@article{ASENS_2000_4_33_1_57_0, author = {Friedlander, Eric M.}, title = {Bloch-Ogus properties for topological cycle theory}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {57--79}, publisher = {Elsevier}, volume = {Ser. 4, 33}, number = {1}, year = {2000}, doi = {10.1016/s0012-9593(00)00103-8}, mrnumber = {2000m:14025}, zbl = {0982.14011}, language = {en}, url = {http://www.numdam.org/articles/10.1016/s0012-9593(00)00103-8/} }
TY - JOUR AU - Friedlander, Eric M. TI - Bloch-Ogus properties for topological cycle theory JO - Annales scientifiques de l'École Normale Supérieure PY - 2000 SP - 57 EP - 79 VL - 33 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/s0012-9593(00)00103-8/ DO - 10.1016/s0012-9593(00)00103-8 LA - en ID - ASENS_2000_4_33_1_57_0 ER -
%0 Journal Article %A Friedlander, Eric M. %T Bloch-Ogus properties for topological cycle theory %J Annales scientifiques de l'École Normale Supérieure %D 2000 %P 57-79 %V 33 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/s0012-9593(00)00103-8/ %R 10.1016/s0012-9593(00)00103-8 %G en %F ASENS_2000_4_33_1_57_0
Friedlander, Eric M. Bloch-Ogus properties for topological cycle theory. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 33 (2000) no. 1, pp. 57-79. doi : 10.1016/s0012-9593(00)00103-8. http://www.numdam.org/articles/10.1016/s0012-9593(00)00103-8/
[1] Homotopy groups of the integral cyclic groups, Topology 1 (1962) 257-299. | MR | Zbl
, JR.,[2] Espace Analytique Réduit des Cycles Analytiques Complexes Compacts d'un Espace Analytique Complexe de Dimension Finite, Fonctions de Plusieurs Variables, II, Lecture Notes in Math., Vol. 482, Springer, Berlin, 1975, pp. 1-158. | MR | Zbl
,[3] Gersten's conjecture and the homology of schemes, Ann. Éc. Norm. Sup. 7 (1974) 181-202. | Numdam | MR | Zbl
and ,[4] Algebraic K-Theory as Generalized Sheaf Cohomology, Algebraic K-Theory, I, Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 266-292. | MR | Zbl
and ,[5] Algebraic cocycles, Chow varieties, and Lawson homology, Compositio Math. 77 (1991) 55-93. | Numdam | MR | Zbl
,[6] Algebraic cocycles on normal, quasi-projective varieties, Compositio Math. 110 (1998) 127-162. | MR | Zbl
,[7] Cycles spaces and intersection theory, Topological Methods in Modern Mathematics (1993) 325-370. | MR | Zbl
and ,[8] A theory of algebraic cocycles, Annals of Math. 136 (1992) 361-428. | MR | Zbl
and ,[9] Duality relating spaces of algebraic cocycles and cycles, Topology 36 (1997) 533-565. | MR | Zbl
and ,[10] Moving algebraic cycles of bounded degree, Inventiones Math. 132 (1998) 91-119. | MR | Zbl
and ,[11] Graph mappings and Poincaré duality.
and ,[12] Filtration on the Homology of Algebraic Varieties, Memoirs of AMS, Vol. 529, 1994. | MR | Zbl
and ,[13] Bivariant cycle cohomology, in : V. Voevodsky, A. Suslin and E. Friedlander, eds., Cycles, Transfers, and Motivic Homology Theories, Annals of Math. Studies, 1999. | Zbl
and ,[14] Function spaces and continuous algebraic pairings for varieties, Compositio Math. (to appear). | Zbl
and ,[15] Riemann-Roch theorems for higher algebraic K-theory, Adv. in Math. 40 (1981) 203-289. | MR | Zbl
,[16] Algebraic cycles and homotopy theory, Annals of Math. 129 (1989) 253-291. | MR | Zbl
,[17] Completions and fibrations for topological monoids, Trans. Amer. Math. Soc. 340 (1993) 127-147. | MR | Zbl
,[18] Chow sheaves, in : V. Voevodsky, A. Suslin and E. Friedlander, eds., Cycles, Transfers, and Motivic Homology Theories, Annals of Math. Studies, 1999.
and ,Cité par Sources :