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A PRIORI BOUNDS FOR SOME
INFINITELY RENORMALIZABLE QUADRATICS:

II. DECORATIONS

 J KAHN  M LYUBICH

A. – A decoration of the Mandelbrot set M is a part of M cut off by two external rays
landing at some tip of a satellite copy of M attached to the main cardioid. In this paper we consider
infinitely renormalizable quadratic polynomials satisfying the decoration condition, which means that
the combinatorics of the renormalization operators involved is selected from a finite family of deco-
rations. For this class of maps we prove a priori bounds. They imply local connectivity of the corre-
sponding Julia sets and the Mandelbrot set at the corresponding parameter values.

R. – Une décoration de l’ensemble de Mandelbrot M est une partie de M découpée par deux
rayons externes aboutissant à la pointe d’une petite copie de M attachée à la cardioïde principale. Dans
cet article nous considérons des polynômes quadratiques infiniment renormalisables qui satisfont à la
condition de décoration, à savoir que la combinatoire des opérateurs de renormalisation mis en jeu est
sélectionnée à partir d’une famille finie de décorations. Pour cette classe d’applications, nous donnons
des bornes a priori. Ces bornes impliquent la connexité locale des ensembles de Julia correspondants
et celle de l’ensemble de Mandelbrot aux paramètres correspondants.

1. Introduction

A decoration of the Mandelbrot setM (called also a Misiurewicz limb)L is a part ofM cut
off by two external rays landing at some tip of a satellite copy ofM attached to the main car-
dioid, see Figure 1.1 (see §2.1 for the precise dynamical definition). In this paper we consider
infinitely renormalizable quadratic polynomials satisfying the decoration condition, which
means that the combinatorics of the renormalization operators involved is selected from a
finite family of decorations Lk. (For instance, real infinitely renormalizable maps satisfy a
decoration condition if and only if none of the renormalizations is of doubling type.)

An infinitely renormalizable quadratic map f is said to have a priori bounds if its renormal-
izations can be represented by quadratic-like maps Rnf : Un → Vn with mod(Vn r Un) ≥
ε > 0, n = 1, 2 . . . .
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58 J. KAHN AND M. LYUBICH

F 1.1. Two decorations of the Mandelbrot set. The little Mandelbrot sets
inside specify renormalization combinatorics of type (3, 1).

Our goal is to prove the following result:

M T. – Infinitely renormalizable quadratic maps satisfying the decoration
condition have a priori bounds.

By [9], this implies:

C 1.1. – Let fc : z 7→ z2 + c be an infinitely renormalizable quadratic map sat-
isfying the decoration condition. Then the Julia set J(fc) is locally connected, and the Man-
delbrot set M is locally connected at c.

In this paper we will deal only with the case of sufficiently high periods:
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A PRIORI BOUNDS FOR QUADRATIC POLYNOMIALS 59

T 1.2. – Given finitely many decorations Lk, there exists a p such that any in-
finitely renormalizable quadratic map satisfying the decoration condition with decorations Lk
and renormalization periods p ≥ p has a priori bounds.

The complementary case of “bounded combinatorics” is dealt with in [6].

R 1.1. – Theorem 1.2 sounds similar in spirit to the a priori bounds of [9]. How-
ever, the “high type” condition of [9] is stronger than the above high period condition, while
the “secondary limb condition” of [9] is weaker than the decoration condition. Also, our
proof of Theorem 1.2 is compatible with the proof of [6], so that they can be combined into
the Main Theorem.

Let us now outline the structure of the paper.

In the next section, §2, we will describe a necessary combinatorial set-up in the framework
of the Yoccoz puzzle. Besides a well-known material, it includes the construction of the mod-
ified principal nest from [7] needed for dealing with maps of “high type”.

In §3 we summarize necessary information about pseudo-quadratic-like maps defined in
[6], and introduce a pseudo-puzzle by applying the “pseudo-functor” to the puzzle. In this
way we make domains of the return maps more canonical, which spares us from the need to
control geometry of external rays.

From now on, the usual puzzle will serve only as a combinatorial frame, while all the ge-
ometric estimates will be made on the pseudo-puzzle. This is needed for this paper per se,
as well as for making connection to the case of bounded combinatorics [6]. Only at the last
moment (§5.7) we return back to the standard quadratic-like context.

In §4 we formulate the analytical results of [8], the Quasi-Additivity Law and the Covering
Lemma, in the pseudo context. They will be our main analytical tools.

In §5 we prove the main results of the paper. To prove a priori bounds, we show that if
some renormalization has a small modulus, then this modulus will improve on some deeper
level. The main place where the decoration condition plays the role is on the top of the puzzle,
when we compare the modulus of the first annulus of the pseudo-puzzle to the modulus of
the original pseudo-quadratic-like map.

R 1.2. – Strictly speaking, bounded combinatorics treated in [6] and high combi-
natorics treated by Theorem 1.2 do not cover the oscillating combinatorial types. However,
these theorems follow from results on moduli improving, that together cover everything.

R 1.3. – Our proof of a priori bounds (Main Theorem) applies without changes
in the case of unicritical maps of higher degree. However, the proof of MLC at the corre-
sponding parameters (Corollary 1.1) given in [9] exploits some special geometric features of
quadratic maps. In [3] part of [9] is combined with a new method developed in [2] to prove
Corollary 1.1 in the higher degree case as well.
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60 J. KAHN AND M. LYUBICH

1.1. Terminology and notation

N = {1, 2, . . .} is the set of natural numbers; Z≥0 = N∪{0}; D = {z : |z| < 1} is the unit
disk, and T is the unit circle;
A(r,R) = {z : r < |z| < R} is the annulus of modulus 1

2π log(R/r);
Π(h) = {z|0 < =z < h} is the horizontal strip.

A topological disk means a simply connected domain in some Riemann surface S. A con-
tinuum K is a connected closed subset in S. It is called full if all components of S r K are
unbounded. We say a subsetK of a plane is an FJ-set (for “filled Julia set”) ifK is compact,
connected, and full.

We let orb(z) ≡ orbg(z) = (gnz)∞n=0 be the orbit of z under a map g.

Given a map g : U → V and an open topological disk D ⊂ V , components of g−1(D)

are called pullbacks of D under g. If the disk D is closed, we define pullbacks of D as the
closures of the pullbacks of intD. (1) In either case, given a connected set X ⊂ g−1(intD),
we let g−1(D)|X be the pullback of D containing X.

We let x ⊕ y = (x−1 + y−1)−1 be the harmonic sum of x and y (it is conjugate to the
ordinary sum by the inversion map x 7→ x−1). Similarly, x	 y = (x−1 − y−1)−1 stands for
the harmonic difference.

1.2. Acknowledgement

We thank Tao Li for making Figure 1.1. This work has been partially supported by the
NSF, NSERC, the Guggenheim and Simons Foundations. Part of it was done during the
authors’ visit to the IMS at Stony Brook and the Fields Institute in Toronto. We are thankful
to all these Institutions and Foundations.

2. Yoccoz puzzle, decorations, and the Modified Principal Nest

Let (fλ : U ′λ → Uλ) be a quadratic-like family over a disk Λ ⊂ C. Assume that this family
is good enough (proper and unfolded), so that the associated Mandelbrot set M = M(fλ)

is canonically homeomorphic to the standard Mandelbrot set (see [4]). In fact, most of the
time we will be dealing with a single map f = fλ from our family, so that we will usually sup-
press the label λ in the notation. (We need a one parameter family only to introduce different
combinatorial types of the maps under consideration.)

We assume that the domains U ′ and U are smooth disks, f is even, and we normalize f
so that 0 is its critical point.

We let Um = f−m(U). The boundary of Um is called the equipotential of level m.

(1) Note that the pullbacks of a closed diskD can touch one another, so they are not necessarily connected compo-
nents of g−1(D).
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A PRIORI BOUNDS FOR QUADRATIC POLYNOMIALS 61

2.1. Top of the Yoccoz puzzle and decorations

By means of straightening, we can define external rays for f . They form a foliation of
V rK(f) orthogonal to the equipotential ∂U . The map f has one non-dividing fixed point β
(landing point of the external ray with angle 0), and one dividing fixed point α. There are
q > 1 external rays Ri landing at α which are cyclically permuted by the dynamics with
rotation number p/q, see [12] (p/q is also called the combinatorial rotation number of α).
These rays divide U into q (closed) topological disks Y 0

i called the Yoccoz puzzle pieces of
depth 0. Let Y 0 ≡ Y 0

0 stand for the critical puzzle piece, i.e., the one containing 0.
Let us consider 2q rays of f−1(∪Ri). They divide U ′ into 2q − 1 (closed) disks called

Yoccoz puzzle pieces of depth 1. Let Y 1 stand for the critical puzzle piece of depth 1. There
are also q− 1 puzzle pieces Y 1

i of depth 1 contained in the corresponding off-critical pieces
of depth 0. All other puzzle pieces of depth 1 will be denoted Z1

i . They are attached to the
symmetric point α′ = −α.

