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INTRINSIC MICROLOCAL ANALYSIS
AND INVERSION FORMULAE

FOR THE HEAT EQUATION
ON COMPACT REAL-ANALYTIC

RIEMANNIAN MANIFOLDS

BY FRANCOIS GOLSE, ERIC LEICHTNAM AND MATTHEW STENZEL

ABSTRACT. - This paper is devoted to a new intrinsic description of microlocal analytic singularities on a
connected compact C^ Riemannian manifold {X^g}. In this approach, the microlocal singularities of a distribution
u on X are described in terms of the growth, as t —^ O^, of the analytic extension of e~t^u to a suitable
complexincation X' of X, identified with a tubular neighborhood of the zero section in T* X. First we show that
the analytic extension of the heat kernel of {X^g] to X' is an F.B.I, transform in the sense of Sjostrand. Then
we establish various inversion formulae for the heat semigroup e~tA analogous to Lebeau's inversion formula
for the Euclidean Fourier-Bros-Iagolnitzer transform.

0. Introduction

The purpose of this article is to use the complexification of a compact, real analytic
Riemannian manifold to give a new, intrinsic description of the analytic wave front set
of a distribution (*), and to prove an inversion formula for the heat equation analogous
to Lebeau's formula in the case of Euclidean space [L]. Our substitute for the Fourier
transform methods traditionally used to analyze microlocal singularities is the Fourier-
Bros-Iagolnitzer (F.B.I.) transform. The kernel of this transform is defined by the analytic
continuation of the heat kernel in the manifold variables. In order to extract useful
information from this transform, and prove the inversion formula, the main difficulty is to
understand precisely the singularity of its kernel as t -^ O"^.

NOTATION 0.0. -If P is a differential operator on a manifold Z and f is a smooth function
defined on Z x ... x Z, we denote by Pkf the action ofP on the k-th variable in f.

In the following (X, g) will be a compact, connected, orientable, real analytic,
n-dimensional manifold and p the leading symbol of the (non-negative) Laplace-Beltrami

(*) We recall that the C00 (resp. real analytic) wave front set of a distribution u is, roughly speaking, the
points at which u fails to be locally equal to a C°° (resp. real analytic) function together with the codirections
contributing to the singularity.
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670 F. GOLSE, E. LEICHTNAM AND M. STENZEL

operator. There is canonically associated to (X,g) an integrable complex structure on
a sufficiently small tubular neighborhood U of the zero section in T*X (see [G-S1],
[L-S]). We complexity X by identifying it with the zero section in such a tube. To pass
from estimates on Riemannian objects in the real domain given in term of exponential
coordinates to estimates in the complex domain, it will be convenient to parameterize this
tube by the analytic continuation of the exponential map:

(x,v) G T'X -^ Exp^V^l^ G U,

where TeX is the set of tangent vectors of length less than e. For e sufficiently small this
is a diffeomorphism, and we will denote its image by Mg.

Let E(t,x,y) denote the heat kernel of (X,g). The F.B.I, transform is the map
u —> e^^u. It is well known that for every distribution u on X, e^^u is a real
analytic function. We will show that there is an e > 0, independent of u, such that e^^u
(resp. E(t, x, y)) can be analytically continued to Mg (resp. (0, oo) x Mg x MJ. We denote
by d2 the square of the Riemannian distance function and its analytic continuation to a
neighborhood of the diagonal Ax in Mg x M^. Our first main result is Theorem 0.1 (see
below). Part (i) gives the asymptotic expansion of E(t,x,y) as t tends to 0"^ modulo
an exponentially decreasing term for x and y complex near the diagonal, and part ii)
characterizes the analytic wave front set of u in terms of the growth of its F.B.I, transform
in the complex domain as t —)- O"^.

THEOREM 0.1. - For any Xo G X there exists €2, p > 0 and an open neighborhood W^
of Xo in Me such that:

(i) For any 0 < t < 1 and any ( x ^ y ) G W^ x W^ we can write:

E(t^ x, y ) = 7V(^ x, y^e-^^l^ + 0 {e-^ )

where the O(') is uniform with respect to ( x , y ) as t —> 0+, and N(t,x,y) is an analytic
symbol of order n/2 with respect to 1/t in the sense of [ S j ] (see definition 4.3). Moreover
if ^o ^ T^X \ {0} has length less than 62 then ^^/I:id2{x,y) is an FBI phase near
(Exp^^/'^l^Q^XQ) and the value at Exp^^^^l^o) of the associated weight is j|^o|2.

(ii) Let u be any distribution on X and let ^o G T^X \ {0} have length less than 62.
If there exists C, S > 0 and an open neighborhood Z ofExp^^^^1!^) in Mg such that

for all 0 < t < 1 and all x G Z,

M e-^^^u^^Ce-6^

then the covector (xo, Co) ^ T^X defined by Co ^i -^ g(^i, -$o) does not belong to the
analytic wave front set of u. Conversely if (a;o,Co) does not belong to the analytic wave
front set of u then for suitable Z, C and 8 the estimate (^) is satisfied.

By the definition of N ( t , x , y ) {see §4), Theorem 0.1 i) means that

(0.1) E^x^y) = (4^)-n/2e-d2^/)/4t ^ u^x.y^ + 0(e-^)
o^^
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INTRINSIC MICROLOCAL ANALYSIS 671

as t —> 04', where the Uk(x^y) are the analytic continuation of the coefficients appearing
in the formal solution of the heat equation on (X, g) (see [B-G-M]) and C is a constant
(defined in Definition 4.2) depending on the growth (see prop 3.1) of the ujc in the
complex domain. The formula (0.1) improves (for a real-analytic manifold) upon the result
of Kannai ([K]) which says that for two real points x, y of X close to each other and
any nonnegative integer I ,

E(t,x,y) = (4^)-"/2e-(^2^/4t ̂  u^y^ + o^-^e-^^'^ ).
0<k<l

Another intrinsic approach to microlocal analysis is through the following Toeplitz
correspondence (see [G], [G-S2]). Let uj be a holomorphic form of type (^,0) which is
smooth up to the boundary of Mg. We can integrate it along the fiber of the usual cotangent
fibration to get a smooth function u on X:

(0.2) q ^ x ^ u ( q ) = ( a;.
JTT \q)

Epstein and Melrose (see [E-M]) have proven that for e small enough the correspondence
uj G 0(Me; A71'0) —> u 6 C°°(X) is an isomorphism. When (X, g) is real analytic this map
extends to an isomorphism between distributions on X and the space of all holomorphic
(n,0) forms on Mg with temperate growth near 9Mg.

It can be shown that the microlocal regularity properties of u near a boundary point a of
<9Mg are equivalent to the local regularity properties of uj near a (see [G, §5]). The inverse
of the integral transform (0.2) is microlocally equivalent to the F.B.I, transform defined
by the square root of the Laplacian (see [G-S2], Theorem 5.3). Our approach seems to be
different because we work with F.B.I, transform associated to a differential operator. We
note that our method can also be applied to characterize C00 wave front sets.

To explain our next set of results we introduce some notation. For any q € X, let Y
denote the fiber 7^~l(q) in Mg (here TT is the usual cotangent fibration). Let ^+, resp. /^+,
be the holomorphic tensor obtained by analytic continuation of g, resp. the Riemannian
volume JLA, and let gY, resp. ^Y be the complex valued tensor field obtained pulling back to
y. For 6 sufficiently small, it is possible to define div^ and grac^ with respect to gY and
/^y, and to form the corresponding "Laplacian," Ay = —dh^grad^. (We emphasize that
generically gY is not real valued.) We again let Uk(x^y) denote the analytic continuation
of the coefficients in the formal solution of the heat equation, and let

H^ x, y) = (47^t)-n/Y2^/4t [u^x^ y) - tu^(x, y) + . . . + (-tfuk(x, y)).
We may now state our first inversion formula for e"^.

THEOREM 0.2. - Let k be a nonnegative integer. There exists e' > 0 such that, for all
0 < 6 < e' and all real analytic functions f on X such that f^ f JJL = 0,
(0.3)

y^oo /.

(V^rfW = dt T/^.^A^^.)^
Jo JY

r+°° r r -,
+ / dt [Tf(t^ .) i^YH^^ - W ̂  <rad^(t,)^J

v 0 </ QY

with Y = Tr"^) C Mg.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



672 F. GOLSE, E. LEICHTNAM AND M. STENZEL

The condition J^- f p. = 0 means that / is orthogonal to the space of harmonic functions
(that is, the constants since X is connected and compact). The integral over 9Y in (0.3)
makes sense if / is "only" C°° (see Lemma 5.7), but we do not know if Theorem 0.2
is true in this case.

We will see that for t > 0, (t^m) —> Hk(t^q^m) is an approximate parametrix for the
operator 9f — Ay on Y (Proposition 3.0), whereas (^m7) —^ H^—t^m^m') is (up to
the constant factor (\^:l)n) an approximate parametrix for the heat equation 9f + A on
X (see [B-G-M], page 208).

In Theorem 3.4 we will prove that, for e sufficiently small, there exists a "pseudo-heat
kernel" in Y for 9f - ̂ Y: a function K(t,p, m) e C°(R^ x Y x V), C1 with respect to
t > 0 and G2 with respect to m G Y such that for all p G V, (9t - ̂ )K(t,p, m) ^ 0,
and for all continuous complex-valued functions u G C^d?, 1] x V),

lim / uit^m^K^t^q^m]?^ (m) = u{0^q)
t^0+ JY

Moreover we will show that K satisfies certain growth estimates as t —->• O4'. These will
allow us to prove our second inversion theorem:

THEOREM 0.3. - For e sufficiently small, -we can find a pseudo-heat kernel K such that:
1] K(t,q,m} ~ (^Tr^-^/V2^)/4* as t -> 0+, uniformly with respect to m € Y.
2] For all ^ > 0 and all f G C°°(X} such that j^ fp, = 0,

f(q) = fdt ( [Tf^^^^^ - K^q^^^^}
J o JQY
+ / Tf^^K^q^)^.

JY

Note. - Unlike in Theorems 0.2 and 0.4 (below), we do not know whether K(t^ g, m)
is bounded for t > 1, hence we cannot let t^ —^ +00 in the formula above. Furthermore,
Lemma 7.2 and Proposition 2.4 show that this formula still holds if / belongs to H^^^X).

The idea of the proof of theorem 0.3. is the following. Since we have:

(A^ -9t)K^q^m)^Q

an integration by parts and a Green's formula on Y show that for 0 < i\ < t'z :

Q= F dt ( K(t,q,m)(^ -}-9t)Tf{t,m)pY(m)
Jt-L JY

= I Tf^m^K^q.m}^^- [ Tf(t^m)K(t^ q,m)^JY(m)
JY JY

+ Fdt I [Tf^ <^^,,) ̂  - K^ q. •^ad-T^,)/^]
J t\ JoY

then we let t^ goes to zero.
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INTRINSIC MICROLOCAL ANALYSIS 673

The definition of the pseudo-heat kernel K (see (3.37) and the proof of Theorem 3.4)
combined with the estimate (3.37) shows that K has the following asymptotic expansion
as t -> 0+:

(0.4) K(t,x^ ~ (-^-"/V^^ ^ (-t)^(^) + 0{e-2^t)
0<k<l/Ct

for some 77 > 0, uniformly for x, y in Y. A comparison between (0.1) and (0.4) suggests,
heuristically, that K can be thought of as the heat kernel of X at points {t,x,y) in
] - oo, 0[ x V x V. Thus we obtain a kernel for the "inverse" of the heat operator, at the
expense of working in the fiber Y in complexified manifold Mg (essentially because for
q e X, ^ G r6^, ^((^Exp^v^U) = -|$|2 < 0). In general, it makes no sense to write
j ^ gtA^-tA^j because it is not possible to define the heat kernel associated to X at a
point ( — t ^ x ^ y ) in R*. x X x X. For instance, in the case of X = S1 endowed with the
usual metric (by embedding S1 C R2), one has:

Trace (e"^) = / E(t, m, m)d^(m) = ̂  e"^2, t > 0
j x nez

but this function cannot be extended for t < 0 because the imaginary axis A/^TR
is a barrier for the analytic continuation (see [D-G] p. 45). The same is true for
X = S l x S l x . . . x S l (we think that it would be nice to have a proof that for
any compact X the singular support of Trace e~^^=:lt^ fills the real line).

Finally we study the case when X is locally symmetric. We show that this is true if
and only if —gY is a field of real, positive definite quadratic forms on all of the fibers Y
(Proposition 1.17). In this case we can simplify our inversion formula.

THEOREM 0.4. - Assume that —gY is a field of real, positive definite quadratic forms
on Y. Then:

1] —Ay is the Laplacian of the Riemannian manifold (V, —gY).
2] There exists a solution K(t, m) € (^(R^ x V) of the "heat" equation (Qf - ̂ )K =

0 which is bounded on [1, +oo[xy and such that:
a] For all m <E V, K(t,m} ~ (-^T^)-71/^2^)/4* as t -^ 0+.
b] For all f G C°°{X) such that ^ fp. = 0,

/*+oo /.

(0.5) f(q) = dt [Tf^ < .̂̂ ,) ̂ y - K(t^ <ad^(t,)^1 •
JO JQY

In §8 we show that if X is a complete (not necessarily compact, but still connected and
orientable) locally symmetric space, then, for e small enough, the Riemannian manifold
(V, —gY) is isometric to a neighborhood of the identity coset in a symmetric space dual to
the universal cover of X, and the restriction of the analytic continuation of —d2 (= —d^)
to y x y is equal to the square of the distance function of (V, —gV). This allows us to
show in Theorem 8.8 that if X is a compact locally symmetric space and K ^ ( t , x ^ y ) is

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



674 F. GOLSE, E. LEICHTNAM AND M. STENZEL

any good heat kernel for (V, -gY) (see Definition 8.7), then, after possibly shrinking V,
K^ has the following asymptotic expansion as t —^ O"^:

(^ir-K^x^y) = (^Tr^-^e-^^ ^ {-t)kuk{x^)^0(e-6/t)
0<k<l/Ct

for some 6 > 0, uniformly with respect to x, y in V. We note that if e is small enough,
then a good heat kernel for (V, —gY) exists. A comparison with the equation (0.1) shows
that, heuristically, up to an exponentially decreasing term, (^/I:l)~nK^(t^x,y) may be
considered as the value at (—^ x^ y) G ] — oo, 0[xV x Y of the heat kernel of X.

In §9 we assume that X is a compact Riemannian globally symmetric space of rank one.
We show that both the heat kernel and the formal solution of the heat equation depend
only on (^d2^,^/)), and we give a simple and constructive proof of Proposition 3.1 in
this situation. Our proof provides an algorithm which allows us to compute inductively
the coefficients of the formal solution from three invariants of the root system associated
with X.

The outline of this article is as follows. In §1 we review some facts about totally
real submanifolds, and show that the complex structure on TeM induced by the analytic
continuation of the exponential map is the same as the adapted complex structure of [L-S]
and [G-S1]. We construct the tensors gY and /^y, the differential operators grac^ and
div^ and discuss the relationship between ̂  and the Laplacian of X (Theorem 1.16).
We show that gV is real valued if and only if the geodesic symmetry about Y is a local
isometry (Proposition 1.17).

In §2 we give some estimates on the growth of eigenfunctions of A in the complex
domain (Proposition 2.1), and prove some preliminary estimates on the growth of the F.B.I.
transform (Proposition 2.3). In §3 we construct the "pseudo-heat kernel" in Y (Theorem
3.4), and prove a crucial estimate on the growth of the coefficients Uk in the formal solution
of the heat equation in the complex domain (Proposition 3.1).

§4 gives the proof of Theorem 0.1, §5 the proof of Theorem 0.2, §6 the proof of Theorem
0.4, and §7 the proof of Theorem 0.3. §8 considers in more detail the case where X is
locally symmetric, and §9 deals with the rank one case.

Table of Contents

1. Geometric Constructions.
2. Growth of the F.B.I. Transform.
3. Construction of a "Pseudo-Heat Kernel" in V.
4. Characterization of the Analytic Wave Front Set.
5. Proof of Theorem 0.2.
6. Proof of Theorem 0.4.
7. Proof of Theorem 0.3.
8. The Case of the Symmetric Spaces.
9. Appendix. The Rank One Case.
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INTRINSIC MICROLOCAL ANALYSIS 675

Finally, we have gathered in the following table some nonstandard notations adapted
to the problem considered in this article: for each symbol we refer to the place in the
article where it first appears.

Table of Notations

^+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proposition and Definition 1.13
^+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proposition and Definition 1.13
A4' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proof of Theorem 1.16
gY . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proposition and Definition 1.13
grad^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 1.15
^y . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proposition and Definition 1.13
dr^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 1.15
Ay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 1.15
As, A|f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Notation 0.0

1. Geometric Constructions

Let M be a connected complex manifold of (real) dimension 2n with complex structure
denoted by J and X be a C^ submanifold of M of dimension n. The complexified
tangent space of X at q G X is denoted by T^X; T^°M (resp. T^M) is the space of
holomorphic (resp. antiholomorphic) tangent vectors of M at m G M. Similarly, T ^ ' - M
(resp. Tr^'^M) is the space of holomorphic (resp. antiholomorphic) tangent covectors
of M at m G M.

