Graded Lie algebras with finite polydepth
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 36 (2003) no. 5, pp. 793-804.
@article{ASENS_2003_4_36_5_793_0,
     author = {Felix, Yves and Halperin, Stephen and Thomas, Jean-Claude},
     title = {Graded {Lie} algebras with finite polydepth},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {793--804},
     publisher = {Elsevier},
     volume = {Ser. 4, 36},
     number = {5},
     year = {2003},
     doi = {10.1016/j.ansens.2003.01.002},
     mrnumber = {2032987},
     zbl = {1066.17019},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.ansens.2003.01.002/}
}
TY  - JOUR
AU  - Felix, Yves
AU  - Halperin, Stephen
AU  - Thomas, Jean-Claude
TI  - Graded Lie algebras with finite polydepth
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2003
SP  - 793
EP  - 804
VL  - 36
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.ansens.2003.01.002/
DO  - 10.1016/j.ansens.2003.01.002
LA  - en
ID  - ASENS_2003_4_36_5_793_0
ER  - 
%0 Journal Article
%A Felix, Yves
%A Halperin, Stephen
%A Thomas, Jean-Claude
%T Graded Lie algebras with finite polydepth
%J Annales scientifiques de l'École Normale Supérieure
%D 2003
%P 793-804
%V 36
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.ansens.2003.01.002/
%R 10.1016/j.ansens.2003.01.002
%G en
%F ASENS_2003_4_36_5_793_0
Felix, Yves; Halperin, Stephen; Thomas, Jean-Claude. Graded Lie algebras with finite polydepth. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 36 (2003) no. 5, pp. 793-804. doi : 10.1016/j.ansens.2003.01.002. http://www.numdam.org/articles/10.1016/j.ansens.2003.01.002/

[1] Felix Y., Halperin S., Lemaire J.-M., Thomas J.-C., Mod p loop space homology, Inventiones math. 95 (1989) 247-262. | MR | Zbl

[2] Felix Y., Halperin S., Jacobson C., Löfwall C., Thomas J.-C., The radical of the homotopy Lie algebra, Amer. J. Math. 110 (1988) 301-322. | MR | Zbl

[3] Felix Y., Halperin S., Thomas J.-C., Lie algebras of polynomial growth, J. London Math. Soc. 43 (1991) 556-566. | MR | Zbl

[4] Felix Y., Halperin S., Thomas J.-C., Hopf algebras of polynomial growth, J. Algebra 125 (1989) 408-417. | MR | Zbl

[5] Felix Y., Halperin S., Thomas J.-C., Engel elements in the homotopy Lie algebra, J. Algebra 144 (1991) 67-78. | MR | Zbl

[6] Felix Y., Halperin S., Thomas J.-C., The category of a map and the grade of a module, Israel J. Math. 78 (1992) 177-196. | MR | Zbl

[7] Felix Y., Halperin S., Thomas J.-C., Growth and Lie brackets in the homotopy Lie algebra, in: The Roos Festschrift, vol. 1, Homology Homotopy Appl. 4, no. 2, part 1, 2002, pp. 219-225. | MR | Zbl

[8] Halperin S., Universal enveloping algebra and loop space homology, J. Pure Appl. Algebra 83 (1992) 237-282. | MR | Zbl

[9] Koszul J.-L., Homologie et cohomologie des algèbres de Lie, Bull. Soc. Math. France 78 (1950) 65-127. | Numdam | MR | Zbl

[10] Milnor J.W., Moore J.C., On the structure of Hopf algebras, Ann. Math. 81 (1965) 211-264. | MR | Zbl

Cité par Sources :