The puzzle pieces will be labeled in such a way that f(Y 1
i ) = Y 0

i+1, i = 0, . . . ,q− 1, and
Z1
i = −Y 1

i . We let

L =

q−1⋃
i=1

Y 1
i ; R = −L =

q−1⋃
i=1

Z1
i .

Puzzle pieces Y mj of depth m are pullbacks of f−m(Y 0
i ). They tile the neighborhood of

K(f) bounded by the equipotential ∂Um. Each of them is bounded by finitely many arcs
of this equipotential and finitely many external rays of f−m(Ri). If fm(0) 6= α, then there
is one puzzle piece of depth m that contains the critical point 0. It is called critical and is
labeled as Y m ≡ Y m0 . These pieces are nested around the origin:

Y 0 ⊃ Y 1 ⊃ Y 2 · · · 3 0.

Let us consider a puzzle piece Y = Y mi . Different arcs of ∂Y meet at the corners of Y . The
corners where two external rays meet will be called vertices of Y ; they are fm-preimages of α.
Let KY = K(f)∩ Y . It is a closed connected set that meets the boundary ∂Y at its vertices.
Moreover, the external rays meeting at a vertex v ∈ ∂Y chop off from K(f) a continuum
SvY , the component of K(f) r intY containing v.

The critical value fq(0) belongs to the puzzle piece Y 0. If in fact it belongs to Y 1 then
the map Y q+1 → Y 1 is a double branched covering. It is not a quadratic-like map, though,
since the boundaries of Y 1 and Y q+1 overlap over four external rays landing at α and α′.
However, by slight “thickening” of the domain of this map (see [11]), it can be turned into a
quadratic-like map g such that

K(g) = {z : fqmz ∈ Y 1, m = 0, 1, 2, . . .}.

The map f is called satellite renormalizable (or, immediately renormalizable) if the Julia set
K(g) is connected, i.e., if the critical point never escapes Y 1:

fqm(0) ∈ Y 1, m = 0, 1, 2 . . . .

The set of immediately renormalizable parameter values (with a given combinatorial rota-
tion number p/q) assembles a satellite copy Mp/q of M attached to the main cardioid at the
parabolic point with rotation number p/q. The parameters t ∈ Mp/q for which the critical
point eventually lands at α (i.e., fqn

t = α′ for some n ∈ N) are called the tips of Mp/q.
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62 J. KAHN AND M. LYUBICH

If f is not satellite renormalizable, then there exists an n ∈ N such that fqn(0) belongs to
some puzzle piece intZ1

κ. Let n be the smallest such n. In this case, we let

V 0 = f−nq(Z1
κ)|0 = Y nq+1.

Each puzzle piece Z1
j has 2m univalent pullbacks under the 2m-covering fqm : Y qm →

Y 0, m = 1, . . . ,n− 1. We label these pullbacks (for all j) as Z1+qm
i . Then

(2.1) fqm(0) ∈ Zq(n−m)+1
κm

, m = 1, . . . ,n,

for some sequence κ̄ = (κ1, . . . , κn = κ) called the escape route of the critical point. The
escape route specifies the tip t = tκ1...κn−1 of M such that ft satisfies (2.1) for m < n, while
fqn = α′.

There are q parameter rays landing at each tip t ofMp/q. They chop off q−1 decorations
Lκ̄ (the components of M r {t} that do not intersect the main cardioid) from M . The limb
Lκ̄ attached to t is specified by the puzzle piece Z1

κ containing fqn(0). Note that there are
only finitely many decorations with bounded q and n.

Let P = Y (n−1)q+1. The piece P has 2n vertices each of which is a preimage of α of some
depth qm with m ≤ n (and it takes into account all preimages of α in Y 1 up to depth qn).

Y nq+1

α

α′
Z1
i

QL

QR

Y 1
i

F 2.1. The top of the Yoccoz puzzle

Note that fq(P ) ⊃ P and the critical value fq(0) does not belong to P . Hence P has
two univalent fq-pullbacks, QL and QR (of depth qn + 1), inside P . The puzzle piece QL is
attached to the fixed point α while QR is attached to α′. Each of them shares two external
rays with V 0.
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A PRIORI BOUNDS FOR QUADRATIC POLYNOMIALS 63

L 2.1. – For any vertex v of P , there exists a puzzle piece Qv ⊂ P of depth
(2n− 1)q + 1 attached to the boundary rays of P landing at v, which is a univalent fnq-pull-
back of P . Moreover, these puzzle pieces are pairwise disjoint.

Proof. – Let g = fq|QL ∪ QR. The domain of gn consists of 2n components each of
which is a univalent pullback of P . Each of these components contains a single gn-preimage
v of α, and is attached to the pair of the boundary external rays of P landing at v. This is
the desired puzzle piece Qv.

Given two vertices, v and w, of P , we let T vwP = KP r (Qv ∪ Qw). Notice that T vw

separates v from w in the sense that v and w belong to different components of KP r Tvw.

2.2. Modified principal nest

Given a critical puzzle piece V , let us consider the first return f l0, l ∈ N, of the critical
point to V (whenever it exists). The corresponding pullback W = f−l(V )|0 of V is called
the central domain of the first return map to V , or briefly, the first child of V . Then, W ⊂ V

and the first return map f l : W → V is a double branched covering.
Under the above circumstances, we also consider the first moment k ∈ N such that

fkl(0) 6∈ W and then the first return f t(0) ∈ W , t > kl, back to W (whenever these
moments are well defined). We call it the fine return to W , and the corresponding pullback
A = f−t(W )|0 the fine child of W . The map f t : A → W is a double branched covering.
Note that if f l(0) 6∈W , the fine return coincides with the first return.

In [7] we have constructed a (Modified) Principle Nest of critical puzzle pieces

E0 c E1 c E1 c · · · c Eχ−1 c Eχ

and corresponding quadratic-like maps gn : En → En−1. Here for odd n, En is the first
child of En−1 and gn : En → En−1 is the corresponding first return map. For odd n, En

is the fine child of En−1 and gn : En → En−1 is the corresponding fine return map. We let
g ≡ g0.

If the map f is renormalizable then the Principle Nest terminates at some odd level χ.
In this case, the last quadratic-like map gχ : Eχ → Eχ−1 has a connected Julia set and
represents the primitive renormalization Rf of f . The renormalization level χ is also called
the height of the nest.

Primitively renormalizable parameter values assemble a maximal primitive copyM ′ of the
Mandelbrot set M . This copy specifies the combinatorics of the renormalization in ques-
tion. In particular, it determines the parameters q, n, the height χ, and the renormalization
period p.

In what follows we will assume that f is primitively renormalizable. We let K = K(Rf) be
the little (filled) Julia set of f , and we let p be the renormalization period, i.e., gχ = fp so
that fp(K) = K. We let Ki = f i(K), where i is taken mod p, which are also called “little
Julia sets”.

It is important to note that the maps gn admit analytic extensions Ẽn → Ên−1 such that
En ⊂ Ẽn ⊂ Ên ⊂ En−1 and for odd n, Ên = En−1 [7], §2.4. For n = 0, we let Ê0 = Ẽ0 =

Y qn. Then fqn : Ẽ0 → Y 0 is a branched covering of degree 2n.

The following observation will be used many times:
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64 J. KAHN AND M. LYUBICH

L 2.2 (Telescope). – Let Xk be a sequence of topological disks, k = 0, 1, . . . , n, and
let φk : Xk → φ(Xk) be branched coverings of degree dk such that φ(Xk) ⊃ Xk+1. Let
Φ = φn−1 ◦ · · · ◦ φ0 (wherever it is defined), and let P ⊂ X0 be a component of its domain of
definition. Then Φ : P → Xn is a branched covering of degree at most d0 · · · dn−1.

