A purity theorem for the Witt group
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 32 (1999) no. 1, pp. 71-86.
@article{ASENS_1999_4_32_1_71_0,
     author = {Ojanguren, Manuel and Panin, Ivan},
     title = {A purity theorem for the {Witt} group},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {71--86},
     publisher = {Elsevier},
     volume = {Ser. 4, 32},
     number = {1},
     year = {1999},
     doi = {10.1016/s0012-9593(99)80009-3},
     mrnumber = {2000a:11057},
     zbl = {0980.11025},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/s0012-9593(99)80009-3/}
}
TY  - JOUR
AU  - Ojanguren, Manuel
AU  - Panin, Ivan
TI  - A purity theorem for the Witt group
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 1999
SP  - 71
EP  - 86
VL  - 32
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/s0012-9593(99)80009-3/
DO  - 10.1016/s0012-9593(99)80009-3
LA  - en
ID  - ASENS_1999_4_32_1_71_0
ER  - 
%0 Journal Article
%A Ojanguren, Manuel
%A Panin, Ivan
%T A purity theorem for the Witt group
%J Annales scientifiques de l'École Normale Supérieure
%D 1999
%P 71-86
%V 32
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/s0012-9593(99)80009-3/
%R 10.1016/s0012-9593(99)80009-3
%G en
%F ASENS_1999_4_32_1_71_0
Ojanguren, Manuel; Panin, Ivan. A purity theorem for the Witt group. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 32 (1999) no. 1, pp. 71-86. doi : 10.1016/s0012-9593(99)80009-3. http://www.numdam.org/articles/10.1016/s0012-9593(99)80009-3/

[1] A. Altman and S. Kleiman, Introduction to Grothendieck duality theory, Lect. Notes in Math., Vol. 146, 1970, Springer. | MR | Zbl

[2] M. André, Cinq exposés sur la désingularisation, Manuscrit de l'École Polytechnique Fédérale de Lausanne, 1991.

[3] J.-L. Colliot-Thélène et J.-J. Sansuc, Fibrés quadratiques et composantes connexes réelles, Math. Ann., Vol. 244, 1979, pp. 105-134. | EuDML | MR | Zbl

[4] D. Eisenbud, Commutative Algebra, Graduate Texts in Mathematics, Vol. 150, Springer, 1994. | Zbl

[5] L. Euler, Theorema arithmeticum eiusque demonstratio, Leonhardi Euleri Opera Omnia, series I, opera mathematica, volumen VI, Teubner, 1921. | JFM

[6] F. Fernandez-Carmena, On the injectivity of the map of the Witt group of a scheme into the Witt group of its quotient field, Math. Ann., Vol. 277, 1987, pp. 453-481. | EuDML | MR | Zbl

[7] A. Grothendieck, EGA IV, 4ème partie, Publ. Math. IHES, Vol. 32, 1967. | Numdam | Zbl

[8] P. Jaworski, Witt rings of fields of quotients of two-dimensional regular local rings, Math. Z., Vol. 211, 1992, pp. 533-546. | EuDML | MR | Zbl

[9] M. Knebusch, Symmetric and bilinear forms over algebraic varieties, Conference on quadratic forms, Queen's papers in pure and applied mathematics, Vol. 46, 1977, Kingston, Ontario. | MR | Zbl

[10] M.-A. Knus, Quadratic and Hermitian Forms over Rings, Grundlehren der Math. Wissenschaften, Vol. 294, Springer, 1991. | MR | Zbl

[11] D. Popescu, General Néron desingularization, Nagoya Math. J., Vol. 100, 1985, pp. 97-126. | MR | Zbl

[12] D. Popescu, General Néron desingularization and approximation, Nagoya Math. J., Vol. 104, 1986, pp. 85-115. | MR | Zbl

[13] D. Popescu, Letter to the Editor ; General Néron desingularization and approximation, Nagoya Math. J., Vol. 118, 1990, pp. 45-53. | MR | Zbl

[14] M. Ojanguren, Quadratic forms over regular rings, J. Indian Math. Soc., Vol. 44, 1980, pp. 109-116. | MR | Zbl

[15] M. Ojanguren, R. Parimala, R. Sridharan and V. Suresh, A purity theorem for the Witt groups of 3-dimensional regular local rings, Proc. London Math. Soc., to appear.

[16] D. Quillen, Higher algebraic K-theory I, Algebraic K-Theory I, Lect. Notes in Math., Vol. 341, Springer, 1973. | MR | Zbl

[17] J-P. Serre, Corps locaux, Hermann, Paris, 1962. | MR | Zbl

[18] G. Scheja und U. Storch, Quasi-Frobenius-Algebren und lokal vollständige Durchschnitte, Manuscripta Math., Vol. 19, 1976, pp. 75-104. | MR | Zbl

[19] R.G. Swan, Néron-Popescu desingularization, Preprint.

[20] V. Voevodsky, Homology of schemes II, Preprint.

Cité par Sources :