above proof to use the product for-
mula (Lemma 7.13). This replaces the sum of a product of integrals with a single integral at
each stage, and only serves to simplify notations. Lemma 7.4 implies the following result.

C�ʀ�ʟʟ�ʀʏ 8.3. – Every relative period integral over a union of cells XS,δi can be written
as a linear combination of multiple zeta values of weight at most dimM0,S(R).

8.3. Canonical primitives - an algorithmic approach

The existence of primitives uses the fact thatM0,S is a fibre-type hyperplane arrangement.
By exploiting the hyperlogarithm fibration, we can find canonical primitives, as in Remark
3.42, which have no spurious poles. This gives rise to a simplified series of integrals occurring
in the proof of Theorem 8.2 above, and yields an effective algorithm for computing period
integrals onM0,S algebraically.

Let f ∈ W
bΩ�

L
δ,+
Z

(M0,S). Working in cubical coordinates, we can write
f = g(x1, . . . , x�) dx1 . . . dx�, where g ∈ L

δ,+
Z

(M0,S) is of weight at most b. Recall that by
Remark 3.42, there exists a primitive F ∈ W

b+1Ω�−1
L

δ

Z
(M0,S) such that

F = G(x1, . . . , x�) dx1 . . . dx�−1,

where ∂G/∂x� = g. More concretely, let S = {s1, . . . , sn} and let S
� = {s2, . . . , sn}. Recall

from § 6.7 that the hyperlogarithm fibration given by projection onto x� = 0:

M0,S −→M0,S� ,

gives rise to a decomposition of filtered algebras

L
δ

Z(M0,S) ∼= LM0,S� (P
1
\Σ)⊗O(M0,S� ) L

δ
�

Z (M0,S�),
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where Σ = {0, 1, x
−1
�−1, . . . , (x1 . . . x�−1)−1} as in § 5.4, and δ

� is the induced dihedral struc-
ture on S

�. We can therefore write the function g as a finite sum of products

g(x1, . . . , x�) =
�

i

ai(x�) bi(x1, . . . , x�−1),

where each bi ∈ L
δ
�

Z
(M0,S�) is a function of � − 1 variables x1, . . . , x�−1 only, and each ai,

considered as a function of the single variable x�, is a hyperlogarithm with singularities in
Σ ∪∞. We can assume that the ai are linearly independent. The weight of each product of
ai(x�) and bi(x1, . . . , x�−1) is at most b. Now by Proposition 3.22, each function ai(x�) has
a primitive (with respect to the variable x�) which we denote

Ai(x�) ∈ LM0,S� (P
1
\Σ),

which is of weight at most one more than the weight of ai(x�). We can choose the constant
of integration in such a way that Ai(x�) either vanishes at 0, or is logk(x�) for some k ≥ 1
(see § 5.2). In the latter case, ai(x�), and hence g(x1, . . . , x�) would have a pole at the origin,
so this cannot occur (this is precisely the argument in the proof of Lemma 4.10). It follows
that the function

F =
�

i

Ai(x�) bi(x1, . . . , x�−1) dx1 . . . dx�−1

is a primitive of f , and is identically zero on all faces of XS,δ except the single face given
by x� = 1. The primitive F has no poles since this would contradict the convergence of the
integral by Lemma 4.9. It is therefore continuous on the interior of this face, and we can
apply Stokes’ theorem directly. This approach to the induction step in the proof of the main
theorem has the advantage that it does not involve any regularisation, or having to apply a
product formula (Lemma 7.13).

8.4. Taylor expansions of Selberg integrals and multi-beta functions

The method of proof of Theorem 8.2 works much more generally, and enables us to com-
pute integrals of arbitrary generalised polylogarithms onM0,S , which are allowed logarith-
mic singularities along the boundary of the domain of integration.

Tʜ��ʀ�� 8.4. – Let f ∈ W
k
L

δ,+
Z

(M0,S) denote a generalised polylogarithm onM0,S of
weight at most k, which has no poles along ∂XS,δ. Then

I(f) =

�

XS,δ

f ωS,δ ∈ W
�+k

Z.

The proof is identical to the proof of Theorem 8.2. Note that the integrand is always well-
defined on the real domain XS,δ at each stage of the induction. If we apply this theorem in
the case where f is anO(M0,S)-linear combination of products of powers of logarithms, then
we deduce the following corollary.

