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EQUIDISTRIBUTION TOWARDS THE GREEN
CURRENT FOR HOLOMORPHIC MAPS

 T-C DINH  N SIBONY

A. – Let f be a non-invertible holomorphic endomorphism of a projective space and fn

its iterate of order n. We prove that the pull-back by fn of a generic (in the Zariski sense) hypersur-
face, properly normalized, converges to the Green current associated to f when n tends to infinity. We
also give an analogous result for the pull-back of positive closed (1, 1)-currents and a similar result for
regular polynomial automorphisms of Ck.

R. – Soient f un endomorphisme holomorphe non-inversible d’un espace projectif et fn son
itéré d’ordre n. Nous prouvons que l’image réciproque par fn d’une hypersurface générique (au sens
de Zariski), proprement normalisée, converge vers le courant de Green associé à f quand n tend vers
l’infini. Nous donnons également un résultat analogue pour les images réciproques des (1, 1)-courants
positifs fermés et un résultat similaire pour les automorphismes polynomiaux réguliers de Ck.

1. Introduction

Let f be a holomorphic endomorphism of algebraic degree d ≥ 2 on the projective space
Pk. Let ω denote the Fubini-Study form on Pk normalized so that ω is cohomologous to a
hyperplane or equivalently

∫
Pk ω

k = 1. It is well-known that the sequence of smooth posi-
tive closed (1, 1)-forms d−n(fn)∗(ω) converges weakly to a positive closed (1, 1)-current T of
mass 1. Moreover, T has locally continuous potentials and is totally invariant, i.e. f∗(T ) =

dT . We call T the Green current of f . The complement of the support of T is the Fatou set,
i.e. the sequence (fn) is locally equicontinuous there. We refer the reader to the survey [29]
for background. Our main results in this paper are the following theorems, where [·] denotes
the current of integration on a complex variety.

T 1.1. – Let f be a holomorphic endomorphism of algebraic degree d ≥ 2 of Pk

and T the Green current associated to f . There is a proper analytic subset E of Pk such that if
H is a hypersurface of degree s in Pk which does not contain any irreducible component of E
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then d−n(fn)∗[H] converge to sT in the sense of currents when n tends to infinity. Moreover,
E is totally invariant, i.e. f−1(E ) = f(E ) = E .

The exceptional set E will be explicitly constructed in Sections 6 and 7. It is the union
of totally invariant proper analytic subsets of Pk which are minimal. That is, they have no
proper analytic subsets which are totally invariant, see Example 7.5. That example shows
that E is not the maximal totally invariant analytic set. The previous result is in fact a con-
sequence of the following one, see also Theorem 7.1 for a uniform convergence result.

T 1.2. – Let f be a holomorphic endomorphism of algebraic degree d ≥ 2 of Pk

and T the Green current associated to f . There is a proper analytic subset E of Pk, totally
invariant, such that if S is a positive closed (1, 1)-current of mass 1 in Pk whose local potentials
are not identically−∞ on any irreducible component of E then d−n(fn)∗(S)→ T as n→∞.

The space Hd of holomorphic maps f of a given algebraic degree d ≥ 2 is an irreducible
quasi-projective manifold. We will also deduce from our study the following result due to
Fornæss and the second author [18], see also [16, 29].

T 1.3. – There is a dense Zariski open subset H∗d of Hd such that if f is a map in
H∗d then d−n(fn)∗(Sn)→ T for every sequence (Sn) of positive closed (1, 1)-currents of mass
1 in Pk.

The rough idea in order to prove our main results is as follows. Write S = ddcu+T . Then,
the invariance of T implies that d−n(fn)∗(S) = d−nddc(u◦fn)+T . We have to show, in dif-
ferent situations, that d−nu◦fn converge to 0 inL1. This implies that d−n(fn)∗(S)→ T . So,
we have to study the asymptotic contraction (à la Lojasiewicz) by fn. The main estimate is
obtained using geometric estimates and convergence results for plurisubharmonic functions,
see Theorem 5.1. If d−nu ◦ fn do not converge to 0, then using that the possible contraction
is limited, we construct a limit v with strictly positive Lelong numbers. We then construct
other functions w−n such that the current ddcw−n + T has Lelong numbers ≥ α0 > 0 and
w0 = d−nw−n ◦ fn. It follows from the last identity that w0 has positive Lelong numbers
on an infinite union of analytic sets of a suitable dimension. The volume growth of these
sets implies that the current associated to w0 has too large self-intersection. This contra-
dicts bounds due to Demailly and Méo [5, 26]. (One should notice that the Demailly-Méo
estimates depend on the L2 estimates for the ∂-equation; they were recently extended to the
case of compact Kähler manifolds by Vigny [33].) The previous argument has to be applied
inductively on totally invariant sets for f , which are a priori singular and on which we in-
ductively show the convergence to 0, starting with sets of dimension 0. So, we also have to
develop the basics of the theory of weakly plurisubharmonic functions on singular analytic
sets which is probably of independent interest. The advantage of this class of functions is
that it has good compactness properties.

One may conjecture that totally invariant analytic sets should be unions of linear sub-
spaces of Pk. The case of dimension k = 2 is proved in [3, 28]. These authors complete
the result in [17]. If this were true for k ≥ 3, our proof would be technically simpler. It is
anyway interesting to carry the analysis without any assumption on the totally invariant sets
since our approach may be extended to the case of meromorphic maps on compact Kähler
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EQUIDISTRIBUTION TOWARDS THE GREEN CURRENT 309

manifolds. At the end of the paper, we will consider the case of regular polynomial automor-
phisms of Ck.

The problem of convergence was first considered by Brolin for polynomials in dimension 1
and then by Lyubich, Freire, Lopes and Mañé for rational maps in P1 [2, 19, 24]. In dimen-
sion k = 2, Fornæss and the second author proved that E is empty when the local multiplicity
of f at every point is≤ d− 1, see [18]. This implies Theorem 1.3 in dimension 2 for Sn = S.
The proof in [18] can be extended to the general case, see also [29].

The family of hyperplanes in Pk is parametrized by a projective space of dimension k.
It follows from Theorem 1.1 that for a hyperplane H, generic in the Zariski sense, we have
d−n(fn)∗[H] → T . Russakovskii and Shiffman have proved this result for H out of a
pluripolar set in the space of parameters [27]. Analogous results for subvarieties in arbitrary
Kähler manifolds were proved by the authors in [10]. Concerning Theorems 1.1 and 1.2, our
conditions are not optimal. Indeed, it might happen that the potentials of S are identically
−∞ on some components of E and still d−n(fn)∗(S)→ T .

In the case of dimension k = 2, our results (except several uniform convergences, e.g.
Theorem 7.1) can be deduced from results by Favre and Jonsson. These authors say that
their condition is necessary and sufficient in order to have the previous convergence, see [13],
and they give needed tools for the proof in [14, p.310]. In which case, if the Lelong num-
ber of S vanishes at generic points on each irreducible component of an exceptional set then
d−n(fn)∗(S)→ T . The problem is still open in higher dimension. When the Lelong number
of S is 0 at every point of Pk, the convergence d−n(fn)∗(S)→ T was obtained by Guedj [20],
see also Corollary 5.9 below. In these works, the problem of convergence is reduced to the
study of sizes of images of balls under iterates of f . This approach was first used in [16, 18].

Recall that the self-intersection T p := T ∧· · ·∧T , p times, defines a positive closed (p, p)-
current which is totally invariant, i.e. f∗(T p) = dpT p, see [11] for the pull-back operator on
currents. It is natural to consider the analogous equidistribution problem towards T p.

C 1.4. – Let f be a holomorphic endomorphism of Pk of algebraic degree d ≥ 2

and T its Green current. Then d−pn(fn)∗[H] converge to sT p for every analytic subsetH of Pk

of pure codimension p and of degree s which is generic. Here, H is generic if either H ∩E = ∅
or codimH ∩ E = p + codimE for any irreducible component E of every totally invariant
analytic subset of Pk.

We will see later that there are only finitely many analytic sets which are totally invariant.
Theorem 1.1 proves the conjecture for p = 1. Indeed, in that case, it is equivalent to check
the condition for minimal totally invariant analytic sets. For p = k, the measure µ := T k is
the unique invariant measure of maximal entropy, see [18, 1, 29]. In this case, the conjecture
was proved by the authors in [9]. Weaker results in this direction were obtained in [18] and
[1]. We will give some details in Theorem 6.6. For 2 ≤ p ≤ k− 1, the authors have proved in
[12] that for f in a Zariski dense open setH′d ⊂ Hd, there is no proper analytic subset of Pk

which is totally invariant and that the conjecture holds. Indeed, a version of Theorem 1.3 is
proved.
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2. Plurisubharmonic functions

We refer the reader to [22, 6, 10] for the basic properties of plurisubharmonic (psh for
short) and quasi-psh functions on smooth manifolds. In order to study the Levi problem for
analytic spaces X, the psh functions which are considered, are the restrictions of psh func-
tions on an open set of Ck for a local embedding of X. Let u : X → R∪{−∞} be an upper
semi-continuous function which is not identically equal to −∞ on any irreducible compo-
nent of X. Fornæss-Narasimhan proved that if u is subharmonic or equal to −∞ on any
holomorphic disc in X, then u is psh in the above sense [15]. However, this class does not
satisfy good compactness properties which are useful in our analysis. Assume that X is an
analytic space of pure dimension p. Let reg(X) and sing(X) denote the regular and the sin-
gular parts ofX. We consider the following weaker notion of psh functions which is modeled
after the notion of weakly holomorphic functions. The class has good compactness proper-
ties.

D 2.1. – A function v : X → R ∪ {−∞} is wpsh if

(a) v is psh on X \ sing(X);
(b) for a ∈ sing(X), v(a) = lim sup v(x) with x ∈ reg(X) and x→ a.

Fornæss-Narasimhan’s theorem implies that psh functions are wpsh. Wpsh functions are
psh when X is smooth. One should notice that the restriction of a wpsh function to an irre-
ducible component of X is not necessarily wpsh. For example, consider X = {xy = 0} in
the unit ball of C2, let v = 0 on {x = 0} \ (0, 0) and v = 1 on {y = 0}, then v is wpsh on X
but its restriction to {x = 0} is not wpsh. Consider the (strongly) psh function vn := |x|1/n
on X. The sequence vn converges to v in L1(X). So, psh functions on analytic sets do not
have good compactness properties.

P 2.2. – Let Z ⊂ X be an analytic subset of dimension ≤ p − 1 and v′ a
wpsh function on X \Z. If v′ is locally bounded from above near Z then there is a unique wpsh
function v on X equal to v′ outside Z.

Proof. – The extension to a psh function on reg(X) is well-known. So, we can assume
that Z ⊂ sing(X). Condition (b) in Definition 2.1 implies the uniqueness of the extension
of v′. Define v(a) := lim sup v(x) with x 6∈ Z and x→ a. It is clear that v = v′ out of Z and
v satisfies the conditions in Definition 2.1.

Now assume for simplicity thatX is an analytic subset of pure dimension p of an open set
U in Ck. The general case can be deduced from this one. The following results give charac-
terizations of wpsh functions.

P 2.3. – Let π : ‹X → X ⊂ U be a desingularization of X. If v is a wpsh
function on X then there is a psh function ṽ on ‹X such that v(x) = maxπ−1(x) ṽ for x ∈ X.