We first recall some elementary facts concerning totally real submanifolds of M which
will be used constantly in the sequel.

DEFINITION 1.1. - X is said to be totally real in M if and only if

T^X n T^°M = T^X n T^M = {0} for all q G X.

The following lemma is classical and can be found for example in Guillemin's paper
on Toeplitz operators [G].

LEMMA 1.2. - The'two following conditions are equivalent:
[a\ X is a totally real C^ submanifold of M;
[b] for all q G X there exists an open neighborhood W of q in M and a holomorphic

coordinate system on W, (^ l , . . . ,^n) such that

(1.1) XnW= {mG W s.i. (Szl{m)= ... = Sz"(m) = 0}

and ( x 1 ^ ...^r^) is a local coordinate system on W H X.

Lemma 1.2 means that in a complex manifold, totally real submanifolds play the same
role as R/1 or ^^fR^ in C71. In particular. Lemma 1.2 b) shows that the following
analogue of the analytic continuation principle holds.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



676 F. GOLSE, E. LEICHTNAM AND M. STENZEL

COROLLARY 1.3. - Let X C M be a totally real submanifold of the complex manifold M,
Mf be a complex manifold and f : X -^ M' a C^ mapping. Then, there exists a connected
open neighborhood W of X in M and a unique holomorphic mapping /+ : W —^ M'
such that f^ = f.

Remark 1.4. - That X is totally real is necessary to ensure that the extension /+ is unique.
Any compact C^ manifold can be viewed as a totally real submanifold in some complex

manifold, as shown by the

THEOREM (Bmhat-Whitney [B-W]).
1) Let X be a compact C^ manifold of dimension n. There exists a complex manifold

M of dimension 2n and a C^ embedding j : X — M such that j{X) is a totally real
submanifold of M.

2) Let ji : X —^ Mi and j^ '. X —> M-z two such embeddings. There exists an open
neighborhood W\ ofj^{X) in Mi, a neighborhood W^ ofj'z(X) in Ms and a biholomorphic
one-to-one mapping (f) : W\ —> W^ such that j^ = (j) o j\.

3) There exists an open neighborhood W of X in M and a unique antiholomorphic
involution a- : W -^ W such that X = [m G W s.t. (j{m) = m}.

Let now X be a compact connected C^ manifold of dimension n endowed with a C^
Riemannian metric g . Denoting by B(0,p) the ball centered at 0 with radius p in TqX
equipped with the metric gq, for all q G X there exists po{q) > 0 such that

Exp,: B{^pQ(q))cTqX^X

is a C^ diffeomorphism onto its image. Moreover the function q i-̂  po{q) can be chosen
lower semicontinuous on X. Let (M,j) be a Bruhat-Whitney complexification of X (we
shall identify X and j(X) from now on). It follows from Corollary 1.3 that, for all q G X,
there exists a connected open neighborhood Wq of 0 in T^X and a unique holomorphic
extension of Exp^ (still denoted by Exp ) as a map Wq C T°X —^ M. Hence one can
define the C^ map

(1.2) < t > : ^ M , c^Q^Exp^v^O;

on Q = {(^ ,<0 s.t. ^ G TqX , \^\q < pi(q)} where the function pi can also be chosen
lower semicontinuous on X. (For ^ G TqX, we shall use the notation \^\q = \/^(<^0).

THEOREM 1.5. - There exists 0 < eo < ^fqex Pi{q) such that, for all 0 < e < eo,
1)

^ : r^-^M, ^0-Exp,(^0

with TeX = {(g,0 s.t. ^ G TqX , \^\q < e} is a C^ diffeomorphism onto its image.
2) the map

TT : M, = ̂ X) -^ X, Exp^V^O ̂  q

is a C^ fibration with totally real fibers.

4e SERIE - TOME 29 - 1996 - N° 6



INTRINSIC MICROLOCAL ANALYSIS 677

Proof. - 1) We first compute the differential of <1> on the zero section of TX. Let J°
be the complex structure of T^X, i.e. the multiplication by \/~=\\ for all q G X, the
following identification is understood: T^(TX) ~ TqX C To(TqX) ~ TqX C TqX and

W(,,o) : r^o)(TX) ̂  T,M, (^)(,,o)(C + ̂ ) = ̂  + ̂  •

The submanifold X being totally real in M, TgM = TqX C Jq{TqX) and hence d^
has rank 2n on the zero section of TX. Statement 1) for some small enough eo follows
since X is compact.

Remark 1.6. - The relation (dExp^)o(^ + J°0 = $ + Jg^ V$ G TgX (identified with
To{TqX)) shows that TgTr-1^) = JgTgX.

2) That TT is a C^ fibration follows from 1). Let q G X and V = Tr"1!^). One
has T^Y H r^°M = Jq{TqX) H r^°M = {0} since X is totally real in M. But
yCy F) 7^1,0^ ^ ^^^. d7^p)c n (ker(Jp - V^Jd)^ for all p G V and this intersection is
{0} at q and hence in some neighborhood of q by continuity. Likewise T^Y^T^M = {0}
for p in some neighborhood of q. Using again the compactness of X and reducing eo if
necessary shows that for all q G X, Tr"^) is a totally real submanifold of M. D

At this point, we digress a little in order to discuss the relation between our constructions,
those of Guillemin-Stenzel [GS] and the adapted complex structures of Lempert-Szoke [LS].
Statement 1] of Theorem 1.5 associates to a C^ Riemannian metric on X a canonical
complex structure on T^X which does not depend on the choice of M. We will show
that this complex structure is nothing but the "adapted" complex structure of Lempert and
Szoke [L-S]. As 7 runs over all geodesies in X, the images of the maps

(t^)^(7(^7W)

for s ^ 0 define a smooth foliation of TX\0^, called the Riemannian foliation. The leaves
of the Riemannian foliation carry a natural complex structure: one simply identifies R2

with C in the usual way. A complex structure on T ' ^ X is said to be adapted if the leaves
of the Riemannian foliation, together with their natural complex structure, are (immersed)
complex submanifolds of TeX. One of the main results of [L-S] is that for any compact
Riemannian manifold and any 6, 0 < e < oo, there is at most one adapted complex
structure on TeX (see [L-S], Theorem 4.2).

PROPOSITION 1.7. - The adapted complex structure on T^X is the only complex structure
for which the complexified exponential map defined in Theorem 1.5

r6^^)^^?,^!^^^

is a biholomorphism for all 0 < e <_ 60.

Proof. - Fix (<7,$) G T^X and let L€ denote the intersection of the leaf of the
Riemannian foliation through (g, ^) with T^X. Let 7(1) denote the geodesic with initial
conditions (7(0), 7(0)) = {q^). We must show that the map

t + V^is ̂  Exp^V^T s-/{t) G M
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is holomorphic; then for s sufficiently small this will parametrize an (immersed) complex
submanifold of M. Let /3(r) be the geodesic with initial conditions (/?(0),/3(0)) =
(7(^),57(^)). We have defined Exp ^^^Is^^t} to be the analytic continuation of the
map r -^ f3{r) G X C M at r = A/^T. Since /3(r) = ^(t + rs) for all real r,
by uniqueness of analytic continuation we conclude that /^(v^T) = ^(t + ^/^T^),
L^., Exp ^V^^W = ^/ ( t + V^^T5)- Since the map t + V^^T^ -^ ^{t + V^^T^) is
holomorphic we are done. D

We can identify TX with T*X by the map L^ : TX -^ T*X, where Lg(q^) is the
linear form on T^X, Lg(q, ̂ )(rj) = gq{^, 77). Via Z/^ the adapted complex structure induces
an integrable complex structure on T^X, where T^X is the set of covectors of length less
than e. Lempert and Szoke prove the following facts about the adapted complex structure
on T^X ([L-S], Theorem 5.7 and Corollary 5.5):

1. The involution (g,Q i—^ (^, —0 is antiholomorphic.
2. ^s9{L'gCr) = L*a, where a is the canonical one-form on T*X and a is the principal

symbol of the Laplacian.
It follows immediately from the uniqueness part of the theorem on p. 568 of [G-S1] that

the pushforward of the adapted complex structure by Lg is the complex structure described
in [G-S1] (which we will refer to as the "adapted" complex structure on T^X). It is easy
to see that the embedding of X in T^X as the zero section is totally real.

THEOREM 1.8. - Consider in the definition of $ ( 1 . 2 ) the Bmhat-Whitney embedding
of X as the z.ero section in T^^X = M (with the adapted complex structure). Then
$(^Q = Exp,^!^ = Lg(q^).

Proof. - Proposition 1.7 (with M = T^X) shows that Lg and $ are holomorphic maps
from r6^ to T*6^ (with their respective adapted complex structures). Then L'g1 o ^> is
holomorphic from T^X to itself, and is equal to the identity on Ox- Since Ox is totally real
in the connected complex manifold T*eX, it follows from the uniqueness of the analytic
continuation as in Corollary 1.3 that Lg1 o ^> must be the identity on all of TeX. D

Remark. - This result shows that the fiber one integrates over in the inversion formula
for the heat equation (0.3) is the same as the one in the Toeplitz correspondence (0.2).

In the sequel, we shall construct on each fiber Tr"^) various objects corresponding to
analogous objects defined on X. The first step in this direction is an analytic continuation
principle for C^ covariant tensors on X analogous to Corollary 1.3.

PROPOSITION 1.9. - Let r be a C^ section of (T^X)^171. There exists an open connected
neighborhood W C M ofX and a unique holomorphic section r^ (^(T^W)*^ such that

(1.3) V ^ G X andv^...^^T^M, r^{v^ ...,̂ ) - T,(P î, ..,P )̂,

where P^ is the projection on T^X in the decomposition T^M = T^X 9 T^M. (In
(1.3), Tq has been extended in the natural way to a C—multilinear form on {^X)^171).

Proof. - Let (W^ z\^..., z^) a local holomorphic coordinate system on M at q as in b)
of Lemma 1.2, with x\ = ̂ z[ and y[ = ^sz[ (1 ^ i < n). (W^ H X',x\, ...,^) is a local
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coordinate system on X, in which r can be expressed as

(1.4) ^ r^^...^{x(p))dx{1 0 • • • 0 dx^ , p € X H Wi

Let VF{ be a connected open neighborhood of X Fl Wi where all the C^ functions
^i;ii,...,^(^) have holomorphic continuations denoted by T^ ^(:r) anc! consider the
holomorphic tensor TI denned on W[ by

(L5) ^p^ E Tl^,...^(^/))^l^••^^m- ^^i-
»l , . . . ,»m

The tensor r^ defined in this way verifies property (1.3) on W^ D X. Since X is compact
and since a system of coordinates as in Lemma 1.2 b) can be associated to each point of
X, there exists a finite family of connected open sets of M covering X with connected
pairwise intersections, W^..., W{ constructed as above with local holomorphic coordinates
system zj = {z^ ...,^) defined on W'y for all 1 < j <^ I as in Lemma 1.2 b). For all
1 <. J < I a holomorphic tensor r^ is defined on W in the zj coordinates as in (1.3)-(1.5).
The local components of r in each intersection W[ H W'j D X satisfy C^ compatibility
relations. It is easy to check that, by analytic continuation of these compatibility relations,
one can paste all the local holomorphic tensors T^ for 1 <_ j < ^ I into a holomorphic
covariant tensor r^ on the connected open neighborhood W = W[ U ... U W[ of X in M
and which satisfies (1.3). Uniqueness follows easily by the same arguments. D

Remark 1.10. - Let ^i,...,<^n ^ TqX. The vectors ^ - y^TJ^i,...,^ - V^TJ^
are holomorphic by construction and one has P^^i — V^^T Jq^i) = 2^i,...,
^(^m - V^^g^m) = 2<^n (see Remark 1.6). Therefore

^1 - ̂ /rl^l. -^m - ̂ -J^m) = T,(2^i, ...,2^).

Remark 1.11. - It follows from the definition of r^ that r^ is alternate on W (that
is, a holomorphic m—form on W) whenever r is alternate on X. In the same way, r^~
is symmetric whenever r is.

Assume from now on that (X, g) is orientable, and denote by ^ the Riemannian volume
form defining the orientation of X. For any (real or complex) vector bundle £ we shall
denote by BS(£) the bundle of symmetric bilinear forms on the fibers of £. Proposition
1.9 can be applied to the C^ covariant tensors g and ^ on X: there exists 0 < ei < 60, a
unique holomorphic section g^~ of .BS^r^Mgj and a unique holomorphic section ^+ of
A^T^Mgj defined in terms ofg and ^ respectively by condition (1.3). For any complex
manifold M, we shall denote by BS'^^T^M) the vector bundle of bilinear symmetric
forms on complex tangent vectors to M such that

Vp G M , b G BS2-o{TCM)p , v, w G T^M, v E T^M => b{v, w) = 0 .

We identify the tensors ^+ and ^+ with C^ sections of ^^(T^MeJ and of
A^^T^Mgj respectively, in the following natural way:

VJ)GM^ ̂ ...^er^A^, ^(^i,^) ^^(v^^"), ̂ (^i,...,^) ^/^(v^,...,^)
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where
Vi = V. + v^ , in the decomposition T^M^ = T^~M^ C Tp M^.

Remark 1.12. - Observe that, if jx denotes the embedding of X into M^, the definitions
of g^ and /^+ with the identifications above show that g^ and /^+ are the only C^ sections
of BS^^M^) and of A^f^MeJ respectively to verify j^+ = ^ and j^^ = ̂

The considerations above show the existence of some ei e]0,eo] such that g^
and ^+ are defined as C^ co variant tensors on Me, for all 0 < e <^ 61. We will
denote by Y the fiber Y := Tr"^) C Me for some arbitrary q in X. Equivalently,
V = {Exp (v^O s.t. |^|g < 6 , ^ G T^X}. Although €1 will be reduced again in the
sequel, we shall keep the same notation Y for the fiber TT"^^), 0 < e < 61. Y and 9V
are orientable, and equipped with compatible orientations so as to apply Stokes5 formula.
Denoting by jy the embedding of Y into M^, one has the following

PROPOSITION AND DEFINITION 1.13. - There exists e\ e]0,6o] such that
a\ g+ ^ I^Me^BS^r^MeJ) is a holomorphic section such that for all p G Me,,

g^ is non-degenerate;
b] ^ C HMe^A^T^MeJ) is a holomorphic section such that for all p <E M^,

^ + 0.'P
A/f^^^,^.. f^ ^ 1 1 ^ r- V ^^ \^ — /TT--I/Moreover, for all q G X and Y = Tr"1^) C M^ the following properties hold:
c] gY := j^(g^) e r(V, BS^Y)) is a C^ section such that for all p G V, 3^ < °

(is negative definite);
d\ ^Y := j^(^+) G r(V, An(^*cy)) is a C^ section such that for all p G V, ̂  / 0.
e\ Lei (^i,.. . ,^n) be a system of normal coordinates at q on X, (Ci^-^Cn) lts

holomorphic extension to some connected neighborhood of q in M^ and rji = ̂ d. In
the coordinates (7/1,...^), p^ (^TI^) = 6>(9,^Pg(^/rl^))(\/c:l")ndm A • • • A ^n
where C ̂  ^(9?^Pg(C)) is tne (unique) holomorphic extension of^\-> \det{dExpq)^\ to
some (connected) open neighborhood ofO in T^X. In particular, 0[q, q} = 1.

For the convenience of the reader, let us describe the result of these constructions in the
case where X = R71 equipped with its usual Euclidean metric - all of this actually works
in this case although R71 is not compact. As recalled in the introduction Exp^ = q + ^
for q C W and ^ <E TqT^ ~ R71; Me = R71 + V^B^e) C C" (with the complex
structure induced by that of C", i.e., the multiplication by \/~z\ in the complexified
tangent space at any point of C71). Hence, the complexification of the exponential map
is defined by Exp^ + V^TT?) = q + ^ + \/^r] for all T] <E T^X and, the point q
being fixed, Y = q + V^^O, e) C q + y^TR71. Without loss of generality, we assume
q = 0. The current point of R" is denoted by {x1, ...^a^), that of C71 by (z1,...,;^)
with W = x1 and Qz' = y'-, hence the current point of Y is denoted {y1, ...^n),
with Si<,<^(^)2 < <"2. The Euclidean metric on W is g = Si<z<n dtrl (g) dtri' the

corresponding g^ = Ei<z<n d z ' ^ d z ' and therefore gY = - Ei<z<n dy^dy'. Similarly,
^ == drc1 A... A d^, the corresponding/^+ = dzl^.../\dzn and/^y = (^/~=l)ndyl/\...Adyn.

As the proof of the statements in Proposition-Definition 1.13 is fairly direct, we shall not
give it. The most important point is statement c] of 1.13 which results from the elementary
computation stated in the next remark.
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Remark 1.14. - Using remarks 1.6, 1.10, 1.12 one sees that, for ^i, ^2 ^ TqX,

î - V^J^i^2 - V^W = ̂ (2$i,2^) = -<(2J^i,2J^2).

