Coarse topology, enlargeability, and essentialness
[Topologie à grande échelle, agrandissabilité et non-annulation en homologie]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 41 (2008) no. 3, pp. 473-495.

En utilisant des méthodes de topologie à grande échelle, on prouve que les classes fondamentales des variétés agrandissables ne s’annulent pas, ni dans l’homologie rationnelle de leurs groupes fondamentaux, ni dans la K-théorie des C * -algèbres réduites correspondantes. Nos résultats ne dépendent pas de la conjecture de Baum-Connes, et confirment de façon indépendante certaines conséquences de cette conjecture.

Using methods from coarse topology we show that fundamental classes of closed enlargeable manifolds map non-trivially both to the rational homology of their fundamental groups and to the K-theory of the corresponding reduced C * -algebras. Our proofs do not depend on the Baum-Connes conjecture and provide independent confirmation for specific predictions derived from this conjecture.

DOI : 10.24033/asens.2073
Classification : 53C23, 55N99, 19K35, 19K56
@article{ASENS_2008_4_41_3_473_0,
     author = {Hanke, Bernhard and Kotschick, Dieter and Roe, John and Schick, Thomas},
     title = {Coarse topology, enlargeability, and essentialness},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {473--495},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {Ser. 4, 41},
     number = {3},
     year = {2008},
     doi = {10.24033/asens.2073},
     mrnumber = {2482205},
     zbl = {1169.53032},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2073/}
}
TY  - JOUR
AU  - Hanke, Bernhard
AU  - Kotschick, Dieter
AU  - Roe, John
AU  - Schick, Thomas
TI  - Coarse topology, enlargeability, and essentialness
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2008
SP  - 473
EP  - 495
VL  - 41
IS  - 3
PB  - Société mathématique de France
UR  - http://www.numdam.org/articles/10.24033/asens.2073/
DO  - 10.24033/asens.2073
LA  - en
ID  - ASENS_2008_4_41_3_473_0
ER  - 
%0 Journal Article
%A Hanke, Bernhard
%A Kotschick, Dieter
%A Roe, John
%A Schick, Thomas
%T Coarse topology, enlargeability, and essentialness
%J Annales scientifiques de l'École Normale Supérieure
%D 2008
%P 473-495
%V 41
%N 3
%I Société mathématique de France
%U http://www.numdam.org/articles/10.24033/asens.2073/
%R 10.24033/asens.2073
%G en
%F ASENS_2008_4_41_3_473_0
Hanke, Bernhard; Kotschick, Dieter; Roe, John; Schick, Thomas. Coarse topology, enlargeability, and essentialness. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 41 (2008) no. 3, pp. 473-495. doi : 10.24033/asens.2073. http://www.numdam.org/articles/10.24033/asens.2073/

[1] M. F. Atiyah, Elliptic operators, discrete groups and von Neumann algebras, in Colloque “Analyse et Topologie” en l'honneur de Henri Cartan (Orsay, 1974), Astérisque 32-33, 1976, 43-72. | Numdam | MR | Zbl

[2] P. Baum, A. Connes & N. Higson, Classifying space for proper actions and K-theory of group C * -algebras, in Proceedings of a special session on C * -algebras: 1943-1993 (San Antonio, TX, 1993), Contemp. Math. 167, 1994, 240-291. | Zbl

[3] B. Blackadar, K-theory for operator algebras, second éd., Mathematical Sciences Research Institute Publications 5, Cambridge University Press, 1998. | MR | Zbl

[4] J. Block & S. Weinberger, Aperiodic tilings, positive scalar curvature and amenability of spaces, J. Amer. Math. Soc. 5 (1992), 907-918. | Zbl

[5] I. Chatterji & G. Mislin, Atiyah’s L 2 -index theorem, Enseign. Math. 49 (2003), 85-93. | Zbl

[6] A. N. Dranishnikov, On hypersphericity of manifolds with finite asymptotic dimension, Trans. Amer. Math. Soc. 355 (2003), 155-167. | MR | Zbl