Conversely, if ṽ is psh on ‹X then x 7→ maxπ−1(x) ṽ defines a wpsh function on X.
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Proof. – Define ṽ := v ◦ π outside the analytic set π−1(sing(X)). This function is psh
and is locally bounded above near π−1(sing(X)). We can extend it to a psh function on ‹X
that we also denote by ṽ. For x ∈ X, π−1(x) is compact. The maximum principle implies
that ṽ is constant on each irreducible component of π−1(x). From the definition of wpsh
function, we get v(x) = maxπ−1(x) ṽ. The second assertion in the proposition follows from
the definition of wpsh functions.

A theorem of Lelong says that the integration on reg(X) defines a positive closed
(k − p, k − p)-current [X] on U , see [23, 6]. Let z denote the coordinates in Ck.

P 2.4. – A function v : X → R ∪ {−∞} is wpsh if and only if the following
properties are satisfied:

(a) v is in L1
loc(X), i.e.

∫
K
|v|(ddc|z|2)p < +∞ for any compact set K ⊂ X.

(b) v is strongly upper semi-continuous, i.e. for any a ∈ X and any full measure subset
X ′ ⊂ X we have v(a) = lim sup v(x) with x ∈ X ′ and x→ a.

(c) ddc(v[X]) is a positive current on U .

Proof. – We use the notations in Proposition 2.3. The proposition is known for smooth
manifolds, see [6]. Assume that v is wpsh. The function ṽ defined above satisfies proper-
ties (a), (b) and (c) on ‹X. It follows that v satisfies (a) and (b) on X. Since ddc(v[X]) =

π∗(dd
c(ṽ[‹X])), ddc(v[X]) is positive. Hence, v satisfies (c).

Conversely, Properties (a)-(c) imply that v is psh on reg(X). Then, Property (b) implies
that v satisfies the conditions of Definition 2.1.

P 2.5. – Let (vn) be a sequence of wpsh functions on X, locally uniformly
bounded from above. Then, there is a subsequence (vni) satisfying one of the following proper-
ties:

(a) There is an irreducible component Y of X such that (vni
) converges uniformly to−∞ on

K \ sing(X) for any compact set K ⊂ Y .
(b) (vni

) converges in Lqloc(X) to a wpsh function v for every 1 ≤ q < +∞.

In the last case, lim sup vni ≤ v on X with equality almost everywhere.

Proof. – Let π : ‹X → X ⊂ U be as above. We extend the functions vn ◦π, which are psh
on π−1(reg(X)) to psh functions ṽn on ‹X. Recall that vn(x) = maxπ−1(x) ṽn. Now, since
the proposition holds for smooth manifolds, it is enough to apply it to (ṽn). If a psh function
ṽ is a limit value of (ṽn) in Lqloc(‹X), the function v, defined by v(x) := maxπ−1(x) ṽ, satisfies
the property (b) in the proposition. If not, ṽn converges to −∞ locally uniformly on some
component of ‹X and the property (a) holds.

The following result is the classical Hartogs’ lemma when X is smooth [22].

L 2.6. – Let (vn) be a sequence of wpsh functions onX. Let u be a continuous func-
tion on X such that lim sup vn < u. Then for every compact set K ⊂ X, vn < u on K for
n large enough. This holds in particular, if (vn) converges to a wpsh function v in L1

loc(X) and
v < u.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



312 T.-C. DINH AND N. SIBONY

Proof. – Let π and ṽn be defined as above. These functions ṽn are psh on ‹X. Define
ũ := u ◦ π. It is clear that ũ is continuous and that lim sup ṽn ≤ lim sup vn ◦ π < ũ. We
only have to apply the classical Hartogs’ lemma in order to obtain ṽn < ũ on π−1(K) for
n large enough. This implies the result. The last assertion in the lemma is a consequence of
Proposition 2.5.

The following lemma will be useful.

L 2.7. – Let G be a family of psh functions on U locally uniformly bounded from
above. Assume that for each irreducible component ofX there is an analytic subset Z such that
the restriction of G to Z is bounded in L1

loc(Z). Then, the restriction of G to X is bounded in
L1
loc(X).

Proof. – We can assume that X is irreducible. For (vn) ⊂ G , define the psh functions ṽn
on ‹X as above. It is clear that ṽn are locally uniformly bounded from above. Let W b U

be an open set which intersects Z. The maximal value of ṽn on π−1(Z ∩ W ) is equal to
the maximal value of vn on Z ∩W . It follows from the hypothesis that no subsequence of
(ṽn) converges uniformly on compact sets to −∞. Proposition 2.5 applied to (ṽn), implies
that this sequence is bounded in L1

loc(
‹X). Applying again Proposition 2.5 to (vn) gives the

lemma.

LetR be a positive closed (1, 1)-current on U with continuous local potentials, i.e. locally
R = ddcv with v psh and continuous. Let R′ be a positive closed (k − p, k − p)-current on
U , 1 ≤ p ≤ k − 1. Recall that we can define their intersection by R ∧R′ := ddc(vR′) where
v is a local potential of R as above. This is a positive closed (k− p+ 1, k− p+ 1)-current on
U which depends continuously on R′. The definition is independent of the choice of v. By
induction, if R1, . . . , Rp are positive closed (1, 1)-currents with continuous local potentials,
the intersection ν := R1 ∧ · · · ∧ Rp ∧ [X] is a positive measure with support in X. This
product is symmetric with respect to R1, . . . , Rp.

P 2.8. – For every compact sets K and K ′ with K b K ′ ⊂ X, there is a
constant c > 0 such that if u is wpsh on X we have

max
K

u ≤ c‖u‖L1(K′) and
∫
K

|u|dν ≤ c‖u‖L1(K′).

In particular, ν has no mass on analytic subsets of dimension ≤ p− 1 of X.

Proof. – Choose a compact set L such that K b L b K ′ and a neighbourhood W of
sing(X) small enough. If a is a point in K ∩W , then we can find a Riemann surface in X
containing a and having boundary inL\W . Indeed, it is enough to consider the intersection
ofX with a suitable linear plane P of dimension k−p+1 passing through a. The maximum
principle applied to the lift of u to ‹X (defined above) implies that u(a) ≤ maxL\W u and
hence maxK u ≤ maxL\W u. Since L \W ⊂ reg(X), the submean inequality for psh func-
tions on smooth manifolds implies that maxL\W u ≤ c‖u‖L1(K′) for some constant c > 0.
Hence, maxK u ≤ c‖u‖L1(K′).

We prove now the second inequality. Replacing u by u− c‖u‖L1(K′) allows us to assume
that u ≤ 0 on K. Since the problem is local, we can assume that Ri = ddcvi with vi contin-
uous on U . Moreover, we can approximate vi by decreasing sequences (vi,n) of smooth psh
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functions. DefineRi,n := ddcvi,n. It is well-known that νn := R1,n∧· · ·∧Rp,n∧[X] converge
to ν in the sense of measures. Using the same arguments as in the Chern-Levine-Nirenberg
inequalities [4, 6, 29] yields∫

K

udνn ≥ −c′‖v1,n‖L∞(K′) . . . ‖vp,n‖L∞(K′)‖u‖L1(K′)

where c′ > 0 is independent of n. When n → ∞, since νn → ν and since u is upper semi-
continuous, we obtain∫

K

udν ≥ −c′‖v1‖L∞(K′) . . . ‖vp‖L∞(K′)‖u‖L1(K′).

This implies the second inequality in the proposition.

Let Y be an analytic subset of X of dimension ≤ p − 1. Then, there is a psh function u′

on U such that {u′ = −∞} = Y . The last inequality, applied to the restriction of u′ to X,
implies ν(Y ) = 0.

3. Modulo T plurisubharmonic functions

We are going to develop in this section the analogue in the compact case of the local theory
in Section 2. Consider a (compact) analytic subset X of Pk of pure dimension p. Recall that
the Green current T of f has locally continuous potentials. Observe that in what follows
(except for Lemma 3.8, Corollary 3.9 and Remark 3.10), T could be an arbitrary positive
closed (1, 1)-current of mass 1 with continuous potentials, and Pk could be replaced by any
compact Kähler manifold. We will use the following notion that allows us to simplify the
notations.

D 3.1. – A function u : X → R ∪ {−∞} is wpsh modulo T if locally it is the
difference of a wpsh function onX and a potential of T . IfX is smooth, we say that u is psh
modulo T .

The following result is a consequence of Proposition 2.4.

P 3.2. – A function u : X → R ∪ {−∞} is wpsh modulo T if and only if the
following properties are satisfied

(a) u is in L1(X), i.e.
∫
X
|u|ωp < +∞.

(b) u is strongly upper semi-continuous.
(c) ddc(u[X]) ≥ −T ∧ [X] on Pk.

Note that if u is a modulo T wpsh function, ddc(u[X])+T∧[X] is a positive closed current
of bidegree (k−p+1, k−p+1) supported onX. If S is a positive closed (1, 1)-current on Pk

of mass 1, then it is cohomologous to T and we can write S = T +ddcu where u is a modulo
T psh function on Pk. The restriction of such a function u to X is either wpsh modulo T or
equal to −∞ on at least one irreducible component of X.

The following proposition is a consequence of Proposition 2.5.
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P 3.3. – Let (un) be a sequence of modulo T wpsh functions on X, uniformly
bounded from above. Then there is a subsequence (uni

) satisfying one of the following proper-
ties:

(1) There is an irreducible component Y ofX such that (uni) converges uniformly to−∞ on
Y \ sing(X).

(2) (uni) converges in Lq(X) to a modulo T wpsh function u for every 1 ≤ q < +∞.

In the last case, lim supuni
≤ u on X with equality almost everywhere.

The Hartogs’ lemma 2.6 implies the following.

L 3.4. – Let (un) be a sequence of modulo T wpsh functions on X converging in
L1(X) to a modulo T wpsh function u. If w is a continuous function on X such that u < w,
then un < w for n large enough.

The following lemma is deduced from Lemma 2.7.

L 3.5. – Let G be a family of modulo T psh functions on Pk uniformly bounded from
above. Assume that each irreducible component of X contains an analytic subset Y such that
the restriction of G to Y is bounded in L1(Y ). Then, the restriction of G to X is bounded in
L1(X).

Define a positive measure supported on X by µX := T p ∧ [X]. By Bézout’s theorem, the
mass ofµX is equal to the degree ofX. The same argument implies thatµX has positive mass
on any irreducible component ofX. The following result is a consequence of Proposition 2.8.

P 3.6. – There is a constant c > 0 such that if u is a modulo T wpsh function
on X then

max
X

u ≤ c(1 + ‖u‖L1(X)) and
∫
|u|dµX ≤ c(1 + ‖u‖L1(X)).

In particular, µX has no mass on analytic subsets of dimension ≤ p− 1 of X.

We also have the following useful Proposition and Lemma.

P 3.7. – A family G of modulo T wpsh functions on X is bounded in L1(X) if
and only if there is a constant c > 0 such that |

∫
udµY | ≤ c for u ∈ G and for any irreducible

component Y of X.