Assuming 0 < e <_ €2 from now on, one can now define gradients and divergences on
Y with respect to the tensors gY and ^y.

DEFINITION 1.15. - For complex-valued f £ C°°(Y) we denote by grac^ / the unique
complex vector field on Y such that gY(gT^dY f, •) = d^ f (where d^ denotes the exterior
derivative on the manifold Y).

For all complex vector fields V on V, we denote by dh^V the unique scalar (complex-
valued) function on Y such that (di^V)?^ = d^^p^), where iY denotes the interior
product on the manifold Y.

For all complex-valued f G C°°(Y) we define Ay / := -div^grad^).
For instance, in the case of X = R71 with the usual Euclidean metric described before

the proof of Proposition 1.13, Ay = Si<,<y, 92 is the opposite of the usual Laplacian.
The following analogue of the classical Green's formula will be used in the proofs of

the inversion formulas.

GREEN'S FORMULA FOR A^ - For all f and f G C°°(Y) one has

(1.6) I (f^f - f'^f)^ = I [f'^f^ - f ̂ ^r] •
JY JOY L -•

In particular, if f and f have compact support in Y, one has

f{f^Yf-f^Yf)^=0.
Jv

The proof is identical to that of Green's formula for the Laplacian of a compact Riemannian
manifold.

The following theorem explains the relation between the Laplace-Beltrami operator on
X, A, and the operator Ay defined above.

THEOREM 1.16. - There exists 61 G]0, 60] such that, for all 0 < e <_ 61, for all connected
open neighborhoods W ofq in Mg and all f holomorphic on W, the functions A(/|jc) and
A^/iy) have the same holomorphic extension to W.

It is again instructive to look at the case of X = R/1. Indeed, Theorem 1.16 means
exactly that, for all / holomorphic on R^y^^O, e), Ei^n ̂ f = - Ei<z<n ̂ J-
which is obvious since EK^n^16^^ = ^ '

Proof. - X being compact, it is possible to cover X with a finite number of holomorphic
coordinates patches having the property b) of Lemma 1.2. Let (^ l , . . . ,^n) be one such
local holomorphic coordinate system with x1 = SR^ (1 < i < n), and denote by g13 and
a = \/det{gij)-i^ij<n the coefficients of the inverse metric tensor and of the volume
element in the local coordinates (re1, ...^rc"'), that is ̂  = ̂ (c^c^). Then, there exists
0 < 61 < 60 such that, for all the (finite collection of) coordinate patches covering X, all
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1 <: ^ J < : ̂  the real analytic functions ^-, g13 and a = (det^^K^-^)1/2 and a~1 on
X have holomorphic extensions to M^ (denoted by the same letters).

Let / be holomorphic on some open set W C M^. The holomorphic extension of
^{f\x) t° ^ 1̂  m the ^-coordinates:

A+^=- E ^M '̂̂ w)
Ki,j<n

Let (? € X belong to the domain of the coordinates system (^l,...^n) and set
V = Tr"1^}) C Mg^. V being totally real in M (see Remark 1.6), there exists a
local holomorphic coordinates system (w1, ...^w77 ') (on an open neighborhood of g in M)
such that, denoting Kw1 = IA\ 3w1 = v1 (1 < % < n), V is defined locally near q by the
equations v1 = ... = ^n = 0. In the w-coordinates

A+/=- ^ a^P^Q^^g^P^f) =- ^ a-1^^ (Q^ a^^/) ,
l<^ij,k,l<n Ki,r,k,l<n

denoting by P the Jacobian matrix P^ = {Q^w^ (1 < i,k < n\ by Q = (9^iZk) its
inverse, and letting ̂  = Si<z,j<n-PT^^- Observing that (9^ 0^ = (9^fe9^^') is
symmetric in the indices fc, r for all 1 ̂  i < n,

^ P^Q^Q^ ^ ^^^^^(detO)-1^^^^
l<i,fc<n l<i,fe<n

(this last equality is based on the fact that the logarithmic differential of the determinant
at Q is the linear form R ̂  Trace(P-R) with PQ = I). Hence

A^- ^ r^^cw)
Kk,l<n

with

(1.7) 6 = adetQ and &2 = a2 (detQ)2 = (det(^-)i<,j<^).

Since the coordinate system w has the property b) of Lemma 1.2 with respect to the totally
real submanifold V, one sees that

(1.8) (A^)^- ^ r^^cWiy).
Kfc,/<n

The expression for (A"^/)^ above is exactly equal to that of A^/jy) in the local
coordinates on Y defined by (u1,..., ̂ n): to see this, it suffices to compute the expressions
of gY and ^y in the ^-coordinates, using in particular (1.7) above. D

In the case where —gY is a metric on the fiber V, the following result is easily derived
from the proof above. This case is however not generic, as shown by the next proposition.
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First, we recall that the geodesic symmetry about q is the map defined on a normal
coordinate neighborhood of q by

Sq :Exp^(v) ^Exp^(-v).

PROPOSITION 1.17. - The tensor gY is real if and only if the geodesic symmetry on (X, g)
about q is an isometry on a neighborhood of q. In that case "we can shrink Y so that —gY

is positive definite.

Proof. - Let exponential coordinates centered at q be given by

r : p = Exp^ —>• r(p) = v .

In these coordinates the geodesic symmetry is given by Sq(r) = —r, and the metric by

g(r) = gij(r) dr1 dr3 .

The geodesic symmetry is an isometry if and only if the matrix entries gij are even functions
of r: gij(-r) = gij(r). Identify X with its image in the zero section of TX in the usual
way and give TeX the "adapted" complex structure. We will need the following lemma.

LEMMA 1.18. - There is a holomorphic coordinate system z(p^v) on a neighborhood of
q in the complex manifold T^X such that

[1] z(p,0) = r{p\
[2] z(q^v) = ̂ v.

Remark. - Condition 2] holds only on the fiber over q. In general r(p) + ^/^lv does
not provide holomorphic coordinates for the adapted complex structure on TeX (unless
g is flat).

Proof. - The map

v = r(p) —> Exp^v = p G X ^ Ox

is a real analytic diffeomorphism near the origin. Analytically continuing into the complex
manifold T^X we get holomorphic coordinates near q by

v + V ÎH = ^(p?^) -^ Exp^('y + ̂ /~:^u} = (p,w) .

Property 1 is clear. To check property 2 we recall that the adapted complex structure
on T^X is constructed by embedding X as a totally real submanifold of a complex
manifold, analytically continuing the Riemannian exponential map, and identifying (p, w)
with Exp (v^Tw) (see Proposition 1.7). So Exp^V^^) = (q,v), which is property 2.

Analytically continuing g we obtain the holomorphic metric given in these coordinates by

^+ = g i j { z ) d z ' dz3 .

Restricting to Y we get z(q^v) = ^/^Iv and

gY = -gij^^/^iv) dy' dy3 .
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Since the coefficients in the (convergent) Taylor series of gij(z) are real, to say that gY

is real means that the odd order terms in the Taylor series of gij are zero. This is true if
and only if gij{r) is an even function of r. D

In the sequel we shall analyze the situation where —gY is a metric on Y.

PROPOSITION 1.19. - Assume that —gY is (real) positive definite on Y. Then
i] p^ is (\/—1 )71 times a Riemannian volume form associated to the metric —gY; this

Riemannian volume form defines an orientation of Y;
ii] —A^v is the Laplacian associated to the metric —gV.

Proof. - We keep the notation of the proof of Theorem 1.16. In the local coordinates
system (n1,...,^) on Y one has p^ = bdu1 A ... A dii^ with b = adetQ, (see 1.7)
whence 62 = (—l^det^—gki) as already seen. The function b is continuous and does
not vanish on V; since Y is connected, there exists a constant C = ±{\/~:l)n such that
b = C^/det(—gki), which proves i). To prove ii), it suffices to insert the above formula
for b in the expression (1.8) for Ay in the local coordinate system {u1,..., u71) on Y. D

Actually, more is true under this assumption: the exponential map at q on Y for the
metric —gY is given in terms of the complexified exponential map of X restricted to V. To
show this, we need some preliminary material concerning affine connections on Y and M^.

PROPOSITION AND DEFINITION 1.20. - Let p G M^, V and W two holomorphic vector
fields on some open neighborhood ofp in M^. There exists a unique vector in T^^M
denoted by (V^W)p such that, for all holomorphic vector fields U defined on an open
neighborhood of p in M^

^(U^ (V^IV),) = V . ̂  W)(p) + ̂ (V, [^ W}){p)

+W . g^(U^ V)(p) + g^(W^ [U^ V}){p) - U . ̂ (V, W)(p) - g^(U, [W, V}){p) .

(V^W)p depends only on Vp and the germ ofW atp; moreover V~^ is an affine holomorphic
connection.

The existence and uniqueness of the vector (V^VF)p follows from the fact that g^ is
nondegenerate on T^^M (see Proposition 1.13 above). That V+ is an affine holomorphic
connection can be proved as in the usual Riemannian case (see [Hel] p. 48).

The following result explains the relation between the connection V+ and the Levi-
Civita connections of (X,g) and (Y,-gV). We denote P^, p G X (resp. P^, p G Y)
the projection on T^X (resp. T^Y) in the decomposition T^M = T^X C T^M
(resp. T^M = T^Y C T^M). (These definitions make sense since X and Y are totally
real submanifolds of M).

PROPOSITION 1.21. - Let U and V be two holomorphic vector fields defined on an open
neighborhood ^l of q in M^. Then

(i) [PXU,PXV} = PX[U,V] and [P^P^] - PY[U,V} on Q n X andflnY
respectively;

(ii) P^V^V) = Vpx^P^V) and PV(^V) = V^^P^V) on Q n X and ̂  f-1 Y
respectively, where V is the Levi-Civita connection of(X^g) and V^ that of (V, —^y).
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Proof. - The proofs of the statements relative to X and Y are similar.
i) Let p G ^l H V and (^ l , . . . ,^n) be local holomorphic coordinates on an open

neighborhood ofp in M^ verifying property (1.1) relatively to the totally real submanifold
V C M^, x ' = 3^ and ?/ = S .̂ In these coordinates, V is denned by the system of
equations y1 = 0 (1 <, i ^ n\ and

u= ^ (7^, P^^ ^ ^y^,
l<i<n l^i^n

with analogous expressions for V and [U,V]. Statement i) then follows from a direct
computation.

ii) Let U, V and W be holomorphic vector fields in an open neighborhood of p in M^.
Then p \-> P^Up defines a complex tangent vector field on Y and one has:

2^(^(V^),) = 2^(P,y^P,y(V^),) = 2<(P^P,y(V^)

where the first equality holds because g^ vanishes whenever one of its argument is anti-
holomorphic and the second equality holds by definition of gY". In the same way, using
assertion i) shows that

^(yj^w])(p) ̂ ^(P^y^p^^wy ^^(P^y.jpv^pvwv.

Now, using that U and W are holomorphic vector fields shows that g^^U.W) is a
holomorphic function near p and hence, denoting dM the exterior derivative on the
manifold M:

V • g+(U, W)(p) = (P ,̂ dyg+{U, W)}

= {P^Vp,dygY(PYU,PYW)} = PYV•gY{PYU,PYW}{p}.

Using the characterization of the Levi-Civita connection of -gV as in [Hel] p. 48 and
the three equalities above leads to

^(P^CUV^^)) - -2<(^^(VWp)

whence assertion ii) follows since g^ is non-degenerate for p G M^. D

PROPOSITION AND PROPOSITION 1.22. - Let r i-̂  ^(r) be a simple holomorphic curve
in M^ defined for r G C close to 0 and such that ^(0) = p and <9^(r) / 0. Let U
and V be two holomorphic vector fields defined on an open neighborhood ofp such that
U{(f){r}) = V((f)(r)) = 9r4>(r\ The vector (V^V)(^(0)) G T^M does not depend on
the choice of U or V (the proof being the same as in the case of Riemannian geometry);
it is denoted by (V^/^i-^o.

PROPOSITION 1.23. - Let q G X and ^ G TqX such that \^\q = 1. For \t\ < ei, the map
t \-^ Exp (v^T^) is a geodesic curve on Y associated to the metric -gY with velocity
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vector of norm 1. (In this statement, Y is the fiber at q for the fibration TT : M^ —^ X
defined in Theorem 1.5 and —gY is a Riemannian metric on Y.)

Proof. - Let ^(r) = Exp^(r^), with the notation r = t-\- ̂ ^Is. Since (f) is holomorphic
and lies on X for real values of r, one has for all t real near 0, P^9r^(t) = 9t<t>(f}. In the
same way, for all s real close to zero, one has {P^r^^^^is) = Q^^T^ls). We
apply now Proposition 1.21 ii). For r complex close to zero, one has (V^ ^r^Xr) = 0.
Indeed, let / be a holomorphic function defined in some open neighborhood of q\ one
has, for t real near 0:

((V^^^)W^^)/) = {P^t^rW^d^f) = {^o^W^d^f) = 0

whence ((V^<9^)(T), d^.f) = 0 for r complex near 0 by analytic continuation.
Therefore

^HV-IS)W^^ = ̂ (^)(v^^)(v^) = o
for s real sufficiently close to 0. By (real-)analytic continuation, V^ / r^ .Qs^V^s) ==
0 for all real s G] - 6i,6i[, which shows that the map s ^ (^(^/^Is) = Exp (^V^TO
of the real variable s is a geodesic curve on Y for the metric —gY. Then, the map
T = t-^-^/^ls i-̂  (f)(r) being holomorphic near 0, one has rio^(<9s|o) = JqdQ^{Qt\o} = Jq^'
Then, -g^Jq^Jq^) = ̂ ($,0 = 1 according to remark 1.14. The conclusion follows
from the fact that the norm of the velocity along a geodesic curve for a Riemannian
metric remains constant. D

COROLLARY 1.24. - Let di be the geodesic distance on Y associated to the metric —gY.
For 0 < 61 ^ 60 small enough, the squared geodesic distance d(-, -)2 on X associated to the
metric g can be extended as a holomorphic function on some connected open neighborhood
0 of the diagonal in M^ x M^, still denoted by d(-, -)2. For p G Y C M^, one has
di{q,p)2 = -d{q,p)2.

Proof. - The squared geodesic distance d(-, -)2 is a C^ map on some open neighborhood
of the diagonal in X x X. Since X is totally real in M, X x X is totally real in M x M
whence the existence and uniqueness of the holomorphic extension on 0 for small enough
61. Let p C Y C M^\ there exists ^ G TqX with \^\q < 61 such that p = Exp^v^U)
and it follows from Proposition 1.23 that d^{q,p)2 = [^. Then, for all C G TqX, one
has, by definition, (^((^Exp^C)) = |^|^, and hence, by analytic continuation, if \^\q < 61,
one has ^(g^Exp^^TQ) = -|̂ . D

2. Growth of the F.B.I, transform

The Hermitian scalar product of L2^) is defined as usual by (f,g) = fy fgp.. The
Laplacian is an unbounded self-adjoint nonnegative operator on L^^X) with discrete
spectrum. We denote by 0 = Ao < Ai < A2 • • • ^ \k ^ • • • the nondecreasing sequence of
eigenvalues of A counted with their multiplicities. Let {(f)k}k>o be an orthonormal basis
of ^(X) such that Vfe G N* A(^ = A^fc. For all k G N*, <^ is real analytic on X
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and 0o = ^(vo^X))"172 (indeed Stokes's formula shows that any harmonic function is
constant on the connected compact manifold X).

The following proposition controls the growth of these eigenfunctions in the complex
tuboids Mg.

PROPOSITION 2.1. - For 61 > 0 small enough, there exists a locally bounded positive
function ]0, 61] 3 e —^ C(e) such that for all e e]0, 61] and all integers k > 1;

1] The function ̂  has a unique holomorphic extension to Me (again denoted by (f)k)
satisfying:

sup |^(m)| < C^X^e^.
mGMe

2] For all e G]0, 6i], all continuous functions f on Y H OMe (= 9Y):

j^f^^^ ^SJl/|C7(6)A^lee^

Remark. - We do not know whether C(e) is bounded as e -^ O"^.

Proof. - 1] We first recall a result of L. Boutet de Monvel (see [BdM]). Let
TTo : T*X -^ X be the canonical projection and ^ the Hamiltonian flow on T*X of
the principal symbol of V^A. For 6 small consider the flow-out to imaginary time,

^= {^(^^(^)) e M where 0 < t < 6 , C e T;X , |C|. = 1}.

