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EXPLICIT COMPUTATIONS OF ALL FINITE INDEX
BIMODULES FOR A FAMILY OF II1 FACTORS∗

 S VAES

A. – We study II1 factorsM andN associated with good generalized Bernoulli actions of
groups having an infinite almost normal subgroup with the relative property (T). We prove the following
rigidity result : every finite index M -N -bimodule (in particular, every isomorphism between M and
N ) is described by a commensurability of the groups involved and a commensurability of their actions.
The fusion algebra of finite indexM -M -bimodules is identified with an extended Hecke fusion algebra,
providing the first explicit computations of the fusion algebra of a II1 factor. We obtain in particular
explicit examples of II1 factors with trivial fusion algebra, i.e. only having trivial finite index subfactors.

R. – Nous étudions des facteurs M et N de type II1 associés à de bonnes actions Bernoulli
généralisées de groupes Γ et Λ ayant un sous-groupe infini presque-distingué avec la propriété (T) re-
lative. Nous démontrons le résultat de rigidité suivant : chaque M -N -bimodule d’indice fini (en parti-
culier, chaque isomorphisme entre M et N ) peut être décrit par une commensurabilité des groupes Γ,
Λ et une commensurabilité de leurs actions. L’algèbre de fusion des M -M -bimodules d’indice fini est
identifiée avec une algèbre de Hecke étendue, ce qui fournit les premiers calculs explicites de l’algèbre
de fusion d’un facteur de type II1. Nous obtenons en particulier des exemples explicites de facteurs
II1 dont l’algèbre de fusion est triviale, ce qui veut dire que tous leurs sous-facteurs d’indice fini sont
triviaux.

Introduction

To every probability measure preserving action Γ y (X,µ) of a countable group, is as-
sociated a tracial von Neumann algebra L∞(X) o Γ, through the group measure space con-
struction of Murray and von Neumann [16]. In the passage from group actions to von Neu-
mann algebras, a lot of information gets lost. Indeed, by the celebrated results of Connes,
Feldman, Ornstein and Weiss [7, 18], all free ergodic actions of amenable groups (and even
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all amenable type II1 equivalence relations) systematically yield the same von Neumann al-
gebra, called the hyperfinite II1 factor.

Recently, Sorin Popa, in his breakthrough articles [22, 23], proved a completely oppo-
site rigidity result : for the first time, he was able to provide a family of group actions such
that isomorphism of the crossed product von Neumann algebras, implies isomorphism of
the groups involved and conjugacy of their actions. More precisely, Popa proves in [23] the
following von Neumann strong rigidity theorem : let Γ y (X,µ) be a free ergodic action
of an ICC w-rigid group, i.e. a group admitting an infinite normal subgroup with the rela-
tive property (T), and let Λ y (Y0, η0)Λ be a Bernoulli action of an ICC group Λ. If the
corresponding group measure space II1 factors are isomorphic, then the groups Γ and Λ are
isomorphic and their actions conjugate.

The crucial idea of Popa is the deformation/rigidity principle. One studies von Neumann
algebras that exhibit both a deformation property (e.g. a specific flow of automorphisms, or
a sequence of completely positive unital maps tending to the identity) and a rigidity prop-
erty (e.g. a subalgebra with the relative property (T)). The tension between both properties
determines in a sense the position of the rigid part and allows in certain cases to completely
unravel the structure of the studied von Neumann algebra. The deformation/rigidity princi-
ple has been successfully applied in a lot of articles. Without being complete, we cite [9, 11,
12, 13, 21, 22, 23, 24, 25] and we explain some aspects of these works below. We also refer to
[28] for a survey of some of these results.

The deformation/rigidity principle allows in particular to compute invariants of II1 fac-
tors. In [21], Popa proved that the group von Neumann algebra L(SL(2,Z) n Z2) has trivial
fundamental group. This was the first such example, answering a question of Kadison that
remained open since 1967. Here, it should be noticed that Connes proved in [5] that the fun-
damental group of the group von Neumann algebra L(Γ) is countable whenever Γ is a group
with property (T) and infinite conjugacy classes (ICC).

In [22, 23], Popa made a thorough study of Bernoulli actions Γ y (X0, µ0)Γ and their non-
commutative versions, called Connes-Størmer Bernoulli actions. In [22], this leads to the
first constructions of II1 factors with a prescribed countable subgroup of R∗+ as fundamental
group. Alternative constructions have been given since then in [11, 13]. In [23], Popa proves
the von Neumann strong rigidity theorem stated in the first paragraph. As an application, he
gets the following description of the outer automorphism group of the associated II1 factors.
Given the Bernoulli action Γ y (X,µ) = (X0, µ0)Γ of an ICC w-rigid group Γ, the outer
automorphism group of the associated II1 factor is the semidirect product of the group of
characters of Γ and the normalizer of Γ inside Aut(X,µ). Up to now, the actual computation
of this normalizer remains an open problem though.

In [13], the deformation/rigidity principle was applied to study amalgamated free product
II1 factors. From the many far-reaching results obtained in [13], we quote the existence theo-
rem of II1 factorsM with Out(M) a prescribed abelian compact group. In particular, it was
shown that the outer automorphism group of a II1 factor can be trivial, answering a question
posed by Connes in 1973. Using the same techniques, it was shown in [9], that there exist II1

factors with Out(M) an arbitrary compact group.
Some of the results on Bernoulli actions obtained in [22, 23], were extended by Popa and

the author [25], to include generalized Bernoulli actions Γ y (X0, µ0)I , associated with an
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action of Γ on a countable set I. As a result, the first explicit examples of II1 factors with
trivial outer automorphism group were given. It should be noticed that the shift from plain to
generalized Bernoulli actions is not only technical in nature : the former are mixing and this
is extensively used in [22, 23], while the latter are only weakly mixing.

In the current article, we study bimodules (Connes’ correspondences) of finite Jones index
between II1 factors given by generalized Bernoulli actions. Bimodules between von Neu-
mann algebras were studied by Connes (see V.Appendix B of [6]) and Popa [20]. An M -N -
bimodule of finite Jones index (see [14]) can be considered as a commensuration ofM andN ,
i.e. an isomorphism modulo finite index. Using the Connes tensor product, the set FAlg(M)

of (equivalence classes of) finite indexM -M -bimodules carries the structure of a fusion alge-
bra and contains the outer automorphism group Out(M) as group-like elements.

As a natural follow-up of [22, 23, 25], we provide a family of good generalized Bernoulli
actions of groups admitting an infinite almost normal subgroup with the relative property (T)
and prove the following rigidity property : any finite index bimodule between the associated
II1 factors comes from a commensurability of the groups and a commensurability of the ac-
tions. This allows us to get the following results.

– We provide the first explicit computations of fusion algebras for a family of II1 factors.
If the II1 factor M is defined by a good generalized Bernoulli action Γ y (X,µ) =

(X0, µ0)I , the fusion algebra FAlg(M) is identified with the extended Hecke fusion al-
gebra Hrep(Γ < G) of the Hecke pair Γ < G, where G denotes the commensurator of
Γ inside the group of permutations Perm(I). Loosely speaking, the extended Hecke
algebra Hrep(Γ < G) is an extension of the usual Hecke algebra H(Γ < G) by the fu-
sion algebra of finite dimensional unitary representations of Γ. In 2.9 below, we give
several concrete examples yielding II1 factors whose fusion algebras are the extended
Hecke algebras of Hecke pairs appearing naturally in arithmetic.

– We give the first explicit examples of II1 factors M with trivial fusion algebra, associ-
ated with the generalized Bernoulli action (SL(2,Q) n Q2) y (X0, µ0)Q2

and a scalar
2-cocycle. Equivalently, every finite index subfactor N ⊂ M is trivial, i.e. isomorphic
with 1⊗N ⊂ Mn(C)⊗N . Note that we proved in [29] the existence of such II1 factors
M , using the techniques of [13].

– Compared to [25], we impose less stringent conditions on the generalized Bernoulli ac-
tions involved and obtain more general results on outer automorphism groups. We
prove that the actions PSL(n,Z) y (X0, µ0)P(Qn) for n odd and n ≥ 3, provide II1

factors with trivial outer automorphism group. In fact, we provide a concrete construc-
tion procedure to obtain II1 factors with a prescribed countable group as an outer au-
tomorphism group. The case of groups of finite presentation was dealt with in [25].

Acknowledgment. I would like to thank the referee for pointing out a gap in the original
proof of Lemma 4.2.

1. Preliminaries and notations

All von Neumann algebras in this article have separable predual and all Hilbert spaces are
separable. All ∗-homomorphisms between von Neumann algebras are implicitly assumed to
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be normal. Unless the contrary is explicitly stated, all ∗-homomorphisms are unital, as well
as von Neumann subalgebras.

Let M be a von Neumann algebra. One calls HM a (right) M -module if H is a Hilbert
space equipped with a weakly continuous right module action ofM . IfM is a II1 factor and
if we denote by L2(M) the Hilbert space obtained by the GNS construction with respect to
the unique tracial state of M , every M -module HM is isomorphic with an M -module of the
form p(`2(N)⊗L2(M)), for some projection p ∈ B(`2(M))⊗M . The projection p is uniquely
determined up to equivalence of projections and one defines dim(HM ) := (Tr⊗τ)(p). All
this was already known to Murray and von Neumann (Theorem X in [16]).

The Jones index of a subfactor N ⊂ M of a II1 factor is defined as [M : N ] :=

dim(L2(M)N ), see [14]. If [M : N ] < ∞, we call N ⊂ M a finite index subfactor or a finite
index inclusion.

If (M, τ) is a tracial von Neumann algebra with possibly non-trivial center, the dimension
dim(HM ) of a rightM -moduleHM is defined similarly, but depends on the choice of trace τ .
In this article, there will always be an obvious choice of τ , so that we freely use the notation
dim(HM ).

For any von Neumann algebra M , we denote Mn := Mn(C) ⊗ M and M∞ :=

B(`2(N))⊗M .
Let N and M be von Neumann algebras. An N -M -bimodule NHM is a Hilbert space H

equipped with commuting, weakly continuous, left N -module and right M -module actions.
AnN -M -bimodule NHM between tracial von Neumann algebras (N, τ1) and (M, τ2) is said
to be of finite Jones index if dim(NH) < ∞ and dim(HM ) < ∞. Bimodules between von
Neumann algebras were studied by Connes (see V.Appendix B in [6]) who called them cor-
respondences, and by Popa [20].

If M is a II1 factor, FAlg(M) is defined as the set of equivalence classes of finite index
M -M -bimodules. We call FAlg(M) the fusion algebra of the II1 factor M .

First recall that an abstract fusion algebra A is a free N-module N[G] equipped with the
following additional structure :

– an associative and distributive product operation, and a multiplicative unit element
e ∈ G,

– an additive, anti-multiplicative, involutive map x 7→ x, called conjugation,

satisfying Frobenius reciprocity: defining the numbersm(x, y; z) ∈ N for x, y, z ∈ G through
the formula

xy =
∑
z

m(x, y; z)z

one hasm(x, y; z) = m(x, z; y) = m(z, y;x) for all x, y, z ∈ G. The base G of the fusion alge-
braA is canonically determined : these are exactly the non-zero elements ofA that cannot be
expressed as the sum of two non-zero elements. The elements of G are called the irreducible
elements of the fusion algebra A.

IfM is a II1 factor, the fusion algebra structure on FAlg(M) is given by the direct sum and
the Connes tensor product of M -M -bimodules. Whenever ψ : M → pMnp is a finite index
inclusion, define the M -M -bimodule H(ψ) on the Hilbert space p(Mn,1(C)⊗ L2(M)) with
left and right module action given by a ·ξ = ψ(a)ξ and ξ ·a = ξa. Every element of FAlg(M)
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is of the form H(ψ) for a finite index inclusion ψ uniquely determined up to conjugacy. The
Connes tensor product of H(ψ) and H(ρ) is given by H(ψ)⊗M H(ρ) ∼= H((id⊗ρ)ψ).

We say that M and N are commensurable II1 factors if there exists a non-zero finite index
N -M -bimodule.

Throughout this article, Γ y (X,µ) denotes a probability measure preserving action of a
countable group Γ on the standard probability space (X,µ). We will always write Γ acting on
the right on X. Associated to Γ y (X,µ) is the so-called group measure space, or crossed
product, von Neumann algebraM = L∞(X)oΓ. As a tracial von Neumann algebra, (M, τ)

is uniquely characterized by the following properties :

– M contains a copy of L∞(X) and a copy of Γ as unitaries (ug)g∈Γ satisfying uguh =

ugh for all g, h ∈ Γ,
– ugF (·)u∗g = F ( · g) for all F ∈ L∞(X) and g ∈ Γ,
– τ(Fug) = 0 when g 6= e and τ(F ) =

∫
F dµ for all F ∈ L∞(X).

If Γ y (X,µ) and if Ω is a scalar 2-cocycle on Γ, the cocycle crossed product L∞(X) oΩ Γ

is defined entirely similarly, the only difference being the relation uguh = Ω(g, h)ugh. Note
that the 2-cocycle relation that we impose on Ω is exactly the one that makes this last product
associative.

Let Γ y (X,µ) and denote by (σg) the associated group of automorphisms of L∞(X)

given by σg(F (·)) = F ( · g). Then, Γ y (X,µ) is called

– mixing, if limg→∞ τ(σg(a)b) = τ(a)τ(b) for all a, b ∈ L∞(X) ;
– weakly mixing, if there exists a sequence (gn) ∈ Γ such that limn→∞ τ(σgn(a)b) =

τ(a)τ(b) for all a, b ∈ L∞(X).

The following three properties of a probability measure preserving action Γ y (X,µ) are
equivalent : weak mixing; the Hilbert space L2(X)	C1 does not have finite dimensional Γ-
invariant subspaces; the diagonal action Γ y X×X is ergodic. We refer e.g. to Appendix D
of [28] for proofs.

A group Γ is said to have infinite conjugacy classes (ICC) if {ghg−1 | g ∈ Γ} is infinite for
every h 6= e. More generally, we say that a subgroup Γ0 < Γ has the relative ICC property if
{ghg−1 | g ∈ Γ0} is infinite for all h ∈ Γ− {e}.

If M is a von Neumann algebra with von Neumann subalgebra A ⊂ M , we define the
subset QNM (A) as the set of x ∈ M such that there exist x1, . . . , xn, y1, . . . , ym ∈ M satis-
fying

xA ⊂
n∑
i=1

Axi and Ax ⊂
m∑
i=1

yiA .

Note that QNM (A) is a unital ∗-subalgebra ofM containingA. The generated von Neumann
algebra QNM (A)′′ is called the quasi-normalizer of A inside M . If QNM (A)′′ = M , we say
that the inclusion A ⊂M is quasi-regular.

If (X0, µ0) is a probability space and if I is a countable set, we denote by (X0, µ0)I the
infinite product probability space. Whenever J ⊂ I or i ∈ I, we consider the obvious von
Neumann subalgebras L∞(XJ

0 ) and L∞(Xi
0) of L∞(XI

0 ).
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748 S. VAES

2. Main results

We gather the main results of the article in this section. All the proofs, including a more
detailed discussion of the given examples, are provided in Section 7, based of course on the
work done in Sections 3-6.

We make a detailed study of the II1 factors given by generalized Bernoulli actions. These
actions are defined as follows.

D 2.1. – Let (X0, µ0) be any standard probability space. If the countable
group Γ acts on the countable set I, we call the action Γ y (X0, µ0)I a generalized Bernoulli
action. We call (X0, µ0) the base space of the generalized Bernoulli action and we note that
it is allowed to be atomic. But we assume of course that µ0 is not concentrated on one atom.

The following is the main theorem of the article : we describe entirely explicitly all finite
index bimodules between the II1 factorsN andM coming from ‘good’ generalized Bernoulli
actions of ‘good’ groups. These kinds of good actions are introduced in Definitions 2.3 and
2.4 below.

T 2.2. – Let Λ y J and Γ y I be good actions of good groups (see Def. 2.4).
Take scalar 2-cocycles ω ∈ Z2(Λ, S1) and Ω ∈ Z2(Γ, S1). Consider the generalized Bernoulli
actions Λ y (Y, η) = (Y0, η0)J and Γ y (X,µ) = (X0, µ0)I . Define the II1 factors

N = L∞(Y ) oω Λ and M = L∞(X) oΩ Γ .

Suppose that NHM is a finite index N -M -bimodule. Then, the following hold.

– The actions Λ y J and Γ y I are commensurable : there exist a bijection ∆ : J → I

and an isomorphism δ : Λ1 → Γ1 between finite index subgroups of Λ, resp. Γ, satisfying
∆(g · j) = δ(g) ·∆(j) for all j ∈ J , g ∈ Λ1.

– The probability spaces (Y0, η0) and (X0, µ0) are isomorphic.
– There exists a finite dimensional projective representation π of Λ1 such that Ωπ(Ω◦δ) = ω

on Λ1.

Moreover, the N -M -bimodule NHM can be entirely described in terms of the above data. We
refer to Theorem 6.4 and Proposition 6.10 for a precise statement.

The following consequences will be deduced from Theorem 2.2.

– Corollary 2.7 provides the first explicit example of a II1 factor M without non-trivial
finite index bimodules. Equivalently, every finite index subfactorN ⊂M is isomorphic
with the trivial subfactor 1⊗N ⊂ Mn(C)⊗N . The existence of such II1 factors had
been shown before by the author in [29].

– When M = L∞
(
(X0, µ0)I

)
o Γ is as above and (X0, µ0) is atomic with unequal

weights, the fusion algebra of finite index M -M -bimodules, can be identified with the
extended Hecke fusion algebra of the Hecke pair given by Γ < CommPerm(I)(Γ) :
see Theorem 2.8. Here CommPerm(I)(Γ) denotes the commensurator of Γ inside the
group Perm(I) of permutations of I, see Definition 2.3. This provides the first explicit
computations of the fusion algebra for a family of II1 factors.
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– In 2.9, we provide several examples, yielding concrete II1 factors whose fusion alge-
bras are given by the extended Hecke fusion algebra of Hecke pairs like SL(n,Z) <

GL(n,Q) or (R∗ n R) < (Q∗ n Q) where Z ⊂ R ⊂ Q is a subring sitting strictly
between Z and Q.

– The outer automorphism group Out(M) can be explicitly computed for the generalized
Bernoulli II1 factors above, see Corollary 2.11. In 2.12 this yields rather easy II1 factors
without outer automorphisms.