[7] W. Dwyer, T. Schick & S. Stolz, Remarks on a conjecture of Gromov and Lawson, in High-dimensional manifold topology, World Sci. Publ., River Edge, NJ, 2003, 159-176. | Zbl

[8] G. Gong & G. Yu, Volume growth and positive scalar curvature, Geom. Funct. Anal. 10 (2000), 821-828. | Zbl

[9] M. Gromov, Volume and bounded cohomology, Publ. Math. I.H.É.S. 56 (1982), 5-99 (1983). | Numdam | MR | Zbl

[10] M. Gromov, Large Riemannian manifolds, in Curvature and topology of Riemannian manifolds (Katata, 1985), Lecture Notes in Math. 1201, Springer, 1986, 108-121. | MR | Zbl

[11] M. Gromov, Asymptotic invariants of infinite groups, in Geometric group theory, Vol. 2 (Sussex, 1991), London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press, 1993, 1-295. | MR | Zbl

[12] M. Gromov, Positive curvature, macroscopic dimension, spectral gaps and higher signatures, in Functional analysis on the eve of the 21st century, Vol. II (New Brunswick, NJ, 1993), Progr. Math. 132, Birkhäuser, 1996, 1-213. | MR | Zbl

[13] M. Gromov & H. B. J. Lawson, Spin and scalar curvature in the presence of a fundamental group. I, Ann. of Math. 111 (1980), 209-230. | Zbl

[14] M. Gromov & H. B. J. Lawson, Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Publ. Math. I.H.É.S. 58 (1983), 83-196. | Numdam | Zbl

[15] B. Hanke & T. Schick, Enlargeability and index theory, J. Differential Geom. 74 (2006), 293-320. | Zbl

[16] B. Hanke & T. Schick, Enlargeability and index theory: infinite covers, K-Theory 38 (2007), 23-33. | Zbl

[17] N. Higson, E. K. Pedersen & J. Roe, C * -algebras and controlled topology, K-Theory 11 (1997), 209-239. | Zbl

[18] N. Higson & J. Roe, Analytic K-homology, Oxford Mathematical Monographs, Oxford University Press, 2000. | Zbl

[19] D. S. Kahn, J. Kaminker & C. Schochet, Generalized homology theories on compact metric spaces, Michigan Math. J. 24 (1977), 203-224. | Zbl

[20] J. Kaminker & C. Schochet, K-theory and Steenrod homology: applications to the Brown-Douglas-Fillmore theory of operator algebras, Trans. Amer. Math. Soc. 227 (1977), 63-107. | Zbl

[21] J. Milnor, On the Steenrod homology theory, in Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser. 226, Cambridge Univ. Press, 1995, 79-96. | MR | Zbl

[22] J. Roe, Index theory, coarse geometry, and topology of manifolds, CBMS Regional Conference Series in Mathematics 90, American Math. Soc., 1996. | MR | Zbl

[23] J. Roe, Comparing analytic assembly maps, Q. J. Math. 53 (2002), 241-248. | MR | Zbl

[24] J. Roe, Lectures on coarse geometry, University Lecture Series 31, American Math. Soc., 2003. | MR | Zbl

[25] T. Schick, A counterexample to the (unstable) Gromov-Lawson-Rosenberg conjecture, Topology 37 (1998), 1165-1168. | MR | Zbl

[26] R. Schultz (éd.), Group actions on manifolds, Contemporary Mathematics 36, Amer. Math. Soc., 1985. | MR | Zbl

[27] S. Stolz, Manifolds of positive scalar curvature, in Topology of high-dimensional manifolds, No. 1, 2 (Trieste, 2001), ICTP Lect. Notes 9, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2002, 661-709. | MR | Zbl

[28] N. E. Wegge-Olsen, K-theory and C * -algebras: a friendly approach, Oxford Science Publications, Oxford University Press, 1993. | MR | Zbl

[29] G. Yu, The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math. 139 (2000), 201-240. | MR | Zbl

Cité par Sources :