Proof. – Proposition 3.6 implies that µY has no mass on sing(X). If G is bounded in
L1(X) then it is bounded in L1(Y ). We have seen that the restriction of u ∈ G to Y is equal
outside sing(X) to a modulo T wpsh function on Y . By Proposition 3.6, there is a constant
c > 0 such that |

∫
udµY | ≤ c for u ∈ G .

Conversely, assume that |
∫
udµY | ≤ c for u ∈ G and for any irreducible component

Y of X. Since µY has no mass on sing(X), we can replace X by Y and assume that X is
irreducible. Define mu := maxX u and v := u − mu. Since maxX v = 0, Proposition 3.3
implies that the family of such functions v is bounded in L1(X), see also Definition 2.1(b).
On the other hand, we have

|mu|‖µX‖ =

∣∣∣∣∫ udµX −
∫
vdµX

∣∣∣∣ ≤ c+

∣∣∣∣∫ vdµX

∣∣∣∣ .
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This and Proposition 3.6, applied to v, imply that |mu| is bounded. Since u = mu + v, we
obtain that G is bounded in L1(X).

L 3.8. – Let u be a modulo T wpsh function on X. If X is invariant by f , i.e.
f(X) = X, then d−1u ◦ f is equal out of sing(X) ∪ f−1(sing(X)) to a modulo T wpsh
function w on X. Moreover, w depends continuously on u.

Proof. – Consider a point x ∈ X out of sing(X) ∪ f−1(sing(X)). Since T is totally in-
variant, if v is a potential of T in a neighbourhood V of f(x) then d−1v◦f is a potential of T
in a neighbourhoodU of x. Since the function u+v is psh onX∩V , d−1(u◦f+v◦f) is psh on
X∩U . Hence, ddc((d−1u◦f)[X]) ≥ −T ∧ [X] out of sing(X)∪f−1(sing(X)). On the other
hand, since u is bounded from above, d−1u ◦ f is bounded from above. Proposition 2.2 im-
plies the existence ofw. Thatw depends continuously on u follows from Proposition 3.3.

C 3.9. – Assume thatX is invariant. Let G be a family of modulo T wpsh func-
tions on X, bounded in L1(X). Then, the family of modulo T wpsh functions on X which are
equal almost everywhere to d−nu ◦ fn with n ≥ 0 and u ∈ G , is bounded in L1(X). Moreover,
if a modulo T wpsh function u onX is a limit value of (d−nun◦fn) inL1(X) with un ∈ G , then
u ≤ 0 on X and u = 0 on supp(µX). The sequence (d−nun ◦ fn) converges to 0 in L1(µX).

Proof. – Replacing f by an iterate fn allows us to assume that f fixes all the irreducible
components ofX. So, we can assume thatX is irreducible. For the first assertion, by Propo-
sition 3.6, we can subtract from each u a constant in order that maxX u = 0. So, we can
assume that G is the set of such functions u. This is a bounded set in L1(X). All the func-
tions d−nu ◦ fn are equal almost everywhere to functions in G . The first assertion follows.

For the second assertion, by Lemma 3.8, d−nun ◦ fn is equal outside an analytic set
to a modulo T wpsh function vn on X. Propositions 3.3 and 3.6 imply that un ≤ A and∫
|un|dµX ≤ A for some constant A > 0. It follows that vn ≤ d−nA, see also Proposi-

tion 3.2(b), and then lim sup vn ≤ 0. Hence, u ≤ 0. On the other hand, since X is invariant
and T is totally invariant, we have (fn)∗(µX) = µX and∣∣∣∣∫ (d−nun ◦ fn)dµX

∣∣∣∣ = d−n
∣∣∣∣∫ und(fn)∗(µX)

∣∣∣∣ = d−n
∣∣∣∣∫ undµX

∣∣∣∣ ≤ d−nA.
Hence,

∫
vndµX → 0. By Propositions 3.7 and 3.6, (vn) is bounded from above. This allows

us to apply the last assertion in Proposition 3.3. We deduce from Fatou’s lemma and the
convergence

∫
vndµX → 0, that

∫
udµX ≥ 0. This and the inequality u ≤ 0 imply that

u = 0 µX -almost everywhere. By upper semi-continuity, u = 0 on supp(µX).

R 3.10. – Assume that f is chaotic, i.e. the support of the Green measure µ of f
is equal to Pk. Then, the previous corollary gives us a simple proof of the following prop-
erty: for all positive closed (1, 1)-currents Sn of mass 1 on Pk, we have d−n(fn)∗(Sn)→ T .
Indeed, we can write Sn = T + ddcun with un bounded in L1(Pk), and hence d−nun ◦ fn
converge to 0.
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4. Lelong numbers

In this section, we recall some properties of the Lelong numbers of currents and of
plurisubharmonic functions, see [6] for a systematic exposition.

Let R be a positive closed (p, p)-current on an open set U of Ck. Let z denote the coor-
dinates in Ck and Ba(r) the ball of center a and of radius r. Then, R ∧ (ddc‖z‖2)k−p is a
positive measure on U . Define for a ∈ U

ν(R, a, r) :=
‖R ∧ (ddc‖z‖2)k−p‖Ba(r)

πk−pr2(k−p)
.

When r decreases to 0, ν(R, a, r) is decreasing and the Lelong number of R at a is the limit

ν(R, a) := lim
r→0

ν(R, a, r).

The property that ν(R, a, r) is decreasing implies the following property that we will use later:
if Rn → R and an → a, then lim sup ν(Rn, an) ≤ ν(R, a).

The Lelong number ν(R, a) is also the mass of the measure R ∧ (ddc log ‖z − a‖)k−p at
a. It does not depend on the coordinates. So, we can define the Lelong number for currents
on any manifold. If R is the current of integration on an analytic set V , by Thie’s theorem,
ν(R, a) is equal to the multiplicity of V at a. Recall also a theorem of Siu which says that for
c > 0 the level set {ν(R, a) ≥ c} is an analytic subset of dimension ≤ k − p of U .

Let S be a current of bidegree (1, 1) and v a potential of S onU . Define the Lelong number
of v at a by ν(v, a) := ν(S, a). We also have

(1) ν(v, a) = lim
r→0

supBa(r) v(z)

log r
.

The function log r 7→ supBa(r) v is increasing and convex with respect to log r. It follows
that if v is defined onBa(1) and is negative, the fraction in (1) is decreasing when r decreases
to 0. So, if two psh functions differ by a locally bounded function, they have the same Lelong
number at every point. Moreover, identity (1) allows to define the Lelong number for every
function which locally differs from a psh function by a bounded function.

LetX be an analytic subset of pure dimension p in U and u a wpsh function onX. Then,
SX := ddc(u[X]) is a positive closed (k − p+ 1, k − p+ 1)-current on U . Define

νX(u, a) := ν(SX , a).

When X is smooth at a, we can also define a positive closed (1, 1)-current on a neighbour-
hood of a in X by SX := ddcu. We have νX(u, a) = ν(SX , a) where the last Lelong number
is defined on X.

Consider a proper finite holomorphic map h : U ′ → U between an open set U ′ of Ck

and U . Let X ′ be an analytic subset of pure dimension p of U ′ such that h(X ′) = X, and
a′ ∈ U ′ a point such that h(a′) = a. It follows from Proposition 2.2 that u◦h is equal almost
everywhere to a wpsh function u′ on X ′. The continuous dependence of u′ with respect to u
is proved as in Lemma 3.8.

P 4.1. – Let δ denote the local topological degree of h at a′. Then

δ−kνX(u, a) ≤ νX′(u′, a′) ≤ δνX(u, a).
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Proof. – Recall that X and X ′ may be reducible and singular, but one can work on each
irreducible component separately. We deduce from the identity h(X ′) = X and from the
definition of δ that near a :

ddc(u[X]) ≤ h∗(ddc(u′[X ′])) ≤ δddc(u[X]).

Hence,

(2) ν(ddc(u[X]), a) ≤ ν(h∗(dd
c(u′[X ′])), a) ≤ δν(ddc(u[X]), a).

On the other hand, by Theorems 9.9 and 9.12 in [6], we have

(3) ν(ddc(u′[X ′]), a′) ≤ ν(h∗(dd
c(u′[X ′])), a) ≤ δkν(ddc(u′[X ′]), a′).

The inequalities in the proposition follow from (2) and (3).

Let BXa (r) denote the connected component of Ba(r) ∩ X which contains a. We call it
the ball of center a and of radius r in X.

P 4.2. – Let G be a family of wpsh functions on X which is compact in
L1
loc(X). Let δ > 0 such that νX(u, a) < δ for u ∈ G and a ∈ X. Then, for any compact set

K ⊂ X, there exist constants c > 0 and A > 0 such that

sup
BX

a (r)

u ≥ cδ log r −A for u ∈ G , a ∈ K and 0 < r < 1.

Moreover, the constant c is independent of G and of δ.

Proof. – ReducingU allows to assume that G is bounded inL1(X) and νX(u, a) ≤ δ−ε,
ε > 0, on X for every u ∈ G . Moreover, by Proposition 2.8, G is uniformly bounded from
above. So, we can assume that u ≤ 0 for every u ∈ G . If 0 < r0 < 1 is fixed and r0 < r < 1,
the fact that G is bounded in L1(X) implies that supBX

a (r) u ≥ −A for every a ∈ K where
A > 0 is a constant. Hence, it is enough to consider r small.

We first consider the case where X is smooth. Since the problem is local we can assume
that X is a ball in Cp. Up to a dilation of coordinates, we can assume that the distance be-
tween K and ∂X is larger than 1. Define

s(u, a, r) :=
supBa(r)∩X u

log r
.

Hence, for a ∈ K and for 0 < r < 1, s(u, a, r) decreases to ν(u, a) when r decreases to 0. For
every (a, u) ∈ K×G , since ν(u, a) ≤ δ−ε, there is an r > 0 such that s(u, a, r′) ≤ δ−ε/2 for
r′ ≤ 2r. It follows that if a psh function v onX is close enough to u then s(v, a, r) ≤ δ−ε/4,
see Lemma 2.6. We then deduce from the definition of s(v, a, r) that if b is close enough to
a and if r′′ := r − |b− a| then

s(v, b, r) ≤ log r′′

log r
s(v, a, r′′) ≤ log r′′

log r
s(v, a, r) ≤ δ.

The fact that s(v, b, r) is increasing implies that s(v, b, r′) ≤ δ for r′ ≤ r and for (b, v) in
a neighbourhood of (a, u). Since K × G is compact, if r is small enough, the inequality
s(u, a, r) ≤ δ holds for every (a, u) ∈ K × G . This implies the proposition for c = 1 in the
case where X is smooth.

Now consider the general case. Since the problem is local, we can assume thatX is analytic
inU = D1×D2 whereD1 andD2 are the unit balls in Cp and Ck−p respectively. We can also
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assume that the canonical projection π : D1×D2 → D1 is proper onX. Hence, π : X → D1

defines a ramified covering. Let m denote the degree of this covering. For u ∈ G , define a
function u′′ on D1 by

(4) u′′(x) :=
∑

z∈π−1(x)∩X

u(z).

Since ddcu′′ = π∗(dd
c(u[X])) ≥ 0, u′′ is equal almost everywhere to a psh function u′. It is

easy to check that the family G ′ of these functions u′ is compact in L1
loc(D1). Fix a ball D

containing π(K) such that D ⊂ D1. We need the following Lojasiewicz type inequality, see
[18, Proposition 4.11], which implies that z 7→ π−1(z) ∩ X is Hölder continuous of expo-
nent 1/m with respect to the Hausdorff metric. The lemma is however more precise and is
of independent interest.