If the renormalization Rf is also renormalizable then f is called twice renormalizable,
and R2f stands for its second renormalization. Proceeding this way, we can define infinitely
renormalizable maps f , and let R : Rn−1f 7→ Rnf be their n-fold renormalizations. The
combinatorics of an infinitely renormalizable map is a sequence of little Mandelbrot copies
M (n) that determine the combinatorics of the renormalizations Rnf . It determines the se-
quence of the parameters qn, nn, the heights χn, and the periods pn of the corresponding
renormalizations.

We say that an infinitely renormalizable f satisfies the decoration condition if all the little
copiesM (n) belong to finitely many decorations Lk. Equivalently, the parameters qn and nn
are bounded.

2.3. Geometric puzzle pieces

In what follows we will deal with more general puzzle pieces.
Given a puzzle piece Y mi , let Y m,li stand for a Jordan disk bounded by the same external

rays as Y mj and arcs of equipotentials of level l (so Y m,mi = Y mi ). Such a disk will be called
a puzzle piece of bidepth (m, l).

A geometric puzzle piece of bidepth (m, l) is a closed Jordan domain which is the union of
several puzzle pieces of the same bidepth. As for ordinary pieces, a pullback of a geometric
puzzle piece of bidepth (m, l) under some iterate fk is a geometric puzzle piece of bidepth
(m + k, l + k). Note also that if P and P ′ are geometric puzzle pieces with (2) bidepthP ≥
bidepthP ′ and KP ⊂ KP ′ then P ⊂ P ′.

The family of geometric puzzle pieces of bidepth (m, l) will be called Ym(l). Given a geo-
metric puzzle piece Y ∈ Ym(l), we let Y (k) be the puzzle piece bounded by the same external
rays as Y truncated by the equipotential of level k. (In particular, Y (l) = Y .)

Any puzzle piece Y ∈ Ym(l) admits the following combinatorial representation. Let θi
be the cyclically ordered angles of the external rays Ri that bound Y . Let us consider the
straight rays Ri in C r D of angles θi truncated by the circle Tr of radius r = 22−l

. If two
consecutive rays,Ri andRi+1, land at the same vertex of Y , let us connect Ri to Ri+1 with
a hyperbolic geodesic in D. OtherwiseRi andRi+1 are connected with an equipotential arc.
Then let us connect Ri to Ri+1 with the appropriate arc of Tr. We obtain a Jordan curve
that bounds the combinatorial model MY of Y .

The arcs ωi of T∩MY correspond to the “external arcs” of the Julia pieceKY . They have
length 2πλ, where λ is called the combinatorial length of the corresponding external arc of
KY . In case Y is a dynamical puzzle piece, all the external arcs of Y have the same combi-
natorial length

(2.2)
2k

(2q − 1)2m
, k ∈ {0, 1, . . . , q − 1},

(2) The inequality between bidepths is understood componentwise
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A PRIORI BOUNDS FOR QUADRATIC POLYNOMIALS 65

where the choice of k depends on the puzzle piece fm(Y ) of depth 0. (For instance, k = 0

when fm(Y ) contains the critical value f(0), while k = q − 1 when fm(Y ) contains the
critical point 0.)

It follows that for a geometric puzzle piece Y of depth m, the combinatorial length of its
external arcs is at least 2−(q+m).

Let us now consider a geometric puzzle piece Z0 = −Y 0 of bidepth (1,0).

L 2.3. – Let z ∈ K(f), fqnz ∈ Z0 and let P = f−qn(Z0)|z. Then P b intY 0 or
P b intZ0.

Proof. – P is a geometric puzzle piece of bidepth (nq + 1,nq). But E0 = Y nq+1 is a
puzzle piece of depth nq + 1 such that fqn(E0) = Zκ, where intZκ ∩ Z0 = ∅. It follows
that P ∩ intE0 = ∅. ButK(f)r intE0 consists of two 0-symmetric connected components
XL ⊃ L ∩ K(f) and XR ⊃ R ∩ K(f). We conclude that KP is contained in one of these
components, and hence it is contained in one of the sets KZ0 or KY 0 . As

bidepthP ≥ (1, 0) = bidepthZ0 ≥ (0, 0) = bidepthY 0,

P is contained in one of the puzzle pieces Z0 or Y 0.

2.4. Many happy returns

Here we will summarize the combinatorial construction of [7], §1.9, that will lead to the
moduli improvement in the case of high type.

Fix an arbitrarym, letN be the smallest even integer which is bigger than log2m+5, and
take any odd level n ≥ N . Then there exist m/2 returns Λk = glk(En) of the domain En

to En−N with the following properties. For any domain Λk, the map Ψk = glk : En → Λk
admits a holomorphic extension to a branched covering

(2.3) Ψk : (Υk,∆k, E
n)→ (En−N−1,Λ′k,Λk)

such that:

(P1) deg(Ψk : Υk → En−N−1) ≤ 2N+m;
(P2) deg(Ψk : ∆k → Λ′k) ≤ d5;
(P3) Υk ⊂ En−1;
(P4) there is a level i ∈ [n − 5, n − 1] such that each pair of disks (Λ′k,Λk) is mapped uni-

valently onto (Êi, Ei) under some iterate f t, t = t(k);
(P5) the buffers Λ′k b En−N are pairwise disjoint.

3. Pseudo-quadratic-like maps and pseudo-puzzle

3.1. Pseudo-quadratic-like maps

For a more general and detailed discussion of ψ-ql maps, see [6].
Suppose that U′, U are disks, and i : U′ → U is a holomorphic immersion, and

f : U′ → U is a degree d holomorphic branched cover. Suppose further that there exist
full continua K b U and K ′ b U′ such that K ′ = i−1(K) = f−1(K). Then we say that
F = (i, f) : U′ → U is a ψ-quadratic-like (ψ-ql) map with filled Julia set K.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



66 J. KAHN AND M. LYUBICH

L 3.1 ([6]). – Let F = (i, f) : U′ → U be a ψ-ql map of degree d with filled
Julia set K. Then i is an embedding in a neighborhood of K ′ ≡ f−1(K), and the map
g ≡ f ◦ i−1:U ′ → U near K is quadratic-like.

Moreover, the domains U and U ′ can be selected in such a way that mod(U r i(U ′)) ≥
µ(mod(U rK)) > 0.

There is a natural ψ-ql map Un → Un−1, the “restriction” of (i, f) to Un. Somewhat
loosely, we will use the same notation F = (i, f) for this restriction.

Let us normalize the ψ-quadratic-like maps under consideration so that diamK ′ =

diamK = 1, both K and K ′ contain 0 and 1, 0 is the critical point of f , and i(0) = 0. Let
us endow the space of ψ-quadratic-like maps (considered up to independent rescalings in
the domain and the range) with the Carathéodory topology. In this topology, a sequence
of normalized maps (in, fn) : U′n → Un converges to (i, f) : U′ → U if the pointed do-
mains (U′n, 0) and (Un, 0) converge to U′ and U respectively, and the maps in, fn converge
respectively to i, f , uniformly on compact subsets of U′.

L 3.2 (compare [10]). – Let µ > 0. Then the space of ψ-ql maps F = (i, f) :

U′ → U such that the Julia set K is connected and mod(U rK) ≥ µ is compact.

Proof. – Let Xn = i−1
n {0, 1}, Yn = f−1

n {0, 1}. Note that both sets consist of at most
3 points and are contained in D.

Then we can select a subsequence of domains U′n, Un Carathéodory converging to some
domains U′, U, while the setsXn and Yn converge in the Hausdorff metric to some setsX ⊂
U′ and Y ⊂ U′ that consist of at most three points and are contained in D (we will keep the
same notation for the subsequence). Since the maps in|U′n r Xn and fn|U′n r Yn do not
assume values 0 and 1, they form normal families on U′ r X,U′ r Y . Since these families
are bounded on the sets Kn, they are uniformly bounded on compact sets of U′ r (X ∪ Y ).
By the Maximum Principle, they are normal on the whole domain U′.

Let i and f be some limit functions of the sequences in and fn. These functions are non-
constant since they assume values 0 and 1. Then i is an immersion as a non-constant limit
of immersions. Also, f : U′ → U is a branched covering of degree at most 2. Moreover,
K ′ b U since mod(U′ rK ′) ≥ µ/2. Hence 0 ∈ U′, and it is a critical point of f . It follows
that deg f = 2, and we are done.

3.2. Pseudo-puzzle

3.2.1. Definitions. – Let (i, f) : U′ → U be a ψ-ql map. By Lemma 3.1, it admits a
quadratic-like restriction U ′ → U to a neighborhood of its (filled) Julia set K = KU. Here
U ′ is embedded to U , so we can identify U ′ with i(U ′) and f : U ′ → U with f ◦ i−1.

