Integrability of hamiltonian systems and differential Galois groups of higher variational equations
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 40 (2007) no. 6, pp. 845-884.
@article{ASENS_2007_4_40_6_845_0,
     author = {Morales-Ruiz, Juan J. and Ramis, Jean-Pierre and Sim\'o, Carles},
     title = {Integrability of hamiltonian systems and differential {Galois} groups of higher variational equations},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {845--884},
     publisher = {Elsevier},
     volume = {Ser. 4, 40},
     number = {6},
     year = {2007},
     doi = {10.1016/j.ansens.2007.09.002},
     mrnumber = {2419851},
     zbl = {1144.37023},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.ansens.2007.09.002/}
}
TY  - JOUR
AU  - Morales-Ruiz, Juan J.
AU  - Ramis, Jean-Pierre
AU  - Simó, Carles
TI  - Integrability of hamiltonian systems and differential Galois groups of higher variational equations
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2007
SP  - 845
EP  - 884
VL  - 40
IS  - 6
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.ansens.2007.09.002/
DO  - 10.1016/j.ansens.2007.09.002
LA  - en
ID  - ASENS_2007_4_40_6_845_0
ER  - 
%0 Journal Article
%A Morales-Ruiz, Juan J.
%A Ramis, Jean-Pierre
%A Simó, Carles
%T Integrability of hamiltonian systems and differential Galois groups of higher variational equations
%J Annales scientifiques de l'École Normale Supérieure
%D 2007
%P 845-884
%V 40
%N 6
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.ansens.2007.09.002/
%R 10.1016/j.ansens.2007.09.002
%G en
%F ASENS_2007_4_40_6_845_0
Morales-Ruiz, Juan J.; Ramis, Jean-Pierre; Simó, Carles. Integrability of hamiltonian systems and differential Galois groups of higher variational equations. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 40 (2007) no. 6, pp. 845-884. doi : 10.1016/j.ansens.2007.09.002. https://www.numdam.org/articles/10.1016/j.ansens.2007.09.002/

[1] Abraham R., Marsden J.E., Foundations of Mechanics, second ed., Benjamin, 1978. | MR | Zbl

[2] Adler M., Van Moerbeke P., Vanhaecke P., Algebraic Integrability, Painlevé Geometry and Lie Algebras, Springer, Berlin, 2004. | MR | Zbl

[3] Almeida A., López-Castillo A., Stuchi T., Non-integrability proof of the frozen planetary atom configuration, J. Phys. A: Math. Gen. 36 (2003) 4805-4814. | MR | Zbl

[4] Almeida A., Stuchi T.J., The integrability of the anisotropic Stormer problem, Physica D 189 (2004) 219-233. | MR | Zbl

[5] Arribas M., Elipe A., Non Integrability of the motion of a particle around a massive straight segment, Phys. Lett. A 281 (2001) 142-148. | MR | Zbl

[6] Arribas M., Elipe A., Riaguas A., Non-integrability of anisotropic quasi-homogeneous Hamiltonian systems, Mech. Res. Commun. 30 (2003) 209-216. | MR | Zbl

[7] Artin M., On the solutions of analytic equations, Invent. Math. 5 (1968) 277-291. | MR | Zbl

[8] Atiyah M.F., Macdonald I.G., Introduction to Commutative Algebra, Addison-Wesley, London, 1969. | Zbl

[9] Audin M., Intégrabilité et non-intégrabilité de systèmes hamiltoniens (d'après S. Ziglin, J. Morales-Ruiz, J.-P. Ramis, …), Sém. Bourbaki (2000/01), Exp. no 884, Astérisque 282 (2002) 113-135. | Numdam | MR | Zbl

[10] Audin M., Les systèmes hamiltoniens et leur intégrabilité, Cours Spécialisés, Collection SMF, vol. 8, Société Mathématique de France, Marseille, 2001. | MR

[11] Audin M., Integrability of Hamiltonian systems, Bulletin E.M.S. (December 2003) 9-12.

[12] Audin M., Exemples de hamiltoniens non intégrables en mécanique analytique réelle, Ann. Fac. Sci. Toulouse Math. 12 (2003) 1-23. | Numdam | MR | Zbl

[13] Audin M., La réduction symplectique appliquée à la non-intégrabilité du problème du satellite, Ann. Fac. Sci. Toulouse Math. 12 (2003) 25-46. | Numdam | MR | Zbl

[14] Boucher D., Sur la non-intégrabilité du problème plan des trois corps de masses égales à un le long de la solution de Lagrange, C. R. Acad. Sci. Paris, Série I 331 (2000) 391-394. | MR | Zbl

[15] Boucher D., Sur les équations différentielles linéaires paramétrées, une application aux systèmes hamiltoniens, Thèse Univ. de Limoges, octobre 2000.

[16] Boucher D., Non complete integrability of a satellite in circular orbit, Portugaliae Mathematica (N.S.) 63 (2006) 69-89. | MR | Zbl

[17] Boucher D., Weil J.-A., Application of the J.-J. Morales and J.-P. Ramis theorem to test the non-complete integrability of the planar three-body problem, in: Fauvet F., Mitschi C. (Eds.), From Combinatorics to Dynamical Systems. Journées de calcul formel en l'honneur de Jean Thomann, March 22-23, 2002, IRMA Lectures in Mathematics and Theoretical Physics, vol. 3, IRMA, Strasbourg, 2003. | Zbl

[18] Bourbaki N., Algèbre commutative, chapitres 1 à 4, Springer-Verlag, 2006. | MR

[19] Bryant R.L., Chern S.S., Gardner R.B., Goldschmidt H.L., Griffiths P.A., Exterior Differential Systems, Springer-Verlag, Berlin, 1991. | MR | Zbl

[20] Casale G., Sur le groupoïde de Galois d'un feuilletage, Thèse, Toulouse 2004.