C�ʀ�ʟʟ�ʀʏ 8.5. – Let {sij} denote a set of complex parameters. It follows from the calcu-
lations in § 4 that the following integral, viewed as a function of the variables sij , is holomorphic
in the region Re sij > −1:

(8.4) βS,δ({sij}) =

�

XS,δ

�

{i,j}∈χS,δ

u
sij

ij
ωS,δ.
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The coefficients of its Taylor expansion (with respect to the variables sij) at any integral point
sij ∈ Z, where sij ≥ 0 for all {i, j} ∈ χS,δ, are multiple zeta values.

Similar kinds of results have been obtained by Terasoma [49]. The integral (8.4) defines a
multi-beta function, since in the caseM0,4 it reduces to the ordinary beta function. It satis-
fies many functional identities coming from the dihedral relations (2.10), the product maps
(7.27), and also the action of the dihedral symmetry group, and would merit further study.

8.5. Computation of relative periods of the moduli spacesM0,S

Let A, B denote two sets of divisors in M0,S\M0,S which do not share any irreducible
components (§ 7.2), and consider a period integral of the form (7.12), whose integrand is an
algebraic �-form on M0,S\A defined over Q. We sketch a proof of the following theorem
in this case. Using hypercohomological methods, one should be able to deduce with a little
extra work that all the periods of H

�(M0,S\A, B\B ∩ A), for any A, B, are expressible in
terms of multiple zeta values and 2iπ.

Tʜ��ʀ�� 8.6. – Any such period of H
�(M0,S\A, B\B ∩A) is a Q-linear combination of

multiple zeta values and the constant 2iπ, of total weight at most �.

Let ∆B ⊂M0,S(C) denote any real smooth compact submanifold with corners of dimen-
sion �, whose boundary is contained in the set of complex points of B. Let ω ∈ Ω�(M0,S\A)
be an algebraic �-form as above. We can assume that ∆B is disjoint from A, and that ∆B is
stratified by B according to (7.11). Let A be a union of distinct divisors Ai, for 1 ≤ i ≤ N .

By decomposing the relative homology class [∆B ] ∈ H�(M0,S\A, B\B ∩ A) into differ-
ent pieces, we can first consider the case when ∆B does not wind non-trivially around any
component Ai of A. In this case, write X = ∆B , and observe that the argument given in
§ 8.2 goes through as before. In other words, we can take primitives in the algebra of poly-
logarithms L

δ

Z
(M0,S), and repeatedly apply Stokes’ formula (Theorem 4.11) to the manifold

with corners X, and proceed by induction. Note that, although X is not necessarily simply-
connected, the argument goes through as long as the functions we integrate remain single-
valued along X. Since X does not wind around A, we can ensure that this is the case. This
proves that �

X

ω ∈ W
�
Z.

In the case when ∆B winds around some component of A, we apply a residue formula
and induction. To make this precise, let A

c

i
=

�
j �=i

Aj for all 1 ≤ i ≤ �, and consider the
residue map

H
�(M0,S\A, B\B ∩A) −→

N�

i=1

H
�−1(Ai\(Ai ∩A

c

i
), (B ∩Ai)\(B ∩Ai ∩A

c

i
)),

and its dual map

H�(M0,S\A, B\B ∩A) ←−
N�

i=1

H�−1(Ai\(Ai ∩A
c

i
), (B ∩Ai)\(B ∩Ai ∩A

c

i
)).

Suppose that [∆B ] ∈ H�(M0,S\A, B\B ∩A) is the image of a class
[Y ] ∈ H�−1(Ai\(Ai ∩ A

c

i
), (B ∩ Ai)\(B ∩ Ai ∩ A

c

i
)), for some 1 ≤ i ≤ N , where
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Y ⊂ Ai\(Ai ∩ A
c

i
) is a smooth compact submanifold with corners of dimension �− 1, i.e.,

a tubular neighbourhood of Ai. By taking the residue along Ai, we get:
�

∆B

ω = 2iπ

�

Y

Res ω

���
Ai

.

The corresponding period is therefore 2πi times a period of H�−1(Ai\(Ai ∩ A
c

i
),

(B ∩ Ai)\(B ∩ Ai ∩ A
c

i
)). Since Ai is itself isomorphic to a product of moduli spaces,

we can repeat the argument inductively. We conclude that, in all cases,
�

∆B

ω ∈ W
�
Z[2iπ],

where Z[2iπ] has the natural filtration which gives 2iπ weight 1.