Assume that K is connected and both fixed points of f are repelling. Then we can cut U
by external rays landing at the α-fixed point and consider the corresponding Yoccoz puzzle.

Given a (geometric) puzzle piece Y of depth m, recall that KY stands for Y ∩K(f) and
SY = cl(K(f) rKY ). Let C stand for the space of paths δ : [0, 1]→ Um r SY such that:

• δ(0) ∈ Y ,
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• if δ(t) ∈ KY , then the restriction δ| [0, t] is homotopic relatively to endpoints to a path
contained in Y . (3)

Let Y be the space of paths δ ∈ C modulo homotopy through C with δ(1) fixed. Define the
projection πY : Y → Um by [δ] 7→ δ(1). One can see that Y is a Riemann surface, and
πY is an immersion such that Y lifts to a disk Ŷ ⊂ Y which is homeomorphically projected
onto Y . Thus, we can identify Ŷ with Y ; in particular, KY is embedded into Y.

The Riemann surface Y will be called the pseudo-piece (“ψ-piece”) associated with Y .

Y1

Y3

Y2

Ã3

λ1

η1

Ã2

ξ2

Ã1 ξ1

η3

ξ3

λ2

λ3

η2

F 3.1. The pseudo-puzzle piece

The ψ-pieces can also be defined in a different way (see Figure 3.1). Let us consider the
topological annulusA = UmrK(f) and its universal covering Â. Let Yi be the components
of Y r KY . There are finitely many of them, and each Yi is simply connected. Hence they
can be embedded into Â. Select such an embedding ei : Yi → Âi where Âi stands for a copy
of Â. Then the ψ-piece is obtained by gluing the Ai to Y by means of ei, i.e., Y = Y tei

Âi.

L 3.3. – The above two definitions of ψ-pieces are equivalent.

Proof. – Let Y be a ψ-piece according to the first definition. The puzzle piece Y is em-
bedded into Y by associating to a point y ∈ Y the constant path δ(t) ≡ y.

(3) This condition can be replaced with a more restrictive one: After the first exit from Y , the path never intersects
the Julia set K(f) (though it is allowed to return back to Y ).
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Let us realize the universal covering Âi → A as the space of paths in A that begin in Yi
relatively to homotopy through such paths fixing the terminal endpoint. (This realization is
legitimate since Yi is simply connected.) This provides us with an embedding φi : Âi → Y.

The embeddings φi have disjoint images. Indeed, all points of ∂Y ∩K(f) are dividing and
thus belong to SY . Hence, if we take two paths δ1 : [0, 1] → Um r K(F ) and δ2 : [0, 1] →
Um r K(f) as above representing points in Âi and Âj (i 6= j) with a common endpoint,
then they “surround” some piece of SY , and hence represent different points in Y.

Moreover, the image φi(Âi) overlaps with Y by Yi. Hence we obtain an embedding of
Y tei

Âi into Y.

Let us show that this embedding is surjective. Take a path δ ∈ C representing some point
of Y, and let τ ∈ [0, 1] be the last parameter for which δ(τ) ∈ KY . Since the path δ : [0, τ ]→
Um is trivial (i.e., it can be pulled to Y in Um r SY relatively to endpoints), the restriction
δ : [τ, 1]→ Um r SY (appropriately reparametrized) represents the same point in Y as the
original path. Moreover, if τ 6= 1, we can replace it with an equivalent path δ : [τ + ε, 1]→
Um r SY which is disjoint from the Julia set K(f). As the latter path represents a point in
some Âi, we are done.

3.2.2. Naturality

L 3.4. – (i) Consider two puzzle pieces Y and Z such that the map f : Y → Z

is a branched covering of degree k (where k = 1 or k = 2 depending on whether Y is
off-critical or not). Then there exists an induced map f : Y → Z which is a branched
covering of the same degree k.

(ii) Given two puzzle pieces Y ⊂ Z, the inclusion i : Y → Z extends to an immersion
i : Y → Z.

Proof. – Both properties follow easily from either definition of the ψ-pieces. Let us, for
instance, use the second definition.

(i) Let depthY = m, depthZ = m− 1. Let us consider the degree k branched covering

f : (Um, Y,KY )→ (Um−1, Z,KZ).

The components Yi of Y rKY are univalently mapped onto components Zj(i) of Z rKZ ,
where the map j = j(i) is k-to-1. This map extends to an isomorphism map Âi → B̂j of the
corresponding universal coverings, which glue together into a branched covering Y → Z of
degree k.

(ii) Let depthY = m, depthZ = n. Let us consider the immersion

i : (Um, Y,KY )→ (Un, Z,KZ).

The components Yi are embedded by i into some components Zj(i), where the map j = j(i)

is surjective but not necessarily injective. These embeddings extend to immersions Âi → B̂j
that glue together into an immersion Y → Z.
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3.2.3. Moduli. – Given two puzzle pieces Z b Y , we let

mod (Y,Z) = mod(Y rKZ).

Lemma 3.4 implies:

L 3.5. – (i) Consider two pairs of puzzle pieces (Y ′, Y ) and (Z ′, Z) such that the
map f : (Y ′, Y )→ (Z ′, Z) is a branched covering of degree k (on both domains). Then

mod (Z ′, Z) = kmod (Y ′, Y ).

(ii) Given a nest of three puzzle pieces W ⊂ Z ⊂ Y , we have

mod (Z,W ) ≤mod (Y,W ).

3.2.4. Boundary of pseudo-puzzle pieces. – Let us mention in conclusion that the ideal
boundary of a pseudo-puzzle Y is tiled by (finitely many) arcs λi ⊂ ∂Âi that cover the ideal
boundary of Um (where m = depthY ) and arcs ξi, ηi ⊂ ∂Âi mapped onto the Julia set
J(f) (see Figure 3.1). The arc λi meets each ξi, ηi at a single boundary point corresponding
to a path δ : [0, 1) 7→ A that wraps aroundK(f) infinitely many times, while ηi meets ξi+1 at
a vertex vi ∈ Y ∩K(f). We say that the arcs λi form the outer boundary (or “O-boundary”)
∂OY of the puzzle piece Y, while the arcs ξi and ηi form its J-boundary ∂JY. Given a vertex
v = vi of a puzzle piece Y , let ∂vY = ηi ∪ ξi+1 stand for the part of the J-boundary of Y

attached to v.

Note that the immersion constructed in Lemma 3.4 extends continuously to the boundary
of the puzzle piece Y. (However, i(∂Y) is not contained in ∂Z, unless Z = Y .) In what
follows we will assume this extension without further comment.

A multicurve in some space X is a continuous map γ : ∪lk=1[sk, tk] → X parametrized
by a finite union of disjoint intervals [sk, tk] ⊂ R. (4) Note that multicurves are ordered. A
multicurve in a puzzle piece Y is called horizontal if

γ(s1) ∈ ∂v0Y, γ(tk), γ(sk+1) ∈ ∂vkY, k = 1, . . . , l − 1, γ(tl) ∈ ∂vlY

for some vertices vk of Y, k = 0, . . . , l. We say that such a multicurve “connects” ∂v0Y to
∂vlY. The following statement motivates introduction of multicurves:

L 3.6. – Let v and w be two vertices of a geometric puzzle piece Y ∈ Ym(l). Then
any curve γ in Ul connecting SvY to SwY contains a multicurve γ′ that lifts to a multicurve γ∗ in
Y connecting ∂vY to ∂wY.

Given two vertices v and w of Y , let GY (v, w) stand for the family of horizontal multic-
urves in Y connecting ∂vY to ∂wY. Finally, let

dY (v, w) = L(GvwY )

stand for the extremal distance between the corresponding parts of J-boundary of Y.

L 3.7. – If f |Y is univalent, then dY (v, w) = df(Y )(fv, fw).

(4) We allow that the boundary points of a multicurve in a pseudo puzzle Y belong to ∂JY.
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4. Quasi-Additivity Law and Covering Lemma

Let us now formulate two analytic results which will play a crucial role in what follows.
The first one appears in §2.10.3 of [8]:

Q-A L. – Fix some η ∈ (0, 1). Let V be a topological disk, let Ki b
V, i = 1, . . . ,m, be pairwise disjoint full compact continua, and let φi : A(1, ri)→ V r ∪Kj

be holomorphic annuli such that each φi is an embedding of some proper collar of T to a proper
collar of ∂Ki. Then there exists a δ0 > 0 (depending on η and m) such that: if for some δ ∈
(0, δ0), mod(V,Ki) < δ while log ri > 2πηδ for all i, then

mod(V,∪Ki) <
2η−1δ

m
.

