@article{ASENS_2003_4_36_1_57_0, author = {Kriz, Igor}, title = {On spin and modularity in conformal field theory}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {57--112}, publisher = {Elsevier}, volume = {Ser. 4, 36}, number = {1}, year = {2003}, doi = {10.1016/S0012-9593(03)00003-X}, mrnumber = {1987977}, zbl = {1028.81050}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S0012-9593(03)00003-X/} }
TY - JOUR AU - Kriz, Igor TI - On spin and modularity in conformal field theory JO - Annales scientifiques de l'École Normale Supérieure PY - 2003 SP - 57 EP - 112 VL - 36 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S0012-9593(03)00003-X/ DO - 10.1016/S0012-9593(03)00003-X LA - en ID - ASENS_2003_4_36_1_57_0 ER -
%0 Journal Article %A Kriz, Igor %T On spin and modularity in conformal field theory %J Annales scientifiques de l'École Normale Supérieure %D 2003 %P 57-112 %V 36 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/S0012-9593(03)00003-X/ %R 10.1016/S0012-9593(03)00003-X %G en %F ASENS_2003_4_36_1_57_0
Kriz, Igor. On spin and modularity in conformal field theory. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 36 (2003) no. 1, pp. 57-112. doi : 10.1016/S0012-9593(03)00003-X. http://www.numdam.org/articles/10.1016/S0012-9593(03)00003-X/
[1] Multiloop contribution to string theory, Pisma ZhETP 42 (8) (1985) 340, [JETP Lett. 42 (1986) 419]. | MR
, ,[2] Surgery on Simply Connected Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, 65, Springer-Verlag, 1972. | MR | Zbl
,[3] Le symbole modéré, Inst. Hautes Études Sci. Publ. Math. 73 (1991) 147-181. | Numdam | MR | Zbl
,[4] Deligne P., Letters to the author, 2000-2001.
[5] Notes on spinors, in: Quantum Fields and Strings: A Course for Mathematicians, Vol. 1, AMS, 1999, pp. 99-136. | MR | Zbl
,[6] The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969) 75-108. | Numdam | MR | Zbl
, ,[7] Conformal Field Theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, 1997. | MR | Zbl
, , ,[8] Twisted representations of vertex operator algebras, Math. Ann. 310 (3) (1998) 571-600. | MR | Zbl
, , ,[9] Frenkel I., Vertex algebras and algebraic curves, http://xxx.arXiv.org/ps/math.QA/0007054. | MR
[10] Vertex Operator Algebras and the Monster, Pure Appl. Math., 134, Academic Press, Boston, MA, 1988. | MR | Zbl
, , ,[11] Notes on string theory and two dimensional conformal field theory, in: , (Eds.), Workshop on Unified String Theories, ITP Santa Barbara, World Scientific, Singapore, 1985, pp. 162. | MR | Zbl
,[12] Conformal invariance, supersymmetry and string theory, Nucl. Phys. B 271 (1986) 93. | MR
, , ,[13] Giraud, Cohomologie non abélienne, in: Grundlehren der math. Wissensch., Vol. 179, Springer-Verlag. | Zbl
[14] Two-dimensional Conformal Geometry and Vertex Operator Algebras, Progress in Mathematics, 148, Birkhäuser, 1997. | MR | Zbl
,[15] Elliptic Functions, Graduate Texts in Mathematics, 112, Springer-Verlag, 1987. | MR | Zbl
,[16] Loop Groups, Oxford Science Publications, Oxford University Press, 1986. | MR | Zbl
, ,[17] Luest D., Theisen S., Lectures on String Theory, Lecture Notes in Mathematics Vol. 346, Springer-Verlag. | MR | Zbl
[18] Determinants of Cauchy-Riemann operators on Riemann surfaces, Funktsional. Anal. i Prilozhen. 19 (1985) 37-41. | MR | Zbl
,[19] Super Riemann Surfaces, in: (Ed.), Mathematical Aspects of String Theory, Advanced Series in Mathematical Physics, 1, World Scientific, 1987. | MR | Zbl
,[20] Geometry of superconformal manifolds, Comm. Math. Phys. 119 (1988) 129-152. | MR | Zbl
, , ,[21] Segal G., The definition of conformal field theory, preprint. | MR
[22] Trace Ideals and Their Applications, London Mathematical Society Lecture Note Series, 35, Cambridge University Press, 1979. | MR | Zbl
,[23] Graded Brauer groups, J. Reine Angew. Math. 213 (1963/64) 187-199. | MR | Zbl
,Cité par Sources :