8.6. Some simple examples

In the following examples, it is convenient to work in cubical coordinates x1, . . . , x�. At
each stage we take canonical primitives (as described in § 8.3) with respect to x1 or x�. This
is because the projection maps onto x1 = 0 or x� = 0 are fibrations (§ 2.4), and so we can use
the method of partial fractions to find primitives. At each stage, one can re-confirm (using
dihedral coordinates) that the primitives have no poles along the boundary of the domain of
integration XS,δ. First, assume |S| = 5, that is S = {s1, . . . , s5}. We compute

I1 =

�

XS,δ

ωS,δ =

� 1

0

� 1

0

dxdy

1− xy
.

Following §8.3, we take the primitive of ωS,δ with respect to the variable y. This is

F = − log(1− xy)
dx

x
,

which vanishes at y = 0 as required. In dihedral coordinates (7.29), this is
F = − log u13 d log u24, which has no poles at finite distance. Then

�

XS,δ

ωS,δ =
�

{i,j}∈χS,δ

�

Dij

− log u13 d log u24.

The only face on which the form does not vanish is the face D14 which is defined by u14 = 0,
u25 = u35 = 1, which implies that u13 = 1− u24 by (2.10). We obtain

�

XS,δ

ωS,δ =

� 1

0
− log(1− x)

dx

x
.

Notice that the form log(1−x) dx/x is continuous on the interval [0, 1) but has a logarithmic
singularity at x = 1. It has a unique primitive which vanishes at 0, namely Li2(x), which is
now bounded at x = 1 by Lemma 4.10. We conclude that

(8.5) I1 =

�

XS,δ

ωS,δ =
�
Li2(x)

�1

0
= ζ(2).

Now let |S| = 6. Consider the following integral onM0,6:

I2 =

�

0≤t1≤t2≤t3≤1

dt1

1− t1

dt2

t2

dt3

t3 − t1
=

�

[0,1]3

dx dy dz

(1− xyz)(1− xy)
=

�

XS,δ

u14 ωS,δ.
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The last formula shows that I converges. Working in cubical coordinates, we have

I2 =

�

[0,1]2

�
− log(1− xyz)

xy

�1

0

dx dy

1− xy
=

�

[0,1]2

− log(1− xy)

xy

dx dy

1− xy
.

Using partial fractions with respect to the variable y,

I2 =

�

[0,1]2

− log(1− xy)

xy
−

log(1− xy)

1− xy
dx dy =

� 1

0

1

z

�
Li2(xy) +

1

2
log2(1− xy)

�1

0
dx.

We conclude that

(8.6) I2 =

� 1

0

Li2(x)

x
+

log2(1− x)

2x
dx =

�
Li3(x) + Li1,2(x)

�1

0
= ζ(3) + ζ(1, 2).

At each stage one can verify that the canonical primitives we have used above do not intro-
duce any new poles along the boundary of the associahedron ∂XS,δ. For example, the first
primitive can be written using (7.32):

(8.7)
− log(1− xyz)

xy

dx dy

1− xy
= −

log(u13)

u24u25
ω5,δ,

where ω5,δ = (1−xy)−1
dx dy is the pull-back of the canonical 2-form on D26 ⊂M

δ

0,S
along

the map (x, y, z) �→ (x, y) : M0,6 → M0,5. It has no poles at finite distance by definition
(Lemma 7.1). Furthermore, we know by (2.10) that 1 − u13 = u24u25u26, so (8.7) has no
poles along XS,δ as required.

We give one final example forM0,7, where the calculation is given entirely in cubical co-
ordinates, and is still sufficiently simple to be checked by hand. Consider

I3 =

�

[0,1]4

x(1− x)y(1− y)z(1− z)w(1− w)

(1− xyzw)2
dxdydzdw.

After integration with respect to w, we have

I3 =

�

[0,1]3

(1− x)(1− y)(1− z)

(xyz)2

�
− 2 xyz + (2− xyz) Li1(xyz)

�
dxdydz.

A further integration with respect to z gives

I3 =

�

[0,1]2

(1− x)(1− y)

(xy)2

�
5 xy − (3− 3xy) Li1(xy)− (2 + xy)Li2(xy)

�
dxdy.

At the following stage, one obtains:

I3 =

�

[0,1]

(1− x)

x2

�
− 16 x + (9− 9x) Li1(x) + (5 + 4x)Li2(x) + (2− x)Li3(x)

�
dx.