– Every countable group arises as the outer automorphism group of a II1 factor.

We introduce the necessary properties of actions and groups in the following two defini-
tions.

D 2.3. – Let Γ y I be an action of the group Γ on the set I. We say that J ⊂ I
has infinite index if I 6=

⋃n
i=1 giJ for all n ∈ N and all g1, . . . , gn ∈ Γ.

We consider the following properties of Γ y I.

(C1) The set I is infinite, the action Γ y I is transitive and Stab i y I \ {i} has infinite
orbits for one (equivalently all) i ∈ I.

(C2) The minimal condition on stabilizers : there is no infinite sequence (in) in I such that
Stab{i0, . . . , in} is strictly decreasing.

(C3) A faithfulness condition : for every g ∈ Γ with g 6= e, the subset Fix g ⊂ I has infinite
index in the sense defined above.

Let Γ be a group and Γ0 < Γ a subgroup.

– The commensurator of Γ0 inside Γ is defined as

CommΓ(Γ0) := {g ∈ Γ | gΓ0g
−1 ∩ Γ0 has finite index in both gΓ0g

−1 and Γ0} .

– The subgroup Γ0 < Γ is called almost normal if CommΓ(Γ0) = Γ. Under this condi-
tion, one also calls Γ0 < Γ a Hecke pair.

D 2.4. – We say that Γ y I is a good action of a good group if Γ is a group
admitting an infinite almost normal subgroup with the relative property (T) and if the action
Γ y I satisfies conditions (C1), (C2) and (C3).

We immediately illustrate that there are indeed plenty of examples and constructions for
good actions of good groups.

E 2.5. – In Definition 2.3 above, it is of course condition (C2) that is the least
intuitive. The following principles allow to construct many examples of actions satisfying
(C2). As for all other results in this section, proofs are given in Section 7.

– Let V be a finite-dimensional vector space. Then, the actions (GL(V ) n V ) y V and
PGL(V ) y P(V ) satisfy condition (C2).

– Suppose that Γ y I satisfies (C2) and take I1 ⊂ I as well as Γ1 < Γ. If I1 is globally
Γ1-invariant, then Γ1 y I1 satisfies (C2).

– If both Γ y I and Λ y J satisfy (C2), the same is true for (Γ× Λ) y (I × J).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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– Let Γ be a group. Then, the left-right action (Γ × Γ) y Γ satisfies (C2) if and only if
Γ satisfies the minimal condition on centralizers : there is no infinite sequence (gn) in Γ

such that CΓ(g1, . . . , gn) is a strictly decreasing sequence of subgroups of Γ. The min-
imal condition on centralizers has been studied quite extensively in group theory, see
e.g. [3]. The following families of groups satisfy the minimal condition on centralizers :
linear groups, C ′(1/6)-small cancelation groups, word hyperbolic groups.

Note also that for the left-right action (Γ×Γ) y Γ, the following three properties are equiv-
alent : condition (C1), condition (C3) and the ICC property of Γ.

As a result, we list the following concrete examples of good actions of good groups.

• PSL(n,Z) y P(Qn) and PSL(n,Q) y P(Qn) for n ≥ 3.
• SL(n,Z) n Zn acting on Zn and SL(n,Q) n Qn acting on Qn for n ≥ 2.
• (PSL(n,Z) × Γ × Γ) y (P(Qn) × Γ) where n ≥ 3 and Γ is an arbitrary ICC group

satisfying the minimal condition on centralizers.

R 2.6. – Let Γ y I satisfy (C1), (C2) and (C3). Whenever H < Γ is infinite and
almost normal, the restricted action H y I has infinite orbits and so, H y (X0, µ0)I is
weakly mixing. Indeed, once H0 := H ∩ Stab i0 has finite index in H for some i0 ∈ I, one
constructs by induction finite index subgroups Hn of H and a strictly decreasing sequence
Stab(i0, . . . , in) containing Hn. This contradicts condition (C2).

Also, conditions (C1) and (C3) imply immediately that the generalized Bernoulli action
Γ y (X0, µ0)I is essentially free and ergodic.

2.1. Computations of all finite index bimodules of certain II1 factors

As announced above, Theorem 2.2 allows to entirely determine all finite index
M -M -bimodules for certain II1 factors M .

C 2.7. – Let Γ = SL(2,Q) n Q2 act on Q2 by affine transformations. Let
α ∈ R \ {0}. Consider the scalar 2-cocycle Ωα ∈ Z2(Q2) defined by Ωα((x, y), (x′, y′)) =

exp(2πiα(xy′ − yx′)). Extend Ωα to the whole of Γ by SL(2,Q)-invariance.

Consider the II1 factors

M(α,X0, µ0) := L∞
(
(X0, µ0)Q2)

oΩα Γ .

Then, the following hold.

– If M = M(α,X0, µ0) for an atomic µ0 with unequal weights, every finite index
M -M -bimodule is a multiple of the trivial M -M -bimodule L2(M).

– The II1 factors M(α,X0, µ0) and M(β, Y0, η0) are commensurable if and only if α = β

and (X0, µ0) ∼= (Y0, η0).

In order to describe in general the fusion algebra of the II1 factor L∞
(
(X0, µ0)I

)
o Γ for

a good action Γ y I, we introduce the notion of extended Hecke fusion algebra.
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Let Γ < G be a Hecke pair, i.e. Γ is an almost normal subgroup of G. The usual Hecke
fusion algebraH(Γ < G) is defined as follows

H(Γ < G) = {ξ : G→ N | ξ is Γ-bi-invariant and supported on a finite subset of Γ\G/Γ},
(1)

(ξ ∗ η)(g) =
∑

h∈Γ\G

ξ(gh−1) η(h) for all ξ, η ∈ H(Γ < G) .

We next define the extended Hecke fusion algebra Hrep(Γ < G) in such a way that there are
fusion algebra homomorphisms

Repfin(Γ)→ Hrep(Γ < G)→ H(Γ < G) ,

where Repfin(Γ) denotes the fusion algebra of finite dimensional unitary representations of Γ.

As a set, Hrep(Γ < G) is most conveniently defined as the set of unitary equiva-
lence classes of finite dimensional representations of the full crossed product C∗-algebra
c0(Γ\G)of Γ. But it is not clear to us, how to exploit this picture to write the fusion product
onHrep(Γ < G). Therefore, note that

c0(Γ\G) of Γ ∼=
⊕

g∈Γ\G/Γ

MR(g)(C)⊗ C∗max(Γ ∩ g−1Γg) where R(g) = [Γ : Γ ∩ g−1Γg] .

Then, defineHrep(Γ < G) as the set of functions ξ : g 7→ ξg on G satisfying

• for all g ∈ G, ξg is either 0, either a (unitary equivalence class of a) finite dimensional
unitary representation of the group Γg := Γ ∩ g−1Γg,

• for all g ∈ G and γ ∈ Γ, we have ξγg ∼= ξg and ξgγ ∼= ξg ◦Ad γ,
• ξ is supported on finitely many double cosets ΓgΓ.

The fusion product onHrep(Γ < G) is given by

(ξ ∗ η)g =
⊕
h∈Γ\G

[Γg : Γg ∩ Γh]−1 Ind
Γg
Γg∩Γh

(
(ξgh−1 ◦Adh) ⊗ ηh

)
=

⊕
h∈Γ\G/Γg

Ind
Γg
Γg∩Γh

(
(ξgh−1 ◦Adh) ⊗ ηh

)
.

Whenever ξ ∈ Hrep(Γ < G), the function g 7→ dim(ξg) belongs to H(Γ < G). This yields
the fusion algebra homomorphismHrep(Γ < G)→ H(Γ < G).

On the other hand, when π is a finite dimensional unitary representation of Γ, define
ξg = π for g ∈ Γ and ξg = 0 elsewhere. Then also Repfin(Γ) → Hrep(Γ < G) is a fusion
algebra homomorphism.

To prove the associativity of the fusion product onHrep(Γ < G), one has to do a painful
exercise in order to obtain the symmetric expression

(ξ ∗ η ∗ ρ)g =⊕
h,k∈Γ\G

[Γg : Γg ∩ Γh ∩ Γk]−1 Ind
Γg
Γg∩Γh∩Γk

(
(ξgh−1 ◦Adh) ⊗ (ηhk−1 ◦Ad k) ⊗ ρk

)
.
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T 2.8. – Let Γ y I be a good action of a good group. Take (X0, µ0) atomic with
unequal weights and set M = L∞

(
(X0, µ0)I

)
o Γ. Define G as the commensurator of Γ inside

Perm(I). By construction Γ < G is a Hecke pair.

Then, the fusion algebra FAlg(M) of the II1 factor M is naturally isomorphic with the
extended Hecke fusion algebraHrep(Γ < G).

The isomorphism FAlg(M) ∼= Hrep(Γ < G) sends MHM to ξ in such a way that

dim(MH) =
∑

g∈Γ\G/Γ

[Γ : Γ ∩ gΓg−1] dim(ξg) and

dim(HM ) =
∑

g∈Γ\G/Γ

[Γ : Γ ∩ g−1Γg] dim(ξg) .

E 2.9. – We have the following table of concrete computations of fusion alge-
bras of II1 factors. In the left column, we write good actions of good groups Γ y I and in
the right column we identify the fusion algebra FAlg(M) of the associated II1 factor M =

L∞
(
(X0, µ0)I

)
o Γ with the extended Hecke fusion algebras of a number of natural Hecke

pairs. As before, we systematically take an atomic base (X0, µ0) with unequal weights.

Γy I FAlg(M)

1. (SL(n,Z)nQn)y Qn Hrep(SL(n,Z) < GL(n,Q))

2. Λ < PSL(n,Q) a proper subgroup with the relative ICC
property and take (Λ × PSL(n,Q)) y PSL(n,Q) by
left-right action. Assume that n ≥ 3.

Hrep
(
Λ < CommG(Λ)

)
where G = Z

2Z n PGL(n,Q)

and Z
2Z acts by A 7→ (A>)−1.

3. Let Z ⊂ R ⊂ Q be a subring strictly between Z and Q.
Set Λ = SL(2,Q)nQ2.
Define Λ0 < Λ consisting of the elements(( q 0

0 q−1

)
,
(
x
y

))
for q ∈ R∗, x ∈ R, y ∈ Q.

Equip Λ0,Λ with the 2-cocycle Ωα, α 6= 0 as in Cor. 2.7.
Finally, let (Λ0 × Λ)y Λ by left-right action.

Hrep
(
(R∗ nR) < (Q∗ nQ)

)

In the final example, we define M as a cocycle crossed product, see Corollary 2.7. Note
that a subring R of Q is of the form R = Z[P−1], where P is a set of prime numbers.

R 2.10. – For the following heuristic reason, it is interesting to have concrete
examples of II1 factors with fusion algebra Hrep

(
(R∗ n R) < (Q∗ n Q)

)
. In general, the

complexified fusion algebra FAlgC(M) of an arbitrary II1 factor is equipped with the so-
called modular automorphism group (σt)t∈R : whenever MHM is an irreducible finite index
M -M -bimodule, define

σt(MHM ) =
(dim(MH)

dim(HM )

)−it
MHM

and extend σt uniquely to an automorphism of the complex ∗-algebra FAlgC(M). Having
examples where this modular automorphism group is non-trivial and entirely computed,
provides the following link with quantum statistical mechanics, initiated by Bost and Connes
in [2].
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Under the isomorphism FAlgC(M) ∼= HC
rep(Γ < G) of Theorem 2.8, the modular

automorphism group (σt) corresponds to the natural modular automorphism group of
HC

rep(Γ < G) given by (
σt(ξ))g =

( [Γ : Γ ∩ gΓg−1]

[Γ : Γ ∩ g−1Γg]

)−it
ξg .

The same formula defines the modular automorphism group on the usual complexified
Hecke algebra HC(Γ < G). In the case of the Hecke pair (1 n Z) < (Q∗ n Q), Bost and
Connes classify in [2] the KMSβ-states for the reduced C∗-algebra completion ofHC(Γ < G)

equipped with the time evolution given by the modular automorphism group ofHC(Γ < G).
It is now a natural problem to study KMSβ-states for the Hecke pair (R∗nR) < (Q∗n Q),
or even for the fusion algebra FAlg(M) provided by 2.9.3.

2.2. Computations of the outer automorphism group of certain II1 factors

Since we were able to describe all finite index bimodules for the II1 factors M =

L∞
(
(X0, µ0)I

)
o Γ, it is of course possible to describe all automorphisms as well. For

the convenience of the reader, we state the result explicitly.

C 2.11. – Let Γ y I be a good action of a good group. Set

M = L∞
(
(X0, µ0)I

)
o Γ.

Then, the outer automorphism group of M is given by

Out(M) ∼= Aut(X0, µ0)×
(

Char Γ o
G

Γ

)
where G equals the normalizer of Γ inside Perm(I). The action ω · g of g ∈ G

Γ on ω ∈ Char Γ

is given by ω · g = ω ◦Ad g.

We illustrate the previous corollary by the following explicit computations.

E 2.12. – 1. Whenever n ≥ 3 is odd and (X0, µ0) is an atomic probability
space with unequal weights, the action PSL(n,Z) y P(Qn) yields a II1 factorM with
trivial outer automorphism group, remembering n and the base space (X0, µ0).

2. Let Λ be an ICC group satisfying the minimal condition on centralizers. Assume that
Λ cannot be written as a non-trivial direct product. Consider the direct product of the
action PSL(n,Z) y P(Qn) (with n ≥ 3, n odd) and the left-right action of Λ×Λ on Λ.
Again taking an atomic probability space with unequal weights, we obtain II1 factors
M such that

Out(M) ∼= (Char Λ o Out Λ)× Z/2Z .

Playing with some modification of Example 2.12.2 and using the main result of [4], we will
prove the following result.

T 2.13. – Every countable group arises as the outer automorphism group of a II1

factor.
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Organization of the article and the proofs

In the next two sections, a lot of preparatory material is gathered. We first introduce in
Section 3 Popa’s technique of intertwining-by-bimodules and we prove some results that are
needed throughout the main proofs of the article. Section 4 is still a technical preparatory
section : we prove a result that allows to control quasi-normalizers of subalgebras of crossed
product von Neumann algebras. Again, these results are used several times in the main
proofs of the article.

The core of the proof of Theorem 2.2 is given in Sections 5 and 6. Use the notations of
Theorem 2.2. If NHM is a finite index bimodule, it will be shown in Section 5 that H con-
tains an L∞(Y )-L∞(X)-subbimodule K satisfying dim(KL∞(X)) < ∞. This result is then
combined in Section 6 with Popa’s cocycle superrigidity theorem (see [24]), to describe NHM

in terms of a commensurability of the actions Λ y Y and Γ y X, as well as a finite dimen-
sional projective representation of a finite index subgroup of Λ.

At the end of Section 6, we call elementary bimodules the ones that can be described in
terms of a commensurability of the actions and a finite dimensional representation. Theorem
2.2 can then be rephrased as saying that every finite indexN -M -bimodule is elementary. We
determine the fusion rules between such elementary bimodules.

In the final Section 7, we compile all the work of Sections 3 – 6 into proofs for the results
announced above.

3. Intertwining by bimodules

In [21, 22], Sorin Popa has introduced a very powerful technique to obtain the unitary
conjugacy of two von Neumann subalgebras of a tracial von Neumann algebra (M, τ). We
make intensively use of this technique. In this section, we recall Popa’s definition and prove
several results that are needed later.

D 3.1. – Let A,B ⊂ (M, τ) be possibly non-unital embeddings. We say that

• A ≺
M
B if 1A L2(M)1B contains a non-zero A-B-subbimodule K satisfying

dim(KB) <∞.

• A
f
≺
M
B if Ap ≺

M
B for every non-zero projection p ∈ 1AM1A ∩A′.

The relevance of Definition 3.1 lies in the following theorem due to Sorin Popa. Proofs
can be found in Theorem 2.1 of [22] or Appendix C of [28]. In the list of equivalent conditions
in Theorem 3.2 below, condition 3 is, in a sense, the most useful, since it provides a powerful
method to give proofs by contradiction.

T 3.2 (Popa, Thm. 2.1 in [22]). – Let A,B ⊂ (M, τ) be possibly non-unital em-
beddings. Then, the following are equivalent.

1. A ≺
M
B.

2. There exist a, possibly non-unital, ∗-homomorphism ψ : A→ Bn and a non-zero partial
isometry v ∈ M1,n(C)⊗ 1AM1B satisfying av = vψ(a) for all a ∈ A.

3. There does not exist a sequence of unitaries (un) inA satisfying ‖EB(x∗uny)‖2 → 0 for
all x, y ∈ 1AM1B .
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R 3.3. – We will use several times the following seemingly stronger version of
Theorem 3.2. Suppose that I is a countable set and that A,Bi ⊂ (M, τ) are possibly
non-unital embeddings for all i ∈ I. If for all i ∈ I, we have A 6≺

M
Bi, there exists a

sequence of unitaries (un) in A such that for all i ∈ I and all x, y ∈ 1AM1Bi , we have
‖EBi(x∗uny)‖2 → 0.

Indeed, let (xk)k∈N be a ‖ · ‖2-dense sequence in the unit ball ofM and I = {ik | k ∈ N}.
Fix n ∈ N. View A and Cn := B0 ⊕ · · · ⊕ Bn as embedded in Mn. By our assumption and
the second characterization in Theorem 3.2,A 6≺

M
Cn. So, we can take a unitary un ∈ A such

that ‖EBk(1Bkx
∗
i unxj1Bk)‖2 < 1/n for all 0 ≤ i, j, k ≤ n. The sequence (un) satisfies the

required properties.

We leave the proof of the following elementary lemma as an exercise.

L 3.4. – Let A,B ⊂ (M, τ) be, possibly non-unital, embeddings. Let q0 ∈ A, q1 ∈
1AM1A ∩A′, p0 ∈ B and p1 ∈ 1BM1B ∩B′ be non-zero projections.

– If q0Aq0 ≺
M
B or if q1A ≺

M
B, then A ≺

M
B.

– If A ≺
M
p0Bp0 or if A ≺

M
p1B, then A ≺

M
B.

– If A ≺
M
B and if D ⊂ A is a unital von Neumann subalgebra, then D ≺

M
B.

L 3.5. – Let A,B ⊂ M be, possibly non-unital, embeddings. If A ≺
M

B, then

1BM1B ∩B′ ≺
M

1AM1A ∩A′.