[21] Churchill R.C., Galoisian Obstructions to the Integrability of Hamiltonian Systems, The Kolchin Seminar in Differential Algebra, City College of New York, May, 1998.

[22] Churchill R.C., Differential algebraic techniques in Hamiltonian mechanics, in: Guo L., Keigher W.F., Cassidy P.J., Sit W.Y. (Eds.), Differential Algebra and Related Topics, World Scientific Publ., 2002, pp. 219-255. | MR

[23] Deligne P., Catégories tannakiennes, in: Grothendieck festschrift, vol. 2, Progress in Mathematics, vol. 87, Birkhäuser, 1990, pp. 111-196. | MR | Zbl

[24] Doubrovine B., Novikov S., Fomenko A., Géométrie Contemporaine, Méthodes et Applications, Deuxième partie, Géométrie et Topologie des Variétés, Éditions MIR, Moscou, 1979, (French translation 1982). | MR | Zbl

[25] Drach J., Essai sur une théorie générale de l'intégration et sur la classification des transcendantes, Ann. Sci. École Normale Sup., Sér. 3 15 (1898) 243-384. | JFM | Numdam | MR

[26] Drach J., Sur le problème logique de l'intégration des équations différentielles, Ann. Fac. Sci. Univ. Toulouse, Sér. 2 10 (1908) 393-472. | JFM | Numdam | MR

[27] Ferrer S., Mondéjar F., On the non-integrability of the Zeemann-Stark Hamiltonian system, Comm. Math. Phys. 208 (1999) 55-63. | Zbl

[28] Ferrer S., Mondéjar F., Non-integrability of the 3-D Hydrogen atom under motional Stark effect or circularly polarized microwave combined with magnetic fields, Phys. Lett. A 264 (1999) 74-83.

[29] Ferrer S., Mondéjar F., On the non-integrability of the generalized van der Waals Hamiltonian, J. Math. Phys. 41 (2000) 5445-5452. | MR | Zbl

[30] Fontich E., Simó C., Invariant manifolds for near identity differentiable maps and splitting of separatrices, Erg. Th. & Dyn. Systems 10 (1990) 319-346. | MR | Zbl

[31] Fontich E., Simó C., The splitting of separatrices for analytic diffeomorphisms, Erg. Th. & Dyn. Systems 10 (1990) 295-318. | MR | Zbl

[32] Grothendieck A., Techniques de construction en géométrie analytique VII, Séminaire Henri Cartan, 13-ème année 1960/61, vol. 14, W.A. Benjamin, 1967. | Numdam

[33] Hénon M., Heiles C., The applicability of the third integral of motion: Some numerical experiments, Astronom. J. 69 (1964) 73-79. | MR

[34] Irigoyen M., Simó C., Non-integrability of the J2 problem, Celest. Mech. 55 (1993) 281-287. | Zbl

[35] Ito H., Non-integrability of the Hénon-Heiles system and a theorem of Ziglin, Koday Math. J. 8 (1985) 129-138. | Zbl

[36] Ito H., On the holonomy group associated with analytic continuations of solutions for integrable systems, Boletim da Soc. Brasil. de Matemática 21 (1990) 95-120. | MR | Zbl

[37] Juillard Tosel E., Non-integrabilité algébrique et méromorphe de problèmes de N corps, Thèse Univ. Paris VI, janvier 1999.

[38] Juillard Tosel E., Meromorphic parametric non-integrability; the inverse square potential, Arch. Rat. Mech. Anal. 152 (2000) 187-207. | MR | Zbl

[39] Kolar I., Michor P., Slovak J., Natural Operations in Differential Geometry, Springer-Verlag, 1991. | MR | Zbl

[40] Levine H.I., Singularities of differentiable mappings, in: Proceedings of Liverpool Singularities Symposium I, Lecture Notes in Math., vol. 192, 1971. | Zbl

[41] Llibre J., Simó C., Homoclinic phenomena in the three-body problem, J. Differential Equations 37 (1980) 444-465. | MR | Zbl

[42] Llibre J., Simó C., Oscillatory solutions in the planar restricted three-body problem, Math. Ann. 248 (1980) 153-184. | MR | Zbl

[43] Llibre J., Martínez R., Simó C., Transversality of the invariant manifolds associated to the Lyapunov family of periodic orbits near L2 in the Restricted Three Body Problem, J. Differential Equations 58 (1985) 104-156. | MR | Zbl

[44] Maciejewski A.J., Non-integrability of certain Hamiltonian systems, applications of the Morales-Ramis differential Galois extension of Ziglin theory, Banach Center Publications 58 (2002) 139-150. | Zbl

[45] Maciejewski A.J., Przybylska M., Non-integrability of restricted two-body problems in constant curvature spaces, Regul. Chaotic Dyn. 8 (4) (2003) 413-430. | MR | Zbl

[46] Maciejewski A.J., Przybylska M., Non-integrability of the problem of a rigid satellite in gravitational and magnetic fields, Celest. Mech. Dynam. Astron. 87 (2003) 317-351. | MR | Zbl

[47] Maciejewski A.J., Przybylska M., Non-integrability of the Suslov problem, J. Math. Phys. 45 (2004) 1065-1078. | Zbl

[48] Maciejewski A.J., Przybylska M., Non-integrability of the generalised two fixed centres problem, Celest. Mech. Dynam. Astron. 89 (2004) 145-164. | MR | Zbl