THEOREM fL. Boutet de Monvel [BdM]). - Ife\ > 0 is small enough, then for all e e]0,61]
and all s G R the operator e"6^ defines a continuous linear one-one mapping from
the Sobolev space H8''{X) onto O8^^ (<9nj, ^here O8^^ (<9^e) is the subspace of
H8^^ (90 g) consisting of the functions which are restrictions on 9fl^ (m the distribution
sense) of functions holomorphic in the open set f^g. For each fixed s, the norm of this
operator is a function ofe locally bounded on ]0, 61]. Moreover, each eigenfunction (f)^ has
a holomorphic extension to ^2er

Let such an 61 be fixed and consider an arbitrary e G]0,61]. Let (, G T^X with |C|a- = 1
and ^ the tangent vector which defines C via the scalar product of T^X. It is well known
that for real t close enough to 0,

^PxW) = 7To('0t(^C))-

By analytic continuation with respect to t, the domain ^2g in [BdM] coincides with Mg.
Hence the Sobolev injection theorem (dim9^g = 2n-1) and Boutet de Monvel's theorem
with s = 2n + 2 > jdim 9 Me show that, for all k > 1:

ll6-6^ = ̂ ^L^^0^^ ^^L—^)
n+l

^C^e^^^^^C^e)^1

p=o
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where C{Q^,n} is the norm of the embedding of H2^^-^^,) into L°°(9^). In
the last inequality, we used that 0 < Ai < \k for k ^ 1. It is obvious from its definition
in the above inequality that C'^e) is locally bounded. This establishes the estimate in 1].

To prove 2], observe that the compact manifold QY C 9M^ admits a finite open
cover by real analytic local charts of M^, say |ĵ  Vi. In Vi we choose coordinates
(^l,...^2n) such that V H Vi is defined by the equations ^+1 = • • • = y271 = 0 and
QY H Vi by the equations yn = y^1 = • • • = y^ = 0. Hence, on each Vi and for any
smooth function (p defined on some open neighborhood of 9Y in M^:

n

(2.1) grad^ = ̂ (A, . y)9y, ,
.7=1

where Aj are complex vector fields defined on an open neighborhood of 9Y in M^.
Now let p G 0'Mg, which is a real-analytic hypersurface of M^i; near p, <9Mg is defined

by a real-analytic equation f{m) = 0 with nowhere vanishing differential df. Since / is
real-valued, its antiholomorphic differential 9f also satisfies 9f -^ 0 near j?, and hence
T^M^ = Ker^)0 + T^M^ = T^9M, + T^M^.

Hence there exists a finite covering of 9Y finer than (V^) (but still denoted by (Vi})
such that, on each Vi, and with the notations of equation (2.1):

(2.2) A y - (p = Uj . (p + Vj • (p, 1 ^ j < n

where, for all m G Vi, Uj(m) is a (complex) tangent vector to 9M^ and V^(m) is an
antiholomorphic vector. In particular, for each eigenfunction c^: Vj; • (f)k =. 0. Equations
(2.1), (2.2) and the Sobolev injection theorem (dim9Me = 2n — 1) show that

/ f^-^ < W sup I/I H^ll ̂ ,
Jay ay Jn 2 (a^J

Using Boutet de MonveFs theorem with s = 2n + 2, we obtain:

ll^^^ll^^i^^^^^ii^ii^^cx) <^(^)Ar1

where D(e) and D'\e) are locally bounded. Proposition 2.1 immediately follows. D

PROPOSITION 2.2.
1] L^r u belong to the Sobolev space H^^X) where p is a nonnegative integer. The

sequence ((u^ (f>k)^k)k^o is bounded by the Sobolev norm of u. Moreover, if u G C°°(X),
then for all m > 0, the sequence ((^, (/)k)km)k>o is bounded.

2] Let u belong to L2^). u is real-analytic on X if and only if there exists rj > 0 such
that the sequence ((^, <^)exp (?7\/A^))fc^o is bounded.

3] u is a hyperfunction [resp. a distribution] on X if and only if u = ]>^>n 0'k^k ^here
for all rf > 0;

ak = 0(e77^) [resp. 3m > 0, ^ = 0^)] as fc -^ +00
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proof, - WeyFs asymptotic estimate shows that \k ~ C{X)k2/n as k -^ +00. For each
nonnegative integer p, one can write:

^pu=^(u^k)\p^k.
k>0

Computing the -Z^-norm of ^u yields immediately the estimate in 1].
2]. Let us assume that u is real-analytic on X. Since X is totally real in Mg,, there

exists T] > 0 small enough such that IA has a holomorphic extension to M^ = f^- Then
'u restricted to QM^ is smooth; Boutet de Monvel's result (applied with s -^ +00) recalled
in the proof of Proposition 2.1 shows the existence of v G C°°(X) such that:

u = e-^ v = ̂ (^ <^)e-7^ ̂  ;

then, statement 1] shows that (u.^^e11^ = {v^k} remains bounded as k -^ +00. The
converse is an easy consequence of Proposition 2.1.1]

3] We will deal only with the case of hyperfunctions. First of all, since QX = 0,
observe that a hyperfunction on X is nothing but an analytic functional on X. Let u be a
hyperfunction on X, then Proposition 2.1.1] shows that for any e > 0:

Vfc G TV, \(u^k)\ ̂  C,{e) sup |( |̂ ^ C72(e)A^+2exp(ev /Afc).
M,

Therefore, for any r] > 0, a^ = {u,(j)k) is a 0(6^^) as k -^ +00.
Conversely, if the sequence (OA.) is (^(e^^) for any rj > 0, it is clear (by 2]) that

u == S^o^^A; defines an analytic functional on X. D
The heat kernel E(t,x,y) of X can be written in the so-called Sturm form:

E{t, x , y ) = ̂  exp (-^) (^(a;)^) for ^ > 0.
k>0

DEFINITION 2,3. - For all functions f G C^X) (or with Sobolev regularity), the
Fourier-Bros-Iagolnitzer transform off is the function Tf{t, m) defined on R^ x X by:

Tf(t,m) = ( fWE^m.m^^m}.
Jx

Tf is smooth on R*'1" x X. The following proposition allows us to control the growth
of Tf(t^m} in the complex domain, as t —^ O^

PROPOSITION 2.4. - Let f € C°°{X). For each t > 0, m —^ Tf(t^ m) has a holomorphic
extension to the tuboid M^ and for all p G N* there exists a positive locally bounded
function ]0, ei] 3 e —» C{p, e) such that, for all e G]0,6i];

1] For all t > 0 and all m e <9M, i'e. m = Exp^V^^) with q G X and \^\q = e,

Tf^m) \< C(p^)tPee2/4t.
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2] For any family {ht}t>o of continuous functions on 9Y(= Y F| 9M^) and all t > 0,

/ ^rad^T/d.)^ < SUP |/lt C(^ 6^ C62^.
JOY 9Y

3] Let t > 0 a^J ube a distribution on X. Then, (x^ y) —^ E(t^ x^ y) [resp. x -^ Tu(t^ x)]
admits a holomorphic extension to M^ x M^ [resp. M^]. Moreover for all e G]0, ei], for
all x, y G Mg and all t G]0,1], E { t ^ x ^ y ) satisfies the bound

\E(t^ x, ^\^C{e)e^l\
Remark. - We can assume that C(p^ e) depends only on the Sobolev norm of / in

^2(2n+p+l)(J^ ^ ^ ̂  ^

Proof- We shall only prove 1]; the proof of 2] is very similar and is left to the reader.
We begin with the following

LEMMA 2.5. - For all e > 0 and p G N;
sup [Fk(v) = e-^-^^v-^} =D(e,p) <+00

k>l ,v>0

with 6 -^ D{e,p) locally bounded on jR4'*.

Proof of Lemma 2.5. - For any integer k > 1 we have \k > AI. Thus:
W G]0, (6^/4)1/2], Fk{v) < SUp ^-2p^-.2A,/16.2^

0<v<(e^A7/4)l/2

If v > (eA/A^)172 then Ffc(^) is less than (cv/A^)"^ which completes the proof of
Lemma 2.5. D

Assume that / G J[:f2(2n+P+l)(X) and denote by (7i its Sobolev norm. Proposition 2.1
shows that:

\{f^i)\ <C, VA; > 1, |a^)| < ̂ A^2^^^.

Moreover
Tf^m)=^e-txk(f^^k(m).

k>0

According to WeyFs asymptotic estimate (i.e. \k ~ C(X)k2^) and Proposition 2.1, for
all t > 0, m i—^ T/(t,m) has a holomorphic extension to M^ and for all e G]0,ei], all
m G 9Me and all t > 0

|T/(t, m)| ^ Ci (1 + C(6) ̂  e-*^ A^1"71-1-"-^ e6^
fe^i

Next we apply Lemma 2.5 with ^/t\k in place of v, which shows that
\Tf(t, m) | < C, (1 + e62/^ ip C(e) D^ p) ̂  A,71) .

k>l

Weyl's formula shows that the series ^A^ converges.
We complete the proof of Proposition 2.4 with a short proof of 3]. One can choose the

eigenfunctions <^ so that they are real-valued on X:
E(t,x,y)= ^exp(-tAfc)^(^)^(^)

k>0

Point 3] follows directly from WeyFs formula, and from Propositions 2.1.1] and 2.2. D
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3. Construction of a "Pseudo-Heat Kerne?9 in Y

In this section, we fix a point q G X and denote by Y the fiber 7^~l(q) C M^, with the
definitions and notations of Section 1; ei will be decreased several times in the sequel. We
shall apply Minakshisundaram's method to construct a function K : R^ x Y x Y —^ C
such that for all p E V,

(9t - /^)K(t,p, m) = 0 and K(t, q, •)^ -^ ̂  weakly.

Such a function will be referred to as a "pseudo-heat kernel", for in general —Ay is not
the Laplacian associated to a Riemannian metric on V, except in the case where —gY is
a Riemannian metric on Y (see Propositions 1.17 and 1.19). However, we insist on the
fact that Qt — A^f is a kind of heat operator, and not a backwards heat operator (the main
difference between Qt — A|f and a standard heat operator being the fact that —gY is not
in general a metric on V). We use the notation

0(m,Exp^))=|det((dExpJ^)|
(3.1) ( x l / 2

= [det(g^^({dExp^)^,(dExp^)^))^<ij<nj

for all m G X, ^ G B(0,inj^(X)) C T^X. Clearly, 0 is a C^, positive valued function
defined on some open neighborhood of the diagonal in X x X.

As in [B-G-M], pp. 204 and ff., consider the following sequence of C^ functions,
defined by induction on U = {(m,m') G X x X s.t. d(m^m'} < inj(X)} which is an
open neighborhood of the diagonal in X x X :

(3.2) uo(m, m') = ̂ -^(m, m')

and, for all k > 1:
(3.3)

u^m.m'} = -r^r^m') / ^(^Exp^O^^i^Exp^O)^--1 ds ,
Jo

with ^ defined by Exp^(^) = m'.
The behavior of pseudo-heat kernels K as t —^ (^ is fundamental to prove

inversion formulae as stated in Theorems 0.2-0.3, and more generally to define
microlocal singularities intrinsically. In particular, the dominant exponential factor in
K as t —> O'^compensates exactly the exponential factors in Proposition 2.4. These facts
are the subject matter of the present section, which is organized as follows:
- in Propositions 3.0 to 3.3, we construct the Minakshisundaram parametrix for the

pseudo-heat operator {Qt — A^f), which is given by the expansion (3.4) in powers of the
time variable t; we emphasize the growth estimate (3.8) bearing on the coefficients of
the expansion (3.4) which is essential in obtaining the behavior of the pseudo-heat kernel
constructed as t —^ 0^.

- Theorem 3.4 states the main result of this section; its proof is given immediately after
Proposition 3.10. The remaining Propositions and Lemmas in the section are intermediate
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steps used in the proof of Theorem 3.4 but of independent interest. We start with an
expansion (3.14) analogous to (3.4) but with a floating truncation depending on the time
variable "a la Sjostrand" [Sj §1]. Lemma 3.6 shows that this expansion with the floating
truncation almost satisfies the pseudo-heat equation. Proposition 3.7 studies the structure
of the phase of the Gaussian factor in the parametrix (3.4) below. Lemma 3.8 studies
the effect of removing the "floating truncation" in (3.14), while Proposition 3.9 studies
the behavior of the approximate solution in (3.14) as t —^ 0^. Proposition 3.10 studies
a particular quantity Q entering into the Duhamel formula when one passes from the
approximate solution (3.14) to the pseudo-heat kernel K\ it says essentially that, from the
point of view of singularities as t —> O"^, the kernel K behaves like the expansion (3.4).
(In the following we denote the interval [0,oo) by R+ and (0,oo) by R/j_.)

PROPOSITION 3.0. - For all k > 0, Uk defines a holomorphic germ at (q^q) G X x X in
M^ x M^ (still denoted Uk in the sequel}. Consider, for all k > 0

k

(3.4) Hk^m^m') = (47^^-n/2ed2^m)/4t^(-^^^(m,m/);
1=0

Hk is C^ on R"j_ x U and defines, for all t > 0, a germ of holomorphic function at
{t, q, q) G R^ x X x X in C x M^ x M^ (still denoted by Hk). In particular, the
restriction Hk(t^^-)\^ y induces, for all t > 0, a real-analytic germ at (q^q) in
Y x Y which satisfies:
(3.5)

(Ar-^t?|^xyxy^^m/)=(4^)-n/v2(m5w)/4t(-t)fcA^^^

N.B. - Proposition 3.1 will show that we can shrink the connected manifold Y so that
all the Uk are defined and C^ on Y x Y. Therefore, (3.5) will be valid on R^ x Y x Y.

Proof. - In [B-G-M], pp. 204 and ff., it is proved that

r k ~\
(3.6) (Af + Qf) (47^)-n/2e-d2^m^4t ̂  ̂ (m, m')

L 1=0 J

= (47^t)-n/2e-^m'm)/4t^Af^(m, m7),

for t > 0 and (m,m') G U. By analytic continuation with respect to t in C \ V^TR-
for (m,m') fixed, one can change t into —t in (3.6) to get

r k i
(3.7) (A^ -Ot) (47^^-rl/2ed2^m/^4t^(-t)^^(m,m/)

L ^=o J

= (47^)-n/2ed2(m5m)/4t (-^A^m,^),

for t > 0 and (m, m1) G U. Relation (3,5) follows from (3.7) and Theorem 1.16 by analytic
continuation with respect to the variable m7, (^ m) being fixed. D
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The key to controlling the growth of the pseudo-heat kernel as t -^ O4" is the following
estimate.

PROPOSITION 3.1. - Let {uk}^o be the sequence of functions defined recursively by (3.2)-
(3.3). There exists an open neighborhood Vofq in M^ and a positive constant L > 0 such
that for all k, Uk is holomorphic on V x V and

(3.8) sup \Uk\ < L^fc!.
VxV

The proof of (3.8) relies on some majorizing series techniques recalled below.

DEFINITION 3.2. - Let u(x) •= EaeN- u^ and v^ = SaeN- ̂ xa be ^formal
series with u^ complex and v^ non-negative real numbers. We shall denote by u(x) « v(x)
the following relation: for all k G N71, \u^\ < Va'

The proof uses the following formal series: for k G N and R > 0,

^-(r^^'^^^---^"-
We shall use the following properties of these series:

PROPOSITION 3.3. - For all k € N and R > 0,
1) ^(x) « R^(x) and 9^W = <^+i(^
2) Let x \-^ b(x) be a holomorphic function on P(0, R) (the open polydisk centered at 0

with radius R > 0) such that supp(o^) \b\ = M. Then b(x) « M^^x).
3) Let RQ > 2R and a a holomorphic function on P(0, Ro) such that supp(o^) H = M.

Let C > 0, k € N and u(x) be a formal series such that u(x) « C(f)^(x). Then
a(x)u{x) « 2MC^(x).

Proposition 3.3 is essentially the same as Proposition 5.3 in [Le], to which we refer
for a complete proof.

Proof of Proposition 3.1. - Since the metric g is C^ on X, the function 6 defined in (3.1)
is positive and C^ on U. In particular, there exists a relatively compact open neighborhood
W of q in M^ and a constant A > 0 such that for all m, m' € W, A-1 <, \0(m, m')\ < A
and 6 is holomorphic on W x W. Pick Ro e]0,1[ small enough, let 0 < 2R <, Ro and
Wo C W be a relatively compact open neighborhood of q in M^ so that, for all m G Wo,
Exp^(P(0,I?o)) C W and Wo C ExpJP(0,.R/2n)).

Proposition 3.3 2) shows that for all m G Wo the formal series Ho(m,Exp^(^)) (in
the unknown 0 satisfies:

^o(m,Exp^(0) = ̂ /^Exp^)) « A1/2^) .

Observe that ^^(m^Exp^O^A^-i^m^Exp^O) is given by an expression of the
form:
(3.9)
^(m^xpJOKAf^-iXm^xp^O) = ̂  a,(m,ExpJO)^(^_i(m,Exp^(0))

|a|<2
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where we can assume that the coefficients a^ are holomorphic on W x W, do not depend
on n,_i, and satisfy ^(m^m')! < C' for all m, m' G W, all a such that |a| ^ 2 and
some constant C ' > 1.

We now proceed by induction: assume that the induction hypothesis holds at order
% — 1, i.e.

(3.10) ^_i(m,Exp^(Q) « A1/2^-1^^),

where C = 4.Al/'iC"|R, C" being defined by C" = 2(n2 +n+ 1)C'.
There are at most n2 + n + 1 terms in the sum (3.9). Then, the induction hypothesis,

Proposition 3.3 1) and 3) (using in particular that 0 < R < 1) show that

^(^ExpJOKA^iKm.Exp^)) « A1/2^-1^^).