Proof. – Let A ≺
M

B. Take a projection p ∈ Bn, a non-zero partial isometry v ∈
1A(M1,n(C) ⊗M)p and a unital ∗-homomorphism ψ : A → pBnp satisfying av = vψ(a)

for all a ∈ A. Set p1 = v∗v ∈ pMnp ∩ ψ(A)′ and D = p1(pMnp ∩ ψ(A)′)p1. Since
vDv∗ ⊂ 1AM1A ∩A′ and v∗v = 1D, we have D ≺

M
1AM1A ∩A′. By Lemma 3.4, we have

pMnp ∩ ψ(A)′ ≺
M

1AM1A ∩A′ .

But, p commutes with 1⊗(1BM1B∩B′) and p(1⊗(1BM1B∩B′)) is a unital von Neumann
subalgebra of pMnp ∩ ψ(A)′. It follows that

p(1⊗ (1BM1B ∩B′)) ≺
M

1AM1A ∩A′ .

Yet another application of Lemma 3.4 yields the conclusion.

R 3.6. – The relation≺
M

between von Neumann subalgebras of (M, τ) is not tran-

sitive. This is quite obvious : let (M, τ) be a II1 factor and p ∈ M a non-trivial projection.
Then, M ≺

M
(pMp + C(1 − p)) and (pMp + C(1 − p)) ≺

M
C1, but clearly M 6≺

M
C1. Never-

theless, we have the following results.

L 3.7. – Let A,B,D ⊂ (M, τ) be possibly non-unital embeddings. If A ≺
M
B and

B
f
≺
M
D, then A ≺

M
D.
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Proof. – Take, possibly non-unital, embeddings ψ : A→ Bn and ϕ : B → Dm together
with non-zero partial isometries v ∈ M1,n(C)⊗ 1AM1B and w ∈ M1,m(C)⊗ 1BM1D satis-

fying av = vψ(a) for all a ∈ A and bw = wϕ(b) for all b ∈ B. Because B
f
≺
M
D, we can take

ww∗ ∈ 1BM1B ∩B′ arbitrarily close to 1B . In particular, we can take w in such a way that
v(1⊗ w) 6= 0. Since av(1⊗ w) = v(1⊗ w)(id⊗ϕ)ψ(a) for all a ∈ A, we are done.

R 3.8. – Let P,B ⊂ (M, τ) and A ⊂ B be possibly non-unital inclusions.
Suppose first that our aim is to prove that P ≺

M
A. Although the relation ≺

M
is

not transitive, we can nevertheless proceed in a two-step procedure. First prove that
P ≺

M
B. Take a unital ∗-homomorphism ψ : P → pBnp and a non-zero partial isom-

etry v ∈ M1,n(C)⊗ 1PM1B satisfying av = vψ(a) for all a ∈ P . Moreover, we can assume
that p equals the support projection of EB(v∗v). In a second step, prove that ψ(P ) ≺

B
A.

This yields a possibly non-unital ∗-homomorphism ϕ : P → Am and a non-zero partial
isometry w ∈ p(Mn,m(C) ⊗ B1A) satisfying ψ(a)w = wϕ(a) for all a ∈ P . We have then
shown that P ≺

M
A, since vw 6= 0 : if vw would be 0, also EB(v∗v)w = EB(v∗vw) = 0,

implying that w = pw = 0, a contradiction.
Secondly, we deduce from the previous paragraph the following precise statement : if

P ≺
M
B and P 6≺

M
A, we can take a unital ∗-homomorphism ψ : P → pBnp and a non-zero

partial isometry v ∈ M1,n(C) ⊗ 1PM1B satisfying av = vψ(a) for all a ∈ P and moreover
satisfying ψ(P ) 6≺

B
A.

Intertwining by bimodules and inclusions of essentially finite index

If N ⊂M is a subfactor of a II1 factor, the Jones index [M : N ] is defined as [M : N ] :=

dim(L2(M)N ). We say that the subfactor N ⊂M is essentially of finite index, if there exists
a sequence of projections pn ∈ N ′∩M such that pn → 1 andNpn ⊂ pnMpn has finite Jones
index for all n. In Proposition A.2 in the Appendix, we define and characterize essentially
finite index inclusions of arbitrary tracial von Neumann algebras.

We collect in this subsection several general results about the notions ≺
M

,
f
≺
M

and (essen-

tially) finite index inclusions.

L 3.9. – Let N,B ⊂ (M, τ) be possibly non-unital embeddings. Let A ⊂ N be a
unital embedding that is essentially of finite index.

– If A ≺
M
B, then N ≺

M
B.

– If B ≺
M
N , then B ≺

M
A.

Proof. – Let A ≺
M
B. Take a, possibly non-unital, ∗-homomorphism ψ : A → Bn and a

non-zero partial isometry v ∈ M1,n(C)⊗ 1AM1B satisfying av = vψ(a) for all a ∈ A. Note
that vv∗ ∈ 1AM1A∩A′ and that 1A = 1N . Let p ∈ N ∩A′ denote the support projection of
EN (vv∗). Take q ≤ p, a non-zero projection inN ∩A′ such that L2(Nq) is finitely generated
as a right A-module. So, there exist a possibly non-unital ∗-homomorphism ϕ : N → Am

and a non-zero partial isometry w ∈ M1,m(C)⊗Nq satisfying xw = wϕ(x) for all x ∈ N .
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We claim that w(1 ⊗ v) 6= 0. Once the claim is proven, the equality xw(1 ⊗ v) =

w(1 ⊗ v)(id⊗ψ)ϕ(x) for all x ∈ N , implies that N ≺
M

B. Suppose that w(1 ⊗ v) = 0.

Then, w(1 ⊗ EN (vv∗)) = EN (w(1 ⊗ vv∗)) = 0, implying that w(1 ⊗ p) = 0. Since
w ∈ M1,m(C)⊗Nq, this would imply that w = 0, contradiction.

Since A ⊂ N has essentially finite index, we have N ≺
N
A and so Remark 3.8 yields the

second statement.

The most subtle abstract result on intertwining bimodules and (essentially) finite index
inclusions that we need is Theorem 3.11 below. We first introduce the following notation.

N 3.10. – Let (N, τ) and (M, τ) be tracial von Neumann algebras and A ⊂ N ,
B ⊂M von Neumann subalgebras. Let NHM be an N -M -bimodule.

– We setA ≺
H
B ifH contains a non-zeroA-B-subbimoduleK ⊂ H with dim(KB) <∞.

– We set A
f
≺
H
B if every non-zero A-M -subbimodule K ⊂ H satisfies A ≺

K
B.

Note that if dim(HM ) < ∞ and if we write NHM
∼= ψ(N)p(`

2(N) ⊗ L2(M))M for some
∗-homomorphism ψ : N → pM∞p and a projection p ∈ M∞ satisfying (Tr⊗τ)(p) < ∞,
then

• A ≺
H
B if and only if ψ(A) ≺

M
B,

• A
f
≺
H
B if and only if ψ(A)

f
≺
M
B.

T 3.11. – Let (N, τ) and (M, τ) be tracial von Neumann algebras with von Neu-
mann subalgebras A ⊂ N and B ⊂M . Assume that

– every A-A-subbimodule K ⊂ L2(N) satisfying dim(KA) <∞ is included in L2(A),
– every B-B-subbimodule K ⊂ L2(M) satisfying dim(KB) <∞ is included in L2(B).

Suppose that NHM is a finite index N -M -bimodule such that, using Notation 3.10,

A
f
≺
H
B and A

f
�
H
B .

Then there exist a projection p ∈ B∞ with (Tr⊗τ)(p) <∞ and a ∗-homomorphism ϕ : N →
pM∞p such that

• NHM
∼= ϕ(N)p(`

2(N)⊗ L2(M))M ,(2)

• ϕ(A) ⊂ pB∞p and this inclusion has essentially finite index.

Moreover, through the isomorphism (2), p(`2(N)⊗L2(B)) is the smallestA-B-subbimodule of
H that contains every A-B-subbimodule K satisfying dim(KB) <∞ or dim(AK) <∞.

Proof. – Write

(3) NHM
∼= ϕ(N)p0(`2(N)⊗ L2(M))M

for some finite index inclusion ϕ : N → p0M
∞p0 and a projection p0 ∈ M∞ satisfying

(Tr⊗τ)(p0) <∞.

C. – There exist a sequence of non-zero central projections zn ∈ Z(A) summing to 1

and a sequence of A-B-subbimodules Kn ⊂ znH satisfying

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



758 S. VAES

• dim((Kn)B) <∞,
• every A-B-subbimodule K ⊂ znH satisfying dim(AK) <∞ is included in Kn,
• there exist a ∗-homomorphism ψn : A → pnB

knpn and a partial isometry vn ∈
p0(M∞,kn(C)⊗M) satisfying ϕ(a)vn = vnψn(a) for all a ∈ A and vnv∗n = ϕ(zn). So,
writing qn = v∗nvn, we get the isomorphism

A(znH)M ∼= ψn(A)qn(Mkn,1(C)⊗ L2(M))M .

Through this isomorphism, Kn corresponds to qn(Mkn,1(C)⊗ L2(B)). Moreover, pn is
the support projection of EB(qn).

Proof of the claim. – It is sufficient to take an arbitrary non-zero central projection
z ∈ Z(A) and to prove the existence of a non-zero subprojection z0 ∈ Z(A) and an
A-B-subbimodule K0 ⊂ z0H satisfying the three conditions above. Write, with the no-
tations of (3), P = ϕ(A)′ ∩ p0M

∞p0. Since A′ ∩ N = Z(A), it follows from Lemma
A.3 that ϕ(Z(A)) ⊂ P has essentially finite index. Moreover, ϕ(Z(A)) ⊂ Z(P ). Making
z smaller, we can then assume that the inclusion ϕ(Z(A)z) ⊂ Pϕ(z) is isomorphic with
1 ⊗ 1 ⊗ Z(A)z ⊂ Mk(C) ⊗ Cl ⊗ Z(A)z. We retain the existence of a finite number of
projections f1, . . . , fm ∈ Pϕ(z) summing to ϕ(z) and satisfying fiPfi = fiϕ(Z(A)) and
fiϕ(a) 6= 0 whenever a ∈ Z(A)z is non-zero.

Since A
f
≺
H
B, we inductively construct

– a decreasing sequence z1 ≥ · · · ≥ zm of non-zero projections in Z(A)z,
– for every i = 1, . . . ,m, projections pi ∈ Bni and ∗-homomorphisms ψi : A →
piB

nipi,
– partial isometries vi ∈ M∞,ni(C)⊗M satisfying ϕ(a)vi = viψi(a) for all a ∈ A and
viv
∗
i = fiϕ(zi).

Set z0 = zm. We can cut down every vi with ϕ(z0) and then take the direct sum of all vi
and ψi for i = 1, . . . ,m. We have found a projection p ∈ Bn, a ∗-homomorphism ψ : A →
pBnp and a partial isometry v ∈ M∞,n(C)⊗M satisfying ϕ(a)v = vψ(a) for all a ∈ A and
vv∗ = ϕ(z0). Set q = v∗v ∈ pMnp ∩ ψ(A)′. Since the support projection of EB(q) belongs
to pBnp∩ψ(A)′, we may assume that p equals the support projection ofEB(q). Using v, we
get that

A(z0H)M ∼= ψ(A)q(Mn,1(C)⊗ L2(M))M .

Through this isomorphism, we define the A-B-subbimodule K0 ⊂ z0H as q(Mn,1(C) ⊗
L2(B)). Clearly, dim((K0)B) < ∞. Suppose now that K ⊂ z0H is an A-B-subbimodule
satisfying dim(AK) < ∞. View K ⊂ q(Mn,1(C) ⊗ L2(M)). We can densely span K by the
components of vectors ξ ∈ Mm,1(C) ⊗ q(Mn,1(C) ⊗ L2(M)) satisfying ξB ⊂ (Mm(C) ⊗
ψ(A))ξ ⊂ Bmnξ. By our assumptions, it follows that all the components of ξ belong to
L2(B) and hence K ⊂ K0, proving the claim.

Let zn and Kn be as in the claim above. By symmetry, there also exist a sequence of non-
zero central projections yn ∈ Z(B) summing to 1 and a sequence of A-B-subbimodules
Ln ⊂ Hyn satisfying

• dim(A(Ln)) <∞,
• every A-B-subbimodule L ⊂ Hyn satisfying dim(LB) <∞ is included in Ln.
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It follows that znLm ⊂ Knym and Knym ⊂ znL
m. So, znLm = Knym for all n,m. In

particular, dim(A(Knym)) <∞ for all n,m.
Fix n and consider again Kn : we have a projection p ∈ Bk, a ∗-homomorphism ψ :

A→ pBkp and a partial isometry v ∈ M∞,k(C)⊗M satisfying ϕ(a)v = vψ(a) for all a ∈ A
and vv∗ = ϕ(zn). Moreover q = v∗v ∈ pMkp ∩ ψ(A)′ and p is the support projection
of EB(q). But now we know that dim(A(Knym)) < ∞ for all m, meaning that ψ(A)ym ⊂
pBkpym is an inclusion of finite index. Hence, ψ(A) ⊂ pBkp is essentially of finite index.
Combining this with the fact that q commutes with ψ(A), we conclude that q belongs to the
quasi-normalizer of pBkp inside pMkp, which equals pBkp. So, q ∈ pBkp. Since p is the
support projection of EB(q), we get p = q.

Summing up all the partial isometries v corresponding to the central projections zn, we
find the partial isometry v ∈M∞ satisfying vv∗ = p0 (with p0 as in (3)) and further satisfying
p := v∗v ∈ B∞ with v∗ψ(A)v ⊂ pB∞p and the latter being an inclusion of essentially finite
index.

4. Controlling quasi-normalizers and relative commutants

In order to deduce unitary conjugacy uAu∗ ⊂ B of von Neumann subalgebras A,B ⊂
(M, τ), out of the weaker property A ≺

M
B, the main problem is to control the projection

v∗v where v is given by 3.2.2. This projection v∗v belongs to the relative commutant of ψ(A)

insideψ(1)Mnψ(1), but we have no a priori knowledge about the position ofψ(A) insideBn.
In Section 3 of [22], Popa proved a crucial result giving control on such relative commutants
by using mixing properties. The main observation is contained in Lemma 4.1 below. Since
the exact form of the lemma as we need it here, is not available in the literature, we give a
complete proof for the convenience of the reader.

In Lemma 4.2, we then show how to use in a concrete setting, the basic principle provided
by Lemma 4.1.

L 4.1. – Let B ⊂ (M, τ) and H ⊂ L2(M) a B-B-subbimodule. Denote by eB the
orthogonal projection of L2(M) onto L2(B). Assume that un is a sequence of unitaries in B
such that

‖eB(xunξ)‖2 → 0 for all x ∈M, ξ ∈ H⊥ .
Then, every B-B-subbimodule K of L2(M) satisfying dim(KB) < ∞ is contained in H. In
particular, the quasi-normalizer QNM (B)′′ is contained in H ∩H∗.

Proof. – Let ξ ∈ M1,k(C) ⊗ L2(M) and ψ : B → Bk a possibly non-unital
∗-homomorphism satisfying bξ = ξψ(b) for all b ∈ B. It is sufficient to prove that all
entries of ξ belong to H. Denote by pH the orthogonal projection of L2(M) onto H and
continue writing eB and pH for their respective componentwise extensions to matrices over
L2(M).

We define η = ξ − pH(ξ) and we have to prove that η = 0. Since pH commutes with the
left and with the right action of B, we have bη = ηψ(b) for all b ∈ B. Since all entries of η
belong to H⊥, we get for all x ∈M that

‖eB(xη)‖2 = ‖eB(xη)ψ(un)‖2 = ‖eB(xunη)‖2 → 0 .
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So, eB(xη) = 0 for all x ∈M , implying that η = 0.

L 4.2. – Let Γ y I be an action of a countable group Γ on a countable set I and
consider the generalized Bernoulli action Γ y (X,µ) = (X0, µ0)I . Denote M = L∞(X) o Γ.
Let I1 ⊂ I and set Norm I1 = {g ∈ Γ | gI1 = I1}. Then, the following hold.

1. If B ⊂ pL(Stab I1)mp and if for all i ∈ I \ I1,

B 6≺
L(Stab I1)

L(Stab(I1 ∪ {i})) ,

then QNpMmp(B)′′ ⊂ p(L∞(XI1
0 ) o Norm I1)mp.

2. If B ⊂ p(L∞(XI1
0 ) o Norm I1)mp and if for all i ∈ I \ I1,

B 6≺
L∞(X

I1
0 )oNorm I1

L∞(XI1
0 ) o (Norm(I1) ∩ Stab i) ,

then, denoting P = L∞(X) o Norm I1, we have

QNpPmp(B)′′ ⊂ p(L∞(XI1
0 ) o Norm I1)mp.

Moreover, if I \ I1 is infinite, the inclusion

QNpMmp(B)′′ ⊂ pMmp

cannot have finite index.
3. If B ⊂ p(L∞(X) o Stab I1)mp and if for all i ∈ I \ I1,

B 6≺
L∞(X)oStab I1

L∞(X) o Stab(I1 ∪ {i}) ,

then QNpMmp(B)′′ ⊂ p(L∞(X) o Norm I1)mp.

Throughout the proof of the lemma, we regardA ⊂ Am so that a ∈ A also denotes 1⊗a ∈
Mn(C) ⊗ A. Similarly, for a conditional expectation EB : A → B, the notation EB also
denotes the amplified conditional expectation Am → Bm.

Proof of 1. – Set D = L∞(XI1
0 ) o Norm I1. The assumptions and Remark 3.3 yield a

sequence of unitaries un ∈ B such that for all i ∈ I \ I1 and g, h ∈ Stab(I1),

‖EL(Stab(I1∪{i}))(ugunuh)‖2 → 0 .

Set J = {g ∈ Γ | gI1 ⊂ I1} and define H as the closed linear span of the subspaces
L∞(X)ug, g ∈ J , of L2(M). Observe that H is an L(Stab I1)-L(Stab I1)-subbimodule of
L2(M). We claim that

‖EL(Stab I1)(augunbuh)‖2 → 0

for all a, b ∈ L∞(X), g ∈ Γ, h ∈ Γ \ J . Indeed, because h ∈ Γ \ J , take i ∈ hI1 \ I1. Write
un =

∑
k∈Stab I1

un(k)uk where the un(k) are scalar matrices. Hence,

‖EL(Stab I1)(augunbuh)‖22 =
∑

k∈Stab I1∩g−1(Stab I1)h−1

|τ(aσgk(b))|2 ‖un(k)‖22 .