[49] Maciejewski A.J., Przybylska M., All meromorphically integrable 2D Hamiltonian systems with homogeneous potential of degree 3, Phys. Lett. A 327 (2004) 461-473. | MR

[50] Maciejewski A.J., Przybylska M., Differential Galois approach to the non-integrability of the heavy top problem, Ann. Fac. Sci. Toulouse Sér. 6 14 (2005) 123-160. | Numdam | MR | Zbl

[51] Maciejewski A.J., Przybylska M., Stachowiak T., Non integrability of Gross-Neveu systems, Physica D 201 (2005) 249-267. | Zbl

[52] Maciejewski A.J., Przybylska M., Weil J.-A., Non-integrability of the generalized spring-pendulum problem, J. Phys. A: Math. Gen. 37 (2004) 2579-2597. | MR | Zbl

[53] Maciejewski A.J., Strelcyn J.M., Szydlowski M., Non-integrability of Bianchi VIII Hamiltonian system, J. Math. Phys. 42 (2001) 1728-1743. | MR | Zbl

[54] Maciejewski A.J., Szydlowski M., Towards a description of complexity of the simplest cosmological systems, J. Phys. A: Math. Gen. 33 (2000) 9241-9254. | MR | Zbl

[55] Maciejewski A.J., Szydlowski M., Integrability and non-integrability of planar Hamiltonian systems of cosmological origin, J. Nonlinear Math. Phys. 8 (2001) 200-206. | MR | Zbl

[56] Malgrange B., Le groupoïde de Galois d'un feuilletage, L'enseignement mathématique 38 (2) (2001) 465-501. | MR | Zbl

[57] Malgrange B., On the non linear Galois theory, Chinese Ann. Math. Ser. B 23 (2) (2002) 219-226. | Zbl

[58] Martinet J., Singularités des fonctions et applications différentiables, Pontificia Universidade Católica do Rio de Janeiro (PUC), 1974. | MR | Zbl

[59] Morales-Ruiz J.J., Differential Galois Theory and Non-Integrability of Hamiltonian Systems, Progress in Mathematics, vol. 179, Birkhäuser, 1999. | MR | Zbl

[60] Morales-Ruiz J.J., Kovalevskaya, Liapounov, Painlevé, Ziglin and the differential Galois theory, Regular Chaotic Dynam. 5 (2000) 251-272. | MR | Zbl

[61] Morales-Ruiz J.J., Peris J.M., On a Galoisian approach to the splitting of separatrices, Ann. Fac. Sci. Toulouse Math. 8 (1999) 125-141. | Numdam | MR | Zbl

[62] Morales-Ruiz J.J., Ramis J.P., Galoisian obstructions to integrability of Hamiltonian systems, Methods Appl. Anal. 8 (2001) 33-96. | MR

[63] Morales-Ruiz J.J., Ramis J.P., Galoisian obstructions to integrability of Hamiltonian systems II, Methods Appl. Anal. 8 (2001) 97-112.

[64] Morales-Ruiz J.J., Ramis J.P., A note on the non-integrability of some Hamiltonian systems with a homogeneous potential, Methods Appl. Anal. 8 (2001) 113-120. | MR

[65] Morales-Ruiz J.J., Simó C., Non-integrability criteria for Hamiltonians in the case of Lamé normal variational equations, J. Differential Equations 129 (1996) 111-135. | MR | Zbl

[66] Morales-Ruiz J.J., Simó C., Simon S., Algebraic proof of the non-integrability of Hill's problem, Ergod. Th. & Dynam. Sys. 25 (2005) 1237-1256. | MR | Zbl

[67] Moser J., Stable and Random Motions in Dynamical Systems, Annals of Mathematics Studies, Princeton Univ. Press, 1973. | MR | Zbl

[68] Nakagawa K., Direct construction of polynomial first integrals for Hamiltonian systems with a two-dimensional homogeneous polynomial potential, Dep. of Astronomical Science, The Graduate University for Advanced Study and the National Astronomical Observatory of Japan, Ph.D. Thesis, 2002.

[69] Nakagawa K., Yoshida H., A necessary condition for the integrability of homogeneous Hamiltonian systems with two degrees of freedom, J. Phys. A: Math. Gen. 34 (2001) 2137-2148. | MR | Zbl

[70] Neishtadt A.I., The separation of motions in systems with rapidly rotating phase, Prikladnaja Matematika i Mekhanika 48 (1984) 133-139. | MR | Zbl

[71] Poincaré H., Les Méthodes Nouvelles de la Mécanique Céleste, vol. I, Gauthiers-Villars, Paris, 1892. | Zbl

[72] Saenz A.W., Nonintegrability of the Dragt-Finn model of magnetic confinement: A Galoisian-group approach, Physica D 144 (2000) 37-43. | Zbl

[73] Serre J-P., Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier Grenoble (1956) 1-42. | Numdam | MR | Zbl

[74] Serre J-P., Espaces fibrés algébriques, in: Séminaire Claude Chavalley, 1958, tome 3, exp. no 1, pp. 1-37. | Numdam

[75] Simó C., Analytical and numerical computation of invariant manifolds, in: Benest D., Froeschlé C. (Eds.), Modern Methods in Celestial Mechanics, Editions Frontières, 1990, pp. 285-330, Also available at, http://www.maia.ub.es/dsg/.