Hence
/•i

(3.11) / ^(r^Exp^^Aa^-i^Exp^O)^-1^
Jo

« A1/2^-1^ ! ^(s^s^ds.
Jo

We compute

(3.12) / ^{s^s^ds

^-^E^^'nri ^-1+^& p' \R) jo
= R-(W) Y (i+p)\(z+i+p) ( j Y ^

h p! (?+p) [R) R^^'

Therefore, (3.11) and (3.12) show that
f1 o \\11r~<i-\(~in

(3.13) / 01/2(m,Exp^(^))A2^-l(m,Exp^K))5^-l^«———————^(0.
Jo H

We now apply Proposition 3.3 3) with a(^) = -^"^(m^Exp^^)) which is holomorphic
on P(0,J?o) and satisfies |(9-l/2(m,Exp^(0)| < A^2 for all ^ e P(0,J;o). Therefore,
according to (3.13),

^(m,Exp^(Q)

--^-^(m^Exp^^)) /l ^^(m^Exp^^OA^^i^^Exp^^))^-1^
Jo

(m,Exp^(0) / 0i/z(m,Exp^(^))A2^_l(m,
Jo

f) Al/2/^i-l/^ff« ̂ 1/2^ G G ̂  ̂  A^C1^),
p Tt VS^ — ^ J - ^ ^i \^}i

and hence (3.10) holds at order %. This shows that (3.10) holds for all i > 1.

4e SERIE - TOME 29 - 1996 - N° 6



INTRINSIC MICROLOCAL ANALYSIS 695

By assumption, for all m C Wo we have: Wo C Exp^(P(0, R/2n)). Thus (3.10) shows
that, for all m, m' G Wo and z ^ 1,

D-(t-l)/. _ 1 \ t

|^(m,mQ| ̂  A1/2^^-^^

(o/^\ z — ^ / 9/^\ ^^
=2A1 /2 2 G ) (z- l ) !<sup(2A l /^-G ) (z -1 ) !

^ / \ ri }

which proves (3.8) with L = sup (2A1/2, ̂ ).
The main result of this section is the following theorem, which states the existence of

a pseudo-heat kernel K{t,p,m) for A5f - Of on Y satisfying certain estimates. These
estimates will be fundamental later, especially in the proof of the inversion formula in
Theorem 0.3.

THEOREM 3.4. - 7/ci is small enough then, for all 0 ^ e < 61, there exists a complex-
valued function K = K{t,p,m) C C7°(R4 x Y x Y) which is C1 with respect to t > 0
and C2 with respect to m C Y such that:

\ ) F o r a n y p ^ Y , (^ - ^}K{t,p,m} EE 0; _
2) For all continuous complex-valued function u ̂  u(t,m) G C7°([0,1] x V)

lim / u(t, m)K{t, q, m^^^m} = u(0,q) ;
t^0+ JY

3) There exists R > 0 ^c/i that for any t G]0,1] and m G Y

\K{t,q,m)\ < R^tY^e^^'^^

4) For all smooth vector fields U on Y, all compact subsets /Co ofY and all 0 < e' < e,
there exists a positive constant D(lCo, e/\ U) such that for all t G]0,1] and m G /Co such
that (P{q,m) = -e'2,

|?7 • K(t, q, m}\ <, D{)C^ e , [/)rl-n/2e-e/2/4t.

The proof of this theorem is somewhat involved and requires some technical preliminary
results. Before going into this, we observe that in the case where -gY is a Riemannian
metric on V, we can think of Y with the metric -gY as isometrically embedded in some
compact Riemannian manifold so that (V^)" K can be constructed as the restriction to
Y of the heat kernel on that manifold, with one point equal to q (see comments following
definition 8.7). In this very particular case, the estimate 3) above has been obtained by
Molchanov [Mo] and Kannai [K] for C°° Riemannian manifolds. However, both proofs
involve the geometrical objects attached to the Laplacian of a metric (and in particular
geodesic curves) and does not seem to extend to the general case considered here, where
-Ay is a differential operator with complex coefficients. Our proof for this theorem is
based on Proposition 3.1 instead (and hence requires analyticity of the metric).

CONVENTION 3.5. - In what follows, we shall assume that ei is small enough that
there is a holomorphic chart (Q; z = x + \^y) for M^ at q such that Y is defined by
y^z = x = 0 and (0 H V; y) is a C^ chart for Y at q.
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Pick C > 1 such that 0 < ̂  < j, where L is the constant in Proposition 3.1. Then we
choose a real-valued function ^ G G°°(R) such that ^(f) == 0 on ] - oo,0], ^{t} e]0,1]
on ]0, j], and \{t) = 1 on [j,oo[. Finally, for {x,y) G V x V (with the same V as in
Proposition 3.1), we set

(3.14) A(t, x, y) = M(t, x, y^2^^

where M(^ x, y) = (-^t)-^2 ̂ -tfu^x^ y)x f1 - kc}
k>o \t /

This type of "floating" truncation was introduced by Sjostrand [Sj §1]. The role of such a
truncation is to stop the summation at k ^ ^, for in general the series Z^>o^fc(^?/)
diverges-see estimate (3.8). That such a truncation is useful can be seen as follows.
Denoting by F(x) = f^<xettx~ldt the usual Eulerian function, we recall the Stirling
formula: F(l + x) ~ V^TVX [xjeY as x —> +00. For t -^ O"^ the last term in the
summation (3.14) can be estimated by

^+l/c^l/ct^(l + ̂ ) ~ rt (H)1/2 (^)l/ct = o(e-^) as ̂  o+

for some rj > 0.
The next lemma shows that A(t, x, y) is nearly a solution of (9i - Af)/(^ re, 2/) = 0.

LEMMA 3.6.
1) Let kf = [^(^ - j)] /or all t > 0 (W^n? [•] denotes the integer part). Then for all

( x , y ) G V x V <^zJ ^ > 0:

(3.15) (A^ - 9,)A(^ ̂ , y) = (^Trt)-7^-^ e^^'^/^A^^ (^, y) + P(t, .r, ?/)

where P(t,x,y) = 0 if 1 + kt ^ ^, and if k = 1 + kf < ̂ ,

P(^rr^) = (^^-^(A^ -^[(-l)^--/^^^)/4^^,^^1^
L v " / J

2) For 61 5'ma// enough, there exists T] > 0 anJ a positive constant D such that for all
6 G]0,6i], ^ZZ multi-indices (a,/3) G N" x N71 of length < 4, a// integers a G {0,1} anJ
<3// (t,x,y) G R^ x y x V satisfying \(P{x,y)\ < r] the following estimate holds:

(3.16) ^^(A^ -a,)A(^^)| < ^e-2^.

A^.B. - Estimate (3.16) holds only for {x,y) G Y x Y such that ^(x.y)} < r] and
not in general.

Proof of 1). - Observe that

kt

M(t^ x^ y) = (^Trf)-71/2^-^^ y)+(-^t)-n/2(-t)wtu^ {x^ y)^-C(l+ki)).
1=0

Indeed, according to the definition of ^: ^(^ - Ck) = 1 if and only if ^ - Ck > j
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so that if k < kf then ̂  - Ck) = 1 and if k > 2 + k^ then C A ; > ^ - i + C 7 > ^
and ̂  - Cfc) = 0. Moreover, if 1 + kf > ^, then ^(^ - C7(l + fc^)) = 0 so that
M(t,x,y) = {-^tV^Y^^-^u^x.y} and the first formula in 1) results directly
from (3.5). If k = 1 + kf < — the extra term in the formula above is not zero and the
second formula in 1) follows again from (3.5) with the extra term P(t,x,y).

Proof of 2). - In view of 1), 9?(9^(9^(A^ - 9t)A(t,x,y) will be a linear combination
of terms of the form

^^^/^t^-^a^B^U^X.y)

with coefficients bounded on Y and -8 < A < 0, k = kf or kt + 1 and [ail + |a2| < 6.
Moreover, all fc's appearing in the expression of ^^^(A^ - Qt)A(t,x,y} should also
satisfy k < -^ because of the truncation x(i - kc) in (3.14). Choosing 61 > 0_small
enough, one can apply Cauchy's estimate and (3.8) to bound Q^Q^Uk uniformly on YxY:

(3.17) ^Q^u^x^^C^L^k^ V^ i^GN'xN^ V(a^) G F x F

(where £01,02 denotes some positive constant).
Let Co =sup{Ca,,a2 s.t. |ai| + |a2| < 4}. Since C > 1, kt >. ̂  - 2; hence all fc's

appearing in the expression of <9?(9^(A^ - 9t)A(t,x,y) satisfy k G [^ - 2, ̂ ]. Then
(3.17) shows that, for all 0 < t < 1,

V - 8 < A ^ O , V(ai,a2) GN71 xN71 s.t. ai + |a2| ^ 4 , V(a;^) 0 ^ x 7

one has

e^^^t^-^O^a^u^x^y) ^ e^^l^ ^-t+^-^o^^^Ul + ^) .

Applying Stirling's asymptotic equivalent recalled above as t —> O"^ leads to

(3.18)
^(.^/^A+fc-j^,^^^^) < ̂  e^'^ t^-^C-^tCoL^J^e-^t

L \^
^C2LtA-2-21Med2^)/4t|f-L)l\eC7eG^

where C7i and C^ are positive constants. Now, C > 1 has been chosen so that ^ < \\
hence there exists a positive constant C^ such that

V - 8 < A < 0 , V(ai,a2) GN71 xN'1 s.t. lo-il+l^ <4 ,

V(rr^) G V x y s . t . Id2^^)! < r j ,

e^^^/^t^-^Q^Q^u^x.y} < C^-^ e^^l^ e-^
JL — ^g 2 _ 1.2.

< Cse^e""^" ^ Cse t
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698 F. GOLSE, E. LEICHTNAM AND M. STENZEL

whenever 77 is sufficiently small, e.g. 100?7 ^ 1^2. Statement 2) follows easily from this
last estimate. D

The following proposition discusses the structure of d2^, y) on Y x Y\ it will be used
in particular to compute the limit of the pseudo-heat kernel as t —^ O"^.

PROPOSITION 3.7. - For 61 > 0 small enough, there exists a C°° function h: Y x Y -^ W
such that

1) \/y G y, h ( ' ^ y ) is a diffeomorphism ofY onto its image. Moreover:

V$ G T,X^ such that |^| < d, h{Exp^^^, q) = ^;

2) For ̂  ̂  G r, h{y,y) = 0(= /i(^));
3) ^x^y G y, denoting h = (/^i,..., fa^), on^ /z<zs'

n

m\x, y) = -\\h(x, y)||2 = - ̂  ̂ (;r, y)2 ;
Z==l

4) There exists C°° functions cij ^ c^(ft, ?/) defined for all 1 < i^j <^ n on some open
neighborhood of h(Y x V) x Y such that c^(0, q) = 0 for all 1 ̂  i,j < n and

n

^(x.y) = ̂  Cij{h{x,y),y)hi(x,y)hj(x,y) .
^=i

Proof. - First observe that Kd2 G (7°°(y x V). For all m G X and m' ^ X close
enough to m, one has (P(m',m) = ̂ (Exp^m'^Exp^m')); therefore, by analytic
continuation one has, for m, m' G V both close enough to q,

(3.19) d^m^m) = ̂ (Exp^m^Exp^m')); hence d{d2(m, •))„ = 0 .

Moreover, when m = q and 61 is small enough we can find for each m' in Y a unique
^ G TqX near 0 such that m' = Exp^v/^T^) and

(3.20) ^(Exp^V^U)^) - ̂ (Exp^v^U)^) = -^0 .

Hence, for ^ ^/ G T^X close enough to 0, O^d^Exp^^i^.Exp^^/^l^ is
negative definite. Applying the Morse lemma (with parameters) as stated in [C-P, p. 155]
and reducing further, if necessary, the size of Y by choosing 61 > 0 small enough leads
to a map ( x ^ y ) —^ h(x^y) satisfying 1), 2) and 3).

As for point 4), for all y G V, h(Y^y) is an open neighborhood of 0 in R/1 and
there exists by 1) and 2) a function ^ ( ' , y ) G C°°(h(Y,y)) such that for all x e V,
^(h(x,y),y) = Sd2^). One has, by (3.19) and (3.20)

(3.21) ^(0, y ) = 0, see points 1) and 2), d(^(., y))o = 0 , see (3.19), ^(-, 9) = 0 ,

this last equality following from (3.20). Hence, Taylor's formula shows that, for all y C Y
fixed,

n .1

^{z,y) = j ̂  ̂  / (l-t}Q^Q,^(tz,y}dt.
ij=l Jo
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Point 4) follows upon defining

C z j ( z ^ y ) = ^ I {l-t)9^9,^(tz^y)dt, Kzj<n;
Jo

and observing that 9^9^^{0,q) = 0 since ^ ( ' , q ) = 0 (see the last equality in (3.21)).
This shows that c^-(0,g) = 0 for all 1 ̂  ij < n. D

We shall also need the following estimate, which analyzes the singularity of 9yA(t, x, y)
as t -^ O-^.

LEMMA 3.8. - For 61 > 0 small enough, for all t e]0,1], (x,y) G Y x Y and all
multi-indices a, f3 C N71:

r n

(3.22) \9^9^M^x,y) - {-^t)-n/2^9^9^Uk{x^)(-t)k < D^t
L k=o

(with M defined in (3.14)) where D^^ is a positive constant.

Proof. - Pick F = !/((! +n)C) - we recall that C > 1 has been chosen so that ̂  < |;
hence, for all 0 < t < r we have: n + 1 < 1 + [^]. For 0 < t < F, one has
(3.23)

^[^
^;^M(t,r^^)-(-47^t)-n/2^^(^^)(-t)fc <t ̂  ̂ -l-n/2|^^^^)|.

fc=0 fc=n+l

By taking €1 > 0 small enough as in the proof of Lemma 3.6, one can assume that (3.17)
holds. Hence, for n + 1 <: k < 1 + [^], one has kt < c^i) and

t^-^^u^x^ < C^t^-^L^kL

Using Stirling's asymptotic equivalent fc! ~ \/27rfc (fc/e)^ as k -^ +00 and the definition
of C recalled above leads to

t^-^\9^u^y)\ < C^k^^-1--/2^
\ ° /

.„, ,^fn+2Y:i^(^±l.\\r" f3}"
^°^2 [C(n^)) 1,2(^T)) ^ca^)

for some constants C^ and C^^. Combining this estimate with (3.23) shows that the
series in the right side of (3.23) converges, which proves (3.22). D

PROPOSITION 3.9. - For ci > 0 small enough and for any locally compact (topological)
space A

1) There exists a positive constant D\ such that for all t G R^_ and all x G Y,

[ ^-n/2 ^(^)/V^) <D,.

JY
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2) For every multi-index (a,/?) G N7^ x N71 there exists a complex-valued function
Ca,/3 ^ C°(Y) (independent of the topological space A) such that for any (A,j/) in A x V;

(3.24) Jim / ^(A^^e^^^/^^M^^,^)^^) = c^(j/)Q(Ay)
J Y

for all complex-valued Q G C^(A x V) fw^/i M defined in (3.14), here C^ denotes
the space of continuous functions -with bounded modulus), the convergence being locally
uniform in (A,;/) G A x V. Moreover, c = co,o ^ C^F) D C^V) an^ 1/c ^ bounded
on y. Finally co^(q) = 1.

3) For all p ^ Y and all complex-valued functions f G C^([0,1] x V)

(3.25) lim / f^m)A(t,p,m)pY(m) = c{p)f(^p).
t^0+ JY

Proof. - We begin with 1). Using Proposition 3.7, one has

f ^-n/2 e^^)/4^^) = / ^-"/^^^'^^[^(^l

7y JY

= f t-^e-"^^"2/4^^^)!.
7y

Again by Proposition 3.7, for all x G V, ^/1—^ h(^/, re) induces a diffeomorphism of V onto
its image denoted by h{Y,x)\ changing variables in the last integral above leads to

/ r-/2 e^^/V^) = f t-^e-ll-"2^!^.^)*^^)!
^y Jh{Y,x)

= t i-^e-^l^z^dz
Jh{Y,x)

where the function (f)[^x) : h(Y^x) —^ C is defined by fa(-,:r)* ̂ y = ^(-, x) dz1 /\.../\dzn\
\/x G y. Moreover, using Propositions 1.13 e] and 3.7 1] one sees easily that
0(0^) = (v^)".

One can see that (j) is a (7°° nowhere vanishing function on V x V, after reducing the
size of y if necessary (see Proposition 3.7). In particular, (f) is uniformly bounded on
Y x Y . Hence, the inequality claimed in 1) holds with D^ = (47^)n/2||^||oo.