If at the right-hand side we are not summing over the empty set, take k0 ∈ Stab I1 such that

Stab I1 ∩ g−1(Stab I1)h−1 = k−1
0 (Stab I1 ∩ h(Stab I1)h−1) ⊂ k−1

0 Stab(I1 ∪ {i}) .

4 e SÉRIE – TOME 41 – 2008 – No 5



COMPUTATION OF ALL FINITE INDEX BIMODULES FOR CERTAIN II1 FACTORS 761

It follows that

‖EL(Stab I1)(augunbuh)‖2 ≤ ‖a‖2 ‖b‖2 ‖EL(Stab(I1∪{i}))(uk0
un)‖2 → 0 .

So, the claim is proven. Observing thatH∩H∗ = L2(L∞(X)oNorm I1), Lemma 4.1 implies
that QNpMmp(B)′′ ⊂ p(L∞(X) o Norm I1)mp.

To conclude the proof of 1, it remains to show that the quasi-normalizer of B inside
p(L∞(X) o Norm I1)mp is contained in p(L∞(XI1

0 ) o Norm I1)mp. Because B ⊂ pL(Γ)mp

and using Lemma 4.1, it is sufficient to prove that ‖EL(Γ)(aunb)‖2 → 0 whenever a ∈ L∞(X)

and b ∈ L∞(X) 	 L∞(XI1
0 ). We may assume that a ∈ L∞(XJ

0 ) for some finite set J ⊂ I

and that b = b1b2 with b1 ∈ L∞(Xi
0)	C1 and b2 ∈ L∞(X

I\{i}
0 ) for some i ∈ I \I1. Observe

that
‖EL(Γ)(aunb)‖22 =

∑
k∈Stab I1

|τ(aσk(b))|2 ‖un(k)‖22 .

Whenever ki 6∈ J , we have τ(aσk(b)) = 0. We can take a finite number of elements k1, . . . , kr
in Stab I1 such that k ∈ Stab I1 and ki ∈ J implies that k ∈

⋃r
s=1 k

−1
s Stab(I1 ∪ {i}). It

follows that

‖EL(Γ)(aunb)‖22 ≤ ‖a‖22 ‖b‖22
r∑
s=1

‖EL(Stab(I1∪{i}))(uksun)‖22 → 0 .

This ends the proof of point 1.

Proof of 2. We still denote D = L∞(XI1
0 ) o Norm I1 and P = L∞(X) o Norm I1. The

assumptions and Remark 3.3 yield a sequence of unitaries un in B satisfying

‖E
L∞(X

I1
0 )o(Norm I1∩Stab i)

(xuny)‖2 → 0 for all x, y ∈ D .

Because of Lemma 4.1, it is sufficient to prove that ‖ED(xuny)‖2 → 0 for all x ∈ P, y ∈
P 	D. We may assume that x ∈ L∞(X), y ∈ L∞(X)	 L∞(XI1

0 ) and specify even more to
x ∈ L∞(XJ

0 ) and y = ab with a ∈ L∞(Xi
0) 	 C1 and b ∈ L∞(X

I\{i}
0 ) for some i ∈ I \ I1

and some finite subset J ⊂ I. Set un =
∑
k∈Norm I1

un(k)uk, where un(k) ∈ L∞(XI1
0 )m.

Observe that
‖ED(xuny)‖22 =

∑
k∈Norm I1

‖E
L∞(X

I1
0 )

(xun(k)σk(y))‖22 .

For all k ∈ Norm I1, one has ki 6∈ I1. So,

E
L∞(X

I1
0 )

(xun(k)σk(y)) = 0 whenever k ∈ Norm I1 and ki 6∈ J .

We then take k1, . . . , kr ∈ Norm I1 such that

k ∈ Norm I1 and ki ∈ J implies that k ∈
r⋃
s=1

k−1
s (Norm I1 ∩ Stab i) .

We finally conclude that

‖ED(xuny)‖22 ≤ ‖x‖2 ‖y‖2
r∑
s=1

‖E
L∞(X

I1
0 )o(Norm I1∩Stab i)

(uksun)‖22 → 0 .

The last statement of point 2 can be proven as follows. Since

EpPmp(QNpMmp(B)′′) = QNpNmp(B)′′ ⊂ pDmp ,
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we conclude that for all a ∈ L∞(X
I\I1
0 ) and all x ∈ QNpMmp(B)′′,

τ(ax) = τ(aEP (x)) = τ(a) τ(EP (x)) = τ(a) τ(x) .

If I \I1 is infinite, we can take a unitary u ∈ L∞(X
I\I1
0 ) satisfying τ(us) = δs,0 for all s ∈ Z.

It follows that the subspaces us QNpMmp(B)′′ of Mmp are orthogonal. So L2(Mmp) has
dimension∞ as a right QNpMmp(B)′′-module.

Proof of 3. The assumptions and Remark 3.3 yield a sequence of unitaries un ∈ B satis-
fying

‖EL∞(X)oStab(I1∪{i})(xuny)‖2 → 0 for all x, y ∈ L∞(X) o Stab I1 .

Proceeding as in the first part of the proof of point 1, it is sufficient to prove that

‖EL∞(X)oStab I1(ugunuh)‖2 → 0

whenever g, h ∈ Γ and hI1 6⊂ I1. Let i ∈ hI1 \ I1. We write un =
∑
k∈Stab I1

un(k)uk with
un(k) ∈ L∞(X)m. Observe that

‖EL∞(X)oStab I1(ugunuh)‖22 =
∑

k∈Stab I1∩g−1(Stab I1)h−1

‖un(k)‖22 .

Again, if at the right-hand side we are not summing over the empty set, take k0 ∈ Stab I1
such that

Stab I1 ∩ g−1(Stab I1)h−1 = k−1
0 (Stab I1 ∩ h(Stab I1)h−1) ⊂ k−1

0 Stab(I1 ∪ {i}) .

It follows that

‖EL∞(X)oStab I1(ugunuh)‖2 ≤ ‖EL∞(X)oStab(I1∪{i})(uk0
un)‖2 → 0 ,

concluding the proof of point 3.

L 4.3. – Let Γ y I satisfy conditions (C2) and (C3) in Definition 2.3. Set M =

L∞(XI
0 ) o Γ. Let Λ y (Y, η) be any probability measure preserving action and set N =

L∞(Y ) o Λ.

Suppose that NHM is a finite index bimodule. If B ⊂ L∞(Y ) is diffuse, H does not contain
a non-zero B-L(Γ)-subbimodule K satisfying dim(KL(Γ)) <∞.

Proof. – Assume that we do have aB-L(Γ)-subbimoduleK satisfying dim(KL(Γ)) <∞.
First of all, take a finite index inclusion η : N → qMmq such thatHHM

∼= η(N)q(Mm,1(C)⊗
L2(M))M . The presence of the subbimodule K, combined with condition (C2) and the fact
that the diffuse algebraB cannot embed into a finite dimensional algebra, yield the following
data : a finite subset I0 ⊂ I, a ∗-homomorphism ψ : B → pL(Stab I0)mp and a non-zero
partial isometry v ∈ qMmp satisfying η(b)v = vψ(b) for all b ∈ B and such that, with
I1 = Fix(Stab I0) (and hence Stab I0 = Stab I1),

ψ(B) 6≺
L(Stab(I1))

L(Stab(I1 ∪ {i})) whenever i ∈ I \ I1 .

Note that we do not exclude I0 = I1 = ∅ and Stab I0 = Γ. Remark 3.3 allows us to take a
sequence of unitaries un in B such that

‖EL(Stab(I1∪{i}))(xψ(un)y)‖2 → 0 for all x, y ∈ L(Stab I1), i ∈ I \ I1 .
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Denote B1 = qMmq ∩ η(B)′ ⊃ η(L∞(Y )). Set q1 = vv∗ ∈ B1 and p1 = v∗v. By point 1
of Lemma 4.2, we get that

v∗B1v ⊂ p1(L∞(XI1
0 ) o Norm I1)mp1 .

One also checks that

(4) ‖E
L∞(X

I1
0 )o(Norm I1∩Stab i)

(xψ(un)y)‖2 → 0

for all x, y ∈ L∞(XI1
0 ) o Norm I1 and all i ∈ I \ I1.

Take partial isometries w1, . . . , wr ∈ B1 such that w∗sws ≤ q1 for all s and such that∑r
s=1 wsw

∗
s is a central projection q2 ∈ Z(B1). Define

ṽ ∈ Mm,rm(C)⊗M as ṽ =
r∑
s=1

es ⊗ wsv and p2 =
r∑
s=1

ess ⊗ v∗w∗swsv = ṽ∗ṽ .

Define
ψ̃ : L∞(Y )→ p2(L∞(XI1

0 ) o Norm I1)rmp2 : ψ̃(a) = ṽ∗η(a)ṽ .

The sequence of unitaries ψ̃(un) still satisfies (4), so that we can apply point 2 of Lemma 4.2
to the subalgebra

ψ̃(L∞(Y )) ⊂ p2(L∞(XI1
0 ) o Norm I1)rmp2 .

It follows that the quasi-normalizer of ψ̃(L∞(Y )) inside p2M
rmp2 does not have finite index.

But this quasi-normalizer contains ṽ∗η(N)ṽ and so as well the von Neumann algebra gen-
erated by ṽ∗η(N)ṽ. This leads to a contradiction since η(N) ⊂ qMmq has finite index.

5. For good actions of good groups, finite index bimodules
automatically preserve the Cartan subalgebras

The proof of the following theorem occupies this whole section. It consists of several steps,
with Step 4 below as the final one.

T 5.1. – Let Γ y I and Λ y J be good actions of good groups (Def. 2.4). Con-
sider Γ y (X,µ) = (X0, µ0)I and Λ y (Y, η) = (Y0, η0)J . Set M = L∞(X) o Γ and
N = L∞(Y ) o Λ.

Every finite index N -M -bimodule NHM preserves the Cartan subalgebras, in the sense that
there exists an L∞(Y )-L∞(X)-subbimodule K ⊂ H satisfying dim(KL∞(X)) <∞.

Fix the groups Γ,Λ and their actions as in the formulation of Theorem 5.1. Let NHM be
a finite index bimodule.

Take a finite index inclusion ψ : N → pMnp such that NHM
∼= ψ(N)p(Mn,1(C) ⊗

L2(M))M . Write P = L(Λ). Take an infinite, almost normal subgroup G < Λ with the
relative property (T) and set Q = L(G). A combination of Remark 2.6 and point 1 of
Lemma 4.2 implies that N ∩Q′ ⊂ P .

The proof of Theorem 5.1 is organized as follows.

– Step 1 : we prove that Q ≺
H
L(Γ). To prove this Step 1, we need to combine a version

of Popa’s theorem 4.1 in [22] (our Lemma 5.2 below) with the techniques of Section 4.
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– Step 2 : we prove that L(Λ) ≺
H
L(Γ). In fact, we obtain a better result, so that we can

essentially assume that ψ(L(Λ)) ⊂ L(Γ)n.
– Step 3 : assuming now that ψ(L(Λ)) ⊂ L(Γ)n, we prove that for j ∈ J and i ∈ I, one

has ψ(L(Stab j)) ≺
L(Γ)
L(Stab i).

– Step 4 : we finally prove that L∞(Y ) ≺
H

L∞(X).

Throughout this section, we denote by (ug)g∈Γ the canonical unitaries in L∞(X)oΓ and
by (νs)s∈Λ the canonical unitaries in L∞(Y ) o Λ.

S 1 (Intertwining Q inside L(Γ)). – Let p1 ∈ pMnp ∩ ψ(P )′ be a non-zero projection.
Then, ψ(Q)p1 ≺

M
L(Γ).

Proof of Step 1. – By condition (C2) and Remark 3.8, we can take a finite subset I0 ⊂ I
(which might be empty) such that writing I1 = Fix(Stab I0) and I2 = I \ I1, we have

(5) ψ(P )p1 ≺
M

L∞(X) o Stab I0 and

ψ(P )p1 6≺
M

L∞(X) o Stab(I0 ∪ {i}) whenever i ∈ I2 .

Note that I0 = ∅ yields I2 = I. Also note that for all i ∈ I \ I1, Stab(I0 ∪ {i}) has infinite
index in Stab(I0) meaning that Stab(I0) · i is infinite.

Suppose that q ∈ L∞(XI1
0 ) is a non-zero projection such that q L∞(XI1

0 ) is diffuse and
ψ(P )p1 ≺

M
q(L∞(X)oStab I0). Lemma 3.5 implies that q L∞(XI1

0 ) ≺
M
p1(ψ(P )′∩pMnp)p1.

Lemma 3.4 yields q L∞(XI1
0 ) ≺

M
ψ(P )′ ∩ pMnp. By Lemma A.3, the inclusion ψ(N ∩P ′) ⊂

pMnp∩ψ(P )′ has finite index and we know thatN ∩P ′ = Z(P ). But then Lemma 3.9 gives
q L∞(XI1

0 ) ≺
M
ψ(P ), which is a contradiction with Lemma 4.3.

So, I1 is finite. Moreover, in the case I1 6= ∅, we denote by q ∈ L∞(XI1
0 ) the projection

on the atomic part of L∞(XI1
0 ) and conclude that

ψ(P )p1 ≺
M
q(L∞(X) o Stab I0) .

The right hand side contains q(L∞(XI2
0 )oStab I0) as a subalgebra of essentially finite index.

By Lemmas 3.4 and 3.9, we conclude that

(6) ψ(P )p1 ≺
M

L∞(XI2
0 ) o Stab I0 .

WriteX1 = XI2
0 , Γ1 = Stab I0 andM1 = L∞(X1) o Γ1. Combining (6), (5) and Remark

3.8, we can take a projection q ∈ Mn
1 , a non-zero partial isometry v ∈ M1,n(C) ⊗ p1M

and a unital ∗-homomorphism η : P → qMn
1 q satisfying ψ(a)v = vη(a) for all a ∈ P and

satisfying

η(P ) 6≺
M1

L∞(XI2
0 ) o StabΓ1

(i) whenever i ∈ I2 .

We may assume that the support of EM1(v∗v) equals q. Lemma 5.2 below implies that
η(Q) ≺

M1

L(Γ1). Again using Remark 3.8, we conclude that ψ(Q)p1 ≺
M
L(Γ1) ⊂ L(Γ).
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We needed above the following result, due to Sorin Popa. Although the proof is very close
to the proof of Theorem 4.1 in [22], our Lemma 5.2 is not a direct consequence of Popa’s
theorem, so that we present a self-contained proof for the convenience of the reader.

The formulation of the lemma makes use of the relative property (T) for an inclusion of
tracial von Neumann algebras. This notion has been introduced by Popa in 4.2 of [21] (see
also B.2 in [28]). For our purposes, it is in fact sufficient to know that for an inclusion of
groups Λ < Γ, the inclusion L(Λ) ⊂ L(Γ) has the relative property (T), if and only if the
group pair Λ < Γ has the relative property (T).

L 5.2. – Let Γ y I be a group acting on a set. Set (X,µ) = (X0, µ0)I and M =

L∞(X) o Γ. Suppose that Q ⊂ P ⊂ pMnp satisfies the following properties.

• Q ⊂ P is quasi-regular and has the relative property (T).
• For all i ∈ I, we have P 6≺

M
L∞(X) o Stab i.

Then, Q ≺
M
L(Γ).

In the proof of the lemma, we make use of the following terminology : if A,B ⊂ M

are possibly non-unital embeddings of von Neumann algebras, we say that an element a ∈
1AM1B is A-B-finite if there exists x1, . . . , xn, y1, . . . , ym ∈ 1AM1B satisfying

Aa ⊂
n∑
k=1

xkB and aB ⊂
m∑
k=1

Ayk .

Proof. – The crucial ingredient is Popa’s s-malleability satisfied by generalized Bernoulli
actions with diffuse base space. Define Y0 = X0 × [0, 1] and (Y, µ) = (Y0, µ0)I . Set A =

L∞(Y ) andB = A⊗A = L∞(Y ×Y ), both equipped with the generalized Bernoulli action.
The action Γ y A is s-malleable, meaning that the von Neumann algebra B admits trace
preserving automorphisms (αt)t∈R and β satisfying the following conditions (see 1.6.1 in [22]
and Section 3 in [28]).

• (αt) is a continuous one-parameter group of automorphisms and β is a period 2 auto-
morphism.

• βαt = α−tβ for all t ∈ R.
• α1(a⊗ 1) = 1⊗ a and β(a⊗ 1) = a⊗ 1 for all a ∈ A.
• αt and β commute with the action Γ y B.

We define N = Ao Γ and ‹N = Bo Γ. Extend αt and β to trace preserving automorphisms
of ‹N acting identically on L(Γ). We view M ⊂ N ⊂ ‹N through the identification

N = (A⊗1) o Γ ⊂ (A⊗A) o Γ .

We also define N1 := α1(N) = (1⊗A) o Γ. Note that an argument similar to Lemma 4.2
yields p‹Nnp ∩ P ′ ⊂ pNnp.

We claim the existence of a non-zero, Q-α1(Q)-finite element a ∈ p‹Nnα1(p). To prove
this claim, define for every t ∈ R, the P -P -bimodule on the Hilbert space Ht = p(Mn(C)⊗
L2(‹N))αt(p) by the formulas

x · ξ = xξ and ξ · x = ξαt(x) for all x ∈ P .
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For t = 0, the vector p is P -central. The relative property (T) ofQ ⊂ P yields a t = 2−k > 0

such that Ht admits a non-zero Q-central vector. Taking its polar decomposition, we get a
non-zero element a ∈ p‹Nnαt(p) satisfying xa = aαt(x) for all x ∈ Q. In particular, a is
Q-αt(Q)-finite. In order to arrive at the claim above, it remains to show the following : if for
some t > 0 there exists a non-zero, Q-αt(Q)-finite element a ∈ p‹Nnαt(p), then the same is
true for 2t. So, start with t and a. Clearly, αt(β(a∗)) is Q-αt(Q)-finite as well, while αt(a) is
αt(Q)-α2t(Q)-finite. As a consequence, αt(β(a)∗ba) is Q-α2t(Q)-finite for all b ∈ QNP (Q).
Suppose that β(a)∗ba = 0 for all b ∈ QNP (Q). Then the same holds true for all b ∈ P ,
since Q ⊂ P is quasi-regular. Denote by q the supremum of all the range projections of the
elements ba, b ∈ P . By our assumption, qβ(a) = 0. On the other hand, q ∈ P ′ ∩ p‹Nnp.
So, q ∈ pNnp and hence, β(q) = q. But then, the equality qβ(a) = 0 implies qa = 0, a
contradiction. We have shown the claim above.