L 4.3. – There is a constant A > 0 such that for z ∈ D and x ∈ X with π(x) ∈ D,
we have

dist (π−1(z) ∩X,x) ≤ A dist (z, π(x))1/m.

Moreover, if y and z are in D we can write

π−1(y) ∩X = {y(1), . . . , y(m)} and π−1(z) ∩X = {z(1), . . . , z(m)}

so that

dist (y(i), z(i)) ≤ Adist (y, z)1/m for 1 ≤ i ≤ m.

Proof. – We prove the first assertion. Let xj , p+ 1 ≤ j ≤ k, denote the last k−p coordi-
nates of x. Let z(1), . . . , z(m) denote the points in π−1(z)∩X and z(1)

p+1, . . . , z(1)
k , . . . , z(m)

p+1,

. . . , z(m)
k their last k− p coordinates. Here, the points in π−1(z)∩X are repeated according

to their multiplicities. For w ∈ D1, define w(i) and w(i)
j in the same way. We consider the

Weierstrass polynomials on t ∈ C
m∏
i=1

(t− w(i)
j ) = tm + aj,m−1(w)tm−1 + · · ·+ aj,0(w) = Pj(t, w).

The coefficients of these polynomials are holomorphic with respect to w ∈ D1. The analytic
set defined by the polynomials Pj contains X. In particular, we have Pj(xj , π(x)) = 0. We
consider the case where z 6= π(x), otherwise the lemma is clear. We will show the existence
of a z(i) with good estimates on z(i)

j − xj .
Fix a constant c > 1 large enough. There is an integer 2 ≤ l ≤ 4m(k − p) + 2 such that

Pj(t, π(x)) has no root t with

(l − 1)c m

»
‖z − π(x)‖ < |t− xj | ≤ (l + 1)c m

»
‖z − π(x)‖

for every p+ 1 ≤ j ≤ k. We call this the security ring. For θ ∈ R define

ξj := lc m

»
‖z − π(x)‖eiθ + xj

and

Gj,c,θ(w) := c−m+1
m∏
i=1

(ξj − w(i)
j ) = c−m+1Pj(ξj , w).
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Observe that the functions Gj,c,θ(w) are Lipschitz with respect to w in a neighbourhood of
D uniformly with respect to (j, c, θ). Using the choice of l, we have

|Gj,c,θ(π(x))| = c−m+1|Pj(ξj , π(x))| ≥ c‖z − π(x)‖.

Hence, if c is large enough, since theGj,c,θ(w) are uniformly Lipschitz, they do not vanish on
the ball ‹D of center π(x) and of radius 2‖z−π(x)‖. Note that here we only need to consider
the case where z and π(x) are close enough, and we have ‹D b D1. We denote by Σ the
boundary of the polydiscH of center (xp+1, . . . , xk) ∈ Ck−p and of radius lc m

√
‖z − π(x)‖.

The Pj(t, w) have no zero there whenw ∈ ‹D. Then,X does not intersect ‹D×Σ. Since z ∈ ‹D
and x ∈ X, by continuity, there is a point z(i) satisfying |z(i)

j − xj | ≤ lc m
√
‖z − π(x)‖. This

gives the first assertion of the lemma.
We now prove the second assertion. Fix a point x in π−1(y) ∩ X and use the above

construction. In the box ‹D×H, X is a ramified covering over ‹D of some degree s ≤ m. So
we can write with an arbitrary order

π−1(y) ∩X ∩ ‹D ×H = {y(1), . . . , y(s)} and π−1(z) ∩X ∩ ‹D ×H = {z(1), . . . , z(s)}

with the desired estimates on |y(i) − z(i)|, since the diameter of ‹D × H is controled by
‖y − z‖1/m. This gives a partial correspondence between π−1(y) ∩X and π−1(z) ∩X.

Choose another point x′ ∈ π−1(y) ∩ X outside ‹D × H and repeat the construction in
order to obtain a box ‹D × H ′. We only replace the constant c by 8[m(k − p) + 1]c. This
garantees that eitherD×H andD×H ′ are disjoint or ‹D×H is contained in ‹D×H ′ because
of the security rings. In the last situation, we remove the box ‹D × H. Then, we repeat the
construction for points outside the boxes obtained so far. After less than m steps, we obtain
a finite family of boxes which induces a complete correspondence between π−1(y) ∩X and
π−1(z) ∩X satisfying the lemma.

L 4.4. – We have ν(u′, x) < mpδ for every u′ ∈ G ′ and x ∈ D1.

Proof. – Consider the functions u′ ∈ G ′ and u′′ as above, see (4). Let y be a point in
π−1(x)∩X andV a neighbourhood of y such that π−1(x)∩X∩V = {y}. We can chooseV so
thatX∩V is a ramified covering overπ(V ). Let l denote the degree of this covering. Consider
the current R := ddc(u[X]) in V . In a neighbourhood of x, ddcu′ (which is equal to ddcu′′)
is the sum of the currents π∗(R) for y varying in π−1(x)∩X. Since ν(R, y) < δ and l ≤ m, it
is enough to prove that ν(π∗(R), x) ≤ lp−1ν(R, y). Assume that y = 0 and x = 0 in order to
simplify the notation. If z = (z′, z′′) = (z1, . . . , zp, zp+1, . . . , zk) denote the coordinates in
Ck = Cp×Ck−p, then the mass of π∗(R)∧(ddc log ‖z′‖)p−1 at x = 0 is equal to ν(π∗(R), 0).
It follows from the definition of π∗ that the mass ofR∧(ddc log ‖z′‖)p−1 at y = 0 is also equal
to ν(π∗(R), 0). Define v := max(log ‖z′‖, l log ‖z′′‖−M) withM > 0 large enough. Lemma
4.3 applied to X ∩ V implies that v = log ‖z′‖ on X ∩ V . Hence, R ∧ (ddc log ‖z′‖)p−1 =

R ∧ (ddcv)p−1. Since v ≥ l log ‖z‖ −M ′, M ′ > 0, the comparison lemma in [6] implies that
the mass ofR∧(ddcv)p−1 at 0 is smaller than the mass of lp−1R∧(ddc log ‖z‖)p−1 at 0 which
is equal to lp−1ν(R, 0). This completes the proof.

End of the proof of Proposition 4.2. Now, we apply the case of smooth variety to G ′. If
0 < ρ < 1 then supB u

′ ≥ mpδ log ρ − const, where B is the ball of center π(a) and of
radius ρ in Cp. Let B′ be the connected component of X ∩ π−1(B) which contains a. This
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is a ramified covering over B. Since u is negative, we have supB′ u ≥ supB u
′′ ≥ supB u

′,
see Proposition 2.4(b). Lemma 4.3 implies that B′ is contained in the union of the balls of
center in π−1(π(a))∩X and of radius Aρ1/m, A > 0. In this union, consider the connected
component containing a. It has diameter ≤ 2mAρ1/m. Hence, B′ is contained in the ball
BXa (r) of center a and of radius r := 2mAρ1/m in X. We have

sup
BX

a (r)

u ≥ mpδ log ρ− const ≥ mp+1δ log r − const

for 0 < ρ < 1. This gives the estimate in the proposition with c = mp+1.

Consider the case whereX is an analytic subset of pure dimension p of Pk. The following
proposition is a direct consequence of the last one.

P 4.5. – Let G ⊂ L1(X) be a compact family of modulo T wpsh functions on
X. Let δ > 0 such that νX(u, x) < δ for u ∈ G and x ∈ X. Then, there exist constants c > 0

and A > 0 such that

sup
BX

a (r)

u ≥ cδ log r −A for u ∈ G , a ∈ X and 0 < r < 1.

Moreover, the constant c is independent of G and of δ.

The following result is a consequence of an inequality due to Demailly and Méo [6, 26].
It gives a bound for the volume of the set where the Lelong numbers are large.

L 4.6. – Let u be a modulo T wpsh function on an analytic setX of pure dimension p
in Pk. Let β ≥ 0 be a constant and q the dimension of {νX(u, x) > β}. Consider a finite family
of analytic setsZr, 1 ≤ r ≤ s, of pure dimension q inX. Assume that νX(u, x) ≥ νr for x ∈ Zr
where (νr) is a decreasing sequence such that νr ≥ 2β. Assume also that degZr ≥ dr where
the dr’s are positive and satisfy dr−1 ≤ 1

2dr. Then∑
r

drν
p−q
r ≤ 2p−q+1 deg(X)p−q.

Proof. – DefineR := ddc(u[X])+T ∧ [X], thenR is of bidimension (p−1, p−1). Recall
that νX(u, x) = ν(R, x). The mass of R is equal to deg(X). Define Z ′1 := Z1 and for r ≥ 2,
Z ′r the union of irreducible components of Zr which are not components of Z1 ∪ · · · ∪Zr−1.
So, Z ′i and Z ′r have no common component for i 6= r. Let d′r denote the degree of Z ′r. We
have d′1 + · · · + d′r ≥ dr for r ≥ 1. We also have ν(R, x) ≥ νr on Z ′r. The inequality of
Demailly-Méo [6, 26] implies that∑

r

(degZ ′r)(νr − β)p−q ≤ ‖R‖p−q = (degX)p−q.

Hence, since β ≤ νr/2, ∑
r

d′rν
p−q
r ≤ 2p−q(degX)p−q.
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On the other hand, using the properties of dr, d′r, the fact that (νr) is decreasing and the
Abel’s transform, we obtain∑

r

d′rν
p−q
r = d′1(νp−q1 − νp−q2 ) + (d′1 + d′2)(νp−q2 − νp−q3 ) + · · ·+

+(d′1 + · · ·+ d′s−1)(νp−qs−1 − νp−qs ) + (d′1 + · · ·+ d′s)ν
p−q
s

≥ d1(νp−q1 − νp−q2 ) + · · ·+ ds−1(νp−qs−1 − νp−qs ) + dsν
p−q
s

≥ 1

2
d1ν

p−q
1 + · · ·+ 1

2
dsν

p−q
s .

This proves the lemma.

5. Asymptotic contraction

In this section, we study the speed of contraction of fn. More precisely, we want to esti-
mate the size of the largest ball contained in the image of a fixed ball by fn. Our main result
is the following theorem where the balls in X are defined in Section 4.

T 5.1. – Let f be a holomorphic endomorphism of algebraic degree d ≥ 2 of Pk

andX an analytic subset of pure dimension p, 1 ≤ p ≤ k, invariant by f , i.e. f(X) = X. There
exists a constant c > 0 such that if B is a ball of radius r in X with 0 < r < 1, then for every
n ≥ 0, fn(B) contains a ball in X of radius exp(−cr−2pdn).

C 5.2. – Let f be a holomorphic endomorphism of algebraic degree d ≥ 2 of
Pk. There exists a constant c > 0 such that if B is a ball of radius r in Pk with 0 < r < 1, then
fn(B) contains a ball of radius exp(−cr−2kdn) for every n ≥ 0.

