@article{ASENS_2003_4_36_6_847_0, author = {Gutkin, Eugene and Hubert, Pascal and Schmidt, Thomas A.}, title = {Affine diffeomorphisms of translation surfaces : periodic points, fuchsian groups, and arithmeticity}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {847--866}, publisher = {Elsevier}, volume = {Ser. 4, 36}, number = {6}, year = {2003}, doi = {10.1016/j.ansens.2003.05.001}, mrnumber = {2032528}, zbl = {1106.37018}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.ansens.2003.05.001/} }
TY - JOUR AU - Gutkin, Eugene AU - Hubert, Pascal AU - Schmidt, Thomas A. TI - Affine diffeomorphisms of translation surfaces : periodic points, fuchsian groups, and arithmeticity JO - Annales scientifiques de l'École Normale Supérieure PY - 2003 SP - 847 EP - 866 VL - 36 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.ansens.2003.05.001/ DO - 10.1016/j.ansens.2003.05.001 LA - en ID - ASENS_2003_4_36_6_847_0 ER -
%0 Journal Article %A Gutkin, Eugene %A Hubert, Pascal %A Schmidt, Thomas A. %T Affine diffeomorphisms of translation surfaces : periodic points, fuchsian groups, and arithmeticity %J Annales scientifiques de l'École Normale Supérieure %D 2003 %P 847-866 %V 36 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.ansens.2003.05.001/ %R 10.1016/j.ansens.2003.05.001 %G en %F ASENS_2003_4_36_6_847_0
Gutkin, Eugene; Hubert, Pascal; Schmidt, Thomas A. Affine diffeomorphisms of translation surfaces : periodic points, fuchsian groups, and arithmeticity. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 36 (2003) no. 6, pp. 847-866. doi : 10.1016/j.ansens.2003.05.001. http://www.numdam.org/articles/10.1016/j.ansens.2003.05.001/
[1] Fractions continues sur les surfaces de Veech, J. Anal. Math. 81 (2000) 35-64. | MR | Zbl
, ,[2] The Geometry of Discrete Groups, Springer-Verlag, New York, 1983. | MR | Zbl
,[3] Teichmüller disks and Veech's F structures, Extremal Riemann Surfaces, in: Contemp. Math., vol. 201, Amer. Math. Soc, Providence, RI, 1997, pp. 165-189. | MR | Zbl
, ,[4] Asymptotic formulas on flat surfaces, Ergodic Theory Dynam. Systems 21 (2001) 443-478. | MR | Zbl
, ,[5] Riemann Surfaces, 2nd Edition, Grad. Texts in Math., vol. 71, Springer-Verlag, Berlin, 1992. | MR | Zbl
, ,[6] Concerning the transitive properties of geodesics on a rational polyhedron, Duke Math. J. 2 (1936) 147-150. | JFM | MR
, ,[7] Billiard flows on almost integrable polyhedral surfaces, Ergodic Theory Dynam. Systems 4 (1984) 569-584. | MR | Zbl
,[8] Billiards in polygons: survey of recent results, J. Statist. Phys. 83 (1996) 7-26. | MR | Zbl
,[9] Branched coverings and closed geodesies in flat surfaces, with applications to billiards, in: , , , (Eds.), Dynamical Systems from Crystal to Chaos, World Scientific, Singapore, 2000, pp. 259-273. | MR
,[10] The geometry and arithmetic of translation surfaces with applications to polygonal billiards, Math. Res. Lett. 3 (1996) 391-403. | MR | Zbl
, ,[11] Affine mappings of translation surfaces: Geometry and arithmetic, Duke Math. J. 103 (2000) 191-213. | MR | Zbl
, ,[12] Quadratic differentials and foliations, Acta Math. 142 (1979) 221-274. | MR | Zbl
, ,[13] An Introduction to the Theory of Numbers, Oxford Univ. Press, London, 1938. | MR | Zbl
, ,[14] Veech groups and polygonal coverings, J. Geom. Phys. 35 (2000) 75-91. | MR | Zbl
, ,[15] Invariants of translation surfaces, Ann. Inst. Fourier 51 (2001) 461-495. | Numdam | MR | Zbl
, ,[16] Topological transitivity of billiards in polygons, Math. Notes 18 (1975) 760-764. | MR | Zbl
, ,[17] Billiards in rational-angled triangles, Comment. Math. Helv. 75 (2000) 65-108. | MR | Zbl
, ,[18] Ergodicity of billiard flows and quadratic differentials, Ann. of Math. 124 (1986) 293-311. | MR | Zbl
, , ,[19] Rational billiards and flat structures, in: Handbook on Dynamical Systems, vol. 1A, Elsevier, Amsterdam, 2002, pp. 1015-1090. | MR | Zbl
, ,[20] On triangular billiards, Comment. Math. Helv. 76 (2001) 501-505. | MR | Zbl
,[21] On the asymptotic quadratic growth rate of saddle connections and periodic orbits on marked flat tori, Geom. Funct. Anal. (GAFA) 12 (2002) 622-649. | MR | Zbl
,[22] Geodätische Linien auf Polyederflächen, Rend. Circ. Mat. Palermo 22 (1906) 141-151. | JFM
,[23] On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (1988) 417-431. | MR | Zbl
,[24] Veech W.A., Dynamical systems on analytic manifolds of quadratic differentials, Preprint, 1984.
[25] The Teichmüller geodesic flow, Ann. of Math. 124 (1986) 441-530. | MR | Zbl
,[26] Teichmüller curves in modular space, Eisenstein series, and an application to triangular billiards, Invent. Math. 97 (1989) 553-583. | MR | Zbl
,[27] The billiard in a regular polygon, Geom. Func. Anal. (GAFA) 2 (1992) 341-379. | MR | Zbl
,[28] Geometric realizations of hyperelliptic curves, in: Algorithms, Fractals, and Dynamics, Okayama/Kyoto, 1992, Plenum, New York, 1995, pp. 217-226. | MR | Zbl
,[29] Plane structures and billiards in rational polygons: the Veech alternative, Russian Math. Surveys 51 (1996) 779-817. | MR | Zbl
,[30] Calculation of Fuchsian groups associated to billiards in a rational triangle, Ergodic Theory Dynam. Systems 18 (1998) 1019-1042. | MR | Zbl
,Cité par Sources :