Since there exists a non-zero Q-α1(Q)-finite element in p‹Nnp, we can take a non-zero
element a ∈ p(Mn,mn(C) ⊗ ‹N)(1 ⊗ p) and a, possibly non-unital, ∗-homomorphism
ψ : Q → Qm satisfying xa = a(id⊗α1)ψ(x) for all x ∈ Q. Suppose now that
Q 6≺

M
L(Γ). Theorem 3.2 allows us to take a sequence of unitaries (un) in Q such that

‖EL(Γ)(xuny)‖2 → 0 for all x, y ∈Mn. Recall that Y0 = X0 × [0, 1]. Define

D = (1⊗L∞(([0, 1]×X0 × [0, 1])I)) o Γ

and note that N1 ⊂ D. It follows that ‖ED(xuny)‖2 → 0 for all x, y ∈ ‹Nn, since it suffices
to check this limit for x, y being the product of an element in D and an element in M .

It then follows that

‖ED(a∗a)‖2 = ‖ED(a∗a)(id⊗α1)ψ(un)‖2 = ‖ED(a∗una)‖2 → 0 .

We arrive at the contradiction a = 0.

In the next step, we prove that in fact, the whole ofL(Λ) embeds intoL(Γ). We even prove
that the embedding can be taken in such a way that L(Λ) ⊂ L(Γ) has essentially finite index.

S 2 (Intertwining the group algebras L(Λ) and L(Γ)). – There exists a partial isome-
try v ∈ Mn,∞(C)⊗M satisfying

• vv∗ = p and q := v∗v ∈ L(Γ)∞,
• v∗ψ(L(Λ))v ⊂ qL(Γ)∞q and this is an inclusion of essentially finite index.

Proof of Step 2. – Recall that we denoted P = L(Λ) with its quasi-regular subalgebra

Q ⊂ P . We prove below that ψ(P )
f
≺
M
L(Γ). In terms of the bimodule NHM , this means that

L(Λ)
f
≺
H
L(Γ). By symmetry, we then have L(Λ)

f
�
H
L(Γ). As in the first point of Lemma 4.2,

we get that all the conditions of Theorem 3.11 are fulfilled and we obtain the statement of
Step 2.

It remains to prove that ψ(P )
f
≺
M
L(Γ). Take a non-zero projection p0 ∈ pMnp ∩ ψ(P )′.

We shall prove that ψ(P )p0 ≺
M
L(Γ). By Step 1, ψ(Q)p0 ≺

M
L(Γ). By condition (C2), we can
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take a, possibly empty, finite subset I0 ⊂ I such that ψ(Q)p0 ≺
M
L(Stab I0) and such that

writing I1 = Fix(Stab I0), we have

(7) ψ(Q)p0 6≺
M
L(Stab(I0 ∪ {i})) whenever i ∈ I \ I1 .

In particular, Stab(I0)·i is infinite for every i ∈ I\I1. We first claim that I1 is finite and that in
case I1 6= ∅,X0 is atomic. Indeed, if the claim would be false, take a projection q ∈ L∞(XI1

0 )

such that q L∞(XI1
0 ) is diffuse. We have ψ(Q)p0 ≺

M
qL(Stab I0) and a combination of Lem-

mas 3.4 and 3.5 implies that q L∞(XI1
0 ) ≺

M
pMnp ∩ ψ(Q)′. The right hand side contains

ψ(N ∩Q′) as a finite index subalgebra and N ∩Q′ ⊂ P . It follows that q L∞(XI1
0 ) ≺

M
ψ(P ).

This is a contradiction with Lemma 4.3. So, I1 is finite.
Denote by P1 the quasi-normalizer of ψ(Q)p0 inside p0M

np0. Note that ψ(P )p0 ⊂ P1

and so it is sufficient to prove that P1 ≺
M
L(Γ). By (7) and Remark 3.8, we take a

∗-homomorphism η : Q → qL(Stab I0)nq and a non-zero partial isometry v ∈ p0M
nq

satisfying ψ(a)v = vη(a) for all a ∈ Q and satisfying

η(Q) 6≺
L(Stab I0)

L(Stab(I0 ∪ {i})) whenever i ∈ I \ I1 .

By point 1 of Lemma 4.2, we have

v∗P1v ⊂ (L∞(XI1
0 ) o Norm I1)n ,

where Norm I1 < Γ denotes the subgroup of elements that globally preserve I1. We al-
ready know that I1 is finite and that in the case I1 6= ∅, the space (X0, µ0) is atomic. So,
L(Stab I0) ⊂ L∞(XI1

0 ) o Norm I1 has essentially finite index. By Lemma 3.9, we get P1 ≺
M

L(Stab I0) ⊂ L(Γ).

Fix j0 ∈ J and i0 ∈ I. Set Λ0 = Stab j0 and Γ0 = Stab i0. Note that condition (C1) says
that Λ0 y J \ {j0} and Γ0 y I \ {i0} act with infinite orbits.

Because of Step 2, we have

NHM
∼= ψ(N)p(`

2(N)⊗ L2(M))M

where p ∈ L(Γ)∞ is such that ψ(L(Λ)) ⊂ pL(Γ)∞p and such that this last inclusion has
essentially finite index.

S 3 (Intertwining the stabilizers L(Λ0) and L(Γ0)). – There exists a partial isometry
v ∈ L(Γ)∞ satisfying

• vv∗ = p and q := v∗v ∈ L(Γ0)∞,
• v∗ψ(L(Λ0))v ⊂ qL(Γ0)∞q and this last inclusion has essentially finite index.

Proof of Step 3. – We first claim that EL(Γ)(ψ(a)) = ψ(EL(Λ)(a)) for all a ∈ N . In
fact, since ψ(L(Λ)) ⊂ L(Γ)∞, it is sufficient to take a ∈ L∞(Y ) 	 C1 and prove that
EL(Γ)(ψ(a)) = 0. Since Λ y (Y, η) is weakly mixing, take a sequence sn ∈ Λ such that
σsn(a) → 0 weakly. It follows that ‖EL(Λ)(νsbσsn(a))‖2 → 0 for all s ∈ Λ and b ∈ L∞(Y ).
Hence,

(8) ‖EL(Λ)(xσsn(a))‖2 → 0 for all x ∈ N .
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Since

‖EL(Γ)(ψ(a))‖2 = ‖ψ(νsn)EL(Γ)(ψ(a))ψ(νsn)∗‖2 = ‖EL(Γ)(ψ(σsn(a)))‖2

for all n, it suffices to prove that ‖EL(Γ)(ψ(σsn(a)))‖2 → 0 in order to obtain our claim.
Choose ε > 0. Since ψ(L(Λ)) ⊂ pL(Γ)∞p is essentially of finite index, Proposition A.2
implies that we can take y1, . . . , ym ∈ pL(Γ)∞p such that

‖EL(Γ)(x)‖2 ≤ ε‖x‖+
m∑
k=1

‖yk‖ ‖Eψ(L(Λ))(y
∗
kx)‖2 for all x ∈ pM∞p .

Moreover, if x ∈ N , we have

‖Eψ(L(Λ))(y
∗
kψ(x))‖2 = ‖EL(Λ)(ψ

−1(Eψ(N)(y
∗
k))x)‖2 .

Using (8), we get that ‖EL(Γ)(ψ(σsn(a)))‖2 ≤ 2‖a‖ε for n large enough. This proves the
claim above.

We claim next that ψ(L(Λ0))
f
≺
L(Γ)

L(Γ0). As in the beginning of the proof of Step 2, a

combination of Lemma 4.2 and Theorem 3.11 yields the conclusion of Step 3.

The prove the claim, let p0 ∈ pL(Γ)∞p∩ψ(L(Λ0))′ be a non-zero projection. We have to
prove that ψ(L(Λ0))p0 ≺

L(Γ)
L(Γ0). Assume the contrary. Since Γ y I is transitive, all the

L(Stab i) are unitarily conjugate inside L(Γ). So, ψ(L(Λ0))p0 6≺
L(Γ)

L(Stab i) for all i ∈ I.

As in the proof of point 1 of Lemma 4.2, we get a sequence of unitaries un in L(Λ0) such
that

‖EL(Γ)(xψ(un)p0y)‖2 → 0 for all x, y ∈ p(M 	 L(Γ))∞p .

Take an invertible element a ∈ L∞(Y
{j0}
0 ) with τ(a) = 0. The claim in the beginning

of the proof says that EL(Γ)(ψ(a)) = 0. So, ‖EL(Γ)(ψ(a)ψ(un)p0ψ(a)∗)‖2 → 0. On the
other hand, ψ(a) and ψ(un) commute, with ψ(un) being unitary in pL(Γ)∞p. Hence,
ψ(a)p0ψ(a)∗ = 0. It follows that p0 = 0, a contradiction.

S 4 (Intertwining the Cartan subalgebras). – We have ψ(L∞(Y )) ≺
M

L∞(X).

Proof of Step 4. – We are by now in the following situation : NHM
∼= ψ(N)p(`

2(N) ⊗
L2(M))M where p ∈ L(Γ0)∞ is such that

• ψ(L(Λ)) ⊂ pL(Γ)∞p and this inclusion has essentially finite index.
• ψ(L(Λ0)) ⊂ pL(Γ0)∞p and this inclusion has essentially finite index.

Although we do not need it in the proof, we make the following clarifying remark : Lemma
4.2 implies that a ∗-homomorphism ψ satisfying all the conditions above, is uniquely deter-
mined up to the obvious replacement of ψ by vψ(·)v∗ for some partial isometry v ∈ L(Γ0)∞

satisfying v∗v = p.

We first claim that EL(Γ0)(ψ(x)) = ψ(EL(Λ0)(x)) for all x ∈ L(Λ). Let s ∈ Λ − Λ0. It
suffices to prove thatEL(Γ0)(ψ(νs)) = 0. Since Λ0 y J \{j0} has infinite orbits, we can take
a sequence sn ∈ Λ0 such that

(9) ‖EL(Λ0)(xνsns)‖2 → 0 for all x ∈ L(Λ) .
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Let ε > 0. Since ψ(L(Λ0)) ⊂ pL(Γ0)∞p is essentially of finite index, Proposition A.2 yields
y1, . . . , ym ∈ L(Γ0) such that

‖EL(Γ0)(x)‖2 ≤ ε‖x‖+
m∑
k=1

‖yk‖ ‖Eψ(L(Λ0))(y
∗
kx)‖2 for all x ∈ pL(Γ0)∞p .

It follows that

‖EL(Γ0)(ψ(νs))‖2 =

‖EL(Γ0)(ψ(νsns))‖2 ≤ ε+
m∑
k=1

‖yk‖ ‖EL(Λ0)(ψ
−1(Eψ(L(Λ))(y

∗
k))νsns)‖2 .

Then (9) implies that EL(Γ0)(ψ(νs)) = 0, proving our first claim.
We next claim that ψ(L∞(Y )) ⊂ p(L∞(X) o Γ0)∞p. The proof of this second claim is

identical to the proof of Lemma 6.10 in [25]. For the convenience of the reader, we repeat it
here in a way adapted to our notations. When F is a subset of the II1 factor M , we denote

[F ] := {x ∈M | ∃xn ∈ spanF such that ‖xn‖ remains bounded and ‖x− xn‖2 → 0}
[F ]∞ := {x ∈M∞ | every component xij of x belongs to [F ]}

Combining Lemmas 4.2 and 3.9, the relative commutant ofψ(L(Λ0)) inside pM∞p is con-
tained in p(L∞(Xi0

0 ) o Γ0)∞p. This implies that

(10) ψ(L∞(Y j00 )) ⊂ [L∞(Xi0
0 )L(Γ0)]∞ .

By our first claim above,

(11) ψ(νs) ⊂ [ug | g ∈ Γ− Γ0]∞ for all s ∈ Λ− Λ0 .

Combining (10) and (11) and the transitivity of Λ y J , it follows that

(12) ψ(L∞(Y j0 )) ⊂ [L∞(X
I\{i0}
0 )L(Γ)]∞ for all j ∈ J \ {j0} .

Take j ∈ J \ {j0} and a ∈ L∞(Y j0 ). We prove now that in fact ψ(a) ∈ (L∞(X) o Γ0)∞.
Denote by E : (L∞(X) o Γ)∞ → (L∞(X) o Γ0)∞ the natural conditional expectation and
set b = ψ(a)−E(ψ(a)). We prove that b = 0. To do so, take x ∈ ψ(L∞(Y j00 )) with τ(x) = 0

and x invertible. Since x commutes with ψ(a) and x belongs to (L∞(X) o Γ0)∞ by (10), we
also get that xb = bx. Further, (12) says that ψ(a) ∈ [L∞(X

I\{i0}
0 )L(Γ)]∞, implying that

(13) b ∈ [L∞(X
I\{i0}
0 )ug | g ∈ Γ− Γ0]∞ .

By (10) and the choice of x, we know that x ∈ [(L∞(Xi0
0 ) 	 C1)L(Γ0)]∞. Combining this

with (13), we get that

bx ∈ [L∞(X
I\{i0}
0 )L(Γ)]∞ ,

xb ∈ [(L∞(Xi0
0 )	 C1) L∞(X

I\{i0}
0 )L(Γ)]∞ .

It follows that bx and xb are orthogonal. Since bx = xb, we conclude that xb = 0. But x was
invertible, so that b = 0, proving the inclusion

ψ(L∞(Y j0 )) ⊂ p(L∞(X) o Γ0)∞p for all j ∈ J \ {j0} .

By (10), the same holds for j = j0. The proof of the second claim ψ(L∞(Y )) ⊂ p(L∞(X) o
Γ0)∞p is done.
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We now end the proof of Step 4 and hence of Theorem 5.1. Suppose that ψ(L∞(Y )) 6≺
M

L∞(X). By the second claim above, we know thatψ(L∞(Y )) ≺
M

L∞(X)oStab i0. Condition

(C2) then yields a non-empty finite subset I0 ⊂ I satisfying

• ψ(L∞(Y )) ≺
M

L∞(X) o Stab I0,

• Stab I0 is non-trivial (because we supposed that ψ(L∞(Y )) 6≺
M

L∞(X)),

• ψ(L∞(Y )) 6≺
M

L∞(X) o Stab(I0 ∪ {i}) whenever i ∈ I \ I1 and I1 = Fix(Stab I0).

Point 3 of Lemma 4.2 implies that ψ(N) ≺
M

L∞(X) o Norm I1. We have reached a contra-

diction with ψ(N) ⊂ pM∞p having finite index, once we show that Norm I1 < Γ has infinite
index. Suppose that Norm I1 < Γ has finite index. Then, Γ =

⋃m
k=1 gk Norm I1. Since

Γ y I is transitive, I =
⋃m
k=1 gkI1. This means that I1 ⊂ I has finite index (in the sense

of Def. 2.3). On the other hand, taking g ∈ Stab I0 and g 6= e, the inclusion I1 ⊂ Fix g to-
gether with condition (C3), imply that I1 ⊂ I has infinite index. We have reached the desired
contradiction.

6. Cartan preserving bimodules and cocycle superrigidity

In this section, we introduce the family of elementary finite index bimodules between group
measure space II1 factors (see Notation 6.2 and Definition 6.7). It is shown in Theorem 6.4
that for cocycle superrigid actions (with countable as well as compact target groups), every
finite index bimodule containing a finite index bimodule between the Cartan subalgebras,
must be elementary. In Subsection 6.2, we describe the fusion rules between elementary bi-
modules.

Also, for suitable generalized Bernoulli actions, the elementary bimodules can be
described entirely in group theoretic terms. This is done in Proposition 6.10.

In Theorem 5.1 it was shown that for suitable generalized Bernoulli action II1 factors, ev-
ery finite index bimodule contains a finite index bimodule between the Cartan subalgebras.
So, coupling Theorem 5.1 with the results of this section, we will arrive at a proof of Theo-
rems 2.2 and 2.8 : all finite index bimodules between good generalized Bernoulli II1 factors
are elementary and the fusion algebra FAlg(M) of such a II1 factor M can be described as
an extended Hecke fusion algebra.

6.1. Reduction to elementary bimodules

T 6.1. – If Γ
σy L∞(X) and Λ

σy L∞(Y ), we say that a ∗-isomorphism
∆ : L∞(X) → L∞(Y ) is a δ-conjugation if δ : Γ → Λ is a group homomorphism and
∆(σg(a)) = σδ(g)(∆(a)) for all a ∈ L∞(X) and all g ∈ Γ.

N 6.2. – Let Γ y (X,µ) and Λ y (Y, η) be ergodic, essentially free, probability
measure preserving actions. Let Ω ∈ Z2(Γ, S1) and ω ∈ Z2(Λ, S1) be scalar 2-cocycles.

We define the following finite index bimodules.
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– Let π : Γ → U(n) be a finite dimensional projective representation with scalar
2-cocycle Ωπ defined by π(g)π(h) = Ωπ(g, h)π(gh). Denote by

Hrep(π,Γ)

the
(
L∞(X) oΩπΩ Γ

)
−

(
L∞(X) oΩ Γ

)
− bimodule defined through the

∗-homomorphism

ψ : L∞(X) oΩπΩ Γ→ Mn(C)⊗
(
L∞(X) oΩ Γ

)
:

ψ(a) = 1⊗ a , ψ(ug) = π(g)⊗ ug for all a ∈ L∞(X), g ∈ Γ .

– Let δ : Γ → Λ be a group isomorphism and ∆ : L∞(X) → L∞(Y ) a ∗-isomorphism
such that ∆ is a δ-conjugation and such that ω(δ(g), δ(h)) = Ω(g, h) for all g, h ∈ Γ.
Denote by

Hiso(Γ,∆,Λ)

the
(
L∞(X)oΩ Γ

)
−
(
L∞(Y )oωΛ

)
− bimodule defined through the ∗-isomorphism

ψ : L∞(X)oΩ Γ→ L∞(Y )oω Λ : ψ(a) = a , ψ(ug) = uδ(g) for all a ∈ L∞(X), g ∈ Γ .