[76] Simó C., Measuring the lack of integrability in the J2 problem, in: Roy A.E. (Ed.), Predictability, Stability and Chaos in the N-Body Dynamical Systems, Plenum Press, 1991, pp. 305-309. | MR

[77] Terng C.L., Natural vector bundles and natural differential operators, Amer. J. Math. 100 (1978) 775-828. | MR | Zbl

[78] Tsygvintsev A., Sur l'absence d'une intégrale première méromorphe supplémentaire dans le problème plan des trois corps, C. R. Acad. Sci. Paris Série I 333 (2001) 241-244. | MR | Zbl

[79] Umemura H., Differential Galois theory of infinite dimension, Nagoya Math. J. 144 (1996) 59-135. | MR | Zbl

[80] Van Der Put M., Singer M., Galois Theory of Linear Differential Equations, Springer, Berlin, 2003. | MR | Zbl

[81] Vigo-Aguilar M.I., No integrabilidad del problema del satélite, Ph.D. Thesis, Departamento de Análisis Matemático y Matemática Aplicada, Universidad de Alicante, 1999.

[82] Yagasaki K., Galoisian obstructions to integrability and Melnikov criteria for chaos in two-degree-of-freedom Hamiltonian systems with saddle-centers, Nonlinearity 16 (2003) 2003-2013. | MR | Zbl

[83] Yagasaki K., Non-integrability of an infinity-degree-of-freedom model for unforced and undamped straight beams, J. Appl. Mech. 70 (2003) 732-738. | MR | Zbl

[84] Yoshida H., A new necessary condition for the integrability of Hamiltonian systems with a two dimensional homogeneous potential, Physica D 128 (1999) 53-69. | MR | Zbl

[85] Yoshida H., Justification of Painlevé Analysis for Hamiltonian systems by differential Galois theory, Physica A 228 (2000) 424-430. | MR

[86] Ziglin S.L., Branching of solutions and non-existence of first integrals in Hamiltonian mechanics I, Funct. Anal. Appl. 16 (1982) 181-189. | Zbl