Finally, this gives:
I3 = 55− 30ζ(2)− 2ζ(3)− 3ζ(4).

R���ʀ� 8.7. – It would be interesting to determine the values of the simplest possible
integrals �

XS,δ

ωS,δ

explicitly in terms of multiple zeta values, for all n = |S|.
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9. Appendix

Let M be the complement of an affine hyperplane configuration, as defined in § 3, and
let F denote its ring of regular functions. In the case where the de Rham cohomology ring
H

�(F ) only has quadratic relations, we can prove directly that all higher cohomology groups
of B(F ) vanish.

Tʜ��ʀ�� 9.1. – Let F be the ring of regular functions on an affine hyperplane arrange-
ment M such that H

�(F ) is a quadratic algebra. Then

H
0
DR(B(F )) = k, and H

i

DR(B(F )) = 0 for all i ≥ 1.

Proof. – Let A ⊂ Ω∗(F ) denote the algebra generated by the 1-forms
ω1, . . . , ωN ∈ H

1(F ), where ωi = d log αi as defined in § 3.2. Let V1(F ) =
�

N

i=1 k ωi.
Let T denote the free tensor algebra over V1. We can view A as a quotient algebra of T of
the form A = T/TQT, where Q consists of finitely many quadratic relations q1, . . . , qt of
the form

(9.1) ql =
�

i,j

λ
l

ij
ωi ⊗ ωj for 1 ≤ l ≤ t.

Now recall that Ω�(B(F )) = Ω�(F ) ⊗
�

m≥0 Vm(F ). The weight filtration on Ω�(B(F )),
defined by WmΩi

B(F ) = Ωi(F ) ⊗
�

m

j=0 Vj(F ), gives rise to a spectral sequence with E0

terms
E

p,q

0 (B(F )) = Ωp+q(F )⊗ Vp(F ),

which is bounded below and exhaustive, and therefore converges to the cohomology of B(F ).
Consider the differential subalgebra A(F ) = A⊗

�
m≥0 Vm(F ) of Ω�(B(F )). It also defines

a spectral sequence with E1 terms

E
p,q

1 (A(F )) = H
p+q(A)⊗ Vp(F ) ∼= H

p+q(F )⊗ Vp(F ) = E
p,q

1 (B(F )).

It follows that H
i(B(F )) ∼= H

i(A(F )) for all i ≥ 0, and it suffices to show that H
�(A(F ))

is trivial. Therefore consider an element

f =
�

I=(i1,...,im)

�

J=(j1,...,jn)

αI,J ωj1 ∧ · · · ∧ ωjn [ωi1 | . . . |ωim ] ∈ A⊗ Vm(F ),

such that df = 0. This implies that
�

i1,J

αI,J ωj1 ∧ · · · ∧ ωjn ∧ ωi1 = 0 for all i2, . . . , im.

Because A is quadratic, this expression (viewed in the tensor algebra T ) decomposes as a
sum of relations of the form w1q

l
w2, where w1, w2 ∈ T . If w2 is of degree �= 0 in T , the

corresponding relation is already zero in f . We deduce that f is a sum of terms

�

I=(i2,...,im)

t�

l=1

�

i,j

λ
l

ij
ωI,l ∧ ωi [ωj |ωi1 | . . . |ωim ],

where ωI,l ∈ A. Each such expression has a primitive

�

I=(i2,...,im)

t�

l=1

�

i,j

ωI,l λ
l

ij
[ωi|ωj |ωi1 | . . . |ωim ].

4 e SÉRIE – TOME 42 – 2009 – No 3



MULTIPLE ZETA VALUES AND PERIODS OF MODULI SPACES M0,n 485

This is integrable: it maps to 0 under ∧k for k ≥ 2, because f is integrable, and it maps to 0
under ∧1 because of the quadratic relations (9.1). It follows that every element f ∈ A(F )
of weight ≥ 1 such that df = 0 has a primitive. It is easy to write down a primitive of any
element of weight 0. Thus H

i(A(F )) = 0 for all i ≥ 1, which completes the proof of the
theorem.

10. Index of notations

We list the most frequently used notations, along with the section in which they are first
defined. The integers n = � + 3, where � ≥ 0, are fixed.

