@article{ASENS_2000_4_33_4_561_0, author = {Sandier, Etienne and Serfaty, Sylvia}, title = {A rigorous derivation of free-boundary problem arising in superconductivity}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {561--592}, publisher = {Elsevier}, volume = {Ser. 4, 33}, number = {4}, year = {2000}, doi = {10.1016/s0012-9593(00)00122-1}, mrnumber = {2002k:35324}, zbl = {01702168}, language = {en}, url = {http://www.numdam.org/articles/10.1016/s0012-9593(00)00122-1/} }
TY - JOUR AU - Sandier, Etienne AU - Serfaty, Sylvia TI - A rigorous derivation of free-boundary problem arising in superconductivity JO - Annales scientifiques de l'École Normale Supérieure PY - 2000 SP - 561 EP - 592 VL - 33 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/s0012-9593(00)00122-1/ DO - 10.1016/s0012-9593(00)00122-1 LA - en ID - ASENS_2000_4_33_4_561_0 ER -
%0 Journal Article %A Sandier, Etienne %A Serfaty, Sylvia %T A rigorous derivation of free-boundary problem arising in superconductivity %J Annales scientifiques de l'École Normale Supérieure %D 2000 %P 561-592 %V 33 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/s0012-9593(00)00122-1/ %R 10.1016/s0012-9593(00)00122-1 %G en %F ASENS_2000_4_33_4_561_0
Sandier, Etienne; Serfaty, Sylvia. A rigorous derivation of free-boundary problem arising in superconductivity. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 33 (2000) no. 4, pp. 561-592. doi : 10.1016/s0012-9593(00)00122-1. http://www.numdam.org/articles/10.1016/s0012-9593(00)00122-1/
[1] Topological methods for the Ginzburg-Landau equations, J. Math. Pures Appl. 77 (1998) 1-49. | MR | Zbl
, ,[2] Pinning phenomena in the Ginzburg-Landau model of superconductivity, Preprint.
, , ,[3] A semi-elliptic system arising in the theory of type-II superconductivity, Comm. Appl. Nonlinear Anal. 1 (3) (1994) 1-21. | MR | Zbl
, , ,[4] Ginzburg-Landau Vortices, Birkhäuser, 1994. | MR | Zbl
, , ,[5] Existence of a smooth free-boundary in a superconductor with a Nash-Moser inverse function theorem argument, Interfaces and Free Boundaries (to appear).
, ,[6] Vortices for a variational problem related to superconductivity, Annales IHP, Analyse non Linéaire 12 (1995) 243-303. | Numdam | MR | Zbl
, ,[7] Un terme étrange venu d'ailleurs, in : Nonlinear Partial Differential Equations and their Applications, Coll. de France Semin. Vol. II, Res. Notes Math., Vol. 60, 1982, pp. 98-138. | MR | Zbl
, ,[8] A mean-field model of superconducting vortices, Eur. J. Appl. Math. 7 (2) (1996) 97-111. | MR | Zbl
, , ,[9] The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model, SIAM J. Math. Anal. 30 (2) (1999) 341-359 (electronic). | MR | Zbl
, ,[10] Lower bounds for generalized Ginzburg-Landau functionals, SIAM J. Math. Anal. 30 (4) (1999) 721-746. | MR | Zbl
,[11] L'injection du cône positif de H-1 dans W-1,q est compacte pour tout q < 2, J. Math. Pures Appl. 60 (1981) 309-322. | MR | Zbl
,[12] Obstacle Problems in Mathematical Physics, Mathematical Studies, North-Holland, 1987. | MR | Zbl
,[13] Lower bounds for the energy of unit vector fields and application, J. Functional Anal. 152 (2) (1998) 379-403. | MR | Zbl
,[14] Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field, Annales IHP, Analyse non Linéaire 17 (1) (2000) 119-145. | Numdam | MR | Zbl
, ,[15] On the energy of type-II superconductors in the mixed phase, Reviews in Math. Phys. (to appear). | Zbl
, ,[16] Local minimizers for the Ginzburg-Landau energy near critical magnetic field, Part I, Comm. Contemp. Math. 1 (2) (1999) 213-254. | MR | Zbl
,[17] Local minimizers for the Ginzburg-Landau energy near critical magnetic field, Part II, Comm. Contemp. Math. 1 (3) (1999) 295-333. | MR | Zbl
,[18] Stable configurations in superconductivity : Uniqueness, multiplicity and vortex-nucleation, Arch. Rat. Mech. Anal. 149 (1999) 329-365. | MR | Zbl
,[19] Introduction to Superconductivity, 2nd edn., McGraw-Hill, 1996.
,Cité par Sources :