The next result appears in §3.1.5 of [8]:

C L. – Fix some η ∈ (0, 1). Let us consider two topological disks U and
V, two full continua A′ ⊂ U and B′ ⊂ V, and two compact subsets, A ⊂ A′ and B ⊂ B′, of
topological type bounded by T . (5)

Let f : U → V be a branched covering of degree D such that A′ is a component of f−1(B′),
and A is the union of some components of f−1(B). Let d = deg(f : A′ → B′).

Let B′ be also embedded into another topological disk B′. Assume B′ is immersed into V

by a map i in such a way that i|B′ = id, i−1(B′) = B′, and i(B′) r B′ does not contain the
critical values of f . Under the following “Collar Assumption”:

mod(B′, B) > ηmod(U, A),

if mod(U, A) < ε(η, T,D) then mod(V, B) < 2η−1d2 mod(U, A).

5. Improving the moduli

In this section C = 2 will stand for the constant in the Quasi-Additivity Law and the
Covering Lemma.

5.1. High type

Let us begin with a simple estimate that compares moduli on consecutive odd levels of the
Principal Nest:

L 5.1. – For any odd n, we have:

mod (En−3, En−2) ≤ 4 mod (En−1, En)

and

mod (Y 0, R) ≤ 2n+1 mod (E0, E1).

(5) In applications, A and B will be full continua, so T = 1.
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Proof. – By Lemma 3.5,

mod (Ên−1, En−1) = 2 mod (Ẽn, En) ≤ 2 mod (En−1, En)

and

mod (Ên−1, En−1) ≥mod (Ẽn−1, En−1)

=
1

2
mod (Ên−2, En−2) =

1

2
mod (En−3, En−2),

and the first estimate follows.

The second estimate is similar. The puzzle piece E1 ≡ Y m is mapped with degree 2 onto
E0, and this map admits degree 2 extension Ẽ1 → Y qn ≡ Ê0, where Ẽ1 = Y m−1. Then E0

is mapped onto Z1
κ by degree 2 map fqn. This map admits degree 2n extension Y qn → Y 0.

It follows that

mod (Y 0, R) ≤mod (Y 0, Z1
κ)

= 2n+1 mod (Y m−1, E1) ≤ 2n+1 mod (E0, E1).

The following lemma tells us that if some principal modulus is very small, then it should
be even smaller on some preceding level of the Principal Nest:

L 5.2. – There exist absolute N ∈ N and ε > 0 such that: If on some odd level
n ≥ N , mod (En−1, En) < ε, then on some previous odd level n−s ∈ [n−N,n−1] we have:

(5.1) mod (En−s−1, En−s) <
1

2
mod (En−1, En).

Proof. – Let us fix some integer m > C3228. Let N be the smallest odd integer that is
bigger than log2m+ 5. Take any odd level n ≥ N . For each k, let us consider the associated
3-domain branched covering Ψk (2.3)

Ψk : (Υk,∆k, E
n)→ (En−N ,Λ′k,Λk).

Let us consider two cases:

Case 1. Assume that for some domain Λk,

mod (Λ′k,Λk) ≤ 1

4
mod (En−1, En).

By Property (P4) and Lemma 3.5, mod (Λ′k,Λk) = mod (Êi, Ei). If i is odd then Êi =

Ei−1, and we obtain the desired estimate with s = n− i ∈ [1, 5]:

mod (En−1, En) ≥ 4 mod (Ei−1, Ei).

If i is even, then

mod (Êi, Ei) ≥mod (Ẽi, Ei) =
1

2
mod (Êi−1, Ei−1) =

1

2
mod (Ei−2, Ei−1),

and we conclude that

mod (En−1, En) ≥ 2 mod (Ei−2, Ei−1).
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Case 2. Assume that for all Λk,

(5.2) mod (Λ′k,Λk) ≥ 1

4
mod (En−1, En) ≥ 1

4
mod (Υk, E

n)

(where the second estimate follows from the inclusion Υk ⊂ En−1). By Lemma 3.4, there
exist a natural covering map

Ψk : (Υk,K∆k
,KEn)→ (En−N−1,KΛ′

k
,KΛk

),

and a natural immersion i : Λ′k → En−N . Note that i(Λ′k) r KΛ′
k

does not contain the
critical values of Ψk, since the latter are contained in the Julia setK(f). Moreover, estimate
(5.2) provides us with the Collar Assumption that allows us to apply the Covering Lemma
to the map Ψk. If ε is sufficiently small, it yields:

(5.3) mod (En−N−1,Λk) ≤ C212mod (Υk, E
n) ≤ C 212 mod (En−1, En).

Estimates (5.2) and (5.3) show that the Quasi-Additivity Law is applicable to the family of
continua KΛk

in En−N−1 with η−1 = C214. Since there are at least m/2 domains Λk ⊂
Λ′k ⊂ En−N , it implies:

mod (En−N−1, En−N ) ≤ C3227 mod (En−1, En)

m
<

1

2
mod (En−1, En),

and we are done.

L 5.3. – There exist absolute constants C > 0, ρ ∈ (0, 1) and ε > 0 such that if for
some odd n, mod (En−1, En) < ε, then

mod (E0, E1) < Cρnmod (En−1, En)

and

mod (Y 0, R) ≤ C2nρnmod (En−1, En).

Proof. – By Lemma 5.2, there exists an odd level l < N such that

mod (El−1, El) ≤
Å

1

2

ã[n/N ]

mod (En−1, En)

which together with Lemma 5.1 implies the desired estimates.

5.2. Frequent R-returns

Let us consider the map

(5.4) f l = fqn+1 ◦ g1 ◦ · · · ◦ gχ−1 : Eχ−1 → Y 0

and the trajectory O = {Ki}l+p−1
i=l of the little Julia set K. Let i1, i2, . . . be the moments in

O for which Ki ⊂ R.

L 5.4. – Let ρ > 0, χ̄ ∈ N. Take some integer m ≥ C3230/ρ, and let p = m2qn.
Assume that the little Julia set frequently visits R:

(5.5) ik+1 − ik ≤ mqn, k = 1, 2, . . . ,m.
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If χ ≤ χ̄ while p ≥ p, then

mod (Y 0, R) ≤ ρmod(Eχ−1,K),

provided mod(Eχ−1,K) < ε(n; χ̄, ρ).

Proof. – The map (5.4) has degree 2χ ≤ 2χ̄. By Lemma 2.9 of [7], deg(f l|Eχ) ≤ 32,
and hence l ≤ 5p.

By (5.5), im − i1 < m2qn ≤ p, so the moments ik are pairwise non-congruent mod p.
Hence the little Julia sets Ki1 , . . . ,Kim are all distinct.

Since O has length p, there is only one critical Julia set in O. Hence deg(f ik : K → Kik)

is at most 64, so that ik ≤ 6p, k = 1, . . . ,m.

On the other hand,Kik is contained in a puzzle piece inRwhich is mapped under f ik+1−ik

onto Y 0 with degree at most 2mn. It follows by the Telescope Lemma 2.2 that there is a
puzzle piece Υk ⊂ Eχ−1 which is mapped under f ik onto Y 0 with degree at most 2χ̄+kmn ≤
2χ̄+m2n ≡ D.

We would like to apply the Covering Lemma to the corresponding map

f ik : (Υk,K)→ (Y0,Kik)

of degree at mostD. To this end we need collars aroundKik . Let Ω be the critical pullback of
Eχ under f6p. Then we let Λ′k = f ik(Ω). Since the moments ik are pairwise non-congruent
mod p and ik ≤ 6p, the puzzle pieces Λ′k are contained in different domains of the orbit
f t(Eχ), t = 0, 1 . . . , p− 1. Hence they are pairwise disjoint. Moreover, by Lemma 3.5,

(5.6) mod(Λ′k,Kik) ≥ mod(Ω,K) =
1

4
mod(Eχ−1,K) ≥ 1

4
mod(Υk,K).

This provides us with the desired Collar Assumption. By the Covering Lemma,

mod(Y0,Kik) ≤ C214 mod(Υk,K) ≤ C214 mod(Eχ−1,K).