– Let Γ1 < Γ be a finite index subgroup. Denote by

Hincl(Γ1,Γ)

the
(
L∞(X) oΩ Γ1

)
−
(
L∞(X) oΩ Γ

)
− bimodule given by the obvious embedding

of the first crossed product into the second one. Define

Hred(Γ,Γ1)

as the contragredient of Hincl(Γ1,Γ).

We recall the notion of a 1-cocycle for a group action. Suppose that Γ y (X,µ) is a
probability measure preserving action. A 1-cocycle ρ for the action Γ y (X,µ), with values
in the Polish group K, is a measurable map

ρ : X × Γ→ K satisfying ρ(x, gh) = ρ(x, g)ρ(x · g, h) almost everywhere .

The 1-cocycles ρ, ω : X × Γ → K are called cohomologous if there exists a measurable map
ϕ : X → K satisfying

ω(x, g) = ϕ(x) ρ(x, g)ϕ(x · g)−1 almost everywhere .

We identify the set of homomorphisms from Γ to K with the set of 1-cocycles X × Γ → K

not depending on the space variable X.

P 6.3 (Cocycle superrigidity). – We deal with ergodic, essentially free, proba-
bility measure preserving actions Γ y (X,µ) satisfying the following cocycle superrigidity
property : if Γ1 < Γ is a finite index subgroup,K a countable or a compact second countable
group and if

ρ : X × Γ1 → K

is a 1-cocycle, then ρ is cohomologous to a homomorphism Γ1 → K.
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By Corollary 5.4 in the article [24] of Popa, we have the following : if the group Γ admits
an almost normal subgroup H < Γ with the relative property (T) and if Γ y I is such that
H acts with infinite orbits, then the generalized Bernoulli actions Γ y (X0, µ0)I satisfy the
cocycle superrigidity property 6.3.

T 6.4. – Let Γ y (X,µ) and Λ y (Y, η) be ergodic, essentially free, probability
measure preserving actions. Let Ω ∈ Z2(Γ, S1) and ω ∈ Z2(Λ, S1) be scalar 2-cocycles. We
make the following assumptions.

• Γ y (X,µ) and Λ y (Y, η) satisfy the cocycle superrigidity property 6.3.
• Γ, resp. Λ, have no finite normal subgroups and their actions on (X,µ), resp. (Y, η), are

weakly mixing.

Let H be an irreducible
(
L∞(X) oΩ Γ

)
−
(
L∞(Y ) oω Λ

)
− bimodule of finite index

satisfying L∞(X) ≺
H

L∞(Y ). Then there exist

– finite index subgroups Γ1 < Γ and Λ1 < Λ,
– a finite dimensional projective representation π : Γ1 → U(n),
– a ∗-isomorphism ∆ : L∞(X) → L∞(Y ) and a group isomorphism δ : Γ1 → Λ1 such

that ∆ is a δ-conjugation,

satisfying Ω(g, h) = Ωπ(g, h) ω(δ(g), δ(h)) for all g, h ∈ Γ1, as well as the bimodule isomor-
phism

H ∼= Hred(Γ,Γ1) ⊗
L∞(X)oΩΓ1

Hrep(π,Γ1) ⊗
L∞(X)oΩ1

Γ1

Hiso(Γ1,∆,Λ1) ⊗
L∞(X)oωΛ1

Hincl(Λ1,Λ) ,

where Ω1 = Ω−1
π Ω on Γ1.

Proof. – Set A = L∞(X) and B = L∞(Y ). Set N = L∞(Y ) oω Λ and
M = L∞(X) oΩ Γ.

By Lemma 6.5 below, take a projection p ∈ Dk ⊗B and an irreducible finite index inclu-
sion ψ : AoΩ Γ→ pNkp defining the bimodule H and satisfying

ψ(A) ⊂ (Dk ⊗B)p and D := pNkp ∩ ψ(A)′ of type In.

Note that ψ(A) ⊂ Z(D) and that this inclusion has finite index because ψ(M) ⊂ pNkp

has finite index and ψ(A) = ψ(M) ∩ ψ(A)′. Moreover, (Adψ(ug))g∈Γ extends the
given ergodic action Γ y A to an ergodic action on Z(D), giving enough ‘unifor-
mity’ to the inclusion ψ(A) ⊂ Z(D) to obtain an action Γ y {1, . . . , r} × X and a
∗-isomorphism θ : L∞({1, . . . , r} ×X)→ Z(D) satisfying

(i, x) · g = (. . . , x · g) for all (i, x) ∈ {1, . . . , r} ×X and g ∈ Γ,

θ(1⊗ a) = ψ(a) for all a ∈ L∞(X) ,

θ(a(·g)) = ψ(ug)θ(a)ψ(ug)
∗ for all a ∈ L∞({1, . . . , r} ×X), g ∈ Γ.

Write the permutation group Sr as acting on the right on {1, . . . , r}. We get a
1-cocycle ρ : X × Γ → Sr such that (i, x) · g = (i · ρ(x, g), x · g). By cocycle super-
rigidity, we may assume from the beginning that (i, x) · g = (i · g, x · g) for some action
Γ y {1, . . . , r}.
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Define Γ1 = Stab 1 for the action Γ y {1, . . . , r} and set p1 = θ(δ1 ⊗ 1). Since
(Dk ⊗B)p ⊂ D and B ⊂ N is maximal abelian, it follows that Z(D) ⊂ (Dk ⊗B)p. The
restriction of Ω to Γ1 is still denoted as Ω. We define

ψ1 : AoΩ Γ1 → p1N
kp1 : ψ1(x) = ψ(x)p1 .

Writing D1 := p1N
kp1 ∩ ψ1(A)′ = Dp1, the algebra D1 is still of type In and we have by

construction
ψ1(A) = Z(D1) ⊂ (Dk ⊗B)p1 ⊂ D1 .

Denote byH(ψ1) the
(
AoΩ Γ1

)
− N − bimodule defined by ψ1, we also have by construc-

tion
H ∼= Hred(Γ,Γ1) ⊗

AoΩΓ1

H(ψ1) .

Since D1 is of type In with Z(D1) = ψ1(A), take a ∗-isomorphism θ : Mn(C) ⊗ A → D1

satisfying θ(1 ⊗ a) = ψ1(a) for all a ∈ A. Note that (Adψ1(ug))g∈Γ1
defines an action of

Γ1 on D1, extending the given action (σg)g∈Γ1
of Γ1 on A. So, we find for every g ∈ Γ1 a

unitary Ug ∈ Mn(C)⊗A such that

θ(Ug(id⊗σg)(a)U∗g ) = ψ1(ug)θ(a)ψ1(ug)
∗ for all a ∈ Mn(C)⊗A, g ∈ Γ1 .

View Ug as a measurable map from X to U(n). Composing with the quotient map U(n) →
PU(n), we define

ρ : X × Γ1 → PU(n) : ρ(x, g) = Ug(x) .

Then, ρ is a 1-cocycle. Cocycle superrigidity for Γ1 y X implies that we may assume that
Ug = π(g) ⊗ 1 for some projective representation π : Γ1 → U(n). Define Ω1 ∈ Z2(Γ1, S

1)

by the formula Ω1 = Ω−1
π Ω and define for g ∈ Γ1 the unitary νg ∈ p1N

kp1 as

νg = θ(π(g)∗ ⊗ 1)ψ(ug).

The unitaries (νg)g∈Γ1 satisfy the following properties.

• νgνh = Ω1(g, h)νgh for all g, h ∈ Γ1.
• νgψ1(a)ν∗g = ψ1(σg(a)) for all g ∈ Γ1, a ∈ A.
• νg and ψ1(A) commute with θ(Mn(C)⊗ 1) for all g ∈ Γ1.

Let τ1 be the normalized trace on p1N
kp1 and denote by Eψ1(A) the trace preserving con-

ditional expectation p1N
kp1 → ψ1(A). Since Γ1 y X is essentially free, the formula

νgψ1(a) = ψ1(σg(a))νg implies that Eψ1(A)(νg) = 0 for all g 6= e. So, τ1(ψ1(a)νg) = 0 for
g 6= e. Hence, the map aug 7→ ψ1(a)νg extends to an embedding AoΩ1

Γ1 → p1N
kp1.

Let e11 be the obvious minimal projection in Mn(C). Then, θ(e11 ⊗ 1) ∈ D1 is an
abelian projection, while (Dk ⊗B)p1 ⊂ D1 is a maximal abelian subalgebra. We can take
a partial isometry v ∈ D1 such that v∗v = θ(e11 ⊗ 1), p2 := vv∗ belongs to Dk ⊗B and
vθ(e11 ⊗A)v∗ = (Dk ⊗B)p2. Define

ψ2 : AoΩ1 Γ1 → p2N
kp2 : ψ2(aug) = vψ1(a)νgv

∗ .

By construction, we have

H(ψ1) ∼= Hrep(π,Γ1) ⊗
AoΩ1

Γ1

H(ψ2) ,(14)

ψ2(A) = (Dk ⊗B)p2 .
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Set ‹Y = Z
kZ × Y and Λ̃ = Z

kZ × Λ acting in the obvious way on ‹Y . Regard Mk(C) ⊗ N =

L∞(‹Y )oωΛ̃, with the subalgebra Dk ⊗B corresponding to L∞(‹Y ). So, we view p2 ∈ L∞(‹Y ).
The proof of Proposition 5.11 in [24] (using of course once more cocycle superrigidity and

using the absence of finite normal subgroups in Γ; see [10, Theorem 1.8] for a measure theo-
retic approach), yields the following data :

– a finite index, Γ1-invariant subalgebra A0 ⊂ A,
– an injective group homomorphism δ : Γ1 → Λ̃ and a map π0 : Γ1 → S1,
– a non-zero partial isometry v ∈ p2(L∞(‹Y ) o Λ̃) with e = vv∗ and q = v∗v,

satisfying

• e commutes with ψ2(A0 oΩ1
Γ1) and eψ2(a)e = ψ2(EA0

(a))e for all a ∈ A,
• q belongs to L∞(‹Y ) and is δ(Γ1)-invariant,
• the map α : A0 oΩ1

Γ1 → L∞(‹Y )q oω δ(Γ1) : α(x) = v∗ψ2(x)v is a ∗-isomorphism
satisfying α(A0) = L∞(‹Y )q and α(ug) = π0(g)uδ(g).

Since ψ2(A0 oΩ1 Γ1) has finite index in p2N
kp2, it follows that L∞(‹Y )q oω δ(Γ1) has finite

index in q(L∞(‹Y ) oω Λ̃)q. As a consequence, δ(Γ1) < Λ̃ has finite index. But then, δ(Γ1) ∩
({e} × Λ) has still finite index in {e} × Λ. Since q is δ(Γ1)-invariant, it follows that q ∈
L∞( Z

kZ ). The isomorphism α implements a conjugacy between the actions Γ1 y A0 and

δ(Γ1) y L∞(‹Y )q. The first one is weakly mixing and the second one has L∞( Z
kZ )q as a

finite-dimensional invariant subalgebra. We conclude that q must be a minimal projection
in L∞( Z

kZ ). But then we may assume that δ takes values in Λ and identify L∞(‹Y )qoω δ(Γ1)

with L∞(Y ) oω δ(Γ1).
Since we assumed that the restriction of Λ y Y to a finite index subgroup of Λ is cocycle

superrigid, the conjugacy α implies that Γ y A0 is cocycle superrigid. As in the beginning
of the proof, this implies that Γ y A is conjugate to the diagonal action of Γ on A0 and an
action of Γ on a finite set. Since Γ y A is weakly mixing, it follows that A0 = A. But then,
the projection e commutes with ψ2(AoΩ1 Γ1), so that e = p2.

We have altogether shown that the non-normalized trace of p2 ∈ Nk equals 1 and that
there exist a partial isometry v ∈ p2(Mk,1(C)⊗N) as well as an injective group homomor-
phism δ : Γ1 → Λ with image of finite index, and a map π0 : Γ1 → S1 such that p2 = vv∗,
v∗v = 1N and

v∗ψ2(A)v = B , v∗ψ2(ug)v = π0(g)uδ(g) .

If we now replace in (14) the projective representation π by the new projective representation
g 7→ π0(g)π(g) and if we change Ω1 accordingly, we finally arrive at the desired conclusion

H ∼= Hred(Γ,Γ1) ⊗
L∞(X)oΩΓ1

Hrep(π,Γ1)

⊗
L∞(X)oΩ1

Γ1

Hiso(Γ1,∆,Λ1) ⊗
L∞(X)oωΛ1

Hincl(Λ1,Λ) .

The following is a bimodule version of Theorem A.1 in [21] (cf. also Lemma 7.1 in [21]).

L 6.5. – Let A ⊂ (M, τ) and B ⊂ (N, τ) be II1 factors with Cartan subalgebras
A,B. Suppose that MHN is an irreducible finite index bimodule satisfying A ≺

H
B. Denoting

by Dn ⊂ Mn(C) the subalgebra of diagonal matrices, there exist n, a projection p ∈ Dn ⊗ B
and a finite index inclusion ψ : M → pNnp satisfying
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• MHN
∼= ψ(M)p(Mn,1(C)⊗ L2(N))N ,

• ψ(A) ⊂ (Dn⊗B)p ,

• pNnp ∩ ψ(A)′ is a von Neumann algebra of type Ik for some k ∈ N.

Proof. – Take an irreducible finite index inclusion η : M → qNmq such that

MHN
∼= η(M)q(Mm,1(C)⊗ L2(N))N .

By Lemma A.3 and the fact that M ∩ A′ = A, we get that η(A) ⊂ qNmq ∩ η(A)′ has finite
index. Hence, qNmq∩η(A)′ is of finite type I. Moreover, whenever u ∈ NM (A), the unitary
η(u) normalizes qNmq∩η(A)′ and all these normalizing unitaries together act ergodically on
qNmq∩η(A)′ by the irreducibility qNmq∩η(M)′ = C1. The existence of a trace preserving
ergodic action implies that qNmq ∩ η(A)′ is of type Ik for some k ∈ N.

Observe that every, possibly non-unital, ∗-homomorphism A → Mr(C) ⊗ B can be in-
tertwined into a ∗-homomorphism A→ Dr ⊗B. We know that η(A) ≺

N
B and so, using the

previous observation, we find a non-zero partial isometry v ∈ q(Mm,r(C)⊗N) and a, pos-
sibly non-unital, ∗-homomorphism θ : A → Dr ⊗B satisfying η(a)v = vθ(a) for all a ∈ A.
Cutting down v on the left by an abelian projection in qNmq∩η(A)′ and on the right by one
of the minimal projections in Dr, we may assume that r = 1 and that vv∗ is an abelian projec-
tion in qNmq∩η(A)′. Set p1 = θ(1), which is a non-zero projection inB. It follows that v∗v
is an abelian projection in p1Np1 ∩ θ(A)′. Moreover, Bp1 ⊂ p1Np1 ∩ θ(A)′ is a maximally
abelian subalgebra. By a folklore result (use e.g. Section 6.4 in [15]), we can take a partial
isometry w ∈ p1Np1 ∩ θ(A)′ satisfying ww∗ = v∗v and w∗(p1Np1 ∩ θ(A)′)w ⊂ Bp1. Re-
placing v by vw, we have found a non-zero partial isometry v ∈ q(Mm,1(C)⊗N) satisfying
p1 = v∗v ∈ B, vv∗ ∈ qNmq ∩ η(A)′ and v∗(qNmq ∩ η(A)′)v ⊂ Bp1.

Since qNmq ∩ η(A)′ is of type Ik with abelian projection vv∗, denote the central support
of vv∗ by z and take k partial isometries w1, . . . , wk ∈ qNmq ∩ η(A)′ satisfying w∗iwi = vv∗

and
∑k
i=1 wiw

∗
i = z. Set Z = Z(qNmq ∩ η(A)′) and note that Ad η(NM (A)) defines an

ergodic action on Z. So, we can take partial isometries u1, . . . , un in qNmq having initial
and final support in Z and satisfying

u∗juj ≤ z ,
n∑
j=1

uju
∗
j = q and u∗jZuj = u∗jujZ .

Define u ∈ Mm,nk(C)⊗N with columns given by ujwiv ∈ Mm,1(C)⊗N . Then uu∗ = q and
u∗Zu ⊂ Dnk ⊗B. Defining ψ(x) = u∗η(x)u and observing that η(A) ⊂ Z, we have reached
the conclusion of the lemma.

6.2. Fusion rules between elementary bimodules

In this subsection, the Connes tensor product of bimodules is just denoted by juxtaposi-
tion. So, HK means H ⊗

N
K. It will always be clear from the context over which von Neu-

mann algebras the bimodules are considered.

We denote by Aut(X,µ) the Polish group of probability space isomorphisms modulo
equality almost everywhere. Since we write in this article groups as acting on the right onX,
we also let ∆ ∈ Aut(X,µ) act on the right on x and write x ·∆. For every ∆ ∈ Aut(X,µ),
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define (∆∗f)(x) = f(x · ∆−1) and note that ∆∗ ∈ Aut(L∞(X,µ)). As such, the group
Aut(X,µ) is isomorphic with the group of trace preserving automorphisms of L∞(X,µ).

D 6.6. – Let Γ y (X,µ) be an essentially free, probability measure preserving
action.

An element ∆ of Aut(X,µ) is called a commensuration of Γ y (X,µ) if ∆ belongs to the
commensurator of Γ viewed as a subgroup of Aut(X,µ).

Whenever ∆ is a commensuration of Γ y (X,µ), we define the finite index subgroups
of Γ

(15) ∆Γ := Γ ∩∆Γ∆−1 and Γ∆ := Γ ∩∆−1Γ∆ .

Then, δ := Ad ∆−1 : ∆Γ→ Γ∆ is a group isomorphism. Moreover, with the above notations,
∆∗ is a δ-conjugation.

More generally, a commensuration of Γ y (X,µ) and Λ y (Y, η) is a probability space
isomorphism ∆ : (X,µ) → (Y, η) such that Γ ∩∆−1Λ∆ and Λ ∩∆Γ∆−1 have finite index
in Γ, resp. Λ.

D 6.7 (Elementary bimodules). – Let Γ y (X,µ) be an essentially free, prob-
ability measure preserving, weakly mixing action. Let Ω ∈ Z2(Γ, S1) be a scalar 2-cocycle.
Set M = L∞(X) oΩ Γ. Using the notations of 6.2, 6.6 and motivated by Theorem 6.4, we
introduce the following finite index M -M -bimodules.

