@article{ASENS_2003_4_36_2_225_0, author = {Ohta, Masami}, title = {Congruence modules related to {Eisenstein} series}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {225--269}, publisher = {Elsevier}, volume = {Ser. 4, 36}, number = {2}, year = {2003}, doi = {10.1016/S0012-9593(03)00009-0}, mrnumber = {1980312}, zbl = {1047.11046}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S0012-9593(03)00009-0/} }
TY - JOUR AU - Ohta, Masami TI - Congruence modules related to Eisenstein series JO - Annales scientifiques de l'École Normale Supérieure PY - 2003 SP - 225 EP - 269 VL - 36 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S0012-9593(03)00009-0/ DO - 10.1016/S0012-9593(03)00009-0 LA - en ID - ASENS_2003_4_36_2_225_0 ER -
%0 Journal Article %A Ohta, Masami %T Congruence modules related to Eisenstein series %J Annales scientifiques de l'École Normale Supérieure %D 2003 %P 225-269 %V 36 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/S0012-9593(03)00009-0/ %R 10.1016/S0012-9593(03)00009-0 %G en %F ASENS_2003_4_36_2_225_0
Ohta, Masami. Congruence modules related to Eisenstein series. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 36 (2003) no. 2, pp. 225-269. doi : 10.1016/S0012-9593(03)00009-0. http://www.numdam.org/articles/10.1016/S0012-9593(03)00009-0/
[1] p-adic L-functions and p-adic periods of modular forms, Invent. Math. 111 (1993) 407-447. | MR | Zbl
, ,[2] Modular konstruierte unverzweigte abelsche p-Erweiterungen von Q(ζp) und die Struktur ihrer Galoisgruppen, Math. Nachr. 159 (1992) 83-99. | Zbl
, ,[3] Theorie der Eisensteinschen Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik, Abh. Math. Sem. Hamburg 5 (1927) 199-224, (Math. Werke No. 24). | JFM
,[4] Iwasawa modules attached to congruences of cusp forms, Ann. Sci. Éc. Norm. Sup. (4) 19 (1986) 231-273. | Numdam | MR | Zbl
,[5] Hecke algebras for GL1 and GL2, in: Sém. Théorie des Nombres, Paris, 1984-85, Progress in Math., 63, Birkhäuser, 1986, pp. 131-163. | MR | Zbl
,[6] Galois representations into GL2(Zp〚X〛) attached to ordinary cusp forms, Invent. Math. 85 (1986) 543-613. | Zbl
,[7] A p-adic measure attached to the zeta functions associated with two elliptic modular forms II, Ann. Inst. Fourier 38 (1988) 1-83. | Numdam | MR | Zbl
,[8] Elementary Theory of L-functions and Eisenstein Series, London Math. Soc. Stud. Texts, 26, Cambridge Univ. Press, 1993. | MR | Zbl
,[9] Ideal class groups of cyclotomic fields and modular forms of level 1, J. Number Theory 45 (1993) 281-294. | MR | Zbl
,[10] Modular units, Springer-Verlag, 1981. | MR | Zbl
, ,[11] Class fields of abelian extensions of Q, Invent. Math. 76 (1984) 179-330. | MR | Zbl
, ,[12] On p-adic analytic families of Galois representations, Comp. Math. 59 (1986) 231-264. | Numdam | MR | Zbl
, ,[13] On cohomology groups attached to towers of algebraic curves, J. Math. Soc. Japan 45 (1993) 131-183. | MR | Zbl
,[14] On the p-adic Eichler-Shimura isomorphism for Λ-adic cusp forms, J. Reine Angew. Math. 463 (1995) 49-98. | Zbl
,[15] Ordinary p-adic étale cohomology groups attached to towers of elliptic modular curves, Comp. Math. 115 (1999) 241-301. | MR | Zbl
,[16] Ordinary p-adic étale cohomology groups attached to towers of elliptic modular curves. II, Math. Ann. 318 (2000) 557-583. | MR | Zbl
,[17] Théorie d'Iwasawa géométrique: un théorème de comparaison, J. Number Theory 59 (1996) 225-247. | MR | Zbl
,[18] Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten and Princeton Univ. Press, 1971. | MR | Zbl
,[19] Arithmetic on Modular Curves, Progress in Math., 20, Birkhäuser, 1982. | MR | Zbl
,[20] Un sous-groupe p-divisible de la jacobienne de X1(Npr) comme module sur l'algèbre de Hecke, Bull. Soc. Math. Fr. 115 (1987) 329-360. | Numdam | MR | Zbl
,[21] On ordinary λ-adic representations associated to modular forms, Invent. Math. 94 (1988) 529-573. | Zbl
,[22] The Iwasawa conjecture for totally real fields, Ann. Math. 131 (1990) 493-540. | MR | Zbl
,Cité par Sources :