  • Yagasaki, Kazuyuki Melnikov’s Methods and Nonintegrability of Forced Nonlinear Oscillators, Proceedings of the IUTAM Symposium on Nonlinear Dynamics for Design of Mechanical Systems Across Different Length/Time Scales, Volume 43 (2025), p. 21 | DOI:10.1007/978-3-031-72794-8_2
  • Acosta-Humánez, Primitivo. B.; Morales-Ruiz, Juan. J.; Stuchi, T. J. Nonintegrability of the Axisymmetric Bianchi IX Cosmological Model via Differential Galois Theory, SIAM Journal on Applied Dynamical Systems, Volume 24 (2025) no. 1, p. 815 | DOI:10.1137/23m1623070
  • Malgrange, Bernard Deux lettres de Bernard Malgrange sur la théorie de Galois différentielle non-linéaire, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 33 (2024) no. 1, p. 225 | DOI:10.5802/afst.1769
  • YAGASAKI, KAZUYUKI Non-integrability of the restricted three-body problem, Ergodic Theory and Dynamical Systems, Volume 44 (2024) no. 10, p. 3012 | DOI:10.1017/etds.2024.4
  • Ribón, Javier Description of the Zariski-Closure of a Group of Formal Diffeomorphisms, Handbook of Geometry and Topology of Singularities VI: Foliations (2024), p. 231 | DOI:10.1007/978-3-031-54172-8_7
  • Ramis, Jean-Pierre Epilogue: Stokes Phenomena. Dynamics, Classification Problems and Avatars, Handbook of Geometry and Topology of Singularities VI: Foliations (2024), p. 383 | DOI:10.1007/978-3-031-54172-8_10
  • Motonaga, Shoya; Yagasaki, Kazuyuki Nonintegrability of forced nonlinear oscillators, Japan Journal of Industrial and Applied Mathematics, Volume 41 (2024) no. 1, p. 151 | DOI:10.1007/s13160-023-00592-9
  • Yagasaki, Kazuyuki Nonintegrability of dissipative planar systems, Physica D: Nonlinear Phenomena, Volume 461 (2024), p. 134106 | DOI:10.1016/j.physd.2024.134106
  • Yagasaki, Kazuyuki Nonintegrability of time-periodic perturbations of single-degree-of-freedom Hamiltonian systems near homo- and heteroclinic orbits, Physica D: Nonlinear Phenomena, Volume 464 (2024), p. 134189 | DOI:10.1016/j.physd.2024.134189
  • Yagasaki, Kazuyuki Nonintegrability of Dynamical Systems Near Degenerate Equilibria, Communications in Mathematical Physics, Volume 398 (2023) no. 3, p. 1129 | DOI:10.1007/s00220-022-04545-0
  • Yagasaki, Kazuyuki Nonintegrability of truncated Poincaré-Dulac normal forms of resonance degree two, Journal of Differential Equations, Volume 373 (2023), p. 526 | DOI:10.1016/j.jde.2023.07.017
  • Dutta, Pinaki; Panigrahi, Kamal L.; Singh, Balbeer Circular string in a black p-brane leading to chaos, Journal of High Energy Physics, Volume 2023 (2023) no. 10 | DOI:10.1007/jhep10(2023)189
  • Yagasaki, Kazuyuki Nonintegrability of the SEIR epidemic model, Physica D: Nonlinear Phenomena, Volume 453 (2023), p. 133820 | DOI:10.1016/j.physd.2023.133820
  • Mihalcea, Bogdan M.; Filinov, Vladimir S.; Syrovatka, Roman A.; Vasilyak, Leonid M. The physics and applications of strongly coupled Coulomb systems (plasmas) levitated in electrodynamic traps, Physics Reports, Volume 1016 (2023), p. 1 | DOI:10.1016/j.physrep.2023.03.004
  • Stoyanova, Tsvetana Nonintegrability of the Painlevé IV equation in the Liouville–Arnold sense and Stokes phenomena, Studies in Applied Mathematics, Volume 151 (2023) no. 4, p. 1380 | DOI:10.1111/sapm.12629
  • Artemovych, Orest; Blackmore, Denis; Kycia, Radosław; Prykarpatski, Anatolij New Dubrovin-type integrability theory applications of differential rings, The Diverse World of PDEs, Volume 789 (2023), p. 19 | DOI:10.1090/conm/789/15838
  • Yagasaki, Kazuyuki Nonintegrability of Nearly Integrable Dynamical Systems Near Resonant Periodic Orbits, Journal of Nonlinear Science, Volume 32 (2022) no. 4 | DOI:10.1007/s00332-022-09802-z
  • Georgiev, Georgi, “TOPICAL ISSUES OF THERMOPHYSICS, ENERGETICS AND HYDROGASDYNAMICS IN THE ARCTIC CONDITIONS”: Dedicated to the 85th Birthday Anniversary of Professor E. A. Bondarev, Volume 2528 (2022), p. 030002 | DOI:10.1063/5.0100732
  • Ramis, Jean-Pierre Hiroshi Umemura et les mathématiques françaises, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 29 (2021) no. 5, p. 1007 | DOI:10.5802/afst.1655
  • Dreyfus, Thomas; Weil, Jacques-Arthur Differential Galois Theory and Integration, Anti-Differentiation and the Calculation of Feynman Amplitudes (2021), p. 145 | DOI:10.1007/978-3-030-80219-6_7
  • El-Sabaa, F. M.; Amer, T. S.; Gad, H. M.; Bek, M. A. Existence of periodic solutions and their stability for a sextic galactic potential function, Astrophysics and Space Science, Volume 366 (2021) no. 8 | DOI:10.1007/s10509-021-03981-z
  • Georgiev, Georgi Non-Integrability of the Trapped Ionic System, Chaos, Solitons Fractals, Volume 147 (2021), p. 110994 | DOI:10.1016/j.chaos.2021.110994
  • Yang, Shuangling; Qu, Jingjia On first integrals of a family of generalized Lorenz-like systems, Chaos, Solitons Fractals, Volume 151 (2021), p. 111141 | DOI:10.1016/j.chaos.2021.111141
  • Zhang, Xin; Yang, Shuangling Complex dynamics in a quasi-periodic plasma perturbations model, Discrete Continuous Dynamical Systems - B, Volume 26 (2021) no. 8, p. 4013 | DOI:10.3934/dcdsb.2020272
  • Carrasco, Dante; Vidal, Claudio Periodic Solutions, Stability and Non-Integrability in a Generalized Hénon-Heiles Hamiltonian System, Journal of Nonlinear Mathematical Physics, Volume 20 (2021) no. 2, p. 199 | DOI:10.1080/14029251.2013.805567