Proof of 2). - Lemma 3.8 and the dominated convergence theorem show that one
can replace M(t,x,y) by (^Ti-t)"7172 Z^o^C^X"^ wlthout affecting the result.
Therefore, (3.24) follows from studying the limit as t -^ 0"^ of a finite sum of terms
of the form (—^ times

(3.26) / Q(A, y) (^Trf)-^2^)/4^, y)^{y)
JY

with u G C°(Y x V). Changing variables as in the proof of 1), keeping the same notations
and using Proposition 3.7 1] one transforms the integral (3.26) into

/ 0(A^-l(^^))(-47^t)-n/2e(-pll2+^^EC-(^^^•)/4^,fa-l^^))^
Jh(Y,x)
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Let 8 > 0 be small enough so that B(0, 8) C f^ey h^ x ) ' we SPlit the above ̂ ^^ as

j^(f) + j^(f) with Ji the integral over B{0,S) and h the integral over the complementary
region in h(Y,x). One has obviously
(3.27)
\I^t)\ < (4^)-n/2e-62/4t / \Q{\h-\z^x)}u{x,h-\z,x^z,x)\dz^Q

J/^(Y,a•)nB(0,<§)c

as t -^ 04'. Then, in Ji we perform the change of variables z = v/tC leading to

(V^T)-A = / (47^)-n/2Q(A^-l(v/tC^))^-llcll2+^:TEC^J(^c'a;)C^CJ)/4

JB(0,6/\/t)

^^-'(v^C^))^^^^) ̂  •

Let JC C A be any compact set; for all R > 0, the function

(A,t,^C) ̂  ex^SC^J(^c'')C^CJ740(A^-l(^^C^))^^-l(^C^))^(^C^)

is continuous on the compact set K: x [0,1] x Y x B(0, R) and hence uniformly continuous.
Hence, as t -^ 0+, A(t) -^

(3.28) (V^T)-" / (47^)-n/20(A,/^-l(0^))
JR-

X^-IICI^+v^TE^^^^)/4^^-1^^))^^)^

= (v^-^A^H^^o^)
x / (47^)-n/2e(-llcll2+^lS:C^J(o'a;)C^CJ)/4d^

J^

uniformly on JC x Y, since /I'^O,^) = re. Hence

(3.29) IiW+hW -^ Q(\,x)u(x,x)c^o(x)

uniformly on 1C x Y as t -^ 0+, where co,o(^) is denned by:

(3.30) CooM = (^^T)-^(O^) / (47^)-n/2e(-"<"2+^E-(o^^)/4^.
JR^

The convergence of (3.24) follows immediately and is locally uniform on A x Y
since A is locally compact. Let us recall that uo(x,x) = 1, where u o { ' , ' ) is the first
coefficient of the formal solution of the heat equation. The formula (3.30) shows that
coo e C°(Y) H (^(V). According to Proposition 3.7 4), one has c^(O^) = 0; hence
CQ 0(9) = {\^:l)~n (f)(0,q) = 1 since we have seen in the beginning of the proof that
(f)(0,q) = (y^T)71. Therefore, reducing ei > 0 if necessary leads to co^o(x) / 0 for all
x G Y and this completes the proof of 2).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



702 F. GOLSE, E. LEICHTNAM AND M. STENZEL

Proof of 3). - Applying (3.29) to the situation where A = [0,1] shows that

/ f^y)^7^t)-n/2ed2^y^tu(x^)dpY(y) -^ f(\x)c^{x)u(x^x)
"Vy

as t —^ O4', uniformly with respect to (A,rr) G [0,1] x Y. Therefore

(3.31) lim / f^y)^t)-n/2ed2^y^tu(x^)d^Y(y) = f^x)c^(x)u(x^x).
t^o+ JY

The conclusion follows again from (3.31), Lemma 3.8 and the dominated convergence
theorem which show that one can replace A(t^x^y) by

(_4^)-/2^(^)/4t ̂  ̂  ̂ )(_^
. --^

0

which leads to a finite sum of terms as in the left side of (3.31). This completes the
proof of Proposition 3.9. D

Let f , g G C^°([0, T] x Y x Y) for all T > 0; we define the following (noncommutative)
convolution product

f^g(t^x,y)= ( ( f{6,x,z)g(t-e,z^d6d^{z^
JvJo

for all (t,x,y) G R^ x Y x Y, which is associative. Then we set

B ( t ^ x ^ y ) - (9t - / ^ ) A ^ x ^ y ) .

PROPOSITION 3.10. - Let T] be the positive constant defined in Lemma 3.6 2. There exists a
positive constant C\ such that, for small enough, for all multi-indices (a, /?) € N" x N71

of length <^ 4 and any integer a G {0,1}
1] Vfc G N*, \/(t,x,y) e R^ x V x V

/ D \ *fc 4-k-l
oaQao/3 / ^ I (4. ^ .\ < ^fc L -2n/t.

^^^{l^c) ^x-y)-cl^k~^}\e '

2] v(^^) e R^ x y x y, l^^^oK^a;^) < Cic^-2^ w/z^

^i^ ^ ^* fc( n \ *"'o=y"(_i^+i -".l
fe ) 1^^ '

In particular, 9^9^0/^Q extends as a continuous function on R"^ x Y x Y.

Proof. - Point 2) obviously follows from point 1). To prove point 1), we observe that
the case k = 1 is a consequence of Lemma 3.6 2) and Proposition 3.9 (which states that
1/c is of class C2 on V, reducing ei > 0 if necessary). In particular Lemma 3.6 shows
that Q^Q^Q^B can be continuously extended by 0 for t = 0. Hence, point 1) follows
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by induction on k from taking derivatives under the integral sign in the definition of
(B/l 0 c)*^-^ as (B/l (g) c)^ * (B/l 0 c) and using the estimate of Lemma 3.6 2) and
the regularity of 1/c stated in Proposition 3.9 2). D

With all these preliminary results (Lemmas and Propositions 3.6 to 3.10) at our disposal,
we can now give the

Proof of Theorem. 3.4 - We define a function K by

K(t,p,m} = (A-Q*A)(t,p,m), Vt > Q , p , m eY

with A and Q defined respectively in (3.14) and Proposition 3.10 above, and ei > 0 small
enough so that all Lemmas and Propositions 3.6 to 3.10 hold and \d2(m/^m)\ <, T] for all
m^m' E Y\ where 77 > 0 is the (real) constant defined in Lemma 3.6. Now we show that
K satisfies all the conditions stated in Theorem 3.4.

First we show that K G C°(R^ x Y x F). Let 8 > 0 and consider, for t > 8

(3.32) u s ^ p ^ p ' ) = ( d6 I Q { 6 ^ p ^ y ) A ( t - e ^ ^ p / ) i J Y ( y )
J o JY

which is continuous with respect to ( t ^ p , p ' } c]^, +oo[xy x V. Using Proposition 3.10 2]
(for Q) and Proposition 3.9 I], one can see that 14 —^ Q * A as 6 —^ 0^~ uniformly on
every compact subset of R^ x Y x V. Hence K e C°(R^ x Y x F).

Then we show that K ( t y p ^ m) is C1 with respect to t > 0. Indeed, changing the variable
6 in the integral (3.32) into t — T and using the identity Q(0^p^y) ^ 0 (see Proposition
3.10 2]) gives

QtU^t.p.p') = dr QtQ(t-T,p,y)A(r,y,pf)^JY(y).
J8 JY

Propositions 3.9 1] and 3.10 2] show again that 11—» c^i^^,?,?') converges uniformly on
every compact subset of R'5_ as 6 —^ O"^. Hence K is C1 with respect to t > 0.

Next we prove that K(t^ p, m) is C1 with respect to m. Consider a fixed index 1 < j < n\
^t-6 /.

(3.33) Q^u^t^p')= / d0 \ Q(0^,y)a^A(t-e^^f)pY(y)
3 Jo JY 3

(we recall Convention 3.5). By symmetry of d2 in the p ' and y variables, one has
Q ,^{y,p}/^t-e) ̂  Q ^(^^(t-e) ^

P j y j

Integrating by parts and using the definition of M in (3.14) shows that

Q,,u,(t^p'} = ( t d0 ( Q{0^^y)ed2^t^t-^a^M{t-0^^f)^Y(y)
3 Jo JY 3

- ( t de ( ay^e^^^M^-e^^p^2^^-^^^)
(3.34) Jo JY

+ / d0 Q{0^^)M{t-0^,pf)ed2^p'^t-e\^y^Y(y)
Jo JOY

- I d0 ( Q(6^y}M(t-e,y^)L^ ^
Jo JY 3
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where LQ^ denotes the Lie derivative. Let /Co be a compact subset of V; then. Proposition
3.7 shows the existence of a real number K > 0 such that for all [ y ^ p ' ) G 9Y x /Co,
Kd2^,?') < -/^ < 0. Therefore, Propositions 3.7 and 3.8 demonstrate that, for all t > 0,
9p'.us(t^ •, •) converges uniformly on /Co x /Co as <? —)- O^ In particular, j/ I—)- Q*A(^,J),J/)
is G1 and so is m i—>- K(t^p,m). In the same way, one shows that p ' i—> Q * A(^J),J/)
and m i—^ K(t^p^m} are C72 on V.

Now we prove that (<9i — A^)^C(t,p,m) = 0. For <5 > 0, we compute QfUg by (3.32):

(3.35) (9,-A^M^j/)= /> d0 / Q(0^)(^-A^)A(t-^y)^Q/)
Jo JY

+ f Q(t-8^,y)A^y,p/)^Y(y).
JY

By Lemma 3.6 2), one has

|(9, - ̂ }A(t - ̂ y)| ̂  ^e-2^^-0);

this estimate shows that the first integral in the right side of (3.35) converges uniformly on
compact sets of R^_ x Y x Y as S —^ O"^. Proposition 3.9 2) shows that the second integral
in the right side of (3.35) converges to c { p ' } Q ( t ^ p ^ p ' } as 8 —^ O^ uniformly on compact
sets of R^ x V x y. This shows in particular that (—A^ + Qt)us(t^p^p') converges as
8 -^ O"^ uniformly on compact sets of R/j_ x Y x Y. Also, u^ —^ Q*A as 6 —^ O"^ uniformly
on compact sets of R^ x V x V; then, using (3.35) again with Propositions 3.9 2) with
5 ̂  O"^ in place of t and A = (^) and Proposition 3.10 with B = (Of — A^)A leads to

[{81 - A^)(Q * A)] ( t ^ p ' ) = Q * (Of - Af)A(^y) + c{p')Q(t^p1)

^(-D^dt,)"1*^.^'-')^^')^-')'-"^^)"^.!'.?')
k>l v - - - / ^

=B(t,p^').

Then
(9t - A|f)(A - Q * A) EE (9, - ̂ )K = 0.

Next we prove point 4) in Theorem 3.4. In view of Lemma 3.8,

sup ^ l+n/2ee /2 /4 t |^7•A(^m)| < +00.
t(E]o,i],mey
^(^rr^-e'2

Therefore, it suffices to prove that for all compact /Co C V,

(3.36) sup ^/^.(^A^py)! < +00
telo^f/e/Co "
d2^,^-^

for all e7 > 0 such that e'2 < yy.
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To do this, we use first (3.34) with S = 0 and estimate Q and its derivatives by
Proposition 3.10 2], while M and its derivatives are estimated by Lemma 3.8. It suffices
then to apply the estimate in Proposition 3.9 1] to control the two first integrals in the right
side of (3.34) with 8 = 0. To deal with the third integral in (3.34), observe as we did just
after (3.34) that Proposition 3.7 shows the existence of a real number /^ > 0 such that for
all Q/y) G 9Y x /Co, ̂ (^j/) < -^ < 0. This third integral in (3.34) is then estimated
using Lemma 3.8 and Proposition 3.10; these estimates altogether prove (3.36).

The proof of point 3) follows the same lines: it suffices to show that

(3.37) sup e^KQ * A)(t, m, m')| < +00
tc]o,i] ,m,m'^Y

observing that ̂ (q, m)| <, r] for all m G Y (see the N.B. after Lemma 3.6 and remember
that ei > 0 has been chosen small enough that for all m, m' G V, one has ̂ (q, m)| < T]).
Hence (3.37) follows from Propositions 3.10, Lemma 3.8 and Proposition 3.9 1].

Finally, point 2) follows from Proposition 3.9 3], the definition of K and the inequality
(3.37) above.

The proof of Theorem 3.4 is complete. D

4. Characterization of the Analytic Wave Front Set

In this section we will give the proof of Theorem 0.1. The strategy of the proof is to use
the estimates given in Proposition 3.1 to show that e^^u defines a F.B.I, transformation in
the sense of Sjostrand ([Sj]) near the point (Exp^^i^o^xo) modulo an exponentially
decreasing term (see Prop. 4.11 and 4.12). With the help of Gauss's lemma we will show
that ^^/:zld2(x, y) is a F.B.I, phase and that the value at Exp^ (V^T^o) of the associated
weight is j|^>|2 = -^(Exp^Jv^I^o),^).

Let us recall that ( X ^ g ) is a connected compact Riemannian real-analytic orientable
manifold of dimension n with volume form ^ and that L2(X) is naturally endowed with
a scalar product: (f,g) = J^ fgp.. Let {<^(?/)}j>o be an orthonormal basis of I2(X}
consisting of eigenfunctions of the (nonnegative) Laplace Beltrami operator, A, with
corresponding eigenvalues 0 = \o < Ai < A2 < • • • . We can assume that all the (f)j are
real valued. We will choose e > 0 small enough that for any distribution u and any t > 0,
e'^z^rr) admits a holomorphic extension to the complex tube

M, = {Exp,(v^TO, $ e T,X, |$| < 6}

(see Proposition 2.4), and small enough that the square of the geodesic distance, d2 ( • , • ) ,
admits a holomorphic extension, still denoted d2 ( ' , • ) , to an open neighborhood in Me x Me
of the diagonal of X x X.

We recall that the formal solution of the heat equation is a formal series of the form

(4^)-n/26-d2^/4t [^ u,(x^ y)^
\j>0 )
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where the coefficients uj, given by (3.2), (3.3), are analytic in an open neighborhood in
X x X of the diagonal and satisfy, for any nonnegative integer fc, the following equation
(see [B-G-M], page 208):

(4.0), (^+A2){(4^)-n/26-rf2^)/4t[^^•(^,^M
v ^j=0 / }

= t^^-^e-^^^^^u^x, y)

In the sequel we will use C to denote various positive constants.
We make the following remarks concerning Theorem 0.1:
a) Part i) means that for y e X close to XQ the maximum of —^^(Exp^ (v^^T^o)? y)

is attained for y = XQ so that for y G X close to XQ and any t e]0,1] we have:

|^Exp^(^-Uo)^)| < Ct-^exp (^-\

b) Part (ii) is essentially a consequence of i). Let us recall (see Proposition 2.4), that
without any hypothesis on the wave front set of u we have "only" the following estimate:
for t > 0 small and x close to Exp^y^T^o).

le-^^l^exp^0^).

LEMMA 4.1. - It suffices to prove Theorem 0.1 ii) in the case that u is a bounded
measurable function on X.

Proof. - It follows easily from Proposition 2.2 that if v is a distribution on X there
is a nonnegative integer p such that A"^ - (v, 1)) = u defines a bounded function on
X. Note that u and v have the same analytic wave front set. If Tu(t^ m} satisfies (^)
then, using Cauchy's inequalities for m in a suitable polydisc of Z, one sees easily that
T(v — (^,1)) and TV satisfy an estimate like (*). In order to prove the converse, we
introduce the following notation: for any function f(t) C S(R^) with rapid decay near
+00 we set for t G R^

/*+oo

J9-V(^ = / f(s) ds and D-^^ = D~1 o . . . o D
J t fW'

Conversely, if TV satisfies W then so does T(v - {^1}), and one easily shows that
Tu = D-y^T^ - (v, 1))) satisfies an estimate like M. D

Now we introduce a few geometrical constants. Let L be the constant introduced in
Proposition 3.1.

GEOMETRICAL. DEFINITION 4.2. - Let C > 1 be a real number such that L/Ce < j. Let
us denote v = -^ log (eC/L), which is positive. Let (3 be a smooth function of compact
support whose (small) support is included in both V H X and in the domain of a real
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analytic normal geodesic chart, and such that /? = 1 on an open neighborhood f2 of Xo
in X. Then we can choose a e Cg°(M^ whose (very small) support is included in V
such that (suppa) n j ^ C f 2 , a = 1 on an open connected neighborhood W of XQ in
V C Mg and such that:

(4.1) C^) e suppa x supp/3 =^ ^(^{x.y) > -v

(4.2) inf ^d2^) : - ;» 0.
(a-,y)G suppax(supp/3\f2)

Moreover we can assume that for any bounded continuous function u with support in
V H X and any x G V D X we have (^ [B-G-M], pages 208-210):

« n+l

(4.3) lim / ^(2/)(47^t)-n/2e-d2^^/4tV^(^^)tfc^) = n(.r).
^0+1/^ ^

^^. - The support of a is very small with respect to y and 0.
Now we define an analytic symbol 7V(t, x^ y) (the one of Theorem 0.1 i)!) with respect

to the great parameter ^.

