The syntomic regulator for the K-theory of fields
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 36 (2003) no. 6, pp. 867-924.
@article{ASENS_2003_4_36_6_867_0,
     author = {Besser, Amnon and de Jeu, Rob},
     title = {The syntomic regulator for the $K$-theory of fields},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {867--924},
     publisher = {Elsevier},
     volume = {Ser. 4, 36},
     number = {6},
     year = {2003},
     doi = {10.1016/j.ansens.2003.01.003},
     zbl = {1106.11024},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.ansens.2003.01.003/}
}
TY  - JOUR
AU  - Besser, Amnon
AU  - de Jeu, Rob
TI  - The syntomic regulator for the $K$-theory of fields
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2003
SP  - 867
EP  - 924
VL  - 36
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.ansens.2003.01.003/
DO  - 10.1016/j.ansens.2003.01.003
LA  - en
ID  - ASENS_2003_4_36_6_867_0
ER  - 
%0 Journal Article
%A Besser, Amnon
%A de Jeu, Rob
%T The syntomic regulator for the $K$-theory of fields
%J Annales scientifiques de l'École Normale Supérieure
%D 2003
%P 867-924
%V 36
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.ansens.2003.01.003/
%R 10.1016/j.ansens.2003.01.003
%G en
%F ASENS_2003_4_36_6_867_0
Besser, Amnon; de Jeu, Rob. The syntomic regulator for the $K$-theory of fields. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 36 (2003) no. 6, pp. 867-924. doi : 10.1016/j.ansens.2003.01.003. http://www.numdam.org/articles/10.1016/j.ansens.2003.01.003/

[1] Berthelot P., Finitude et pureté cohomologique en cohomologie rigide, Invent. Math. 128 (2) (1997) 329-377, with an appendix in English by A.J. de Jong. | MR | Zbl

[2] Besser A., Syntomic regulators and p-adic integration I: rigid syntomic regulators, Israel J. Math. 120 (2000) 291-334. | MR | Zbl

[3] Besser A., Syntomic regulators and p-adic integration II: K2 of curves, Israel J. Math. 120 (2000) 335-360. | MR | Zbl

[4] Besser A., Coleman integration using the Tannakian formalism, Math. Ann. 322 (1) (2002) 19-48. | MR | Zbl

[5] Besser A., Finite and p-adic polylogarithms, Compositio Math. 130 (2) (2002) 215-223. | MR | Zbl

[6] Brown K.S., Gersten S.M., Algebraic K-theory as generalized sheaf cohomology, in: Algebraic K-Theory, I: Higher K-Theories, Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972 , Lecture Notes in Math., vol. 341, Springer-Verlag, Berlin, 1973, pp. 266-292. | MR | Zbl

[7] Burgos Gil J.I., The Regulators of Beilinson and Borel, CRM Monogr. Ser., vol. 15, Amer. Math. Soc, Providence, RI, 2002. | MR | Zbl

[8] Borel A., Cohomologie de SLn et valeurs de fonctions zeta aux points entiers, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (4) (1977) 613-636, Errata at vol. 7, p. 373 (1980). | Numdam | MR | Zbl

[9] Coleman R., De Shalit E., p-adic regulators on curves and special values of p-adic L-functions, Invent. Math. 93 (2) (1988) 239-266. | MR | Zbl

[10] Chiarellotto B., Weights in rigid cohomology applications to unipotent F-isocrystals, Ann. Sci. École Norm. Sup. (4) 31 (5) (1998) 683-715. | Numdam | MR | Zbl

[11] Coleman R., Dilogarithms, regulators, and p-adic L-functions, Invent. Math. 69 (1982) 171-208. | MR | Zbl

[12] De Jeu R., Zagier's conjecture and wedge complexes in algebraic K-theory, Compositio Math. 96 (2) (1995) 197-247. | Numdam | MR | Zbl

[13] De Jeu R., On K(3)4 of curves over number fields, Invent. Math. 125 (3) (1996) 523-556. | MR | Zbl

[14] De Jeu R., Towards regulator formulae for the K-theory of curves over number fields, Compositio Math. 124 (2) (2000) 137-194. | MR | Zbl

[15] Elbaz-Vincent P., Gangl H., On poly(ana)logs. I, Compositio Math. 130 (2) (2002) 161-210. | MR | Zbl

[16] Gillet H., Riemann-Roch theorems for higher algebraic K-theory, Adv. Math. 40 (1981) 203-288. | MR | Zbl

[17] Gillet H., Soulé C., Filtrations on higher algebraic K-theory, in: Algebraic K-Theory, Seattle, WA, 1997, Proc. Sympos. Pure Math., vol. 67, Amer. Math. Soc, Providence, RI, 1999, pp. 89-148. | MR | Zbl

[18] Gros M., Régulateurs syntomiques et valeurs de fonctions L p-adiques. II, Invent. Math. 115 (1) (1994) 61-79. | MR | Zbl

[19] Harder G., Die Kohomologie S-arithmetischer Gruppen über Funktionenkörpern, Invent. Math. 42 (1977) 135-175. | MR | Zbl

[20] Huber A., Wildeshaus J., Classical motivic polylogarithm according to Beilinson and Deligne, Doc. Math. 3 (1998) 27-133, electronic. | MR | Zbl

[21] Kontsevich M., The 11/2-logarithm, Compositio Math. 130 (2) (2002) 211-214, Appendix to [15]. | MR

[22] Milne J.S., Étale Cohomology, Princeton Univ. Press, Princeton, NJ, 1980. | MR | Zbl

[23] Quillen D., Higher algebraic K-theory. I, in: Algebraic K-Theory, I: Higher K-Theories, Lecture Notes in Math., vol. 341, Springer-Verlag, Berlin, 1973, pp. 85-147. | MR | Zbl

[24] Schneider P., Introduction to the Beilinson conjectures, in: Beilinson's Conjectures on Special Values of L-Functions, Academic Press, Boston, MA, 1988, pp. 1-35. | MR | Zbl

[25] Théorie des topos et cohomologie étale des schémas, Tome 1: Théorie des topos, Séminaire de géométrie algébrique du Bois-Marie 1963-1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck, et J.-L. Verdier, avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat , Lecture Notes in Math., vol. 269, Springer-Verlag, Berlin, 1972. | MR | Zbl

[26] Somekawa M., Log-syntomic regulators and p-adic polylogarithms, 17 (3) (1999) 265-294. | MR | Zbl

[27] Wojtkowiak Z., A note on functional equations of the p-adic polylogarithms, Bull. Soc. Math. France 119 (3) (1991) 343-370. | Numdam | MR | Zbl

[28] Zagier D., Polylogarithms, Dedekind zeta functions and the algebraic K-theory of fields, in: Arithmetic Algebraic Geometry (Texel, 1989), Progr. Math., vol. 89, Birkhäuser Boston, Boston, MA, 1991, pp. 391-430. | MR | Zbl

Cité par Sources :