  • Simon, Sergi Conditions and evidence for non-integrability in the Friedmann-Robertson-Walker Hamiltonian, Journal of Nonlinear Mathematical Physics, Volume 21 (2021) no. 1, p. 1 | DOI:10.1080/14029251.2014.894710
  • Llibre, Jaume; Valls, Claudia Darboux integrability of generalized Yang–Mills Hamiltonian system, Journal of Nonlinear Mathematical Physics, Volume 23 (2021) no. 2, p. 234 | DOI:10.1080/14029251.2016.1175820
  • Christov, Ognyan Non-integrability of a three-dimensional generalized Hénon-Heiles system, The European Physical Journal Plus, Volume 136 (2021) no. 10 | DOI:10.1140/epjp/s13360-021-02044-0
  • Butler, Leo T Horseshoes and invariant tori in cosmological models with a coupled field and non-zero curvature *, Classical and Quantum Gravity, Volume 37 (2020) no. 19, p. 195024 | DOI:10.1088/1361-6382/abac46
  • Szumiński, Wojciech; Woźniak, Dariusz Dynamics and integrability analysis of two pendulums coupled by a spring, Communications in Nonlinear Science and Numerical Simulation, Volume 83 (2020), p. 105099 | DOI:10.1016/j.cnsns.2019.105099
  • Huang, Kaiyin; Shi, Shaoyun; Li, Wenlei Integrability analysis of the Shimizu–Morioka system, Communications in Nonlinear Science and Numerical Simulation, Volume 84 (2020), p. 105101 | DOI:10.1016/j.cnsns.2019.105101
  • Combot, Thierry; Maciejewski, Andrzej J.; Przybylska, Maria Bi-homogeneity and integrability of rational potentials, Journal of Differential Equations, Volume 268 (2020) no. 11, p. 7012 | DOI:10.1016/j.jde.2019.11.074
  • Morales-Ruiz, Juan J. A differential Galois approach to path integrals, Journal of Mathematical Physics, Volume 61 (2020) no. 5 | DOI:10.1063/1.5134859
  • Christov, Ognyan On the integrability of Hamiltonian 1:2:2 resonance, Nonlinear Dynamics, Volume 102 (2020) no. 4, p. 2295 | DOI:10.1007/s11071-020-06036-0
  • Acosta-Humánez, Primitivo B; Yagasaki, Kazuyuki Nonintegrability of the unfoldings of codimension-two bifurcations, Nonlinearity, Volume 33 (2020) no. 4, p. 1366 | DOI:10.1088/1361-6544/ab60d4
  • Andrade, Jaime; Boatto, Stefanella; Combot, Thierry; Duarte, Gladston; Stuchi, Teresinha J. N-body Dynamics on an Infinite Cylinder: the Topological Signature in the Dynamics, Regular and Chaotic Dynamics, Volume 25 (2020) no. 1, p. 78 | DOI:10.1134/s1560354720010086
  • Huang, Kaiyin; Shi, Shaoyun; Xu, Zhiguo Integrable deformations, bi-Hamiltonian structures and nonintegrability of a generalized Rikitake system, International Journal of Geometric Methods in Modern Physics, Volume 16 (2019) no. 04, p. 1950059 | DOI:10.1142/s0219887819500592
  • Ribón, Javier The solvable length of groups of local diffeomorphisms, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2019 (2019) no. 752, p. 105 | DOI:10.1515/crelle-2016-0066
  • Acosta-Humánez, P; Jiménez, G Some tastings in Morales-Ramis theory, Journal of Physics: Conference Series, Volume 1414 (2019) no. 1, p. 012011 | DOI:10.1088/1742-6596/1414/1/012011
  • Christov, Ognyan Near-Integrability of Periodic Klein-Gordon Lattices, Symmetry, Volume 11 (2019) no. 4, p. 475 | DOI:10.3390/sym11040475
  • Christov, Ognyan Near-Integrability of Low-Dimensional Periodic Klein-Gordon Lattices, Advances in Mathematical Physics, Volume 2018 (2018), p. 1 | DOI:10.1155/2018/7023696
  • Ribón, Javier Finite dimensional groups of local diffeomorphisms, Israel Journal of Mathematics, Volume 227 (2018) no. 1, p. 289 | DOI:10.1007/s11856-018-1729-6
  • Remy, Pascal Multi-resurgence and connection-to-Stokes formulæ for some linear meromorphic differential systems, Journal of Differential Equations, Volume 264 (2018) no. 1, p. 197 | DOI:10.1016/j.jde.2017.09.004
  • Acosta-Humánez, Primitivo B.; Lázaro, J. Tomás; Morales-Ruiz, Juan J.; Pantazi, Chara Differential Galois theory and non-integrability of planar polynomial vector fields, Journal of Differential Equations, Volume 264 (2018) no. 12, p. 7183 | DOI:10.1016/j.jde.2018.02.016
  • Orieux, M.; Caillau, J.-B.; Combot, T.; Féjoz, J. Non-integrability of the minimum-time Kepler problem, Journal of Geometry and Physics, Volume 132 (2018), p. 452 | DOI:10.1016/j.geomphys.2018.06.012
  • Nunez, Carlos; Roychowdhury, Dibakar; Thompson, Daniel C. Integrability and non-integrability in N=2 SCFTs and their holographic backgrounds, Journal of High Energy Physics, Volume 2018 (2018) no. 7 | DOI:10.1007/jhep07(2018)044
  • Yagasaki, Kazuyuki Nonintegrability of the unfolding of the fold-Hopf bifurcation, Nonlinearity, Volume 31 (2018) no. 2, p. 341 | DOI:10.1088/1361-6544/aa92e8
  • Casale, Guy; Weil, Jacques-Arthur Galoisian methods for testing irreducibility of order two nonlinear differential equations, Pacific Journal of Mathematics, Volume 297 (2018) no. 2, p. 299 | DOI:10.2140/pjm.2018.297.299
  • Yamanaka, Shogo Local Integrability of Poincaré–Dulac Normal Forms, Regular and Chaotic Dynamics, Volume 23 (2018) no. 7-8, p. 933 | DOI:10.1134/s1560354718070080
  • Remy, Pascal Resurgence and highest level’s connection-to-Stokes formulæ for some linear meromorphic differential systems, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 26 (2017) no. 3, p. 645 | DOI:10.5802/afst.1548
  • Maciejewski, Andrzej J.; Przybylska, Maria; Szumiński, Wojciech Anisotropic Kepler and anisotropic two fixed centres problems, Celestial Mechanics and Dynamical Astronomy, Volume 127 (2017) no. 2, p. 163 | DOI:10.1007/s10569-016-9722-z
