@article{ASENS_2007_4_40_4_519_0, author = {Sato, Kanetomo}, title = {$p$-adic \'etale {Tate} twists and arithmetic duality}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {519--588}, publisher = {Elsevier}, volume = {Ser. 4, 40}, number = {4}, year = {2007}, doi = {10.1016/j.ansens.2007.04.002}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.ansens.2007.04.002/} }
TY - JOUR AU - Sato, Kanetomo TI - $p$-adic étale Tate twists and arithmetic duality JO - Annales scientifiques de l'École Normale Supérieure PY - 2007 SP - 519 EP - 588 VL - 40 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.ansens.2007.04.002/ DO - 10.1016/j.ansens.2007.04.002 LA - en ID - ASENS_2007_4_40_4_519_0 ER -
%0 Journal Article %A Sato, Kanetomo %T $p$-adic étale Tate twists and arithmetic duality %J Annales scientifiques de l'École Normale Supérieure %D 2007 %P 519-588 %V 40 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.ansens.2007.04.002/ %R 10.1016/j.ansens.2007.04.002 %G en %F ASENS_2007_4_40_4_519_0
Sato, Kanetomo. $p$-adic étale Tate twists and arithmetic duality. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 40 (2007) no. 4, pp. 519-588. doi : 10.1016/j.ansens.2007.04.002. http://www.numdam.org/articles/10.1016/j.ansens.2007.04.002/
[1] Introduction to Grothendieck Duality Theory, Lecture Notes in Math., vol. 146, Springer, Berlin, 1970. | MR | Zbl
, ,[2] Aritin M., Verdier J.-L., Seminar on étale cohomology of number fields, Woods Hole, 1964 characteristics.
[3] The Milnor ring of a global field, in: (Ed.), Algebraic K-Theory II, Lecture Notes in Math., vol. 342, Springer, Berlin, 1972, pp. 349-446. | MR | Zbl
, ,[4] Height pairings between algebraic cycles, in: (Ed.), K-Theory, Arithmetic and Geometry, Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 1-27. | MR | Zbl
,[5] Faisceaux pervers, Astérisque, vol. 100, Soc. Math. France, 1982. | MR | Zbl
, , ,[6] Algebraic K-theory and crystalline cohomology, Inst. Hautes Études Sci. Publ. Math. 47 (1977) 187-268. | Numdam | MR | Zbl
,[7] Algebraic cycles and higher K-theory, Adv. Math. 61 (1986) 267-304. | MR | Zbl
,[8] The coniveau filtration and non-divisibility for algebraic cycles, Math. Ann. 304 (1996) 303-314. | MR | Zbl
, ,[9] p-adic étale cohomology, Inst. Hautes Études Sci. Publ. Math. 63 (1986) 107-152. | Numdam | MR | Zbl
, ,[10] Gersten's conjecture and the homology of schemes, Ann. Sci. École Norm. Sup. (4) 7 (1974) 181-202. | Numdam | MR | Zbl
, ,[11] Arithmetic on curves of genus 1 (IV). Proof of the Hauptvermutung, J. reine angew. Math. 211 (1962) 95-112. | MR | Zbl
,[12] Duality in the étale cohomology of one-dimensional schemes and generalizations, Math. Ann. 277 (1987) 529-541. | MR | Zbl
,[13] Local Fields and Their Extensions, with a Foreword by Shafarevich, I.R., Transl. Math. Monogr., vol. 121, second ed., Amer. Math. Soc., Providence, 2002. | MR | Zbl
, ,[14] p-adic periods and p-adic étale cohomology, in: (Ed.), Current Trends in Arithmetical Algebraic Geometry, Contemp. Math., vol. 67, Amer. Math. Soc., Providence, 1987, pp. 179-207. | MR | Zbl
, ,[15] A proof of the absolute purity conjecture (after Gabber), in: , , , , , , (Eds.), Algebraic Geometry 2000, Azumino, Adv. Stud. Pure Math., vol. 36, Math. Soc. Japan, Tokyo, 2002, pp. 153-183. | MR | Zbl
,[16] Some theorems on Azumaya algebras, in: , (Eds.), Groupe de Brauer Séminaire, Les Plans-sur-Bex, 1980, Lecture Notes in Math., vol. 844, Springer, Berlin, 1981, pp. 129-209. | MR | Zbl