DEFINITION 4.3. - Let \ : R —> R a real C°° function of the real variable s such that
X{s) = 0^z] -oo ,0] , x(s) G]0, l [^]0, j [ , andx(s) = 1 on]^+oo[(asm §3). For
real positive t and (x,y) G V x V we define

N(t^,y) = (47^t)-n/2^tSfc(rr^)x(l - kC).
k>0 i

N is of course very similar to the M in equation (3.18). For each t > 0 the sum above
is finite since the terms in it vanish if k is not smaller than ^, and ( x ^ y ) —^ N ( t ^ x ^ y )
is holomorphic on V x V. Moreover, using Proposition 3.1 and Stirling's formula we see
easily that the nonvanishing terms (those for which t < ̂ ) can be estimated with the
help of the following inequality:

^L^fc! < (C7fc)-^+lfc! < C V k ^ L / C e ) 1 ' .

The Crucial Fact behind this is that for k = ^ —^ +00 we have (with the v of the
Definition 4.2):

^^-Gt-^xpf-^V
\ ^ /

Using the fact that ^ < j one proves easily the following lemma (see also the end
of Prop. 4.9).
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LEMMA 4.4. - There is a positive constant C1 such that for any t e]0,l] and any
{x, y) C V H X x V n X we have:

n+l

N(t,x,y) - (4^)-n/2^^(^)^ L-^2^)/^ ^ c ' t
k=0

Philosophically the following lemma analyzes the second member of the equation (4.0)^
for k ~ ^ (associated with the formal solution of the heat equation); later we will see
that this second member is exponentially decreasing when t —^ O4'. The proof is similar
to the proof of Lemma 3.6.

LEMMA 4.5. - For each real t > 0, and each {x, y) G V x (V n X) we put
^t = [(i — |)^~1] (tne integer part) and we have:

(^t+^){N^x^y)e-d2^/4t)

^T^)-/2^ e-^'^A^^) ̂ -R^x^y)

where R(t, x, y) equals 0 if 1 + kt >: -^, and if k = 1 4- kt < -^ then:

R^x^y) = (47^)-n/2(^ + ̂ {u^x^^-^e-^^^^ - kC)}.
t L )

Now we write a decomposition of the "analytic symbol" N ( t ^ x , y ) with respect to the
orthonormal basis of eigenfunctions {<^j}j^o :

a^^W^x^^2^^ = ̂ f^x)^(y)
j^O

where we have:

(4.4) /,(^ x) = a{x) f (3(y)N(^ x^ y)e-d2^4t^(y)^y).
J x

The idea of the proof of Theorem 0.1 i) is to analyze e~tx^(f)j(x) - fj(t, x). To this aim,
we will use the following Lemma 4.6 and Proposition 4.8.

LEMMA 4.6. - There exists n smooth vector fields 14, 1 ̂  h < n, on X and n differential
operators of the first order Vi, 1 < / ^ n, (operating on the variable y ) such that for each
x G Mg, j C N, and t > 0 we have:

-2a(x) ( (grad /3Q/), grad W)N^x^)e-d2^^t^y)
Jx

= a ( x ) [ ^ { y ) ( ^ Vr[N^x^)e-d2^y^tU^(3{y)})^y).
Jx l<h,l<n

Proof. - Since the (compact) support of /3 is included in the domain of a real analytic
chart, one gets the result by a simple integration by parts. D
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DEFINITION 4.7. — Let us denote

F(t,x,y) = a(x)(N(t,x,y)e-d2(x'y)/UWy)

+ ^ V^•[N(t,x,y)e-d2(:c'y')/4tUh•P(y)}).
Kh,l<n

The map (t,x,y) -^ F(t,x,y} is of class C00 on R^. x V x X. For each (t,y) G
R^ x X, x -^ F ( t , x , y ) is holomorphic on W.

PROPOSITION 4.8. - For all j € N, all x in X, and all real t > 0 we have:
a) f^x) = a(x)(t>,{x)

b) 9tf^t,x) = -\jf,(t,x} - J F(t,x,y)^(y)^y)

^a(x) I ^y)Mym^^)(N^x^y)e-d2^y^t)^y).
Jx

Proof. - Let us prove part a). The Geometrical Definition 4.2 states that f3 = 1 on
suppa n X. We recall the equation (4.4), and the definition 4.3. Part a) is therefore an
immediate consequence of equation (4.3) and of Lemma 4.4. Let us prove part b). Since
As is self-adjoint we can write:

(4.5) Qif^x) =a(x) I ^y)9t(N^x^y)e-d2^/4t)ct>,(y)^y)
J x

=a(x) I ^y){^t+^){N^x^y)e-d2{x-y}/4t)^{y)^y)
J x

-a(x) I N^x^y)e-d2^y}/4t^W^{y))^y)'
J x

Let us recall that (see [B-G-M], page 127):

A2(<^/3) = (^A2/3 + /?A2^- - 2(grad(^, grad/3).

Inserting this identity in the last integral of equation (4.5), using on one hand Lemma 4.6
and the Definition 4.7 of F ( t , x , y ) and on the other hand the fact that ^^j = ̂ j^j and

the equation (4.4), we prove easily the Proposition 4.8. D
In order to integrate with respect to t the equation in Proposition 4.8 b) (for x complex)

we will need the following lemma.
LEMMA 4.9. - Let v and v be the two constants introduced in the Geometrical Definition

4.2. Then there exists two positive constants N and D such that for all (complex) x G W
and for all t G]0,1] we have:

a) IIW^t+A^)^^^^2^-^)!!^^^)^^"^^^

b) \\F(t^x^)\\H^w ^ Dt^exp (——4t
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c) For any t G]0,1] and any y G X, the two maps x —^ F(t^ x, y) and

x -. (3(y)(9t + A^XA^ x, y)e-d2^4t)

are holomorphic on W.

Proof. - a) Let us use the notations of Lemma 4.5. Proposition 3.1 (and the Sobolev's
injection theorem) shows that for every p E { 0 , . . . , n + 1}, for all (x, y) £ Vx supp/3,
and all t €]0,1] we have:

A^^e-^'^^Aa^OE,:;/)]! ^ Ct^ L^ kt\t-2"-4 e-^2kt^,^-2n-4[^-d2(x,y)/4t

Since C > 1 we have ^ — 2 < kf <: -^, so using Stirling's formula and the definition
of v we get:

'tLktj^i+fe.^il ^ LkfC
(4.6)

C'/_^\^ C
-t(eC

( 2v^
=^[~T

Now let us denote k = 1 + kf. The inequality (4.6) then shows that for 0 < t < 1:

l^+^l = ̂ L^kt^kf + 1)L\ < °-exp (-2^\t \ t )
On the other hand, since the support of (3(y) is compact and included in X D V, Lemma 4.5
(which defines R(t, •, • ) ) and Proposition 3.1 show that for every j ? G { 0 , . . . , n + l } , r r G
W, and y G X we have:

^{x.yY\^((3{y)R^x,y))\ < Ct-2-4-^ exp - t^^kL
4t

Moreover, since W C suppa, the inequality (4.1) shows that:

^(x,y) G W x supp/?, exp ( -d\x,yY
4t

( 2z^\ / v\
-— < exp (--).

Y t ) ~ ' \ t }
/ 2z^\ / ^^

exp — — < exp — —p V t ) ~ ' \ ^

Now we deduce easily the Lemma 4.9 a) with N = ̂  + 2n + 5 from inequality (4.6)
and Lemma 4.5. Let us prove part b). Let us recall that (3 = 1 on the open set f2, so for
all y C f2 and h e { 1 , . . . ,n}, UH • (3(y) = 0 (see Lemma 4.6) and ^2/3(y) = 0. The
inequality (4.2) shows that for any t G]0,l]:

(4.7) \/(x^y) G suppa x (supp/?\0), exp ( —
^(x.yY

4.t <exp -4, •

Moreover using Proposition 3.1, Stirling's formula, and the definition of N(t^ •, •) we easily
show that for any t e]0,1], x G W, and any test function (p(y) with compact support in
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X n V belonging to the following finite set of functions {^(3{y), Uh • ft(y), 1 < h < n}
we have:

MWt^^^Ct-^ E ̂ (i^)k<ct-n/2^k{^)k•
k<^ v e / fc>0 v /

Since -L- < 1 we can now use the inequality (4.7) and the Definition 4.7 of F{t,x, •) to
obtain easily the Lemma 4.9 b) with N = j + 2n + 5. Since the coefficients Uk(x,y) of
the formal solution are holomorphic on V x V we prove easily part c). D

Let us denote by E(t,x,y) = E^o6"^^)^) the heat kemel of (x'^-
PROPOSITION 4.10. - For every real t in ]0,1], for every (x, y) 6 W x X we have:

^x)f^{y)N{t,x,y)e-d2(x'y)/4t=a{x)E(t,x,y)- I e(s-t^2F(s,x,y)dsa
J 0

+a{x) [ t e^-^2 [(3{y)(9, + A^) (N(s^ ̂  y)e-d2^y^s)} ds.
Jo

Proof. - We begin with a few preliminary remarks. Let us denote p = mf(^). We
easily prove the following inequality (with the constant N of Lemma 4.9):

(4.8) WG]CU], / ^N^p(-i,)ds<ce^(-it)'
v 0

Using Lemma 4.9, the fact that the ^-t)A, 0 <. s < t ^ 1 define a uniformly bounded
family of endomorphisms of Hwn{X} and the inequality (4.8), one obtains easily for
each t G]0,1] and x G W the two following estimates:

(4.9) f6^-t)A2[/3(•)(a.+A2)(7V(.^,.)6-d2^•)/4s)]^
Jo Zf2^+2(JC) ^^(-ID

(4.10) f ^-^F^s^x^-^ds
Jo fl^i(x)

<-c^(-^)
Now as a first step we assume that x is "reaF and belongs to X. For each real t G]0,1]
and each nonnegative integer j. Lemma 4.9 and Sobolev's injection theorem allow us
to integrate from s = 0 to t the second member of the equality of Proposition 4.8 b).
We therefore obtain:
(4.11)v ^ +
fi(t,x) =e~tx3a{x)(t)j(x)-e~tx3 \ \ e8^ F(s,x,z)(t>j{z)ii{z) ds

J x J o

+e-^- / [ t esx3a(x)0(z){9s^^2){N(s^x^)e-d2{x^^s) (t>,{z)ii(z)ds.
J x J o

Now we multiply each member of the equality (4.11) by ^(^/) and sum for 0 < j < +00.
Using the estimates (4.9), (4.10) and equation (4.4) we then obtain easily the equality of

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



712 F. GOLSE, E. LEICHTNAM AND M. STENZEL

Proposition 4.10 for x G X. But, Lemma 4.9 c) and the estimates (4.9) and (4.10) allow
us to use an analytic continuation argument to show that this equality is still true for all
x G W (which is connected). The Proposition 4.10 is proven. D

PROPOSITION 4.11.
(i) Let us denote p = mf(z^ i>). Let u(y) be a bounded measurable function on X. Then

there exists a positive constant D^ such that for every x G W and every t c]0,1] we have:

I WN^x^^^y^u^^y) - e-^u{x}
J x

^exp(-^)

(ii) We can find an open neighborhood W^(in W) of XQ such that for (x,y) e W2 and
0 < t < 1 the decomposition ofE(t,x,y) in Theorem 0.1 (i) is valid. (For the assertion
relevant to the FBI phase, see the next proposition.)

Note. - Therefore, the values of u{y) for y ^ supp /3 "do not contribute" to the growth
of e'^u^x) when t -^ 0+ and x e W^.

Proof. - (i)Let us recall that a ̂  1 on W. Let us fix t and x, we multiply each member
of the equality of Proposition 4.10 by u{y) and we integrate over X with respect to ^{y\
Using the estimates (4.9), (4.10), and Sobolev's injection theorem (n = dim X) we obtain
easily the estimate of Proposition 4.11 i). In the same way (since a [resp. /?] = 1 on W
[resp. 0]) we prove that the decomposition of E(t,x,y) in Theorem 0.1 i) is valid for
{x, y) € W x Q, but y is only "real." By Proposition 2.4 we have:

V^e]0,l[, sup [E^x^y^^C^expf2^}.
(a-,y)€M^ \ t /

The existence of the complex neighborhood W^ of XQ in W such that the decomposition
of E(t,x,y) is valid on W^ x W^ is therefore an easy consequence of 2n successive
applications of the following lemma:

LEMMA. - Let 8 and p, be two reals in ]0,1[. Let {gt(z)}o<t<i be a family of functions
of one complex variable z holomorphic on a neighborhood of a lozenge K of C whose
comers are -^ ^, y^T^2. -V^T/^2. Let us assume that for any t in ]0,1[ we have:

v^e^, |̂ )| <expff)
\ i /

for any real number z E K, |^i(^)| < exp ( -- ) .

Then we can find an open neighborhood D (depending on S and K but not on the family
{9t}o<t<i) of 0 in C such that:

WG]0,1[, sup |̂ )| < exp f-^V
zeDnK \ 2t/
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Proof. - We just have to apply the maximum modulus principle on the rectangle K
with the following subharmonic functions:

Uog \gi{z)\ -a^z- (3^z2

where a and (3 are two real constants such that: a » (3 » 1.

Proof of Theorem 0.1. - We have assumed in the Geometrical Definition 4.2 that supp f3 is
contained in the domain of a normal real analytic geodesic chart at XQ : <^i -^ Exp^i. We
will use the holomorphic chart of Me at XQ given by: ^i + v^l^ —^ ^Pxo (^1 + V^^).
where ^i and ^2 belong to the real vector space T^X. The next proposition completes the
proof of Theorem 0.1 i) and shows that the holomorphic function defined by:

^Cr^i + v/^16) = ̂ ^Exp î + ̂ 6))

is a F.B.I, phase (in the sense of [Sj]) near the point (x, ̂ i+V^^) = (^P^o (V^^Uo), 0).

PROPOSITION 4.12. - 77i(?r(? <?.m^ a positive real 62 ^c/z that if^Q belongs to T^X and
satisfies |^o| < ^2 then Exp^^^l^o) belongs to the W^ of Proposition 4.11 and \ve have:

(a) 3[—^(^^(\/^^o),0)] is a positive definite quadratic form.

W Mafe^P^^^O)] is not zero.
(c) j(^, - ̂ ^)^(Exp^(v^Uo),0) = ^o fr^/ vector!).

Remark 4.13. - Of course these three results are obvious in the case of R71

endowed with the usual (flat) Riemannian metric. Recall that d 2 ^, - ) is holomorphic
on V x V, so using the Cauchy-Riemann equations we easily see from a) and c) that
^ -^ -Q(f)(Exp^ (V^Co)^!) admits a non-degenerate critical point for ^i = 0 which
is a local maximum. If XQ G X and $o ^ ̂ X are close to XQ and 0 respectively then
y (G X) -^ -j^V^d^Exp^^/^Uo)^)] admits a non-degenerate critical point at
y = XQ, which is a local maximum. The value at Exp^./ (y^^Uo) of the associated strictly
plurisubharmonic weight is -^[v^lc^Exp^ (V^^Uo)^)] = il^ol2 (ty^ Delort [De]
page 17 formula (2.22)). Moreover the Morse lemma with parameters shows that we
can find an open neighborhood f^i of XQ in X and can shrink W^ (at the beginning of
Proposition 4.12) so that there exists 5i > 0 such that for all (x, y) G W^ x (supp/3 \ f2i),

9id\x,y)>8,

(3(y)=l on Oi

and for all (Exp^/ (v^Uo)^) ^ ^i x °i'

jl^oP+^jv^rf^Exp.^v^^)^)]^^^^^)-

Therefore part i) of Theorem 0.1 (or Proposition 4.11) shows that the points
y G supp/3 \ ^i do not contribute to the growth of e'^^a;) when t —^ 0^~ for x € W\.
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Proof. - Part (a) and (b) are obvious since they are true for ^o == 0. Let us prove c). We
see from the definition of ( / ) ( ' , ' ) and the fact that DExp^(O) = Identity that it is enough
to show that: (^^(Exp^V^^T^o^O) = ^o- Let 62 be a positive real small enough so that
Exp^ (B(0, €2)) defines an open geodesically convex neighborhood U of XQ in X and all
the Riemannian exponential maps to be used soon will induce diffeomorphisms onto U.
Let us fix ^ G T^X \ 0 with |^| < €2. We put m = Exp^$ and consider the function:

F(y) = ̂ -d\m^yY

There exists a unique UQ G Ty^X such that |z^o| < 62 and XQ == Exp^(^o). Of course
we have for any (small) v G TmX, F(Exp^(i/)) = ̂ -\^\2 (the norm induced by the
Riemannian metric.) So a differentiation at ^o gives:

(4.12) \/h C T^X, (.DF(rro) o DExpM).h = V^i(^h).

According to the Gauss lemma (see [B-G-M], page 50) jDExp^(^o) sends the orthogonal
subspace of the real line R^o m T^X onto the orthogonal subspace of R(-DExp^(^o)-^o).
and moreover the vector J9Exp^(^o)-^o is tangent at XQ = Exp^(^o) to the geodesic curve
joining XQ and Exp^z^o == m, so this vector is colinear to ^. Therefore the equality (4.12)
shows that DF{xo) vanishes on (R^)-^

Moreover DF(xo).^ is the derivative for s = 0 of the numerical function
F(Exp^(^)) = ̂ (1 - s)2^2. So it is clear that DF(xo).^ = -V^l\^\\ and
that gradJ3F(^o) = ^^(Exp^^O) = -^$.