Let H be a hypersurface in Pk which does not contain any irreducible component of X
such that the restriction of f to X \ H is of maximal rank at every point. We choose H
containing sing(X)∪f−1(sing(X)). If δ is the degree ofH, there is a negative function u on
Pk psh modulo T such that ddcu = δ−1[H]− T .

L 5.3. – There are positive constants c1 and c2 such that if B is a ball of center a
and of radius 0 < r < 1 in X then f(B) contains the ball of center f(a) and of radius
c1r exp(c2u(a)) in X. Moreover, if u(a) 6= −∞ then the differential at f(a) of f−1 restricted
to X satisfies ‖Df−1

|X (f(a))‖ ≤ c−1
1 exp(−c2u(a)).

Proof. – The constants ci that we use here are independent of a and r. We only have to
consider the case where u(a) 6= −∞. Observe that when c1 is small and c2 is large enough,
the ball of center f(a) and of radius c1r exp(c2u(a)) does not intersect H which contains
sing(X). Let π : ‹X → X ⊂ Pk be a desingularization of X and A := ‖π‖C 1 . If π(ã) = a,
and if ‹B is the ball of center ã and of radius r̃ := A−1r then π(‹B) is contained in the ball B.
Define h := f ◦ π, ũ := u ◦ π and T̃ := π∗(T ). Since T has continuous local potentials, so
does π∗(T ).

The current π∗[H] is supported in π−1(H) and satisfies ddcũ = δ−1π∗[H]−π∗(T ). Since
ũ = −∞ exactly on π−1(H) and since π∗(T ) has continuous local potentials, the support of
π∗[H] is exactly π−1(H). So, π∗[H] is a combination with strictly positive coefficients of the
currents of integration on irreducible components of π−1(H). Observe that h is of maximal
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rank outside π−1(H). It is enough to prove that h(‹B) contains the ball of center h(ã) and
of radius c1r exp(c2ũ(ã)) in X.

We can assume that r is small and works in the local setting. We use holomorphic coor-
dinates x = (x1, . . . , xp) of ‹X and y = (y1, . . . , yk) of Pk in small neighbourhoods W and
U of ã and a respectively. Write h = (h1, . . . , hk) and consider a holomorphic function ϕ
on W such that ϕ−1(0) = π−1(H) ∩W . Then, δ−1π∗[H] ≥ εddc log |ϕ| with ε > 0 small
enough. We have ddc(ũ − ε log |ϕ|) ≥ −T̃ . It follows that ũ − ε log |ϕ| is a difference of a
psh function and a potential of T̃ . Since T̃ has local continuous potentials, ũ − ε log |ϕ| is
bounded from above. Up to multiplying ϕ by a constant, we can assume that ε log |ϕ| ≥ ũ.

If J ⊂ {1, . . . , k} is a multi-index of length p, denote byMJ the matrix (∂hj/∂xi) with 1 ≤
i ≤ p and j ∈ J . Since h is of maximal rank outside π−1(H), the zero set of

∑
J |detMJ |2

is contained in {ϕ = 0}. The Lojasiewicz’s inequality [31] implies that
∑
J |detMJ |2 ≥

c3|ϕ|c4 for some constants c3 > 0 and c4 > 0. Up to a permutation of the coordinates y,
we can assume that |detM(ã)| ≥ c5|ϕ(ã)|c2ε/2 ≥ c5 exp(c2ũ(ã)/2) where c2, c5 are positive
constants and M is the matrix (∂hj/∂xi)1≤i,j≤p. Define h′ := (h1, . . . , hp). The precise
version of the implicit function theorem [31, p.106] implies that h′ defines a bijection from an
open subset of ‹B to a ball of center h′(ã) and of radius c6r̃|detM(ã)|2, c6 > 0. This proves
the first assertion in the lemma. For the second one, we have ‖Dh′−1‖ . |detM(ã)|−1 at
h′(ã) which gives the result.

Proof of Theorem 5.1. By Corollary 3.9, the sequence of functions (d−nu ◦ fn) is bounded
in L1(X). Since

d−n(u+ u ◦ f + · · ·+ u ◦ fn−1) =
n−1∑
i=0

d−(n−i)(d−iu ◦ f i),

theL1(X)-norm of d−n(u+u◦f+· · ·+u◦fn−1) is bounded by a constant c′ > 0 independent
of n. If A > 0 is a constant large enough, the set of points x ∈ X satisfying

u(x) + u ◦ f(x) + · · ·+ u ◦ fn−1(x) ≤ −Ar−2pdn

has Lebesgue measure ≤ c′A−1r2p. By a theorem of Lelong [23, 6], the volume of a ball
of radius r/2 in X is ≥ c′′r2p, c′′ > 0. Therefore, since A is large, there is a point b ∈ X,
depending on n, such that |b− a| ≤ r/2 and

(5) u(b) + u ◦ f(b) + · · ·+ u ◦ fn−1(b) ≥ −Ar−2pdn.

Lemma 5.3 applied inductively to balls centered at f i(b) implies that fn(B) contains the ball
of center fn(b) of radius

1

2
cn1 r exp

(
c2u(b) + · · ·+ c2u(fn−1(b))

)
.

We obtain the result using (5) and the estimate 1
2c
n
1 r ≥ exp(−c3r−2pdn) for 0 < r < 1,

where c3 > 0 is a constant. �

R 5.4. – With the same argument we also get the following. Let Bx denote the
ball of center x and of radius 0 < r < 1 in X. Let rn(x) be the maximal radius of the ball
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centered at fn(x) and contained in fn(Bx). Then, there is a constant A > 0 such that

log rn(x)

dn
≥ −A(n+ 1)− log r

dn
+
c2
dn

n−1∑
i=0

u ◦ f i(x).

Consequently, there is a constant c > 0 such that∫
X

log rn(x)

dn
ωp ≥ −c+

log r

dn
degX.

We can also replace ωp by any PB measure on X, i.e. a measure such that modulo T wpsh
functions are integrable, see [10].

In the following result, we use the Lebesgue measure volX on X induced by the Fubini-
Study form restricted to X.

T 5.5. – Let f and X be as in Theorem 5.1. Let Z be a Borel set in X and n ≥ 0.
Then there is a Borel set Zn ⊂ Z with volX(Zn) ≥ 1

2volX(Z) such that the restriction fn|X of
fn to X defines a locally bi-Lipschitz map from Zn to fn(Zn). Moreover, the differential of
the inverse map f−n|X satisfies ‖Df−n|X ‖ ≤ exp(cvol(Z)−1dn) on fn(Zn) with a constant c > 0

independent of n and Z. In particular, we have volX(fn(Z)) ≥ exp(−c′volX(Z)−1dn) for
some constant c′ > 0 independent of n and Z.

Proof. – As in (5), there is a subset Zn of Z with volX(Zn) ≥ 1
2volX(Z) such that

u(b) + u ◦ f(b) + · · ·+ u ◦ fn−1(b) ≥ −AvolX(Z)−1dn

for b ∈ Zn, where A > 0 is a fixed constant large enough. In particular, we have u ◦ f i(b) 6=
−∞ for i ≤ n − 1. It follows from the definition of u that fn|X defines a bijection between
a neighbourhood of b and a neighbourhood of fn(b) in X. Hence, fn|X : Zn → fn(Zn) is

locally bi-Lipschitz. Applying Lemma 5.3 inductively gives the estimate on ‖Df−n|X ‖ at fn(b).

Since the fibers of fn contain at most dkn points, the estimate on ‖Df−n|X ‖ implies

volX(fn(Z)) ≥ volX(fn(Zn)) & d−knvolX(Z) exp(−cvolX(Z)−1dn)2p.

The last assertion in the theorem follows.

R 5.6. – It is not difficult to extend Theorems 5.1 and 5.5 to the case of meromor-
phic maps or correspondences on compact Kähler manifolds. We can use the continuity of
f∗ on the space DSH in order to estimate the L1-norm of u ◦ fn for u ∈ DSH, see [10]. The
volume estimate in Theorem 5.5 for meromorphic maps on smooth manifolds was obtained
in [21], see also [16, 13, 20] for earlier versions.

Let G be a compact family of modulo T wpsh functions on X. Let Hn denote the family
of T wpsh functions which are equal almost everywhere to d−nu ◦ fn, u ∈ G . Define

νn := sup{νX(u, a), u ∈Hn, a ∈ X}.

We have the following result.

P 5.7. – Assume that inf νn = 0. Then, d−nun ◦ fn → 0 in L1(X) for all
un ∈ G . In particular, the hypothesis is satisfied when there is an increasing sequence (ni) such
that d−niuni

◦ fni converge to 0 in L1(X) for all uni
∈ G .

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



324 T.-C. DINH AND N. SIBONY

Proof. – Consider a sequence (d−niuni
◦ fni) converging in L1(X) to a modulo T wpsh

function u. Corollary 3.9 implies that u ≤ 0. We want to prove that u = 0. If not, since u is
upper semi-continuous, there is a constantα > 0 such that u ≤ −2α on some ballB of radius
0 < r < 1 in X. By Lemmas 3.4 and 3.8, for i large enough, we have d−niuni

◦ fni ≤ −α
almost everywhere on B.

Fix δ > 0 small enough and m such that νm < δ. Consider only the ni larger than
m. Then, d−muni

◦ fm ≤ −dni−mα almost everywhere on fni−m(B). By Theorem 5.1,
fni−m(B) contains a ball Bi of radius exp(−cr−2pdni−m) in X with c > 1. If vi ∈ Hm is
equal almost everywhere to d−muni

◦ fm, then vi ≤ −dni−mα almost everywhere on Bi.
It follows from Proposition 3.2(b) that this inequality holds everywhere on Bi. By Proposi-
tion 4.5, there are a constant c′ > 0 independent of G , r, δ, m, and a constant A > 0 such
that

−c′δr−2pdni−m −A ≤ sup
Bi

vi ≤ −dni−mα.

This is a contradiction if δ is chosen small enough and if ni is large enough.
Assume now that d−niuni

◦ fni converge to 0 in L1(X) for all uni
∈ G . Then, for every

ε > 0, we have ν(u, a) < ε for u ∈ Hni
, a ∈ X and for i large enough. Therefore,

inf νn = 0. Here, we use that if positive closed currents Rn converge to R and an → a then
lim sup ν(Rn, an) ≤ ν(R, a).

C 5.8. – Let F be a family of positive closed (1, 1)-currents of mass 1 on Pk.
Assume that there is an increasing sequence of integers (ni) such that d−ni(fni)∗(Sni

) → T

for all Sni
∈ F . Then, d−n(fn)∗(Sn)→ T for all Sn ∈ F .

Proof. – Observe that the hypothesis implies that d−ni(fni)∗(Sni
)→ T for all Sni

∈ F .
So, we can replace F by F and assume that F is compact. To each current S ∈ F we
associate a modulo T psh function u on Pk such that ddcu = S − T . Subtracting from u

some constant allows us to have maxPk u = 0. Proposition 3.3 and Lemma 3.4 imply that
the family G of these functions u is compact. The hypothesis and Corollary 3.9 imply that
d−niuni

◦ fni → 0 for uni
∈ G . Proposition 5.7 gives the result.

C 5.9. – Let F be a compact family of positive closed (1, 1)-currents of mass 1

on Pk. Assume that for any S ∈ F , the Lelong number of S vanishes at every point out of
supp(µ). Then, d−n(fn)∗(Sn)→ T for any sequence (Sn) ⊂ F .