,[17] Motivic cohomology over Dedekind rings, Math. Z. 248 (2004) 773-794. | MR | Zbl
,[18] Classes de Chern et classes des cycles en cohomologie logarithmique, Mém. Soc. Math. Fr. (N.S.) 21 (1985). | Numdam | Zbl
,[19] La conjecture de Gersten pour les faisceaux de Hodge-Witt logarithmique, Duke Math. J. 57 (1988) 615-628. | Zbl
, ,[20] Le groupe de Brauer III, in: Dix exposés sur la cohomologie des schémas, North-Holland, Amsterdam, 1968, pp. 88-188. | MR | Zbl
,[21] Residues and Duality, Lecture Notes in Math., vol. 20, Springer, Berlin, 1966. | MR | Zbl
,[22] Local Cohomology, (a seminar given by Grothendieck, A., Harvard University, Fall, 1961), Lecture Notes in Math., vol. 41, Springer, Berlin, 1967. | MR | Zbl
,[23] Algebraic Geometry, Grad. Texts in Math., vol. 52, Springer, New York, 1977. | MR | Zbl
,[24] Die Gruppe der -primären Zahlen für einen Primteiler von p, J. reine angew. Math. 176 (1936) 174-183. | JFM
,[25] A note on p-adic étale cohomology in the semi-stable reduction case, Invent. Math. 91 (1988) 543-557. | MR | Zbl
,[26] On the de Rham-Witt complex attached to a semi-stable family, Compositio Math. 78 (1991) 241-260. | Numdam | Zbl
,[27] Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. École Norm. Sup. (4) 12 (1979) 501-661. | Numdam
,[28] Réduction semi-stable ordinaire, cohomologie étale p-adique et cohomologie de de Rham d'après Bloch-Kato et Hyodo; Appendice à l'exposé IV, in: Périodes p-adiques, Séminaire de Bures, 1988, Astérisque, vol. 223, Soc. Math. France, Marseille, 1994, pp. 209-220. | Zbl
,[29] Étale duality for constructible sheaves on arithmetic schemes, http://www.uni-regensburg.de/Fakultaeten/nat_Fak_I/Jannsen/.
, , ,[30] Log smooth deformation theory, Tôhoku Math. J. 48 (1996) 317-354. | MR | Zbl
,[31] A generalization of local class field theory using K-groups, II, J. Fac. Sci. Univ. of Tokyo, Sec. IA 27 (1980) 602-683. | Zbl
,[32] On p-adic vanishing cycles (application of ideas of Fontaine-Messing), in: Algebraic Geometry, Sendai, 1985, Adv. Stud. in Pure Math., vol. 10, Kinokuniya, Tokyo, 1987, pp. 207-251. | Zbl
,[33] Logarithmic structures of Fontaine-Illusie, in: (Ed.), Algebraic Analysis, Geometry and Number Theory, The Johns Hopkins Univ. Press, Baltimore, 1988, pp. 191-224. | Zbl
,[34] The explicit reciprocity law and the cohomology of Fontaine-Messing, Bull. Soc. Math. France 119 (1991) 397-441. | Numdam | Zbl
,[35] Semi-stable reduction and p-adic étale cohomology, in: Périodes p-adiques, Séminaire de Bures, 1988, Astérisque, vol. 223, Soc. Math. France, Marseille, 1994, pp. 269-293. | Numdam | MR | Zbl
,[36] A Hasse principle for two-dimensional global fields (with an appendix by Colliot-Thélène, J.-L.), J. reine angew. Math. 366 (1986) 142-183. | MR | Zbl
,[37] Nilpotent connections and the monodromy theorem: applications of a result of Turrittin, Inst. Hautes Études Sci. Publ. Math. 39 (1970) 175-232. | Numdam | MR | Zbl
,[38] A note on p-adic étale cohomology, Proc. Japan Acad. Ser. A 63 (1987) 275-278. | MR | Zbl
,[39] Torsion zero cycles on the self product of a modular elliptic curve, Duke Math. J. 85 (1996) 315-357. | MR | Zbl
, ,[40] Techniques of localization in the theory of algebraic cycles, J. Algebraic Geom. 10 (2001) 299-363. | MR | Zbl