  • Benner, Peter; Denißen, Jonas; Kohaupt, Ludwig Trigonometric spline and spectral bounds for the solution of linear time-periodic systems, Journal of Applied Mathematics and Computing, Volume 54 (2017) no. 1-2, p. 127 | DOI:10.1007/s12190-016-1001-3
  • Aparicio-Monforte, A.; Dreyfus, T.; Weil, J.-A. Liouville integrability: An effective Morales–Ramis–Simó theorem, Journal of Symbolic Computation, Volume 74 (2016), p. 537 | DOI:10.1016/j.jsc.2015.08.009
  • Rein, Hanno; Tamayo, Daniel Second-order variational equations forN-body simulations, Monthly Notices of the Royal Astronomical Society, Volume 459 (2016) no. 3, p. 2275 | DOI:10.1093/mnras/stw644
  • Maciejewski, Andrzej J.; Przybylska, Maria Integrability of Hamiltonian systems with algebraic potentials, Physics Letters A, Volume 380 (2016) no. 1-2, p. 76 | DOI:10.1016/j.physleta.2015.08.035
  • Combot, Thierry Integrability and Non Integrability of Some n Body Problems, Recent Advances in Celestial and Space Mechanics, Volume 23 (2016), p. 1 | DOI:10.1007/978-3-319-27464-5_1
  • Christov, Ognyan; Georgiev, Georgi On the integrability of a system describing the stationary solutions in Bose–Fermi mixtures, Chaos, Solitons Fractals, Volume 77 (2015), p. 138 | DOI:10.1016/j.chaos.2015.05.024
  • Morales-Ruiz, Juan J. Picard–Vessiot theory and integrability, Journal of Geometry and Physics, Volume 87 (2015), p. 314 | DOI:10.1016/j.geomphys.2014.07.006
  • Jahn, Jiří; Jahnová, Jiřina Towards the proof of Yoshida’s conjecture, Nonlinearity, Volume 28 (2015) no. 9, p. 3389 | DOI:10.1088/0951-7715/28/9/3389
  • Llibre, Jaume; Valls, Claudia Analytic integrability of Hamiltonian systems with exceptional potentials, Physics Letters A, Volume 379 (2015) no. 38, p. 2295 | DOI:10.1016/j.physleta.2015.07.034
  • Simó, Carles Measuring the total amount of chaos in some Hamiltonian systems, Discrete Continuous Dynamical Systems - A, Volume 34 (2014) no. 12, p. 5135 | DOI:10.3934/dcds.2014.34.5135
  • Li, Wenlei; Shi, Shaoyun Weak-Painlevé property and integrability of general dynamical systems, Discrete Continuous Dynamical Systems - A, Volume 34 (2014) no. 9, p. 3667 | DOI:10.3934/dcds.2014.34.3667
  • Maciejewski, Andrzej J.; Duval, Guillaume Integrability of Hamiltonian systems with homogeneous potentials of degrees ±2. An application of higher order variational equations, Discrete and Continuous Dynamical Systems, Volume 34 (2014) no. 11, p. 4589 | DOI:10.3934/dcds.2014.34.4589
  • Simon, Sergi Linearised higher variational equations, Discrete and Continuous Dynamical Systems, Volume 34 (2014) no. 11, p. 4827 | DOI:10.3934/dcds.2014.34.4827
  • Giataganas, Dimitrios; Zayas, Leopoldo A. Pando; Zoubos, Konstantinos On marginal deformations and non-integrability, Journal of High Energy Physics, Volume 2014 (2014) no. 1 | DOI:10.1007/jhep01(2014)129
  • VAN MINH, Nguyen; ZUNG, Nguyen Tien Geometry of nondegenerate Rn-actions on n-manifolds, Journal of the Mathematical Society of Japan, Volume 66 (2014) no. 3 | DOI:10.2969/jmsj/06630839
  • Stoyanova, Tsvetana Non-integrability of the fourth Painlevé equation in the Liouville–Arnold sense, Nonlinearity, Volume 27 (2014) no. 5, p. 1029 | DOI:10.1088/0951-7715/27/5/1029
  • Bostan, Alin; Combot, Thierry; El Din, Mohab Safey, Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation (2014), p. 67 | DOI:10.1145/2608628.2608662
  • Combot, Thierry A note on algebraic potentials and Morales–Ramis theory, Celestial Mechanics and Dynamical Astronomy, Volume 115 (2013) no. 4, p. 397 | DOI:10.1007/s10569-013-9470-2
  • B. Acosta-Humánez, Primitivo; Alvarez-Ramírez, Martha; Blázquez-Sanz, David; Delgado, Joaquín Non-integrability criterium for normal variational equations around an integrable subsystem and an example: The Wilberforce spring-pendulum, Discrete Continuous Dynamical Systems - A, Volume 33 (2013) no. 3, p. 965 | DOI:10.3934/dcds.2013.33.965
  • Shi, Shaoyun; Li, Wenlei Non-integrability of generalized Yang-Mills Hamiltonian system, Discrete Continuous Dynamical Systems - A, Volume 33 (2013) no. 4, p. 1645 | DOI:10.3934/dcds.2013.33.1645
  • Stepanchuk, A; Tseytlin, A A On (non)integrability of classical strings inp-brane backgrounds, Journal of Physics A: Mathematical and Theoretical, Volume 46 (2013) no. 12, p. 125401 | DOI:10.1088/1751-8113/46/12/125401
  • Combot, Thierry Integrability conditions at order 2 for homogeneous potentials of degree −1, Nonlinearity, Volume 26 (2013) no. 1, p. 95 | DOI:10.1088/0951-7715/26/1/95
  • Christov, Ognyan Non-integrability of first order resonances in Hamiltonian systems in three degrees of freedom, Celestial Mechanics and Dynamical Astronomy, Volume 112 (2012) no. 2, p. 149 | DOI:10.1007/s10569-011-9389-4
  • Combot, Thierry Non-integrability of the equal mass n-body problem with non-zero angular momentum, Celestial Mechanics and Dynamical Astronomy, Volume 114 (2012) no. 4, p. 319 | DOI:10.1007/s10569-012-9417-z
  • Blázquez-Sanz, David; J. Morales-Ruiz, Juan Lie's reduction method and differential Galois theory in the complex analytic context, Discrete Continuous Dynamical Systems - A, Volume 32 (2012) no. 2, p. 353 | DOI:10.3934/dcds.2012.32.353