Suppose that ∆ is a commensuration of Γ y (X,µ) with Γ∆, ∆Γ defined by (15). Let
π : Γ∆ → U(n) be a projective representation satisfying Ωπ Ω = Ω ◦Ad ∆ on Γ∆. Define

H(∆, π) := Hred(Γ,∆Γ) Hiso(∆Γ,∆∗,Γ∆) Hrep(Γ∆, π) Hincl(Γ∆,Γ) .

We call the M -M -bimodules of the form H(∆, π), the elementary M -M -bimodules.

We now write down the fusion rules between the elementaryM -M -bimodules. In order to
do so correctly, we need to take care of the 2-cocycles and define the induction of a projective
representation.

D 6.8. – Let Γ be a group with subgroup Γ1 < Γ. Let π : Γ1 → U(K) be a
projective representation with scalar 2-cocycle Ωπ. Suppose that Ω ∈ Z2(Γ, S1) is a 2-cocyle
that extends Ωπ. We then define the induced projective representation π1 = IndΓ

Γ1
π along the

cocycle Ω on the Hilbert space

K1 := {ξ : Γ→ K | ξ(hg) = Ω(h, g)π(h)ξ(g) for all h ∈ Γ1, g ∈ Γ

and g 7→ ‖ξ(g)‖ belongs to `2(Γ1\Γ)}

by the formula (π1(g)ξ)(h) = Ω(h, g)ξ(hg). Note that Ωπ1
= Ω.

Whenever Ω ∈ Z2(Γ, S1) and g ∈ Γ, define

ϕg(h) = Ω(ghg−1, g)Ω(g, h) .

Also write for every function ϕ : Γ→ S1 its coboundary (∂ϕ)(g, h) = ϕ(g)ϕ(h)ϕ(gh). One
then has

Ω ◦Ad g = (∂ϕg)Ω for all g ∈ Γ .
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T 6.9. – Let Γ y (X,µ) be an essentially free, probability measure preserving,
weakly mixing action. Let Ω ∈ Z2(Γ, S1) be a scalar 2-cocycle. Set M = L∞(X) oΩ Γ.
Define F ⊂ FAlg(M) as the fusion subalgebra generated by the elementary M -M -bimodules
in the sense of Definition 6.7.

Let ∆ and ∆̃ be commensurations of Γ y (X,µ).

1. If π, π̃ are projective representations of Γ∆ satisfying Ωπ = Ωπ̃ = (Ω ◦ Ad ∆) Ω on Γ∆,
then

H(∆, π ⊕ π̃) ∼= H(∆, π)⊕H(∆, π̃) .

2. If π, π̃ are projective representations of Γ∆,Γ∆̃ satisfying Ωπ Ω = Ω◦Ad ∆ and similarly
for Ωπ̃, then the following fusion rule holds.

H(∆, π) H(∆̃, π̃) ∼=
⊕

g∈ Γ
∆
\Γ/

∆̃
Γ

H(∆g∆̃, πg) ,

where πg is the projective representation of Γ∆g∆̃ defined as the induction

πg = Ind
Γ
∆g∆̃

Γ
∆g∆̃
∩Γ̃

∆

Ä
(ϕg ◦Ad ∆̃)(π ◦Ad g∆̃)⊗ π̃

ä
along the 2-cocycle (Ω ◦Ad(∆g∆̃)) Ω on Γ∆g∆̃ .

3. Let π be a projective representation of Γ∆ satisfying Ωπ Ω = Ω ◦ Ad ∆ on Γ∆. Then
H(∆, π) is an irreducible bimodule if and only if π is irreducible. Moreover, for irre-
ducible π, π̃, we have

H(∆, π) ∼= H(∆̃, π̃)

if and only if there exist g, h ∈ Γ such that

∆̃ = g∆h and π̃ is unitarily equivalent with (ϕg ◦Ad(∆h)) (π ◦Adh)ϕh .

Proof. – Point 1 is obvious.
Set A = L∞(X). Let ∆ be a commensuration of Γ y (X,µ). Set Γ1 = ∆Γ and δ =

Ad ∆−1 the isomorphism of Γ1 onto Γ∆. Let π : δ(Γ1)→ U(n) be a projective representation
such that Ωπ Ω = Ω ◦ δ. Let k be the index of Γ1 in Γ. Then,

H(∆, π) ∼= H(ψ)

where ψ : A oΩ Γ → Mn(C) ⊗ Mk(C) ⊗ (A oΩ Γ) is defined as follows. Choose coset
representatives Γ =

⊔k
i=1 Γ1gi and define the action Γ y {1, . . . , k} and the 1-cocycle

η : {1, . . . , k}×Γ→ Γ1 by the formula gis = η(i, s)gi·s for all i ∈ {1, . . . , k} and s ∈ Γ. We
then set

ψ(a) =
k∑
i=1

1⊗ eii ⊗∆∗(σgi(a)) for all a ∈ A ,

ψ(us) =
k∑
i=1

Ω(gi, s)Ω(η(i, s), gi·s)
(
π(δ(η(i, s)))⊗ ei,i·s ⊗ uδ(η(i,s))

)
for all s ∈ Γ .

Based on such a concrete formula, verification of 2 is elementary, though a bit tedious.
We finally prove 3. If π is reducible, it follows immediately from 1 that H(∆, π) is re-

ducible. So, suppose that π is irreducible and realize H(∆, π) ∼= H(ψ) as above. We first
prove that the relative commutant of ψ(A) inside Mn(C) ⊗ Mk(C) ⊗ (A oΩ Γ) is given
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by Mn(C) ⊗ Dk ⊗A. In order to obtain this result, it suffices to take an arbitrary element
x ∈ Mk(C)⊗ (AoΩ Γ) commuting with all the operators

k∑
i=1

eii ⊗∆∗(σgi(a)) , a ∈ A ,

and to prove that x ∈ Dk ⊗A. Consider x as a matrix (xij) with entries in A oΩ Γ and
decompose every entry as xij =

∑
s∈Γ x

s
ijus with xsij ∈ A. It follows that

xsij σs(∆∗(σgj (a))) = ∆∗(σgi(a)) xsij for all a ∈ A, s ∈ Γ, i, j ∈ {1, . . . , k} .

So, if xsij 6= 0, the automorphisms σs◦∆∗◦σgj and ∆∗◦σgi coincide on some non-negligible
part of X. By Lemma 6.11 below, it follows that gig−1

j ∈ Γ1. This implies that i = j. More-
over, if xsii 6= 0, it follows that σs is the identity on a non-negligible part of X and so s = e.
Altogether it follows that x ∈ Dk ⊗A.

The unitaries (ψ(us))s∈Γ normalize Mn(C)⊗Dk ⊗A and define on this last von Neumann
algebra an action that we denote by (ρs). The automorphism θ ∈ Aut(Mn(C) ⊗ Dk ⊗A)

given by
θ(eij ⊗ ek ⊗ a) = eij ⊗ ek ⊗∆(σgk(a)) ,

conjugates the action (ρs) with the diagonal action of Γ y A and the action (γs) of Γ on
Mn(C)⊗Dk given by

γs−1(w ⊗ ek) = π(η(k, s))∗wπ(η(k, s))⊗ ek·s .

Since Γ y A is weakly mixing, the irreducibility of H(ψ) follows if we prove the ergodicity
of (γs). The latter follows straightforwardly from the assumed irreducibility of π.

The statement about the isomorphism between two irreducible elementary bimodules can
be proven in a way that is very similar to the proof of the irreducibility of H(ψ).

We will use Theorem 6.9 to compute explicitly the fusion algebra of certain II1 factors.
So, we need to compute the commensurator of Γ inside Aut(X,µ) in certain cases. This is
done for certain generalized Bernoulli actions in Proposition 6.10 below.

We make use of the obvious embeddings

πi : L∞(X0, µ0)→ L∞((X0, µ0)I) for all i ∈ I .

P 6.10. – Let Γ y I and Λ y J be actions such that Stab i y I \ {i} and
Stab j y J \ {j} act with infinite orbits for all i ∈ I and j ∈ J . Let (X0, µ0) and (Y0, η0) be
standard probability spaces and consider the generalized Bernoulli actions

Γ y (X,µ) := (X0, µ0)I and Λ y (Y0, η0)J .

Suppose that the bijection η : I → J is a commensuration of Γ y I and Λ y J , i.e. η(g · i) =

δ(g)·η(i) for all i ∈ I and g ∈ Γ1, where δ is an isomorphism between the finite index subgroups
Γ1,Λ1 of Γ,Λ.

Let for every orbit i ∈ Γ1\I, be given a trace preserving ∗-isomorphism αi : L∞(X0, µ0)→
L∞(Y0, η0). Define the isomorphism ∆ : (X,µ)→ (Y, η) such that

∆∗ ◦ πi = πη(i) ◦ αi for all i ∈ I .

• ∆ is a commensuration of Γ y (X0, µ0)I and Λ y (Y0, η0)J .
• Every commensuration of Γ y (X0, µ0)I and Λ y (Y0, η0)J arises in this way.
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Proof. – It is obvious that the proposed formula for ∆ defines a commensuration.

Suppose conversely that ∆ is a commensuration of Γ y (X0, µ0)I and Λ y (Y0, η0)J . So,
let ∆(x · g) = ∆(x) · δ(g) for almost all x ∈ X, g ∈ Γ1 where δ : Γ1 → Λ1 is an isomorphism
between finite index subgroups Γ1,Λ1 of Γ,Λ.

We first claim that there exists a bijection η : I → J such that ∆∗(L
∞(Xi

0)) = L∞(Y
η(i)
0 )

for all i ∈ I. Because of the symmetry between ∆ and ∆−1, it is sufficient to prove that for
every i ∈ I, there exists j ∈ J satisfying L∞(Y j0 ) ⊂ ∆∗(L

∞(Xi
0)).

Choose i ∈ I. Set Γ2 = Γ1 ∩ Stab i, which is a finite index subgroup of Stab i. By our
assumptions, L∞(Xi

0) = L∞(X)Γ2 and so ∆∗(L
∞(Xi

0)) = L∞(Y )δ(Γ2). If for all j ∈ J the
group δ(Γ2)∩Stab j would have infinite index in δ(Γ2), the group δ(Γ2) would act with infi-
nite orbits on J and so, the fixed point algebra L∞(Y )δ(Γ2) would be trivial, a contradiction.
So, take j ∈ J and a finite index subgroup Γ3 < Γ2 satisfying δ(Γ3) = δ(Γ2)∩Stab j. Then,
Γ3 < Stab i has finite index, implying that L∞(Xi

0) = L∞(X)Γ3 and hence, ∆∗(L
∞(Xi

0)) =

L∞(Y )δ(Γ3). Therefore,

L∞(Y j0 ) = L∞(Y )Stab j ⊂ L∞(Y )δ(Γ3) = ∆∗(L
∞(Xi

0)) .

This proves the claim above.

It is then clear that η(g · i) = δ(g) · η(i) for all i ∈ I and g ∈ Γ1. One defines for every
i ∈ I, the ∗-isomorphism αi : L∞(X0, µ0) → L∞(Y0, η0) such that ∆∗ ◦ πi = πη(i) ◦ αi. It
is easily checked that αi only depends on the Γ1-orbit of i. So, we are done.

For weakly mixing actions Γ y (X,µ), the subgroup ∆Γ = Γ ∩∆Γ∆−1 for a given com-
mensuration ∆ of Γ y (X,µ) can be characterized by a weaker condition. That is done in
the following lemma that we have used in the proof of Theorem 6.9.

L 6.11. – Let Γ y (X,µ) be an essentially free, probability measure preserving,
weakly mixing action. Then the commensurator of Γ inside Aut(X,µ) acts essentially freely
on (X,µ).

Proof. – Let ∆ be a commensuration of Γ y (X,µ) and suppose that x ·∆ = x for all
x ∈ U and U non-negligible. We have to prove that x ·∆ = x almost everywhere.

If g ∈ Γ ∩∆−1Γ∆ and U ∩ U · g−1 is non-negligible, we find

x ·∆g∆−1 = x · g∆−1 = x · g

for all x ∈ U ∩ U·g−1, so that essential freeness of Γ y (X,µ) implies that ∆ and g commute.

Let now g ∈ Γ∆ = Γ ∩∆−1Γ∆ be arbitrary. Since Γ∆ < Γ has finite index, the action of
Γ∆ on (X,µ) is still weakly mixing. So, we can take g1 ∈ Γ∆ such that both U ∩(U ·g−1) ·g−1

1

and U ∩ U · g−1
1 are non-negligible. By the previous paragraph, ∆ commutes with g1g and

with g1. So, ∆ commutes with g for all g ∈ Γ∆.

But then, for all x ∈ U and all g ∈ Γ∆,

(x · g) ·∆ = x · (g∆) = x · (∆g) = x · g .

Since Γ∆ acts ergodically on (X,µ), it follows that x ·∆ = x for almost all x ∈ X.
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7. Proofs of the results announced in Section 2

About Examples 2.5. – The non-trivial points to verify in 2.5 are the following.

– All the linear groups/linear actions satisfy the minimal condition on centraliz-
ers/stabilizers because in a finite dimensional vector space, there cannot be an infinite
strictly decreasing sequence of vector subspaces.

– Groups defined by a (possibly infinite) presentation satisfying the C ′(1/6)-small can-
celation condition satisfy the minimal condition on centralizers because the centralizer
of any non-trivial element is cyclic, see [27]. For more or less analogous reasons, word
hyperbolic groups satisfy the minimal condition on centralizers, see Example 3.2.4 in
[8].

– Note that Zn < SL(n,Q) n Qn and PSL(n,Z) < PSL(n,Q) are almost normal sub-
groups with the relative property (T).

In order to treat systematically the concrete computations of fusion algebras in 2.7 and
2.9, we start with the following lemma computing some commensurators of subgroups.

L 7.1. – Let Γ < GL(n,Q) be a subgroup with the following property : if
Γ0 < Γ is a finite index subgroup and if V ⊂ Qn is a non-zero globally Γ-invariant vector
subspace of Qn, then V = Qn.

Then, the commensurator of ΓnQn inside Perm(Qn) equals CommGL(n,Q)(Γ)nQn.
– Let Λ be a group that cannot be written as a non-trivial direct product and that has no

non-trivial finite index subgroups. Let Λ0 < Λ be a proper subgroup with the relative
ICC property (see the end of Section 1 for terminology).

Then, the commensurator of the left-right action of Λ0 × Λ on Λ is given by the per-
mutations g 7→ α(g)g0 for some α ∈ CommAut(Λ)(Ad Λ0) and g0 ∈ Λ.

Proof. – To prove the first item, write, maybe confusingly, Γ n Qn = {(v, g) | v ∈ Qn,

g ∈ Γ} acting on Qn by (v, g) ·w = v+ gw. Let η be a permutation of Qn in the commensu-
rator of Γ n Qn. Composing with a translation, we may assume that η(0) = 0. Since Qn has
no non-trivial finite index subgroups, we find finite index subgroups Γ0,Γ1 of Γ and a group
isomorphism δ : Γ0 n Qn → Γ1 n Qn satisfying η(v + gw) = δ(v, g) · η(w) for all g ∈ Γ0

and v, w ∈ Qn. In particular, δ(Γ0) = Γ1 and the lemma is proven once we have shown that
δ(Qn) = Qn. By symmetry it suffices to show that δ(Qn) ⊂ Qn.

Write δ(v, 1) = (π(v), ρ(v)) for all v ∈ Qn. Set V = {v ∈ Qn | ρ(v) = 1}. We have
to prove that V = Qn. Assume that ρ(v) 6= 1 for some v ∈ Qn. Since δ(Qn) is a normal
subgroup of Γ1 n Qn, it follows that

((1− ρ(v))w, 1) = (w, 1) δ(v, 1) (−w, 1) δ(v, 1)−1 belongs to δ(Qn)

for all v, w ∈ Qn. Since we assumed that ρ(v) 6= 1 for at least one v ∈ Qn, it follows that
V 6= {0}. So, V is a non-trivial globally Γ0-invariant subgroup of Qn. We finally prove that
V is in fact a vector subspace of Qn. Then, our assumptions imply that V = Qn, ending the
proof of the first item.

Since ((1− ρ(v))w, 1) ∈ δ(Qn), it follows that ((1− ρ(v))w, 1) and δ(v′, 1) commute for
all v, v′, w ∈ Qn. Writing this out yields (1 − ρ(v′))(1 − ρ(v)) = 0 for all v, v′ ∈ Qn. But
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then, γ(v) = ρ(v) − 1 defines an additive group homomorphism γ : Qn → Mn(Q). Such a
homomorphism is automatically linear and so, V is a vector subspace of Qn.

To prove the second item, let η ∈ Perm(Λ) be in the commensurator of Λ0 × Λ. We may
assume that η(e) = e. We have to prove that η is an automorphism of Λ. By our assumptions,
we find finite index subgroups Λ1,Λ2 < Λ0 and an isomorphism δ : Λ1 × Λ → Λ2 × Λ

satisfying η((g, h) · i) = δ(g, h) ·η(i). In particular, δ(diag(Λ1)) = diag(Λ2), where diag(Λi)

denotes the diagonal subgroup of Λi × Λ.

We claim that δ = α × α for some automorphism α ∈ Aut(Λ) satisfying α(Λ1) = Λ2.
Once the claim is proven, the second item of the lemma follows immediately. To prove the
claim, it suffices to prove that δ(Λ1 × {e}) = Λ2 × {e}. Indeed, taking centralizers, it then
follows that δ({e} × Λ) = {e} × Λ, yielding the automorphism α ∈ Aut(Λ). But then,
δ = α× α, because δ preserves the diagonal subgroups.

In order to finally prove that δ(Λ1 × {e}) = Λ2 × {e}, it suffices by symmetry to prove
the inclusion δ(Λ1 × {e}) ⊂ Λ2 × {e}. Denote by Γ1, resp. Γ, the image of δ(Λ1 × {e}),
resp. δ({e}×Λ) under the projection map Λ2×Λ→ Λ. We have written Λ as the product of
two commuting subgroups Γ1 and Γ. Since Λ has trivial center and cannot be written as a
non-trivial direct product, one of the groups Γ1, Γ is trivial. If Γ1 is trivial, we are done. So,
suppose that Γ is trivial. This means that δ({e}×Λ) ⊂ Λ1×{e}. Again taking centralizers,
we find a subgroup Λ3 < Λ1 such that δ(Λ3×{e}) = {e}×Λ. Since δ({e}×Λ3) ⊂ Λ1×{e}, it
follows that δ(diag Λ3) projects surjectively onto Λ. A fortiori, diag Λ2 = δ(diag Λ1) projects
surjectively onto Λ. This is a contradiction, since Λ0 is a proper subgroup of Λ.