Proof. – Let G and Hn be defined as above. Define also

ν′n := sup{νX(u, a), u ∈Hn, a ∈ supp(µ)}

and
ν′′n := sup{νX(u, a), u ∈Hn, a 6∈ supp(µ)}.

Corollary 3.9 implies that lim ν′n = 0. On the other hand, by hypothesis, ν′′0 = 0. Since
Pk \ supp(µ) is totally invariant, Proposition 4.1, applied toX = Pk, implies that ν′′n = 0 for
every n. Hence, νn = ν′n and νn → 0. We apply Proposition 5.7 in order to conclude. Note
that the corollary still holds if we only assume that inf ν′′n = 0.

We prove as in Proposition 5.7 the following lemma.
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L 5.10. – Let (uni
) be a sequence of modulo T wpsh functions on X, bounded in

L1(X). Assume that d−niuni
◦ fni converge to a modulo T wpsh function v. Assume also

that for every δ > 0, there is a subsequence (umi
) ⊂ (uni

) converging to a modulo T wpsh
function w with νX(w, a) < δ at every point a ∈ X. Then, v = 0.

Proof. – Corollary 3.9 implies that v ≤ 0. Assume that v 6= 0. Then, since v is upper
semi-continuous, there is a constant α > 0 such that v < −2α on a ball of radius 0 < r < 1

onX. As in Proposition 5.7, for i large enough we have uni < −dniα on a ballBni of radius
exp(−cr−2pdni) in X with c > 1.

Fix δ > 0 small enough, and (umi
) and w as above. The property of w implies that if

s is an integer large enough, we have νX(umi
, a) < δ for every a ∈ X and for i ≥ s. By

Proposition 4.5 applied to the compact family {umi
, i ≥ s}∪{w}, there is a constant c′ > 0

independent of δ, r and a constant A > 0 such that

−c′δr−2pdmi −A ≤ sup
Bmi

umi
≤ −dmiα for i ≥ s.

This is a contradiction for mi large enough, since δ is chosen small.

6. Exceptional sets

Let X be an analytic subset of pure dimension p in Pk invariant by f , i.e. f(X) = X. Let
g : X → X denote the restriction of f to X. We will follow the idea of [9] in order to define
and study the exceptional analytic subset EX of X which is totally invariant by g, see also
[7, 8]. The following result can be deduced from Section 3.4 in [9].

From now on, each point x ∈ X is associated to an irreducible component of the germ
(X,x). In other words, if (X,x) has s components, one considers x as s different points.
The reader can use the lift of g to the normalization of X, but for simplicity we keep the
notation g.

T 6.1. – There is a (possibly empty) proper analytic subset EX of X which is to-
tally invariant by g and is maximal in the following sense. IfE is an analytic subset of dimension
< p ofX such that g−s(E) ⊂ E for some s ≥ 1, thenE ⊂ EX . In particular, there is a maximal
proper analytic subset EPk of Pk which is totally invariant by f .

We will need some precise properties of EX . So, for the reader’s convenience, we recall
here the construction of EX and the proof of the previous theorem since the emphasis in [9]
is on polynomial-like maps. Observe that g permutes the irreducible components of X. Let
m ≥ 1 be an integer such that gm fixes the components of X.

L 6.2. – The topological degree of gm is equal to dmp, that is, gm : X → X defines
a ramified covering of degree dmp. In particular, for every x ∈ X, g−m(x) contains at most
dmp points and there is a hypersurface Y ofX containing sing(X)∪gm(sing(X)) such that for
x ∈ X \ Y , g−m(x) contains exactly dmp points.
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Proof. – We can work with each component. So, we can assume that X is irreducible.
It follows that gm defines a ramified covering. We want to prove that the degree δ of this
covering is equal to dmp. Consider the positive measure (fm)∗(ωp) ∧ [X]. Its mass is equal
to dmp deg(X) since (fm)∗(ωp) is cohomologous to dmpωp. The operator (fm)∗ preserves
the mass of positive measures. We also have (fm)∗[X] = δ[X]. Hence,

dmp deg(X) = ‖(fm)∗(ωp) ∧ [X]‖ = ‖(fm)∗((f
m)∗(ωp) ∧ [X])‖

= ‖ωp ∧ (fm)∗[X]‖ = δ‖ωp ∧ [X]‖ = δ deg(X).

Therefore, δ = dmp. So, we can take for Y , a hypersurface containing the ramification values
of fm and sing(X) ∪ gm(sing(X)).

Let Y be as above. Observe that if gm(x) 6∈ Y then gm defines a biholomorphic map
between a neighbourhood of x and a neighbourhood of gm(x) inX. Let [Y ] denote the (k−
p + 1, k − p + 1)-current of integration on Y in Pk. Since (fmn)∗[Y ] is a positive closed
(k−p+1, k−p+1)-current of mass dmn(p−1) deg(Y ), we can define the following ramification
current

R =
∑
n≥0

Rn :=
∑
n≥0

d−mnp(fmn)∗[Y ].

By a theorem of Siu [30, 6], for c > 0, the level setEc := {ν(R, x) ≥ c} of the Lelong number
is an analytic set of dimension≤ p−1 contained inX. Observe that E1 contains Y . We will
see that R is the obstruction for the construction of “regular” orbits.

For any point x ∈ X let λ′n(x) denote the number of distinct orbits

x−n, x−n+1, . . . , x−1, x0

such that gm(x−i−1) = x−i, x0 = x and x−i ∈ X\Y for 0 ≤ i ≤ n−1. These are the “good"
orbits. Define λn := d−mpnλ′n. The function λn is lower semi-continuous with respect to the
Zariski topology on X. Moreover, by Lemma 6.2, we have 0 ≤ λn ≤ 1 and λn = 1 out of
the analytic set ∪n−1

i=0 g
mi(Y ). The sequence (λn) decreases to a function λ, which represents

the asymptotic proportion of orbits in X \ Y .

L 6.3. – There is a constant γ > 0 such that λ ≥ γ on X \ E1.

Proof. – We deduce from the Siu’s theorem, the existence of a constant 0 < γ < 1 sat-
isfying {ν(R, x) > 1 − γ} = E1. Consider a point x ∈ X \ E1. We have x 6∈ Y . Define
νn := ν(Rn, x). We have

∑
νn ≤ 1 − γ. Since E1 contains Y , ν0 = 0 and F1 := g−m(x)

contains exactly dmp points. The definition of ν1 implies that g−m(x) contains at most ν1dmp

points in Y . Then

#g−m(F1 \ Y ) = dmp # (F1 \ Y ) ≥ (1− ν1)d2mp.

Define F2 := g−m(F1 \ Y ). The definition of ν2 implies that F2 contains at most ν2d2mp

points in Y . Hence, F3 := g−m(F2 \ Y ) contains at least (1 − ν1 − ν2)d3mp points. In the
same way, we define F4, . . . , Fn with #Fn ≥ (1−

∑
νi)d

mpn. Hence, for every n we get the
following estimate:

λn(x) ≥ d−mpn # Fn ≥ 1−
∑

νi ≥ γ.
This proves the lemma.
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End of the proof of Theorem 6.1. Let E n
X denote the set of x ∈ X such that g−ml(x) ⊂ E1

for 0 ≤ l ≤ n and define EX := ∩n≥0E n
X . Then, (E n

X) is a decreasing sequence of analytic
subsets of E1. It should be stationary. So, there is n0 ≥ 0 such that E n

X = EX for n ≥ n0.
By definition, EX is the set of x ∈ X such that g−mn(x) ⊂ E1 for every n ≥ 0. Hence,

g−m(EX) ⊂ EX . It follows that the sequence of analytic sets g−mn(EX) is decreasing and
there is n ≥ 0 such that g−m(n+1)(EX) = g−mn(EX). Since gmn is surjective, we deduce that
g−m(EX) = EX and hence EX = gm(EX).

Assume as in the theorem that E is analytic with g−s(E) ⊂ E. Define E′ := g−s+1(E)∪
· · · ∪ E. We have g−1(E′) ⊂ E′ which implies g−n−1(E′) ⊂ g−n(E′) for every n ≥ 0.
Hence, g−n−1(E′) = g−n(E′) for n large enough. This and the surjectivity of g imply that
g−1(E′) = g(E′) = E′. By Lemma 6.2, the topological degree of (gm

′
)|E′ is at most dm

′(p−1)

for m′ ≥ 1. This, the identity g−1(E′) = g(E′) = E′ together with Lemma 6.3 imply that
E′ ⊂ E1. Hence, E′ ⊂ EX and E ⊂ EX .

Define E ′X := g−m+1(EX) ∪ · · · ∪ EX . We have g−1(E ′X) = g(E ′X) = E ′X . Applying
the previous assertion to E := E ′X yields E ′X ⊂ EX . Therefore, E ′X = EX and g−1(EX) =

g(EX) = EX . �

R 6.4. – The maximality of EX in Theorem 6.1 implies that it does not depend
on the choice of m and of the analytic set Y satisfying Lemma 6.2. Moreover, EX is also the
exceptional set associated to gn for every n ≥ 1. An analytic set, totally invariant by gn, is
not necessarily totally invariant by g, but it is a union of components of such sets. We deduce
from our construction that EPk depends algebraically on f .

C 6.5. – There are only finitely many analytic subsets ofX which are totally in-
variant by g. In particular, there is only a finite number of analytic subsets of Pk which are totally
invariant by f .

Proof. – We only have to consider totally invariant analytic sets E of pure dimension q.
The proof is by induction on the dimension p of X. Assume that the corollary is true for X
of dimension ≤ p − 1 and consider the case of dimension p. If q = p then E is a union of
components of X. There is only a finite number of such analytic sets. If q < p, by Theo-
rem 6.1, E is contained in EX . Applying the hypothesis of induction to the restriction of f
to EX gives the result.

We now give another characterization of EX . Recall that µX := T p ∧ [X]. This is a pos-
itive measure of mass s := degX. The invariance of T implies that µ is totally invariant by
gm, that is, (gm)∗(µ) = dpmµ. Since gm fixes the components of X, we can apply to each
component the following result where the second assertion was proved by the authors in [9].

T 6.6. – Assume that X is irreducible. Let δa denote the Dirac mass at a point
a ∈ X. Then d−pmn(gmn)∗(δa) converge to s−1µX if and only if a is out of EX . In particular,
if a is a point in Pk then d−kn(fn)∗(δa) converge to µ if and only if a is out of EPk .

Since T has continuous local potentials, µX has no mass on proper analytic subsets of
X. It follows that if a ∈ EX , any limit value of d−pmn(gmn)∗(δa) has support in EX and
is singular with respect to µX . Consider a point a in X \ EX . We only have to check the
convergence to s−1µX . Fornæss and the second author proved this convergence for X = Pk
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and for a outside a pluripolar set [16]. Briend and Duval extended this result to a outside
the orbit of the critical set of f [1]. They also proposed a geometrical approach in order to
prove this property for a outside an analytic set but there is a problem with the counting of
multiplicity in their lemma in [1, p.149].

Briend-Duval result can be extended to our situation: for a outside the orbit of Y we have
d−pmn(gmn)∗(δa) → s−1µX . We recall the following proposition, see [1] and also [9, 7, 8]
for more general cases, in particular, for non-projective manifolds.

