Jacquet modules of locally analytic representations of p-adic reductive groups I. Construction and first properties
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 39 (2006) no. 5, pp. 775-839.
@article{ASENS_2006_4_39_5_775_0,
     author = {Emerton, Matthew},
     title = {Jacquet modules of locally analytic representations of $p$-adic reductive groups {I.} {Construction} and first properties},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {775--839},
     publisher = {Elsevier},
     volume = {Ser. 4, 39},
     number = {5},
     year = {2006},
     doi = {10.1016/j.ansens.2006.08.001},
     zbl = {05137697},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.ansens.2006.08.001/}
}
TY  - JOUR
AU  - Emerton, Matthew
TI  - Jacquet modules of locally analytic representations of $p$-adic reductive groups I. Construction and first properties
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2006
SP  - 775
EP  - 839
VL  - 39
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.ansens.2006.08.001/
DO  - 10.1016/j.ansens.2006.08.001
LA  - en
ID  - ASENS_2006_4_39_5_775_0
ER  - 
%0 Journal Article
%A Emerton, Matthew
%T Jacquet modules of locally analytic representations of $p$-adic reductive groups I. Construction and first properties
%J Annales scientifiques de l'École Normale Supérieure
%D 2006
%P 775-839
%V 39
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.ansens.2006.08.001/
%R 10.1016/j.ansens.2006.08.001
%G en
%F ASENS_2006_4_39_5_775_0
Emerton, Matthew. Jacquet modules of locally analytic representations of $p$-adic reductive groups I. Construction and first properties. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 39 (2006) no. 5, pp. 775-839. doi : 10.1016/j.ansens.2006.08.001. http://www.numdam.org/articles/10.1016/j.ansens.2006.08.001/

[1] Ash A., Stevens G., p-Adic deformations of arithmetic cohomology, Preprint. | MR

[2] Bosch S., Güntzer U., Remmert R., Non-Archimedean Analysis, Springer, Berlin, 1984. | MR | Zbl

[3] Bourbaki N., Elements of Mathematics. Topological Vector Spaces, Springer, Berlin, 1987, (Chapters 1-5). | MR | Zbl

[4] Cartier P., Representations of p-adic groups: A survey, in: Automorphic Forms, Representations, and L-Functions, Part 1, Proc. Symp. Pure Math., vol. 33, Amer. Math. Soc., Providence, RI, 1979, pp. 111-155. | MR | Zbl

[5] Casselman W., Introduction to the theory of admissible representations of p-adic reductive groups, unpublished notes distributed by P. Sally, draft dated May 7, 1993. Available electronically at, http://www.math.ubc.ca/people/faculty/cass/research.html.

[6] Coleman R., P-adic Banach spaces and families of modular forms, Invent. Math. 127 (1997) 417-479. | MR | Zbl

[7] Coleman R., Mazur B., The eigencurve, in: Scholl A.J., Taylor R.L. (Eds.), Galois Representations in Arithmetic Algebraic Geometry (Durham, 1996), London Math. Soc. Lecture Note Ser., vol. 254, Cambridge University Press, Cambridge, 1998, pp. 1-113. | MR | Zbl

[8] Emerton M., Locally analytic vectors in representations of locally p-adic analytic groups, Mem. Amer. Math. Soc., in press. Available electronically at, http://www.math.northwestern.edu/~emerton.

[9] Emerton M., On the interpolation of systems of eigenvalues attached to automorphic Hecke eigenforms, Invent. Math. 164 (2006) 1-84. | MR | Zbl

[10] Emerton M., Locally analytic representation theory of p-adic reductive groups: A summary of some recent developments, in: Burns D., Buzzard K., Nekovar J. (Eds.), Proceedings of a Symposium on L-Functions and Galois Representations (Durham, 2004), in press. Available electronically at, http://www.math.northwestern.edu/~emerton. | Zbl

[11] Emerton M., Jacquet modules of locally analytic representations of p-adic reductive groups II. The relation to parabolic induction, in preparation.

[12] Féaux de Lacroix C.T., Einige Resultate über die topologischen Darstellungen p-adischer Liegruppen auf unendlich dimensionalen Vektorräumen über einem p-adischen Körper, Thesis, Köln 1997, Schriftenreihe Math. Inst. Univ. Münster, 3. Serie, Heft 23, 1999, pp. 1-111. | MR | Zbl

[13] Knapp A.W., Representation Theory of Semisimple Groups. An Overview Based on Examples, Princeton University Press, Princeton, NJ, 1986. | MR | Zbl

[14] Prasad D., Locally algebraic representations of p-adic groups, Appendix to [18], Represent. Theory 5 (2001) 125-127. | MR

[15] Schneider P., Nonarchimedean Functional Analysis, Springer Monographs in Math., Springer, Berlin, 2002. | MR | Zbl

[16] Schneider P., Teitelbaum J., p-adic boundary values, Astérisque 278 (2002) 51-123. | Numdam | MR | Zbl

[17] Schneider P., Teitelbaum J., Locally analytic distributions and p-adic representation theory, with applications to GL 2 , J. Amer. Math. Soc. 15 (2001) 443-468. | MR | Zbl

[18] Schneider P., Teitelbaum J., Ug-finite locally analytic representations, Represent. Theory 5 (2001) 111-128. | MR | Zbl

[19] Schneider P., Teitelbaum J., Banach space representations and Iwasawa theory, Israel J. Math. 127 (2002) 359-380. | MR | Zbl

[20] Schneider P., Teitelbaum J., Algebras of p-adic distributions and admissible representations, Invent. Math. 153 (2003) 145-196. | MR | Zbl

[21] Serre J.-P., Endomorphismes complètement continus des espaces de Banach p-adiques, Publ. Math. IHÉS 12 (1962) 69-85. | EuDML | Numdam | MR | Zbl

[22] Serre J.-P., Lie Algebras and Lie Groups, W.A. Benjamin, 1965. | MR | Zbl

Cité par Sources :