The last two estimates show that the Quasi-Additivity Law is applicable to the family of is-
lands Kik in Y0 (with η−1 = C216):

mod (Y 0, R) ≤ C3230 mod(Eχ−1,K)

m
≤ ρmod(Eχ−1,K),

provided mod(Eχ−1,K) < ε(D) = ε(n; χ̄, ρ) and we are done.

5.3. Many consecutive returns to L

Here the set-up is the same as in the previous section, but we will assume that there is a
gap in returns of the little Julia sets to R:

L 5.5. – Let ρ, χ̄, m, and p be as in Lemma 5.4. Assume there is k ≤ m such that

(5.7) ik+1 − ik > mqn.

If χ ≤ χ̄ while p ≥ p, then

mod (Z0, L) ≤ ρmod(Eχ−1,K),

provided mod(Eχ−1,K) < ε(n; q, χ̄, ρ).
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Proof. – Under our assumption (5.7) the Julia set returns frequently to L:

Kik+jqn ⊂ L, j = 1, . . . ,m.

Let Pj 3 f ikz be the pullback of Z0 under f jqn. By Lemma 2.3 and the Telescope Lemma,
Pj ⊂ Y 0.

Let Υj be the further pullback of Pj under f ik , and let

Ψj = f ik+jqn : Υj → Z0.

Then Υj ⊂ Eχ−1 and deg Ψj ≤ 2χ̄+p.
The rest of the argument is the same as for Lemma 5.4: the Covering Lemma implies that

for j = 1, . . . ,m,

mod(Z0,Kik+jqn) ≤ C214 mod(Υk,K) ≤ C214 mod(Eχ−1,K),

and by the Quasi-Additivity Law,

mod (Z0, L) ≤ C3230 mod(Eχ−1,K)

m
≤ ρmod(Eχ−1,K).

Note that by symmetry, mod (Z0, L) = mod (Y 0, R). Putting together Lemmas 5.3, 5.4
and 5.5, we obtain:

C 5.6. – For any parameters q,n of a decoration and any ρ > 0, there exist
p ∈ N and ε > 0 such that

mod (Y 0, R) ≤ ρmod(Eχ−1,K),

provided p ≥ p and mod(Eχ−1,K) < ε.

5.4. Comparison of mod (Y 0, R) with dY 1(α, α′)

Let
µ := min(mod (U,K), 1/2).

L 5.7
dY 1(α, α′) ≤mod (Y 0, R)	 1

4
µ.

Proof. – Let Ỹ0 = Y0(1). The boundary of Ỹ0 consists of two parts (see the end of §3.2):
the J-boundary ∂JỸ0 = ξ∪η attached toα and the outer arc λ = ∂OỸ0 that covers the ideal
boundary of U. Let Gh stand for the family of curves in the annulus Ỹ0rKR connectingKR

to the J-boundary, while Gv stands for the family of curves in the same annulus connecting
KR to λ. By the Parallel Law,

L(Gh) ≤mod (Ỹ 0, R)	 L(Gv).

Let Π stand for the rectangle uniformizing Ỹ0 rKY 0 whose horizontal sides correspond to
KY 0 and λ, and vertical sides correspond to ξ and η. We let ω be the horizontal side of Π

corresponding to KY 0 . Since any curve of the family Gv overflows some curve connecting
KY 0 to λ in Ỹ0 rKY 0 (and thus representing a vertical curve in Π), we have:

L(Gv) ≥ mod Π.
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But by definition of the pseudo-puzzle, the domain Ỹ0 r KY 0 covers the annulus U r K

extending to an embedding on KY 0 . Let us uniformize U r K by a round annulus A. It
follows that the rectangle Π covers A in such a way that ω ⊂ ∂Π is embedded into ∂A. By
Lemma 6.6 from the Appendix,

mod Π ≥ µ

4
.

Putting the above three estimates together, we obtain:

(5.8) L(Gh) ≤mod (Ỹ 0, R)	 µ

4
.

On the other hand, let us consider the family H of horizontal curves in the puzzle piece
Y1 connecting ∂αY1 to ∂α′Y1. Let φ : Y1 → Ỹ0 be the natural immersion. Under φ, the
boundary ∂αY1 is mapped homeomorphically onto ∂αỸ0. It follows that any curve γ of Gh
contains an arc that can be lifted by φ to some curve ofH. Indeed, orient γ so that it begins
on ∂αỸ0. Then a maximal lift of γ that begins on ∂αY1 must end on ∂α′Y1.

By Corollary 6.2, L(H) ≤ L(Gh). Together with (5.8), this yields the desired inequality.

5.5. Skipping over

In this section we will show that not many curves can skip some piece of the Julia set.
Let Y ∈ Ym(l) be a geometric puzzle piece of bidepth (m, l), and let A be a component

of Y r KY . Let ∂J Â = ∂JY ∩ Â. Recall that it consists of two components. Let CA stand
for the family of curves in Â connecting different components of ∂J Â, and let

dA = L(CA).

Let 1
2π log r = 2−(m+q)µ. Then the annulus Um+q rK can be uniformized by the round

annulus A(1, r), and under this uniformization, the setKY gets represented on the unit circle
T as the union of arcs ωi of length

(5.9) |ωi| ≥ 2π · 2−(q+m).

Indeed, the covering map fm+q : Um+q r K → U r K is turned into z 7→ z2m+q

under
the above uniformization of Um+q r K and the uniformization of U r K by A(1, e2πµ)

(appropriately normalized). Since under this map, every arc ωi covers the whole circle, the
length of ωi is at least 2π times its combinatorial length (2.2).

L 5.8. – Let Y ∈ Ym(m + q) be a geometric puzzle piece of bidepth (m,m + q),
and let A be a component of Y rKY . Then

dA ≥
1

µ
.

Proof. – We can uniformize Â by the horizontal strip Π = Π(2−(m+q)µ) in such a way
that the upper boundary of Π covers theO-boundary of Um+q, and the group of deck trans-
formations is generated by the translation z 7→ z + 1. By (5.9), the Julia set KY ⊂ ∂A is
represented as an interval I on R of length at least 2−(q+m).

Let us view Π as a quadrilateral with horizontal sides I and the top of Π. Then

L(CA) =
1

mod Π
≥ 1

µ
,
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where the last estimate comes from the simple right-hand side estimate of Lemma 6.5, and
we are done.

L 5.9. – Let Y ∈ Ym(0) be a geometric puzzle piece of bidepth (m, 0), and let A be
a connected component of Y rKY . Then

dA ≥
µ

2m+q+2
.

Proof. – Let A(m + q) be the component of Y (m + q) r KY contained in A, and let
φ : Â(m+q)→ Â be the natural immersion. It extends to the identity onKY ∩∂Â(m+q).

Let us realize Â as the strip Π(µ) that covers U rK, with the group of deck transforma-
tions generated by z 7→ z+ 1. Let us consider the interval I ⊂ R representingKY ∩∂A, and
let J be the left-adjacent interval of length 1.

Let us orient the curves γ ∈ CA so that they begin on the left-hand side of I. Then any
curve γ ∈ CA contains the maximal initial arc γ′ that can be lifted by φ to a curve γ∗ in
Â(m+ q). Accordingly, we can split the family of curves γ ∈ CA into three subfamilies:

– H1 consists of the curves γ such that γ′ = γ; then γ∗ ∈ CA(m+q);
– H2 consist of the curves that begin in J and whose lift γ∗ terminates on theO-boundary

of Â(m+ q);
– H3 consists of the curves that begin on the left-hand side of J .

Let us estimate the extremal length of each of these families.

SinceH1 = φ(CA(m+q)),

L(H1) ≥ L(CA(m+q)) ≥
1

µ
,

where the first estimate follows from Lemma 6.1, and the second follows from Lemma 5.8.

Let T be the family of curves in Â(m+ q) that begin on J and end on theO-boundary of
Â(m+ q). By Corollary 6.2 and Lemma 6.5,

L(H2) ≥ L(T ) ≥ µ

2m+q+1
.

To estimate the extremal length of H3, endow the rectangle Q = J × [0, µ] ⊂ Π(µ) with
the Euclidean metric λ. Since any curve γ ∈ H3 horizontally overflows Q, it has λ-length at
least 1. Hence

L(H3) ≥ 1

areaQ
=

1

µ
.

Incorporating the last three estimates into the Parallel Law, we obtain the desired:

L(CεY ) ≥ 1

µ+ 2m+q+1µ−1 + µ
≥ µ

2m+q+2
.