  • Blázquez-Sanz, David; Yagasaki, Kazuyuki Analytic and algebraic conditions for bifurcations of homoclinic orbits I: Saddle equilibria, Journal of Differential Equations, Volume 253 (2012) no. 11, p. 2916 | DOI:10.1016/j.jde.2012.08.008
  • Basu, Pallab; Das, Diptarka; Ghosh, Archisman; Zayas, Leopoldo A. Pando Chaos around holographic Regge trajectories, Journal of High Energy Physics, Volume 2012 (2012) no. 5 | DOI:10.1007/jhep05(2012)077
  • Llibre, Jaume; Vidal, Claudio Periodic orbits and non-integrability in a cosmological scalar field, Journal of Mathematical Physics, Volume 53 (2012) no. 1 | DOI:10.1063/1.3675493
  • Ben Hamed, Bassem; Gavrilov, Lubomir; Klughertz, Martine The holonomy group at infinity of the Painlevé VI equation, Journal of Mathematical Physics, Volume 53 (2012) no. 2 | DOI:10.1063/1.3681897
  • Combot, Thierry; Koutschan, Christoph Third order integrability conditions for homogeneous potentials of degree −1, Journal of Mathematical Physics, Volume 53 (2012) no. 8 | DOI:10.1063/1.4746691
  • Aparicio-Monforte, Ainhoa; Weil, Jacques-Arthur A reduced form for linear differential systems and its application to integrability of Hamiltonian systems, Journal of Symbolic Computation, Volume 47 (2012) no. 2, p. 192 | DOI:10.1016/j.jsc.2011.09.011
  • Liu Chang; Guo Yong-Xin; Liu Shi-Xing Discrete variational calculation of Hénon-Heiles equation in the Birkhoffian sense, Acta Physica Sinica, Volume 60 (2011) no. 6, p. 064501 | DOI:10.7498/aps.60.064501
  • Stoyanova, Tsvetana Non-Integrability of Painlevé V Equations in the Liouville Sense and Stokes Phenomenon, Advances in Pure Mathematics, Volume 01 (2011) no. 04, p. 170 | DOI:10.4236/apm.2011.14031
  • Li, Wenlei; Shi, Shaoyun Non-integrability of Hénon-Heiles system, Celestial Mechanics and Dynamical Astronomy, Volume 109 (2011) no. 1, p. 1 | DOI:10.1007/s10569-010-9315-1
  • Li, Wenlei; Shi, Shaoyun; Liu, Bing Non-integrability of a class of Hamiltonian systems, Journal of Mathematical Physics, Volume 52 (2011) no. 11 | DOI:10.1063/1.3659284
  • Llibre, Jaume; Jiménez-Lara, Lidia Periodic orbits and non-integrability of Hénon–Heiles systems, Journal of Physics A: Mathematical and Theoretical, Volume 44 (2011) no. 20, p. 205103 | DOI:10.1088/1751-8113/44/20/205103
  • Basu, Pallab; Pando Zayas, Leopoldo A. Analytic nonintegrability in string theory, Physical Review D, Volume 84 (2011) no. 4 | DOI:10.1103/physrevd.84.046006
  • Ayoul, Michaël; Zung, Nguyen Tien Galoisian obstructions to non-Hamiltonian integrability, Comptes Rendus. Mathématique, Volume 348 (2010) no. 23-24, p. 1323 | DOI:10.1016/j.crma.2010.10.024
  • Casale, G.; Roques, J. Dynamics of Rational Symplectic Mappings and Difference Galois Theory, International Mathematics Research Notices (2010) | DOI:10.1093/imrn/rnn103
  • Blázquez-Sanz, D.; Carrillo Torres, S. A. Group analysis of non-autonomous linear Hamiltonians through differential Galois theory, Lobachevskii Journal of Mathematics, Volume 31 (2010) no. 2, p. 157 | DOI:10.1134/s1995080210020071
  • Morikawa, Shuji; Saito, Katsunori; Takeuchi, Taihei; Umemura, Hiroshi Discrete Burgers’ Equation, Binomial Coefficients and Mandala, Mathematics in Computer Science, Volume 4 (2010) no. 2-3, p. 151 | DOI:10.1007/s11786-010-0049-y
  • Pujol, O.; Pérez, J.P.; Ramis, J.P.; Simó, C.; Simon, S.; Weil, J.A. Swinging Atwood Machine: Experimental and numerical results, and a theoretical study, Physica D: Nonlinear Phenomena, Volume 239 (2010) no. 12, p. 1067 | DOI:10.1016/j.physd.2010.02.017
  • MACIEJEWSKI, ANDRZEJ J.; PRZYBYLSKA, MARIA DIFFERENTIAL GALOIS THEORY AND INTEGRABILITY, International Journal of Geometric Methods in Modern Physics, Volume 06 (2009) no. 08, p. 1357 | DOI:10.1142/s0219887809004272
  • Stoyanova, Tsvetana Non-integrability of Painlevé VI equations in the Liouville sense, Nonlinearity, Volume 22 (2009) no. 9, p. 2201 | DOI:10.1088/0951-7715/22/9/008
  • Nomikos, D.G.; Papageorgiou, V.G. Non-integrability of the Anisotropic Stormer Problem and the Isosceles Three-Body Problem, Physica D: Nonlinear Phenomena, Volume 238 (2009) no. 3, p. 273 | DOI:10.1016/j.physd.2008.10.010
  • Acosta-Humánez, Primitivo B.; Álvarez-Ramírez, Martha; Delgado, Joaquín Non-Integrability of Some Few Body Problems in Two Degrees of Freedom, Qualitative Theory of Dynamical Systems, Volume 8 (2009) no. 2, p. 209 | DOI:10.1007/s12346-010-0008-7
  • Przybylska, M. Darboux points and integrability of homogeneous Hamiltonian systems with three and more degrees of freedom, Regular and Chaotic Dynamics, Volume 14 (2009) no. 2, p. 263 | DOI:10.1134/s1560354709020063
  • Martínez, R.; Simó, C. Non-integrability of Hamiltonian systems through high order variational equations: Summary of results and examples, Regular and Chaotic Dynamics, Volume 14 (2009) no. 3, p. 323 | DOI:10.1134/s1560354709030010
  • Przybylska, M. Darboux points and integrability of homogeneous Hamiltonian systems with three and more degrees of freedom. Nongeneric cases, Regular and Chaotic Dynamics, Volume 14 (2009) no. 3, p. 349 | DOI:10.1134/s1560354709030022
  • Maciejewski, Andrzej J; Przybylska, Maria; Stachowiak, Tomasz; Szydłowski, Marek Global integrability of cosmological scalar fields, Journal of Physics A: Mathematical and Theoretical, Volume 41 (2008) no. 46, p. 465101 | DOI:10.1088/1751-8113/41/46/465101

Cité par 101 documents. Sources : Crossref