The proofs of 2.7, 2.8 and 2.11 all start by combining Theorems 5.1 and 6.4. Note in this
respect that conditions (C1) and (C3) imply that the groups Γ under consideration do not
have finite normal subgroups different from {e}.

Proof of Corollary 2.7. – As was probably noted first in [17], the group Γ := SL(2,Q) n
Q2 does not admit non-trivial finite dimensional unitary representations. In particular, Γ

has no non-trivial finite index subgroups. Then, Corollary 2.7 follows from Theorems 5.1,
6.4 and Proposition 6.10, once we have shown the following : if η is a permutation of Q2 that
normalizes Γ and satisfies Ωα ∼ Ωα ◦Ad η as scalar 2-cocycles on Γ, then η belongs to Γ.

Lemma 7.1 says that η = (g0, v0) ∈ GL(2,Q) n Q2. A small computation yields Ωα ◦
Ad η ∼ Ω(det g0)α. So, Ωα ∼ Ω(det g0)α as scalar 2-cocycles on Γ and in particular as scalar
2-cocycles on Q2. It is well known, and even directly computable, that this implies α =

(det g0)α. Since α 6= 0, we conclude that det g0 = 1 and so η ∈ Γ.

Proof of Theorem 2.8. – By Theorems 5.1 and 6.4, FAlg(M) equals the fusion algebra of
elementaryM -M -bimodules in the sense of Definition 6.7. Theorem 6.9 says that the fusion
algebra of elementaryM -M -bimodules is exactly given as the extended Hecke fusion algebra
Hrep(Γ < G), where G denotes the commensurator of Γ inside Aut(X,µ). By Proposition
6.10 and because (X0, µ0) is assumed to be atomic with unequal weights, the latter is isomor-
phic with the commensurator of Γ inside Perm(I).
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Proof of Example 2.9. – In all three examples, we use the following principle : let Γ1 <

G1 be a Hecke pair and π : G1 → G a surjective homomorphism satisfying Kerπ ⊂ Γ1.
Set Γ := π(Γ1) and note that Γ < G is again a Hecke pair. Assume moreover that every
finite dimensional unitary representation of Γ1 is trivial on Kerπ. Then, Hrep(Γ1 < G1) ∼=
Hrep(Γ < G).

Example 2.9.1. By Theorem 2.8 and Lemma 7.1, FAlg(M) ∼= Hrep
(
(SL(n,Z) n Qn) <

(GL(n,Q) n Qn)
)
. We claim that the latter is isomorphic withHrep(SL(n,Z) < GL(n,Q)).

Because of the principle above, it is sufficient to show that every finite dimensional unitary
representation π of SL(n,Z)nQn is trivial on Qn. The restriction of π to Qn is the direct sum
of group characters of Qn belonging to a finite subset S ⊂ ”Qn. We have to prove that S =

{1}. Since S is finite, every ω ∈ S is invariant under a finite index subgroup Γ < SL(n,Z),
meaning that ω((1 − g)x) = 1 for all g ∈ Γ and x ∈ Qn. All sums of elements of the form
(1−g)x, for g ∈ Γ and x ∈ Qn, form a vector subspace of Qn. If ω 6= 1, this vector subspace
is not the whole of Qn and we find a non-zero y ∈ Qn such that g>y = y for all g ∈ Γ. This
contradicts the fact that Γ has finite index in SL(n,Z).

Example 2.9.2. By [26], Aut(PSL(n,Q)) = Z/2Z n PGL(n,Q), where Z/2Z acts by
the order 2 automorphism δ(A) = (A>)−1. The result is then a combination of Theorem
2.8, Lemma 7.1 and the above mentioned principle. On the way, one uses once more that
PSL(n,Q) has no non-trivial finite dimensional unitary representations.

Example 2.9.3. Set Γ := Λ0 × Λ. By Lemma 7.1, the inclusion Γ < CommPerm(Λ)(Γ) is
isomorphic with Γ < G, where

G = {(ρ, ρ ◦Ad g) | ρ ∈ CommAut(Λ)(Λ0), g ∈ Λ} .

But, Aut(Λ) = GL(2,Q) n Q2. Moreover, for all ρ ∈ GL(2,Q) n Q2, we have Ωα ◦ ρ =

Ω(det ρ)α and Λ has no non-trivial finite dimensional unitary representations. A combination
of Theorems 5.1, 6.4, 6.9, Proposition 6.10 and the above principle, implies that FAlg(M) ∼=
Hrep(Λ0 < CommΛ(Λ0)).

A small computation shows that CommΛ(Λ0) consists of the elements
(( q 0

0 q−1

)
,
( x
y

))
with q ∈ Q∗ and x, y ∈ Q. Note that

((
0 1
−1 0

)
,
( x
y

))
is excluded from this commensurator

because R < Q has infinite index as an additive subgroup. Finally, consider the quotient
homomorphism

CommΛ(Λ0)→ Q∗ n Q :
(( q 0

0 q−1

)
,
( x
y

))
7→ (q, x) .

We shall apply the principle above to conclude that FAlg(M) = Hrep
(
(R∗ n R) <

(Q∗ n Q)
)
. In order to do so, we have to show that every finite dimensional unitary

representation of Λ0 factorizes through R∗ n R. It suffices to show that every finite dimen-
sional unitary representation π of R∗ n Q is trivial on Q. The restriction of such a π to Q is
a finite direct sum of group characters ω ∈ S ⊂ “Q. It follows that the finite set S is globally
invariant under R∗. But R∗ acts freely on “Q − {1}, implying that S = {1}. So, π is trivial
on Q.

Proof of Corollary 2.11. – Theorems 5.1 and 6.4 imply that, up to inner automorphisms,
every automorphism of M is given by a character of Γ and an element in the normalizer of
Γ inside Aut(X,µ). This normalizer is determined in Proposition 6.10, yielding the result in
Corollary 2.11.
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About Examples 2.12. – In the first example, set Γ := PSL(n,Z). Note that for n odd,
PSL(n,Z) = SL(n,Z). By Example 2.6.1 in [1], Out(Γ) has two elements, the non-trivial
one being given by α : A 7→ (A>)−1. Since there is no permutation η of P(Qn) satisfying
η(Av) = α(A)η(v) for all A ∈ Γ, v ∈ P(Qn), we conclude that the normalizer of Γ inside
Perm(P(Qn)) equals Γ. Because Γ has no non-trivial characters, the conclusion follows from
Corollary 2.11.

As in the second item of Lemma 7.1 and using the example in the previous paragraph,
the normalizer of Γ := PSL(n,Z) × Λ × Λ inside Perm(P(Qn) × Λ) is generated by Γ,
{id} × Aut(Λ) and the permutation (v, g) 7→ (v, g−1). The conclusion follows again from
Corollary 2.11.

Proof of Theorem 2.13. – LetQ be a given countable group. Bumagin and Wise construct
in [4] a countable group Λ with the following properties.

• Out(Λ) ∼= Q.
• Λ is a subgroup of a C ′(1/6)-small cancelation group and Λ is not virtually cyclic. In

particular, Λ is ICC and satisfies the minimal condition on centralizers (see 2.5). Also,
the centralizer in Λ of any non-cyclic subgroup is trivial.

• Slightly modifying the construction of [4], by adding relations that make it impossible
to have non-trivial abelian quotients, we may also assume that Char Λ = {1}.

Let a finite group H act by permutations of a finite set J , in such a way that CharH = {1}
and that the normalizer of H inside Perm(J) equals H. A concrete example is provided in
Lemma 7.8 in [25] as the linear action ofH = GL(3, F2) on J = F 3

2 \ {0}, where F2 denotes
the field with two elements. We then consider the action Γ y I, defined as the direct product
of the actions

PSL(3,Z) y P(Q3) and ((ΛJ oH)× Λ) y ΛJ .

In this expression, ΛJ oH acts on the left on ΛJ , while Λ acts diagonally on the right.

In order to show that Γ y I is a good action of a good group, we have to prove that the
action ((ΛJ oH)×Λ) y ΛJ satisfies conditions (C1), (C2) and (C3) in Definition 2.3. Con-
ditions (C1) and (C2) are immediately given by the ICC property and the minimal condition
on centralizers for Λ. Condition (C3) is checked as follows : if σ ∈ H is different from the
identity, Fix((g, σ), h) has infinite index because the diagonal subgroup diag Λ < Λ×Λ has
infinite index. When σ = e, but (g, h) 6= e, we again have Fix((g, e), h) of infinite index,
because Λ is an ICC group.

Define M as the generalized Bernoulli II1 factor associated with Γ y I and an atomic
base space with unequal weights. Corollary 2.11 yields Out(M) ∼= G/Γ, whereG denotes the
normalizer of Γ inside Perm(I). In order to determine this normalizer, first make the follow-
ing easy observation. Let (Γi)i∈F and (Λj)j∈K be finite families of ICC groups with the prop-
erty that they do not contain a non-trivial direct product as a finite index subgroup. Then, for
every injective homomorphism θ :

⊕
i∈F Γi →

⊕
j∈K Λj with finite index image, there ex-

ists a bijection σ : F → K satisfying θ(Γi) ⊂ Λσ(i). With a reasoning similar to Lemma 7.1,
we deduce that the normalizer G of Γ inside Perm(I), is generated by Γ and Aut(Λ). Here,
Aut(Λ) is viewed as acting diagonally on ΛJ . So, Out(M) ∼= G/Γ ∼= Out(Λ) ∼= Q and we
are done.
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Appendix: Inclusions of (essentially) finite index
and approximations of conditional expectations

Let A ⊂ (M, τ) be an inclusion of tracial von Neumann algebras. Jones’ basic construc-
tion is defined as the von Neumann algebra 〈M, eA〉 acting on L2(M, τ) generated byM and
the Jones projection eA defined by eAx = EA(x) for all x ∈ M . Here we view A ⊂ M ⊂
L2(M, τ) and EA is the unique τ -preserving conditional expectation. We make the follow-
ing well known observations.

– The von Neumann algebra 〈M, eA〉 equals the commutant of the right action of A on
L2(M, τ).

– The projection eA commutes with A inside 〈M, eA〉 and further we have eAxeA =

EA(x)eA for all x ∈ M . It follows that the linear span of the elements xeAy with
x, y ∈M is a dense ∗-subalgebra of 〈M, eA〉.

The basic construction 〈M, eA〉 comes equipped with a semifinite faithful normal trace Tr

characterized by the formula

Tr(xeAy) = τ(xy) for all x, y ∈M .

The Jones index of the inclusion A ⊂ (M, τ) satisfies [M : A] = Tr(1). The value of [M : A]

depends on the choice of tracial state τ . In this article, there will be in all circumstances a nat-
ural choice of tracial state, either given by an ambient II1 factor, either as the natural tracial
state on L(Γ). So, when we speak about a finite index inclusion, it is always with respect to
the naturally present state. In Definition A.2 we will moreover see that this kind of subtlety
is not really crucial.

As rightA-modules, L2(M)A ∼= p(`2(N)⊗L2(A))A for some projection p ∈ B(`2(N))⊗A.
One verifies that [M : A] = (Tr⊗τ)(p). A canonical index forA ⊂M would rather be given
by the Z(A)-valued trace of the right A-module L2(M)A.

For completeness, we give a proof of the following elementary lemma.

L A.1. – Let A ⊂ (M, τ).

– Suppose that L2(M) is generated as a right A-module by n vectors ξ1, . . . , ξn ∈ L2(M),
meaning that L2(M) is the closure of ξ1A+ · · ·+ ξnA. Then, [M : A] ≤ n.

– If [M : A] <∞ and ε > 0, there exists a central projection z ∈ Z(A) satisfying τ(z) >

1− ε such that L2(Mz) is finitely generated as a right A-module (and in the sense of the
previous item).

Proof. – Let ξ ∈ L2(M) and denote by p ∈ 〈M, eA〉 the orthogonal projection onto the
closure of ξA. The densely defined operator M ⊂ L2(M) → L2(M) : x 7→ ξEA(x) is
closable and the polar decomposition of its closure yields a partial isometry v ∈ 〈M, eA〉
satisfying vv∗ = p and v∗v ≤ eA. It follows that Tr(p) = Tr(vv∗) = Tr(v∗v) ≤ Tr(eA) = 1.
If now L2(M) is generated by ξ1, . . . , ξn, we find in this way projections p1, . . . , pn in 〈M, eA〉
satisfying Tr(pi) ≤ 1 for all i and 1 = p1 ∨ · · · ∨ pn. So, Tr(1) ≤ n and hence by definition
[M : A] <∞.

Suppose now that [M : A] < ∞. Denote by J : L2(M) → L2(M) the anti-unitary
given by Jx = x∗ for all x ∈ M . We know that Tr defines a finite faithful normal trace on
〈M, eA〉, which is hence a finite von Neumann algebra. Moreover, the center of 〈M, eA〉 is
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given by JZ(A)J and eA is a projection with central support equal to 1 in 〈M, eA〉. Given
ε > 0, it follows that we can take a projection z ∈ Z(A) and a finite number of partial
isometries v1, . . . , vn ∈ 〈M, eA〉 satisfying τ(z) > 1 − ε and JzJ =

∑n
i=1 vieAv

∗
i . Viewing

1 ∈M as a vector in L2(M) and vi as an operator on L2(M), define ξi = vi(1). We find that
L2(Mz) = JzJ L2(M) is generated by ξ1, . . . , ξn as a right A-module.

We have two reasons to introduce a wider notion of ‘finite index inclusion’. This other
notion has two advantages : it is independent of the choice of traces involved and arbitrary
direct sums of finite index inclusions remain, what we will call, essentially of finite index. The
following proposition has nothing new in it : indeed the construction of the yi in point 3 be-
low, repeats the construction of a Pimsner-Popa basis of a finite index inclusion, see Propo-
sition 1.3 in [19].

D/P A.2. – Let A ⊂ (M, τ). We say that A ⊂M is essentially of
finite index if one of the following equivalent conditions holds.

1. For every ε > 0, there exists a projection p ∈ M ∩ A′ such that τ(p) > 1 − ε and
[pMp : Ap] <∞ (w.r.t. the trace τ(p)−1τ(·) on pMp).

2. The trace Tr on 〈M, eA〉 is semifinite on M ′ ∩ 〈M, eA〉.
3. For every ε > 0, there exist a projection p ∈ M ∩ A′ with τ(p) > 1 − ε and elements
y1, . . . , yn ∈Mp satisfying

xp =
n∑
i=1

yiEA(y∗i x) for all x ∈M .

Proof of the equivalence of the three conditions. – Denote as above by J : L2(M) →
L2(M) the anti-unitary given by Jx = x∗ for all x ∈ M . Note that M ′ ∩ 〈M, eA〉 =

J(M ∩A′)J .
Suppose that 1 holds and choose ε > 0. Take p ∈ M ∩ A′ with τ(p) > 1 − ε and

[pMp : Ap] <∞. It follows from Lemma A.1 that, after making p slightly smaller but keep-
ing τ(p) > 1 − ε, we have L2(Mp) finitely generated as a right A-module. Since L2(Mp) =

JpJ L2(M) an argument identical to the first part of the proof of Lemma A.1 shows that
Tr(JpJ) <∞. So, we have proven 2.

Suppose that 2 holds and choose ε > 0. Take a projection p ∈M ∩A′ with τ(p) > 1− ε
and Tr(JpJ) < ∞. Then, the formula x 7→ Tr(xJpJ) defines a finite trace on M .
Cutting p with a projection in Z(M), but keeping τ(p) > 1 − ε, we may suppose that
Tr(xJpJ) ≤ λτ(x) for all x ∈ M+ and some λ > 0. Finally, cutting JpJ with a projection
in Z(〈M, eA〉) = JZ(A)J and keeping τ(p) > 1− ε, we may assume the existence of partial
isometries v1, . . . , vn ∈ 〈M, eA〉 satisfying JpJ =

∑n
i=1 vieAv

∗
i . As in the proof of Lemma

A.1, we consider vi as an operator on L2(M) and define ξi ∈ L2(M) such that ξi = vi(1).
We claim that in fact ξi ∈ Mp. First note that 〈a, ξi〉 = Tr(eAa

∗vi) for all a ∈ M . To
prove that ξi ∈ M , it is sufficient to check that (a, b) 7→ 〈ab∗, ξi〉 is a bounded sesquilinear
form on L2(M). This is the case because of

|Tr(eAba
∗vi)|2 = |Tr(eAba

∗vieA)|2 ≤ Tr(eAbb
∗eA) Tr(a∗vieAv

∗
i a)

≤ ‖b‖22 Tr(a∗JpJa) ≤ λ ‖a‖22 ‖b‖22 .
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Since vi = JpJvi and hence JpJξi = ξip, we conclude that ξi ∈ Mp. Write yi = ξi. One
checks that vieA = yieA, so that we have shown that

JpJ =
n∑
i=1

yieAy
∗
i .

This is exactly 3.
If 3 holds, we clearly find for every ε > 0 a projection p ∈M ∩A′ such that τ(p) > 1− ε

and such that L2(Mp) is finitely generated as a right A-module. Point 1 then follows from
Lemma A.1.

Also the following lemma is well known, but we include a proof for the convenience of the
reader.

L A.3. – Let A ⊂ B ⊂ (M, τ).

• [M ∩A′ : B ∩A′] ≤ [M : B].
• IfB ⊂M is essentially of finite index, alsoB∩A′ ⊂M ∩A′ is essentially of finite index.

Proof. – Observe that EB(x) = EB∩A′(x) whenever x ∈ M ∩ A′. So, the map
ψ(xeB∩A′y) = xeBy for x, y ∈ M ∩ A′ extends to a, possibly non-unital, Tr-preserving
embedding ψ : 〈M ∩A′, eB∩A′〉 → 〈M, eB〉. It follows that

[M ∩A′ : B ∩A′] = Tr〈M∩A′,eB∩A′ 〉(1) = Tr〈M,eB〉(ψ(1)) ≤ Tr〈M,eB〉(1) = [M : B] .

This proves the first point of the lemma. The second point follows from the first point and
the observation that M ∩B′ ⊂ (M ∩A′) ∩ (B ∩A′)′.
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