Soit une variété projective sur un corps de nombres (resp. sur ). Soit la somme de « suffisamment de diviseurs positifs » sur . On montre que tout ensemble de points quasi-entiers (resp. toute courbe entière) dans est non Zariski-dense.
Let be a projective variety over a number field (resp. over ). Let be the sum of “sufficiently many positive divisors” on . We show that any set of quasi-integral points (resp. any integral curve) in is not Zariski dense.
Mot clés : géométrie arithmétique, hauteur, points entiers, approximation diophantienne, hyperbolicité
Keywords: arithmetic geometry, height, integral points, diophantine approximation, hyperbolicity
@article{ASENS_2009_4_42_2_221_0, author = {Autissier, Pascal}, title = {G\'eom\'etrie, points entiers et courbes enti\`eres}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {221--239}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {4e s{\'e}rie, 42}, number = {2}, year = {2009}, doi = {10.24033/asens.2094}, mrnumber = {2518077}, zbl = {1173.14016}, language = {fr}, url = {http://www.numdam.org/articles/10.24033/asens.2094/} }
TY - JOUR AU - Autissier, Pascal TI - Géométrie, points entiers et courbes entières JO - Annales scientifiques de l'École Normale Supérieure PY - 2009 SP - 221 EP - 239 VL - 42 IS - 2 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/asens.2094/ DO - 10.24033/asens.2094 LA - fr ID - ASENS_2009_4_42_2_221_0 ER -
%0 Journal Article %A Autissier, Pascal %T Géométrie, points entiers et courbes entières %J Annales scientifiques de l'École Normale Supérieure %D 2009 %P 221-239 %V 42 %N 2 %I Société mathématique de France %U http://www.numdam.org/articles/10.24033/asens.2094/ %R 10.24033/asens.2094 %G fr %F ASENS_2009_4_42_2_221_0
Autissier, Pascal. Géométrie, points entiers et courbes entières. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 42 (2009) no. 2, pp. 221-239. doi : 10.24033/asens.2094. http://www.numdam.org/articles/10.24033/asens.2094/
[1] An algebraic version of Demailly's asymptotic Morse inequalities, Proc. Amer. Math. Soc. 124 (1996), 3265-3269. | MR | Zbl
,[2] On a general Thue's equation, Amer. J. Math. 126 (2004), 1033-1055. | MR | Zbl
& ,[3] On integral points on surfaces, Ann. of Math. 160 (2004), 705-726. | MR | Zbl
& ,[4] vanishing theorems for positive line bundles and adjunction theory, in Transcendental methods in algebraic geometry (Cetraro, 1994), Lecture Notes in Math. 1646, Springer, 1996, 1-97. | MR | Zbl
,[5] Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), 349-366. | MR | Zbl
,[6] Diophantine approximation on abelian varieties, Ann. of Math. 133 (1991), 549-576. | MR | Zbl
,[7] Intersection theory, 2e éd., Ergebnisse der Mathematik und ihrer Grenzgebiete 2, Springer, 1998. | MR | Zbl
,[8] Théorèmes de Bertini et applications, Progress in Mathematics 42, Birkhäuser, 1983. | MR | Zbl
,[9] Number theory. III, Encyclopaedia of Mathematical Sciences 60, Springer, 1991. | MR | Zbl
,[10] Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics 48, Springer, 2004. | MR | Zbl
,[11] Generalizations of Siegel's and Picard's theorems, à paraître dans Annals of Math. arXiv :math.NT/0503699. | MR | Zbl
,[12] The -adic Thue-Siegel-Roth-Schmidt theorem, Arch. Math. (Basel) 29 (1977), 267-270. | MR | Zbl
,[13] Diophantine approximation, Lecture Notes in Math. 785, Springer, 1980. | MR | Zbl
,[14] Diophantine approximations and value distribution theory, Lecture Notes in Math. 1239, Springer, 1987. | MR | Zbl
,[15] A refinement of Schmidt's subspace theorem, Amer. J. Math. 111 (1989), 489-518. | MR | Zbl
,[16] Integral points on subvarieties of semiabelian varieties. I, Invent. Math. 126 (1996), 133-181. | MR | Zbl
,[17] On Cartan's theorem and Cartan's conjecture, Amer. J. Math. 119 (1997), 1-17. | MR | Zbl
,[18] Small points and adelic metrics, J. Algebraic Geom. 4 (1995), 281-300. | MR | Zbl
,Cité par Sources :