Let us consider two vertices, v and w, of a geometric puzzle piece Y . Let Z ⊂ Y be a
puzzle piece of depth m that separates v from w. We say that a multicurve in Y connecting
∂vY to ∂wY skips over KZ if one of its components does not cross KZ .
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C 5.10. – Under the above circumstances, let T be the family of multicurves in
Y connecting ∂vY to ∂wY that skip over KZ . Then

L(T ) ≥ µ

22m+q+2
.

Proof. – The piece Z has at most 2m components Ai of Z rKZ . If a multicurve γ in Y

skips over KZ then it contains an arc γ′ that lifts to a curve γ∗ in some family GAj
. Let Cj

be the corresponding subfamily of T . By Lemma 5.9 (together with Corollary 6.2),

L(Cj) ≥ dAj
≥ µ

2m+q+2
.

The Parallel Law concludes the proof.

Let us now consider the puzzle piece P = Y (n−1)q+1, together with the corresponding
pseudo-piece P, and the family of puzzle piecesQv ⊂ P from Lemma 2.1. Recall that T vw =

KP r(Qv∪Qw). Given two vertices v andw ofP , let ĜvwP stand for the family of multicurves
in P connecting ∂vP to ∂wP that do not skip over Tvw. By Corollary 5.10,

(5.10) L(G r ĜvwP ) ≥ C−1µ

where, here and below, C stands for a constant that depends only on q and n.

5.6. Separation between L and R

In this section we will show that the modulus dY 1(α, α′) that measures the extremal dis-
tance between L and R is comparable with µ.

Let Y be a geometric puzzle piece. For two vertices v and w of Y , we let

WY (v, w) =W(GvwY ).

We define the pseudo-conductance of Y as

WY = sup
v,w

WY (v, w),

where the supremum is taken over all pairs of the vertices of Y .

L 5.11. – For the puzzle piece P = Y (n−1)q+1 we have:

WP ≤
C

µ
.

Proof. – Along with the above conductance of P , let us consider

ŴP (v, w) =W(ĜvwP ); ŴP = sup
v,w

ŴP (v, w).

By (5.10),

(5.11) WP ≤ ŴP +
C

µ
.

Take a pair of vertices, v and w. Let Qv ∩T vw = {v′} and Qw ∩T vw = {w′}. Recall that
depth of the puzzle pieces Qv and Qw is equal to r = (2n− 1)q + 1, and so depends only on
q and n. Let Er be the lift of the equipotential of level r to P.

For any horizontal multicurve γ ∈ ĜvwP , one of the following two possibilities can occur:
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1. γ crosses the equipotential Er, and hence it contains an arc γ′ connecting Er to T vw;
By Lemma 6.6 and the Parallel Law, the width of this family of curves is bounded by
2r+n/µ (here 2n−1 is a bound on the number of connected components of P rKP );

2. γ contains two disjoint multicurves, δv and δw, that do not cross Er and such that δv

connects ∂vP to T vw, while δw connects T vw to ∂wP. Then δv contains a multicurve
that can be lifted to a horizontal multicurve in Qv connecting ∂vQv to ∂v

′
Qv, and

similarly for δw.

By the Series and Parallel Laws,

ŴP (v, w) ≤WQv (v, v′)⊕WQw (w,w′) +
2r+n

µ
≤WQv ⊕WQw +

2r+n

µ
.

But W(Qv) = W(Qw) = W(P ) since Qv and Qw are univalent pullbacks of P . Hence

WQv ⊕WQw ≤ 1

2
WP .

Putting the last two estimates together and taking the supremum over all pairs of vertices
(v, w) of P , we conclude that

ŴP ≤
1

2
WP +

2r+n

µ
.

Together with (5.11) it yields:

WP ≤
1

2
WP +

C

µ
,

and the conclusion follows.

P 5.12. – We have: dY 1(α, α′) ≥ C−1µ.

Proof. – Since the map f (n−1)q : P → Y1 is a branched covering that maps ∂0P to
∂0Y

1, any curve γ ∈ Gαα′Y 1 can be lifted to a curve γ∗ ∈ ∪GvwP , where the union is taken over
all pairs of vertices of P . Hence

L(Gαα
′

Y 1 ) ≥
⊕
v,w

L(GvwP ) ≥ 1

NWP
,

where N is the number of pairs (v, w). The conclusion follows.

Lemma 5.7 and Proposition 5.12 imply:

C 5.13. – We have: mod (Y 0, R) ≥ C−1µ.

C 5.14. – Let f : (U,K)→ (U,K) be a renormalizable ψ-quadratic-like map
with decoration parameters (q,n), and let f ′ = fp : (U′,K ′) → (U′,K ′) be its first renor-
malization. Then

min{mod(U,K), 1/2} ≤ C mod(U′,K ′),

where C = C(q,n).

Proof. – This follows from Lemma 5.3 and Corollary 5.13 by noticing that (Eχ−1,K) =

(U′,K ′).
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5.7. Conclusion

Everything is now prepared for the main results. Corollary 5.6 and Corollary 5.13 imply:

T 5.15 (Improving of the moduli: bounded decoration parameters)

For any parameters q̄, n̄ and any ρ > 0, there exist p ∈ N and ε > 0 with the following
property. Let f : (U,K)→ (U,K) be a renormalizable ψ-quadratic-like map with decoration
parameters (q,n) ≤ (q̄, n̄), and let f ′ = fp : (U′,K ′)→ (U′,K ′) be its first renormalization.
Then

{p ≥ p and mod(U′,K ′) < ε} ⇒ mod(U,K) < ρmod(U′,K ′).

R 5.1. – The logic of this theorem can be adjusted so that it would sound more
like an “improvement in the future” rather than “worsening in the past”:

For any parameters q̄, n̄ of a Misuirewicz limb, there exist p ∈ N and ε > 0 such that

mod(U′,K ′) ≥ 2 mod(U,K)

provided p ≥ p and mod(U,K) < ε/2.

Theorem 5.15, together with Lemma 3.1, implies Theorem 1.2 from the Introduction.

To derive the Main Theorem, we will combine Theorem 5.15 with the following result
(Theorem 9.1 from [6]):

T 5.16 (Improving of the moduli: bounded period). – For any ρ ∈ (0, 1), there
exists p = p(ρ) such that for any p̄ ≥ p, there exists ε = ε(p̄) > 0 with the following property.
Let f : (U,K) → (U,K) be a primitively renormalizable ψ-quadratic-like map, and let f ′ =

fp = (U′,K ′)→ (U′,K ′) be the corresponding renormalization. Then

{p ≤ p ≤ p̄ and mod(U′ rK ′) < ε} ⇒ mod(U rK) < ρmod(U′ rK ′).

R 5.2. – Unlike Theorem 5.15, in Theorem 5.16 the map f ′ is not necessarily the
first renormalization of f . On the other hand, in Theorem 5.16, the scale ε depends on the
upper bound p̄, while in Theorem 5.15 it does not.

We say that an infinitely renormalizable ψ-ql map f belongs to the decoration class (q̄, n̄)

if the decoration parameters (q̄n, n̄n) of the renormalizationsRnf are all bounded by (q̄, n̄).

Let us now put the above two theorems together:

C 5.17. – For any (q̄, n̄), there exist an ε > 0 and l ∈ N with the following prop-
erty. For any infinitely renormalizable ψ-ql map f of decoration class (q̄, n̄) with renormaliza-
tionsRnf : (Un,Kn)→ (Un,Kn), if mod(UnrKn) < ε, n ≥ l, then mod(Un−lrKn−l) <

mod(Un rKn)/2.
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Proof. – Given an infinitely renormalizable ψ-ql map f with renormalizations Rnf :

(Un,Kn)→ (UnrKn), we let µn(f) = mod(Un,Kn).Arguing by contradiction, we find a
sequence fi of infinitely renormalizable ψ-ql maps of decoration class (q̄, n̄) and sequences
εi → 0 and n(i)→∞ such that:

P1: µn(i)(fi) < εi;

P2: µn(i)(fi) < 2µk(fi), k = 0, 1, . . . , n(i)− 1.

Let Rnfi be the renormalization of Rn−1fi with period pn(fi). Applying then the diago-
nal process, we can also assume the following property:

P3: pn(i)−s(fi)→ πs ∈ N ∪ {∞} for s = 0, 1, . . . .

We let s̄ ∈ Z≥0 ∪ {∞} be the first moment for which πs = ∞ (with understanding that
s̄ =∞ if such a moment does not exist).