P 6.7. – For any ε > 0, there is an integer nε ≥ 0 such that if a is out of the
analytic set Yε := Y ∪ gm(Y ) ∪ · · · ∪ gmnε(Y ), then any limit value ν of d−pmn(gmn)∗(δa)

satisfies ‖ν − s−1µX‖ ≤ ε, where ‖ · ‖ denotes the measure mass.

Observe that if n ≥ r ≥ 0 then

d−pmn(gmn)∗(δa) = d−pmr
∑

b∈g−mr(a)

d−pm(n−r)(gm(n−r))∗(δb),

where the points in g−mr(a) are counted with multiplicities. So, if a point a does not satisfy
the conclusion of Proposition 6.7 then it admits many preimages in Yε. We quantify now this
property.

Let Nn(a) denote the number of orbits of gm

O = {a−n, . . . , a−1, a0}

with gm(a−i−1) = a−i and a0 = a such that a−i ∈ Yε for every i. Here, the orbits are
counted with multiplicities. So, Nn(a) is the number of negative orbits of order n of a
which stay in Yε. Observe that the sequence of functions τn := d−pmnNn decreases to some
function τ . Since τn are upper semi-continuous with respect to the Zariski topology and
0 ≤ τn ≤ 1, the function τ satisfies the same properties. Observe that τ(a) is the probabil-
ity that an infinite negative orbit of a stays in Yε. The following proposition gives also a
characterization of EX .

P 6.8. – The function τ is the characteristic function of EX , that is, τ = 1 on
EX and τ = 0 on X \ EX .

Proof. – Since EX ⊂ Yε and EX is totally invariant by g, we have EX ⊂ {τ = 1}. Let
θ ≥ 0 denote the maximal value of τ on X \ EX . This value exists since τ is upper semi-
continuous with respect to the Zariski topology (indeed, it is enough to consider the algebraic
subset {τ ≥ θ0} of X which decreases when θ0 increases). We have to check that θ = 0.
Assume in order to obtain a contradiction that θ > 0. Since τ ≤ 1, we always have θ ≤ 1.
Consider the non-empty analytic set E := τ−1(θ) \ EX in Yε. Let a′ be a point in E. Since
EX is totally invariant, we have g−m(a′)∩ EX = ∅. Hence, τ(b′) ≤ θ for every b′ ∈ g−m(a).
We deduce from the definition of τ and θ that

θ = τ(a′) ≤ d−pm
∑

b′∈g−m(a′)

τ(b′) ≤ θ.

It follows that g−m(a′) ⊂ E. Therefore, the analytic subset E of Yε satisfies g−m(E) ⊂ E.
This contradicts the maximality of EX .
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End of the proof of Theorem 6.6. Let a be a point outside EX . Fix ε > 0 and a constant
α > 0 small enough. If ν is a limit value of d−pmn(gmn)∗(δa), it is enough to show that
‖ν − s−1µX‖ ≤ 2α + ε. Proposition 6.8 implies that τ(a) = 0. So for r large enough we
have τr(a) ≤ α. Consider all the negative orbits Oj of order rj ≤ r

Oj = {a(j)
−rj

, . . . , a
(j)
−1, a

(j)
0 }

with gm(a
(j)
−i−1) = a

(j)
−i and a(j)

0 = a such that a(j)
−rj
6∈ Yε and a(j)

−i ∈ Yε for i 6= rj . Each orbit
is repeated according to its multiplicity. Let Sr denote the family of points b ∈ g−mr(a) such
that gmi(b) ∈ Yε for 0 ≤ i ≤ r. Then g−mr(a) \ Sr consists of the preimages of the points
a
(j)
−rj

. So, by definition of τr, we have

d−pmr # Sr = τr(a) ≤ α

and

d−pmr # (g−mr(a) \ Sr) = d−pmr
∑
j

dpm(r−rj) = 1− τr(a) ≥ 1− α.

We have for n ≥ r

d−pmn(gmn)∗(δa) = d−pmn
∑
b∈Sr

(gm(n−r))∗(δb) + d−pmn
∑
j

(gm(n−rj))∗(δ
a
(j)
−rj

).

Since d−pmn(gmn)∗ preserves the mass of any measure, the first term in the last sum is of mass
d−pmr # Sr = τr(a) ≤ α and the second term is of mass ≥ 1−α. We apply Proposition 6.7
to the Dirac masses at a(j)

−rj
. We deduce that if ν is a limit value of d−pmn(gmn)∗(δa) then

‖ν − s−1µX‖ ≤ 2α+ (1− α)ε ≤ 2α+ ε.

This completes the proof of the theorem. �

C 6.9. – The cone of positive measures onX which are totally invariant by gm, is
of finite dimension. In particular, the cone of positive measures on Pk which are totally invariant
by f , is of finite dimension.

Proof. – Replacing f by an iterate allows to assume that gm fixes all the components of
every analytic set which is totally invariant by gm. So, all these components are totally in-
variant. Let ν be an extremal probability measure totally invariant by gm. Let X ′ be the
smallest analytic set totally invariant by gm such that ν(X ′) = 1. Since ν is extremal, X ′ is
irreducible and ν(EX′) = 0. It follows from Theorem 6.6 and the invariance of ν that ν is
proportional to µX′ . By Corollary 6.5, the family of such measures is finite.

The following lemma will be useful in the proof of our main results where n0 is an index
such that E n

X = EX for n ≥ n0.

L 6.10. – There is a constant θ > 0 such that if Z is an analytic subset of pure di-
mension q ≤ p − 1 of X not contained in EX then for every n ≥ 0, g−mn(Z) contains an
analytic set Z−n of pure dimension q of degree ≥ θdmn(p−q). Moreover, if n ≥ n0 and if x
is a generic point in Z−n, then x ∈ reg(X), gm(n−n0)(x) ∈ reg(X) and gm(n−n0) defines a
biholomorphism between a neighbourhood of x and a neighbourhood of gm(n−n0)(x) in X.
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Proof. – Let P be a generic projective plane in Pk of dimension k − q. Consider a point
a in Z ∩ P \ EX . Since EX = E n0

X , we have g−ml(a) 6⊂ E1 for some 0 ≤ l ≤ n0. Then,
by Lemma 6.3, #g−mn(a) contains at least γdmp(n−n0) distinct points x satisfying the last
property in the lemma. LetZ−n denote the union of the irreducible components of g−mn(Z)

which contain at least one such point x. Then, Z−n satisfies the last property in the lemma.
We have #Z−n ∩ f−mn(P ) ≥ γdmp(n−n0). Since deg f−mn(P ) = dmnq, we obtain that
degZ−n ≥ θdm(p−q)n for θ := γd−mpn0 .

7. Convergence towards the Green current

In this section, we will prove the main results. Define the exceptional set E as the union
of proper analytic subsets E of Pk which are totally invariant by f and are minimal in the
following sense. The setE does not contain non-empty proper analytic sets which are totally
invariant by f . Theorem 6.1 and Corollary 6.5 imply that E is a totally invariant analytic set
and it does not change if we replace f by an iterate of f , see also Remark 6.4. We have the
following result which implies Theorems 1.1 and 1.2.

T 7.1. – Let f , T , E be as above. Let G be a family of modulo T psh functions on
Pk which is bounded in L1(Pk). Assume that the restriction of G to each component of E is a
bounded family of modulo T wpsh functions. Then, d−nu◦fn converge to 0 inL1(Pk) uniformly
on u ∈ G .

Letm ≥ 1 be an integer such that fm fixes all the irreducible components of all the totally
invariant analytic sets. By Proposition 5.7, we can replace f by fm and assume that f fixes
all these components. Let Xp denote the union of totally invariant sets of pure dimension p.
We will prove by induction on p that d−nu◦fn converge to 0 in L1(Xp) uniformly on u ∈ G .
We obtain the theorem for p = k and Xk = Pk. Assume this convergence on X0, . . . , Xp−1

(the case p = 0 is clear). Define X := Xp and EX as in Section 6. Note that if X is reducible
at a point x ∈ X then x belongs to EX . From the induction hypothesis, on each component
E of EX , d−nu ◦ fn converge in L1 to 0 uniformly on u ∈ G . We deduce that G is bounded
in L1(E). So, if Z is a component of X, which is not minimal in the above sense, by Lemma
3.5, G is bounded in L1(Z). If Z is a minimal component of X, then by hypothesis of the
theorem, G is bounded in L1(Z). So, we can apply Corollary 3.9 to G .

Let G ′ denote the set of all the modulo T wpsh functions on X which are limit values in
L1(X) of a sequence (d−nun ◦ fn) with un ∈ G . For every u ∈ G ′, Corollary 3.9 implies
that u ≤ 0. Since EX ⊂ X, by induction hypothesis we have convergence on EX . The last
assertion of Proposition 3.3 implies that u ≥ 0 on EX . Hence, u = 0 on EX for every u ∈ G ′.
We claim that u is (strongly) psh modulo T at every point of EX , that is, if τ : (C, 0)→ X is
a germ of holomorphic disc with τ(0) ∈ EX then u ◦ τ is subharmonic modulo τ∗(T ). Let
π : ‹X → X ⊂ Pk be a desingularization of X and ũ the lift of u to ‹X which is psh modulo
π∗(T ). Since d−nun ◦ fn are psh modulo T , ũ vanishes on irreductible analytic sets ‹E such
that π(‹E) is contained in EX and is totally invariant. So, if E ⊂ EX is analytic and totally
invariant, then ũ vanishes on π−1(E′) for some dense Zariski open subset of E. Therefore,
u is psh modulo T at every point of E′. This and Lemma 7.2 below applied to vn and to
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v0 := u imply the claim. It is clear that G ′ is compact. Fix a function v0 ∈ G ′. We have to
show that v0 = 0.

L 7.2. – There are functions vn ∈ G ′ such that vn+1 = d−1vn ◦f almost everywhere
for n ∈ Z.

Proof. – Assume that v0 is the limit of a sequence (d−niuni
◦ fni). Then, for n ≥ 0 the

sequence (d−ni−nuni
◦fni+n) converges to d−nv0◦fn. Lemma 3.8 implies that d−nv0◦fn is

equal almost everywhere to an element vn of G ′. If v−1 ∈ G ′ is a limit value of (d−ni+1uni
◦

fni−1) then v0 = d−1v−1 ◦f almost everywhere. We construct the functions v−n in the same
way by induction. If v−n is the limit of (d−miu′mi

◦fmi) then we obtain v−n−1 as a limit value
of (d−mi+1u′mi

◦ fmi−1).

Proof of Theorem 7.1. Let G ′′ denote the set of all the modulo T wpsh functions w on X
which are limit values of the sequence (v−n)n≥0. Since G ′ is compact, we have G ′′ ⊂ G ′.
We have to show that v0 = 0. Assume this is not the case. Since v0 = d−nv−n ◦ fn almost
everywhere, by Lemma 5.10, there is a constant α0 > 0 such that maxX νX(w, a) ≥ α0 for
every w ∈ G ′′. Fix a function w0 ∈ G ′′.

L 7.3. – There are functions wn ∈ G ′′ such that wn+1 = d−1wn ◦ f almost every-
where for n ∈ Z.