,[41] Levine M., K-theory and motivic cohomology of schemes, Preprint, 1999. | MR
[42] Duality theorems for curves over p-adic fields, Invent. Math. 7 (1969) 120-136. | MR | Zbl
,[43] Values of zeta functions at non-negative integers, in: (Ed.), Number Theory, Noordwijkerhout, 1983, Lecture Notes in Math., vol. 1068, Springer, Berlin, 1984, pp. 127-138. | MR | Zbl
,[44] New results on weight-two motivic cohomology, in: , , , , , (Eds.), The Grothendieck Festschrift III, Progr. Math., vol. 88, Birkhäuser, Boston, 1990, pp. 35-55. | MR | Zbl
,[45] Notes on étale cohomology of number fields, Ann. Sci. École Norm. Sup. (4) 6 (1973) 521-552. | Numdam | MR | Zbl
,[46] Duality in flat cohomology of a surface, Ann. Sci. École Norm. Sup. (4) 9 (1976) 171-202. | Numdam | MR | Zbl
,[47] Values of zeta functions of varieties over finite fields, Amer. J. Math. 108 (1986) 297-360. | MR | Zbl
,[48] Arithmetic Duality Theorems, Perspectives in Math., vol. 1, Academic Press, Boston, 1986. | MR | Zbl
,[49] A duality theorem for étale p-torsion sheaves on complete varieties over finite fields, Compositio Math. 117 (1999) 123-152. | MR | Zbl
,[50] Duality in the cohomology of crystalline local systems, Compositio Math. 109 (1997) 67-97. | MR | Zbl
,[51] Cohomologie galoisienne des modules finis, Dunod, Paris, 1967. | MR | Zbl
,[52] Abelian class field theory of arithmetic schemes, in: , (Eds.), Algebraic K-Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras (Part 1), Santa Barbara, 1992, Proc. Sympos. Pure Math., vol. 58, Amer. Math. Soc., Providence, 1995, pp. 85-187. | MR | Zbl
,[53] Arithmetic on two-dimensional local rings, Invent. Math. 85 (1986) 379-414. | MR | Zbl
,[54] Arithmetic theory of arithmetic surfaces, Ann. of Math. 129 (1989) 547-589. | MR | Zbl
,[55] Sato K., Logarithmic Hodge-Witt sheaves on normal crossing varieties, Math. Z., in press.
[56] p-adic point of motives, in: (Ed.), Motives (Part 2), Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, 1994, pp. 225-249. | MR | Zbl
,[57] Cohomologie galoisienne, Lecture Notes in Math., vol. 5, 5, Springer, Berlin, 1992. | Zbl
,[58] Artin-Verdier duality for arithmetic surfaces, Math. Ann. 305 (1996) 705-792.
,[59] Tate J., Duality theorems in the Galois cohomology of number fields, in: Proc. Internat. Congress Math., Stockholm, 1962, pp. 234-241. | Zbl
[60] Algebraic cycles and poles of zeta functions, in: (Ed.), Arithmetical Algebraic Geometry, Harper and Row, New York, 1965, pp. 93-100. | MR | Zbl
,[61] On the conjecture of Birch and Swinnerton-Dyer and a geometric analog, in: Séminaire Bourbaki 1965/66, Exposé 306, Benjamin, New York, 1966, and Collection Hors Série, Société mathématique de France, vol. 9, 1995. | Numdam | Zbl
,[62] Absolute cohomological purity, Bull. Soc. Math. France 112 (1984) 397-406. | Numdam | MR | Zbl
,[63] p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. Math. 137 (1999) 233-411. | MR | Zbl
,[64] On p-adic nearby cycles of log smooth families, Bull. Soc. Math. France 128 (2000) 529-575. | Numdam | MR | Zbl
,[65] The bilinear form of the Brauer group of a surface, Invent. Math. 125 (1996) 557-585. | MR | Zbl
,[66] Théorie des topos et cohomologie étale des schémas, in: Lecture Notes in Math., vols. 269, 270, 305, Springer, Berlin, 1972, pp. 1972-1973. | MR
, , , , ,[67] Cohomologie étale, Lecture Notes in Math., vol. 569, Springer, Berlin, 1977. | MR | Zbl
, , , , ,Cité par Sources :