Let us consider two cases:

Case 1: s̄ < ∞. Applying consecutively Corollary 5.14, we conclude that for sufficiently
big i,

µn(i)−s(fi) ≤ Csµn(i)(fi), s ≤ s̄.
Let ρ ∈ (0, 1/2C s̄). By Theorem 5.15, for all sufficiently big i,

µn(i)−s̄−1(fi) ≤ ρµn(i)−s̄(fi).

Putting the last two estimates together, we conclude that for all sufficiently big i,

µn(i)−s̄−1(fi) <
1

2
µn(i)(fi),

contradicting assumption (P2).

Case 2: s̄ =∞. Take an s such that

p̄ ≡ π0π1 . . . πs > p,

where p = p(1/2) comes from Theorem 5.16. By this theorem, for sufficiently big i,

µn(i)−s−1(i) <
1

2
µn(i)(i),

contradicting again assumption (P2).

We are ready to prove the Main Theorem, in an important refined version. We say that
a familyM of little Mandelbrot copies (and the corresponding renormalization combina-
torics) has beau (6) a priori bounds if there exist an ε = ε(M) > 0 and a functionN : R+ → N
with the following property. Let f : U → V be a quadratic-like map with mod(V r U) ≥
δ > 0 that is at least N = N(δ) times renormalizable. Then for any n ≥ N , the n-fold
renormalization of f can be represented by a quadratic-like map Rnf : Un → Vn with
mod(Vn r Un) ≥ ε.

B B (R M T). – For any parameters (q̄, n̄), the family of
renormalization combinatorics of decoration class (q̄, n̄) has beau a priori bounds.

(6) According to Dennis Sullivan, “beau” stands for “bounded and eventually universal”.
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Proof. – Let ε > 0 and l come from Corollary 5.17, and C > 0 come from Corollary
5.14. We will use notation µn(f) from the proof of Corollary 5.17. Assume that for some
δ > 0, there is a sequence of ψ-ql maps fi in question with µ0(fi) ≥ δ, while µn(i)(fi) < ε,
where n(i)→∞. Let n(i) = kil + ri where 0 ≤ ri < l. Then by Corollaries 5.17 and 5.14,

µ0(fi) ≤ Criε/2ki → 0 as i→∞.

This contradiction proves the beau bounds for the moduli µn(f) of ψ-ql maps. The beau
bounds for ordinary quadratic-like maps follow by Lemma 3.1.

6. Appendix: Extremal length and width

Given a family of curves G on a Riemann surface S and a conformal metric µ on S, we
let µ(γ) be the µ-length of a curve γ ∈ Γ, µ(Γ) be the infimum of these lengths, areaµ be the
corresponding measure, and L(G) andW(G) = L(G)−1 be respectively the extremal length
and width of G: see [1] or the Appendices [8, 6] for the precise definitions. The most basic
properties of these conformal invariants, the Parallel and Series Laws can also be found in
these sources.

6.1. Transformation rules

Both extremal length and extremal width are conformal invariants. More generally, we
have:

L 6.1. – Let f : U → V be a holomorphic map between two Riemann surfaces, and
let G be a family of curves on U . Then

L(f(G)) ≥ L(G).

See Lemma 4.1 of [8] for a proof.

C 6.2. – Under the circumstances of the previous lemma, let H be a family of
curves in V satisfying the following lifting property: any curve γ ∈ H contains an arc that lifts
to some curve in G. Then L(H) ≥ L(G).

See Corollary 10.3 of [6] for a proof.

Given a compact subset K ⊂ intU , the extremal distance

L(U,K) ≡ mod(U,K)

(between ∂U and K) is defined as L(G), where G is the family of curves connecting ∂U and
K. In case when U is a topological disk and K is connected, we obtain the usual modulus
mod(U rK) of the annulus U rK. We letW(U,K) = L−1(U,K).

L 6.3. – Let f : U → V be a branched covering between two compact Riemann
surfaces with boundary. Let A be a subsurface of finite type in U , B = f(A), and assume that
f : A→ B is a branched covering of degree d. Then

mod(V,B) ≥ d mod(U,A).

See Lemma 4.3 of [8] for a proof.
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L 6.4. – Let (U,A) and (V,B) be as above, and let f : UrA→ V rB be a branched
covering of degree N . Then

mod(V,B) = N mod(U,A).

See [1] for a proof.

6.2. Strips and quadrilaterals

L 6.5. – Let us consider a horizontal strip Π(h) and an interval I = (x, x+ a) ⊂ R.
We view Π as a quadrilateral with horizontal sides I and R + ih. Then

h

2a
≤ mod Π ≤ h

a
,

provided h/a ≤ 1/2 or mod Π ≤ 1/4 (for the left-hand side inequality).

Proof. – By definition, mod Π is the extremal length of the family of curves connecting I
to R + ih. This family contains the family G′ of vertical curves in the Euclidean rectangle
with horizontal sides I and I + ih. Hence L(G) ≤ L(G′) = h/a.

To prove the left-hand side inequality, let us consider a Euclidean rectangleQwith vertices
x−h, x+ a+h, x+ a+h+ ih, x−h+ ih endowed with the Euclidean metric µ. Any curve
of G has µ-length at least h. Hence

L(G) ≥ h2

areaµ(Q)
=

t

1 + 2t
, where t = h/a.

We see that L(G) ≥ t/2 for t ≤ 1/2, while L(G) > 1/4 otherwise. The conclusion follows.

L 6.6. – Let Π and I be as in the previous lemma. Let C = Π/ lZ be a cylinder
covered by Π so that I is embedded into the bottom of C. Then

mod Π ≥ 1

2
min(modC, 0.5).

Proof. – Since the covering Π → C is an embedding on I, we have: a ≤ l. Then by the
previous lemma we obtain:

mod Π ≥ h

2a
≥ h

2l
=

1

2
modC,

provided mod Π ≤ 1/4.
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6.3. Holomorphic and embedded annuli

Let S be a hyperbolic Riemann surface with boundary with a preferred component σ of
∂S. We assume that S has finite topological type and is not the punctured disk. A holomor-
phic annulus in A is a holomorphic map A : A(1, r)→ S that extends to a homeomorphism
φ : T→ σ. We let modA = mod A(1, r).

The family of holomorphic annuli contains a subfamily of embedded annuli. Among em-
bedded annuli, there is an annulusA∗ of maximal modulus, which has nice special properties.
Namely, let us uniformizeA∗ by a flat cylinder C = Π(h)/Z. Then the quadratic differential
dz2 on C is the pull-back of some quadratic differential q on S. Moreover, the uniformiza-
tion C → A∗ extends continuously to the upper boundary C+ = R + ih/Z of C (minus
finitely many points corresponding to the punctures of S), and induces there an equivalence
relation τk : αk → α′k, where (τk) is a finite family of isometries between pairs of disjoint
arcs in C+. The images of these arcs, λk = i(αk) = i(α′k), are horizontal separatricies of q.
(It is a version of Strebel’s Theorem, see e.g., [5, §11]).

L 6.7. – For any holomorphic annulus A : A(1, r)→ S, we have:

modA ≤ 16 modA∗.

Proof. – Let us consider a family G of non-trivial proper curves γ in S that begin in σ. (7)

Then any curve γ ∈ G contains an initial segment γ′ that lifts to a vertical curve in A(1, r).
By Corollary 6.2,

(6.1) modA ≤ L(G).

Let us now take any conformal metric µ on S, and let l = µ(G). For any vertical curve δ
in A∗, two possibilities can occur:

1. δ ends on ∂S. Then δ ∈ G and hence µ(δ) ≥ l.
2. δ ends on some separatrix i(αk). Then there is another vertical curve λ inA∗ that ends

at the same point as δ. The concatenation of δ and λ is a curve of family G. Hence one
of the curves, δ or λ, is “long”, i.e., it has µ-length at least l/2.

It follows that at least one half of the vertical curves inA∗ are long. Let I ⊂ C+ be the set
of endpoints of i−1(long curves). We can now proceed as in the classical Grötztsch estimate.
By the Cauchy-Schwarz Inequality,

h areaµ(C) = area(C)

∫
C

areaµ dx dy ≥
Ç∫

I

dx

∫ h

0

µ(x, y)dy

å2

≥
Å
l

4

ã2

,

which implies

Lµ(G) = l2/ areaµ(C) ≤ 16h = 16 modA∗.

Since this is valid for any conformal metric µ, we conclude thatL(G) ≤ 16 modA∗. Together
with (6.1), this gives us the desired estimate.

(7) “Non-trivial” means that γ cannot be pulled to σ through a continuous family of proper curves.
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