Proof. – Assume that w0 is the limit of (v−ni
). Let w1 and w−1 be modulo T wpsh func-

tions which are limit values of (v−ni+1) and (v−ni−1) respectively. These functions belong
to G ′′. Then, w0 = d−1w−1 ◦ f and w1 = d−1w0 ◦ f almost everywhere. We obtain the
lemma by induction. If wn is the limit value of (v−mi

) then we obtain wn−1 or wn+1 as limit
values of (v−mi−1) or (v−mi+1) respectively.

For α > 0 and 0 ≤ q ≤ p − 1, denote by Nα,q (resp. Nα,>q) the family of indices n ∈ N
such that {νX(w−n, a) ≥ α} is a non-empty analytic set of dimension q (resp. > q). From
the definition of G ′′, we have ∪qNα0,q = N. Hence, there is a maximal integer q such that the
upper density

Θ∗(Nα,q) := lim sup
n→∞

#Nα,q ∩ {0, . . . , n− 1}
n

is strictly positive for some constant α > 0. Fix a constant 0 < β � α that we will choose
later. The maximality of q implies that Θ∗(Nβ,>q) = 0. It follows that

δ := Θ∗(Nα,q \ Nβ,>q) = Θ∗(Nα,q) > 0.

Hence, for any integer l ≥ 1, there is an integer n1 ∈ Nα,q \ Nβ,>q such that

#(Nα,q \ Nβ,>q) ∩ {n1, . . . , n1 + l} ≥ 1

2
δl.

Fix l large enough and choose β = 1
2d
−l−lk2

α. Replacingw0 byw−n1 allows us to assume
that n1 = 0. This simplifies the notation. We are looking for a contradiction using Lemma
4.6 applied to u := w0. The hypothesis on the dimension of {ν(w0, a) > β} is satisfied
since 0 ∈ Nα,q \ Nβ,>q. Let n0 be given in Theorem 6.1 and Lemma 6.10. Choose integers
n0 < i1 < · · · < is ≤ l, with s ≥ 1

2δl − n0 − 1, in Nα,q \ Nβ,>q. Let Z ′′r be an irreducible
analytic set of dimension q such that νX(w−ir , x) ≥ α on Z ′′r . We have seen that w−ir is
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(strongly) psh modulo T at every point in EX and vanishes there. Hence, its Lelong number
vanishes on EX and Z ′′r 6⊂ EX . By Lemma 6.10 (we assumed that m = 1), there are analytic
sets Zr ⊂ g−ir (Z ′′r ) of pure dimension q and of degree ≥ θdir(p−q) =: dr such that if x
is a generic point in Zr then x ∈ reg(X), x′ := gir−n0(x) ∈ reg(X) and gir−n0 defines
a biholomorphism between neighbourhoods of x and x′. We now check the assumption of
Lemma 4.6 that the Lelong number of w0 is ≥ 2β on Zr.

Since w0 = d−ir+n0w−ir+n0
◦ gir−n0 , we deduce from the previous property of gir−n0

that

νX(w0, x) = d−ir+n0νX(w−ir+n0
, x′).

Define x′′ := gir (x) = gn0(x′). This is a point in Z ′′r . The local topological degree of fn0 at
x′ is≤ dn0k. Proposition 4.1 applied to h := fn0 and the identityw−ir+n0 = d−n0w−ir ◦gn0

imply that

νX(w−ir+n0
, x′) ≥ d−n0−n0k

2

νX(w−ir , x
′′) ≥ d−n0−n0k

2

α.

It follows that νX(w0, x) ≥ d−ir−n0k
2

α =: νr ≥ 2β. Applying Lemma 4.6 yields

θd−n0k
2(p−q)αp−qs ≤ 2p−q+1 deg(X)p−q.

This is a contradiction if l is large enough, since s ≥ 1
2δl − n0 − 1. �

Proof of Theorem 1.3. It is enough to prove that for f generic in Hd we have EPk = ∅. By
Lemma 6.2 applied to X = EPk , it is enough to show that if f is generic, lim sup d−(k−1)n #

f−n(x) = +∞ for every x ∈ Pk. Here, we count points without multiplicity. Fix an m ≥ 1

such that dm > 2kk!. We show for f generic that #f−m(x) > dm(k−1) for every x ∈ Pk.
This implies the result. Observe that the family of such f is a Zariski open set in Hd. So, it
is enough to construct an f satisfying this property.

Choose a rational map h : P1 → P1 of degree d such that #h−m(x) ≥ 1
2d
m for every

x ∈ P1. To this end, it is enough to take a map h whose critical points are simple and have
disjoint orbits. Now, construct the map f using an idea of Ueda [32]. Let π : P1×· · ·×P1 →
Pk denote the canonical map which identifies all points (x1, . . . , xk) with the points obtained
by permutation of coordinates. If f̂ is the endomorphism of P1 × · · · × P1, k times, defined
by f̂(x1, . . . , xk) := (h(x1), . . . , h(xk)), then there is a holomorphic map f : Pk → Pk of
algebraic degree d such that f ◦ π = π ◦ f̂ . We also have fm ◦ π = π ◦ f̂m. Consider
a point x in Pk and a point x̂ in π−1(x). We have π−1(f−m(x)) = f̂−m(π−1(x)). Hence,
#π−1(f−m(x)) ≥ #f̂−m(x̂) ≥ 2−kdmk. Since π has degree k!, we obtain #f−m(x) ≥

1
2kk!

dmk > dm(k−1). This completes the proof. �

R 7.4. – Let C denote the compact convex set of totally invariant (1, 1)-currents
of mass 1 on Pk. Define an operator∨ on C . IfS1, S2 are elements of C , writeSi = T+ddcui
with ui psh modulo T on Pk such that ui ≤ 0 and ui = 0 on supp(µ), see Corollary 3.9.
Define S1 ∨ S2 := T + ddc max(u1, u2). It is easy to check that S1 ∨ S2 is an element of C .
An element S is said to be minimal if S = S1 ∨ S2 implies S1 = S2 = S. It is clear that T
is not minimal if C contains other currents. A current of integration on a totally invariant
hypersurface is a minimal element.
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E 7.5. – Let [z0 : · · · : zk] denote the homogeneous coordinates of Pk and π :

Ck+1\{0} → Pk the canonical projection. Consider the map f [z0 : · · · : zk] := [zd0 : · · · : zdk ],
d ≥ 2. The Green (1, 1)-current T of f is given by π∗(T ) = ddc(maxi log |zi|), see [29], or
equivalently T = ω + ddcv where

v[z0 : · · · : zk] := max
0≤i≤k

log |zi| −
1

2
log(|z0|2 + · · ·+ |zk|2).

The currents Ti of integration on (zi = 0) belong to C and Tj = T + ddcuj with uj :=

log |zj | −maxi log |zi|. These currents are minimal. If α0, . . . , αk are positive real numbers
such that α := 1 −

∑
αi is positive, then S := αT +

∑
αiTi is an element of C . We have

S = T + ddcu with u :=
∑
αiui. The current S is minimal if and only if α = 0. One can

obtain other elements of C using the operator∨. One can also prove that C admits an infinite
number of elements which are extremal in the cone of positive closed (1, 1)-currents. This
implies that C has infinite dimension. For example, in dimension 2, the currents associated
to

u([z0 : z1 : z2]) := max(log |z0||z1|α−1, α log |z2|)−
α

2
log(|z0|2 + |z1|2 + |z2|2), α > 1,

are extremal. The elements of the set E in this case are just the points [0 : · · · :0 :1 :0 : · · · :0].

8. Polynomial automorphisms

The approach that we used above can be extended to other situations. From now on we
consider a polynomial automorphism f : Ck → Ck of degree ≥ 2 and its extension as a
birational map on Pk that we also denote by f . Let I+ and I− denote the indeterminacy sets
of f and f−1 respectively. These are the analytic sets where f and f−1 are not defined; they
are contained in the hyperplane at infinity L := Pk \ Ck. Assume that f is regular, i.e. I+ ∩
I− = ∅. We refer the reader to [29] for the basic properties of regular automorphisms. There
is an integer 1 ≤ s ≤ k − 1 such that I+ and I− are irreducible analytic sets of dimension
s− 1 and k − s− 1 respectively. We also have f(L \ I+) = f(I−) = I− and f−1(L \ I−) =

f−1(I+) = I+. The maps fn and f−n are also regular. The algebraic degrees d+ and d− of
f and f−1 satisfy the relation dk−s+ = ds−.

The Green currents of bidegree (1, 1) associated to f and f−1 are denoted by T+ and T−.
They are limits in the sense of currents of d−n+ (fn)∗(ω) and d−n− (fn)∗(ω) respectively. The
current T+ has locally continuous potentials outside I+, the current T− has locally contin-
uous potentials outside I−. We also have f∗(T+) = d+T+ and f∗(T−) = d−T−. We will
consider the problem of convergence towards T+, the case of T− is obtained in the same way.

Let g : X → X denote the restriction of f to X := I−. The positive measure µX :=

T k−s−1
+ ∧ [X] has positive mass. Since T+ is totally invariant, we have g∗(µX) = dk−s−1

+ µX .
This implies that g has topological degree dk−s−1

+ . We construct as above the families X0,
. . . , Xk−s−1 of totally invariant sets associated to g with Xk−s−1 = I−. Let E+ denote the
union of minimal components in {X0, . . . , Xk−s−1}. We have the following result, see [16]
for the case of dimension 2.
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T 8.1. – Let S be a positive closed (1, 1)-current of mass 1 on Pk. Assume that
the local potentials of S are not identically equal to −∞ on any irreducible component of E+.
Then, d−n+ (fn)∗(S) converge to T+.

The proof follows the same lines as above. We will describe the difference with the case of
holomorphic endomorphisms and leave the details to the reader. There is a neighbourhood
V of I+ with smooth boundary, which can be chosen arbitrarily small, such that f(Pk \V ) b
Pk\V , see [29]. IfS is as above, there is a modulo T+ psh function u such that S = T++ddcu.
This function is defined and is locally bounded from above on Pk \ I+. Denote by G the set
of modulo T+ psh functions on Pk which are limit values of d−n+ u ◦ fn. Since the Lelong
number of u is≤ 1 at every point in Pk \I+ and since f is an automorphism, Proposition 4.1
implies that the Lelong number of d−n+ u ◦ fn is ≤ d−n+ at every point in Ck.

On the other hand, for v ∈ G , we prove as in the previous sections that v ≤ 0 and v = 0

on X = I−. It follows that v = 0 on L \ I+ since we can write v = d−1
+ v′ ◦ f with v′ ∈ G

and f(L \ I+) = I−. The upper semi-continuity of the Lelong number implies that for every
δ > 0, there is an m such that the Lelong number of d−m+ u ◦ fm is smaller than δ on Pk \ V .
We want to prove that v = 0 on Pk \ V .

Assume that v = lim d−ni
+ u ◦ fni and that v ≤ −2α with α > 0, on a ball B ⊂ Pk \ V

of radius r. Then as in Proposition 5.7, we will have that d−m+ u ◦ fm ≤ −dni−m
+ α on a

ball Bi ⊂ Pk \ V of radius exp(−cr−2kdni−m
+ ); this contradicts Proposition 4.2 for δ small

and ni large. We can also obtain a uniform convergence for regular automorphisms as in
Theorem 7.1.
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