Section 2

δ A dihedral structure on a set S with n elements.
(P1)n

∗ The set of n distinct points in the projective line.
M0,S The moduli space of curves of genus 0 with points marked by S.
M δ

0,S The dihedral extension ofM0,S .
M0,S The full compactification ofM0,S .
O(M0,S) The ring of regular functions onM0,S .
χS,δ The set of all chords in the n-gon (S, δ).
χ

k
S,δ The set of all partial k-triangulations of (S, δ).

{i, j} ∼x {k, l} The chords {i, j}, {k, l} ∈ χS,δ cross.
{uij : {i, j} ∈ χS,δ} The set of dihedral coordinates onM0,S .
(x1, . . . , x�) The set of cubical coordinates onM0,S .
(t1, . . . , t�) The set of simplicial coordinates onM0,S .
(xα

1 , . . . , x
α
� ) The set of vertex coordinates corresponding to α ∈ χ

�
S,δ.

XS,δ The open associahedron XS,δ ⊂M0,S(R).
XS,δ The closed associahedron XS,δ ⊂M

δ
0,S(R).

Fij The face of XS,δ corresponding to the chord {i, j} ∈ χS,δ.
Fα The intersection of faces

�
{i,j}∈α Fij corresponding to α ∈ χ

k
S,δ.

fT The forgetful map fT :M0,S →M0,T .
m� The cubical multiplication map.
m� The simplicial multiplication map.

Section 3

A An alphabet.
Z�A� The free tensor algebra on A.
x The shuffle product.
∆ The coproduct on the shuffle algebra.
ε The counit on the shuffle algebra.
∂a The operator acting by truncation on the left.
M = A�

\ ∪
N
i=1 Hi The complement of an affine hyperplane arrangement.

OM The ring of regular functions on M .
B(OM ) = B(M) The reduced bar construction on M .
BOM� (E) The relative bar construction on E with coefficients in OM� .
k{�1, . . . , ��} The differential k−algebra of Laurent series in �1, . . . , ��.
U{�1, . . . , ��} The differential k-algebra of logarithmic Laurent series.
up(R, ε) The category of unipotent pointed extensions of (R, ε).
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ut(R, p) The category of unipotent pointed extensions of (R, p), where p is a base point at infin-
ity.

U�R/R
The relative unipotent closure with respect to a one-dimensional fibration R → �R.

Section 4

Up,q The open real complement of the coordinate hyperplanes in Rp
× Rq

+.
Vp,q The open complex complement of q coordinate hyperplanes in Cp+q.
F

an The sheaf of analytic functions.
F

log The sheaf of analytic functions with logarithmic singularities.
F

log
p The sheaf of analytic functions with ordinary and logarithmic poles.

Section 5

Σ A set of points {σ0, . . . , σN} ⊂ P1.
OΣ The ring of regular functions on P1

\Σ.

Section 6

Cn−1
∗ The configuration space of n− 1 distinct points in C.

∆ij Logarithmic 1-forms ∆ij = d log(zi − zj) on (P1)n
∗ .

tij Generators of the infinitesimal braid algebra, where 1 ≤ i ≤ j ≤ n.
ΩKZ The Knizhnik-Zamolodchikov 1-form on (P1)n

∗ .
δij Infinitesimal dihedral braid elements, indexed by {i, j} ∈ χS,δ.
ωij Logarithmic 1-forms ωij = d log uij .
ΩS,δ The canonical dihedral 1-form onM0,S .
BS,δ The dihedral braid algebra.
“BS,δ The completion of the dihedral braid algebra.
V

δ The set of vertices of the associahedron XS,δ.
Lv,δ The generating series of polylogarithms onM0,S .
L

v,δ(M0,s) TheQ(M0,S)-algebra of polylogarithms onM0,S whose regularised value at the vertex
v ∈ V

δ is zero.
ρv,δ The realisation isomorphism ρv,δ : B(M0,S) → L

v,δ(M0,S).
Z The ring Q[ζ(2), ζ(3), . . . ] generated by all multiple zeta values.

Section 7

ωS,δ The canonical volume form onM0,S(R).
IS,δ(αij) The period integral over XS,δ.
mS,δ(ω) The framed mixed Tate motive defined by ω.
Ω(�) The multiple zeta volume form.
L

δ
Z(M0,S) The algebra of polylogarithms onM0,S with Z coefficients.

L
δ,+
Z

(M0,S) The subalgebra of polylogarithms with no poles along ∂XS,δ.
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