Now we observe that the function ^ ^- ^^(Exp^.^,0) is holomorphic so, replacing ^
by \^l^o yields the Proposition 4.12 (c). D

Now we shrink W^ as in the Remark 4.13, we fix 62 > 0 as in the Proposition 4.12, and
we consider ^o ^ T^X \ 0 such that |^o| < €2. Since the coefficient no ( - 5 •) of the formal
solution of the heat equation never vanishes on V x V, we see easily, putting A = ^,
that N ( t ^ x ^ y ) is an analytic symbol in the sense of Sjostrand (see [Sj]) of order n/2,
which is elliptic at the point (Exp^v^T^o^^o)- Now let u(y) be a bounded measurable
function on X (which we may assume by Lemma 4.1). Using Sjostrand's result [Sj] page
46 (see also Delort [D] Cor. 4.4 page 27), the two inequalities of remark 4.13, and the
fact that /3 = 1 on f^i we see that (a-o, —Co) does not belong to the analytic wave front
set of u if and only if we can find an open neighborhood Z ' of Exp^y^T^o) and a
positive real 61 such that:

(4.13)

\/x G Z ' , W G]0,l], / P(y)N(t^^)e-d2^^tu(y)^l(y) < Cexp f ^ 0 1 2 . ^ .
J x \ 41 /

Using Proposition 4.11, we see that f^ |3(y)N(t,x,y)e~d2{XJy^4tu(y)^J.(y) satisfies an
estimate such as (4.13) if and only if (e'^n)^) satisfies an estimate such as (*) in
Theorem 4.1(ii). Theorem 0.1 is therefore proven.
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5. Proof of Theorem 0.2

In this section, we consider a fixed point q G X and denote by Y the fiber Tr"^) in
Me for e > 0 small enough (see Theorem 1.5 for the definition of the fibration TT; we
also keep the same notation Y for different values of e whenever this is unambiguous).
We recall the notation
(5.0) G(t, m, m') = (47^t)-n/2ed2(m'm)/4t

and we take k > n/2 some fixed nonnegative integer. Throughout the present section, we
shall assume that 61 > 0 is small enough so that the functions Uj^m^m') defined by (3.3)
are holomorphic on some open neighborhood of Y x Y in M^ x M^ for all 0 < j <^ fc.
We take a fixed e G]0, ei] and assume that the function / in Theorem 0.2 is C^ on X and
satisfies J^ j ̂  = 0. In other words / is orthogonal to the space of harmonic functions
on X, that is the constants since X is connected and compact. Applying Proposition 2.2
shows the existence of a sequence of complex numbers {dj}j>i and of two constants
C > 0 and rj e]0,e] such that:

(5.1) V j > l |a,| < Ce-^, f(m) = ̂  a^-(m).
j>i

By definition of T/, (As +9t}Tf ^ OonR^ x X. Since for every t > 0, m ̂  Tf(t, •)
admits a holomorphic extension on the tuboid Mg, Theorem 1.16 shows that:

(A^f + 9t)Tf(t, m) = 0 on R^_ x Y .
The idea for the proof of all inversion formulas in this article is to start from the following
equality (with 0 < ti < t^)\

f'dt ( ^(^^m)(A2+^)^/(^m)/.y(m)=0
Jti Jv

(with the Hk as in Proposition 3.0) and integrate by parts. The following lemma is an
immediate consequence of the Green formula (see (1.6)) for A^:

LEMMA 5.1. - For all t G [^1^2]

f Hk(t,q,m)^Tf (t^m)^^) = ( r/^^A^^m^m)
J y JY

+ / [TO.<rad^(^.)^ -W^Xrad^T^,)^]-
J QY

Integrating by parts with respect to t shows that

(5.2) 0= f dt f ^(^^m^Alf+W/^m^m)
Jti JY

= f Tfa^m^Hka^q.m}^^ - ( Tf(t^m) H^q.m)^^)
JY JY

+ [ ' d t f r/^mKA^-^fffc^m^m)
Jt^ JY

+ / 'dt ( [Tf^ <^ (̂t,,,) ̂  - W. Q. <rad^T/(t,.) ̂ } •
<11\ J QY

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



716 F. GOLSE, E. LEICHTNAM AND M. STENZEL

In the following proposition are gathered several asymptotic estimates satisfied by the
function (t^m} \—> Hk{t,q,m).

PROPOSITION 5.2.
a) There exists a positive constant D such that Vt > 1, Vm G Yy \Hk{t^ q^ m)| < Dtk.
b) For all smooth vector fields U with compact support in the manifold with boundary

Vg there exists a positive constant D(U) such that:

W > 1, sup \U -Hk{t,q,m)\ < D^U^ .
mCQY

c) For all smooth vector fields U with compact support in the manifold with boundary
Ye, there exists a positive constant D(U) such that

WG]0,1], sup \U 'Hk(t,q,m}\ < D(U) r1-^2 e-62/4'.
meay

(Recall that for all m in 9Y, e2 = -(P^m)).
d) There exists a positive constant R such that for all m in Y with e12 = —d2^, m)

\/t G]0,l], \Hk(t,q,m)\ ̂  RG(t,q,m) = J^(47^^-n/2 e ~ ^ l ^ .

e) For any function (t, m) \—> u{t^ m) continuous and bounded on [0,1] x V,

lim / u(t^m)Hk(t^q, 171)1^(171) = (\/^T)77' n(0, q).
t^o+ J y

The formula of Theorem 0.2 will be a consequence of (5.2) and the four following
lemmas.

Remark 5.3. - The proofs of Theorem 0.2 and especially those of Lemmas 5.4, 5.5
and 5.7 below, are still valid if {\/~ZY}~n Hk(t^ q, m) is replaced by any function K(t^ m)
for which equation (5.2) and the properties listed in Proposition 5.2 are satisfied. This
observation will be used in the next two sections.

LEMMA 5.4. - Under the above assumptions

lim / Tf(t^ m}Hk(t^ q, m^m) - 0.
t2^+00 Jy

Proof. - For all integers j > 1 introduce bj = GC7(6)e(-7?+e)^/^-AJ A^1 where C(e),
rj and C have been defined in Proposition 2.1 and relation (5.1) respectively. The series
^ >^ bj converges. Proposition 2.1 and (5.1) show that, for all j> 1, m G V, t > 1:

e-^a^-(m)| < b,e-^-1^ ^ b,e-^-1^1

Since A j > _ Ai > 0 this inequality implies

(5.3) V^l, V m G V T/(^m)=^a^fc(m)e-^ ^ [^^•je-^-1^1.
j>i \j>i 7
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Then, Proposition 5.2 a) shows that, for any m G V, t ^ 1 we have:

\Tf(t, m) Hk(t, q, m) \ < D ̂ e-^-1^1 ̂  b, .
i>i

Letting t tend to 4-00 gives immediately the result claimed in Lemma 5.4.

LEMMA5.5. - Under the above assumptions

Urn / Tf{t^m)Hk(t^q^m)pY{m)=(^i)nf(q).
ti^o+ JY

Proof. - We shall use the constant 77 defined in (5.1). Proposition 2.4 shows that for all
^i G]0,l], for all m G Y \ Mzi such that e'2 = -^(^m),

|TOi,m) ^C^Qe6'2/4*1.

Hence, according to Proposition 5.2 d), for all i\ e]0,1]

(5.4)

/ Tf(t^m)Hk(t^q^m)^{m) ^ (47^)-n/2^/2 sup C(^e) ( |^(m)|.
JY\M^ i^e^e -'^

and therefore the left side of the previous inequality tends to 0 as i\ —» O4'. Proposition
2.1 with e replaced by r ] / 2 shows that for all j > 1,

sup_ |^(m)| < ̂ (DA^e^v^.
meynM^

Property (5.1) and Proposition 5.2 d) show that for all j > 1 and all i\ e (0,1],

(5.5), / la^e-^^m) - ^-(g)] ff^^i, g^m)^^))
JynM^

^ 2C7(j)GeV/A7(-7?+^)A^+lJ^ sup / G^^^m)]^!.
0<t<lJynM^

According to Proposition 5.2 e) with u(t,m) replaced by e'^^m) - ̂ (g), the left
side of (5.5)j tends to 0 as t —^ 0+. Since f(q) = Z^>i a-j^jW a normal convergence
argument based on the family of inequalities (5.5)j shows that

(5.6) lim / [Tf(t,, m) - f(q)} Hk (t,, q, m)^ = 0 .
ti^0+ JYC\M^

Proposition 5.2 e) with u{t^m) ^ 1 shows that

lim / Hk(t^q,m)^ ={^/^i)n

ti^0+ JynMr?
lim / Hk{h,q,m]

ti^0+ JynM^

and Lemma 5.5 follows from (5.4) and (5.6). D
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LEMMA 5.6. - The following integral converges:

r-\-oo /.

/ dt \ r/^m^As-^ff^^m^m) <+00.
Jo JY

Proof. - Let us recall that k > n/2 and

(5.7) (A^ - 9t)H^ q, m) = t\G^u^(t, q, m)

(see Proposition 3.0 and equation (5.0)).

FIRST STEP. - Estimates on the integrand as t —^ +00, t > 1.
Inequality (5.3) used in the proof of Lemma 5.4 shows the existence of a positive

constant C^ such that for all t > 1 for all m G Y:

|r/(^m)^(GA^fc)(t^,m) < C^-1^1 ̂ -n/2 e^^/4*

Thus for every A > 0 the integral

I dt f Tf^m^-a^Hk^q.m)^^)
J A JY

is convergent.

SECOND STEP. - Estimates on the integrand as t —> 04', t G]0,1].
Working as in the proof of (5.4) (see the proof of Lemma 5.5) we demonstrate the

existence of a positive constant Cs such that for all t in ]0,1]:

(5.8) f T/(^m)^(GA^)(^m)/^(m) < C^t^2 sup C{n,e').
JY\M^ t<e'<e

Moreover, according to Proposition 2.1:

Vj ^ 1 sup |^-(m)| ^ CdDA^e^.
m^YnM-n

2"

Property (5.1) shows that, for all t in ]0,1] and all m in Y D MR,

|T/(^m)|<^C(j)A^16^^/^|a,|
j>i

^CC^^X^e-^V^.
j>i

Since k > |- and for all m e V, d2(q^m) < 0, there exists a positive constant €4
such that for all t e]0,l]:

(5.9) / ^/(^m)tfc(GA^fe)(^9^)^r(m) < C4.
JynMr,
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Lemma 5.6 follows therefore from the equality (5.7), the first step above and both
inequalities (5.8) and (5.9). D

LEMMA 5.7. - With the same assumptions as above except that f G ^2(3n+2)(X) "only",
one has

/*+00

\ [TOJ^rad^^,.)/^ - W^ Xrad^TJ(t,.)/^y] < +°° •
JQY

dt

Proof. - As in the proof of Lemma 4.6, we proceed in two steps.

FIRST STEP. - Estimate of the integral as t -^ +00, t >_ 1.
We can write Tf = ̂ .̂  a^-e-^ , where the sequence {I^-IA^1"^1}^! is

bounded. Working as in the proof of (5.3), using Propositions 2.1 and 5.2.b), one can check
directly the existence of a positive constant C[ such that for all t > 1

/ Tf(t,-)i^^,^ ^^e-^-^A^e^la,^laJe-^
JQY l>1

Moreover Propositions 2.1 2) and 5.2 a) applied with f(m} = Hk{t,q,m) show that for
all j > 1, for all t > 1

f W^<ad^X < Dt^^X^e^.
JQY

From this, we infer that for all t > 1

/ Hi.(f n •^'y ^ < CffkC(^pxl^t~l) N^An+l(06^A^|r7•l(°-^/ -" fc^^y; ^grad^T^t,-) ^ -^ Ly2l/ ^^J0 2 - ^ 3 \U3\^
JQY ^->1

Hence we conclude that for all A > 0 the integral
/.+00

/ dt
J A

I [W<rad^(t,,,)^ -^^^•)^T/(t,.)^] <+°°-
J oY

SECOND STEP. - Estimate of the integral as t —> O4", t c]0,1].
Using Proposition 2.4 1] with p == n + 1 and Proposition 5.2 c), one can check the

existence of a positive constant C^ such that for all t G]0,1]

/ W,.)^ ,̂.)/̂  ^Wn+^e^/2.
J OY

Applying Proposition 2.4 2] with p = n + 1, ^ = ff fe(^g , - ) |y and Proposition 5.2 d),
one sees that for all t G]0,1]

/ W. ̂  <rad^TJ(t,) ̂ y ^ (47^)-n/2J^C7(r^ + 1 , ̂ t^/2 ,
</ QY

which completes the proof of Lemma 5.7. D
Taking into account the formula (5.2) and applying Lemma 5.4 to 5.7 proves the

inversion formula stated as Theorem 0.2.
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6. Proof of Theorem 0.4

In this section we assume that —gY is a field of real, positive definite quadratic forms on
y. The following statement has been established in Proposition 1.19 and Corollary 1.24.

THEOREM 6.0.
a) —A^ is the Laplace-Beltrami operator of the Riemannian manifold (V, —gY).
b) Let di(', •) be the geodesic distance for (V, —gY\ Then for all m G V, d^(q^m) =

-(^{q.m).
c) {\^l)~npY is a Riemannian volume form for (V, —gY).
For e' small enough, Y^ = {Exp^v^^) s. t. \^\q < e ' } can be isometrically embedded

into some compact orientable Riemannian manifold Y. Let us denote by K ^ ( t , x ^ y ) the
heat kernel of V. Let ei be aj)ositive real, if e ^ f e ' is small enough then, for all m € Y^
di(g, m) is the distance (for Y) from q to m. In the next proposition are gathered several
estimates satisfied by K^.

PROPOSITION 6. \.-LetK(t,m) = (^/^l^K^t, q,m}forall (t,m) e]0, +oo[xy. For
0 < ei/6' small enough, one has, for all e €]0,ei];

a) There exists a positive constant D such that for all t >_ 1, for all m C Vg,
|^(^m)| < D.

b) For all smooth vector fields U on the manifold -with boundary Vg there exists a
positive constant D(U) such that:

\/t^ 1, sup \U 'K(t,m)\ < D{U).
me9Y,

c) For all smooth vector fields U on the manifold with boundary Vg there exists a
positive constant D(U) such that:

V^e]0,l] , sup \U -K(t,m)\ ^(E/)^-1-7172^-6274*
m(EQYe

(we recall that for all m G (9Yg, c2 = —dP'^q^m)).

d) There exists a positive constant R such that for any m G Ye

Vt G]0,l], \K(t,m}\ < RG(t,q,m} = ̂ Tr^-^Y2^^/4'

e) For any function (t^ m) H-̂  u(t^ m) continuous and bounded on [0,1] x Vg,

lim / u(t^ m)K(t^ m)^y(m) = ^(0, q) .
t^0+ JY

Proof. - Statement a) follows at once from the results of Section 2 applied to Y instead of
X. The other points follow from Theorem 6.0 and the fact that the heat kernel K^(t, x, y)
of y is "almost Euclidean" (see [K]). D
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Now we go back to the proof of Theorem 0.4 and assume, to begin with, that the
function / is C^ on X and orthogonal to the space of harmonic functions (that is, the
constants): f^ fp. = 0. We recall that

(A^+cOT(^m)=0 o n R ^ x V .

Then, for all 0 < t^ < t^.

F f K^m)(^^9t)Tf^m)dt^Y(m)=0,
Jii JY

in which we integrate by parts. The following lemma is based on the Green's formula
(1.6) for A^

LEMMA 6.2. - For all t G [^1^2]

/ ^(t^A^r/^m^m) = / T/^r^A^^m^m)
JY JY

+ / [W<rad^,.)^ -^<ad-TW,.)^T
JOY

According to Theorem 6.0 a) (A|f — Ot)K(t, m) = 0. Hence, integrating by parts with
respect to t in the equality above shows that

(6.1) 0= f dt I K(t,m)(^+^t)Tf{t,m)pY{m)
Jti JY

= I Tf^m^Ka^m^^^m} - f Tf(t^m) K(t^ 171)^(171)
JY JY

+ ( 'dt { [Tf^ -)^^(t,.) ̂  - K^ <rad^(t,) ̂ }'
Jti JQY

Since the kernel K{t^m) satisfies equation (6.1) and all the estimates of Proposition 6.1,
we proceed as in Section 5 (see in particular Remark 5.3) to prove

LEMMA 6.3.

lim / Tf(t^, m]K{t^, m)^^) = 0lim
ta—^+oo JY^+00 JY

LEMMA 6.4.

im f Tfa^mW^m)^^} = f{q)
^o+ JY
lim

*i^o+ JY

LEMMA 6.5. - Assume that f "only" has Sobolev regularity: precisely f G Ar67^4^).
Then the following integral converges

/*+oo /»
/ dt [Tf^^^^^ -^(^•)^T^,)^] <+^-

Jo JOY
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Taking into account formula (6.1) and applying Lemma 6.3, 6.4 and 6.5 leads immediately
to the inversion formula of Theorem 0.4. Assume next that the function / is not C^ but
"only" C°° on X. We apply Theorem 0.4 to fh = exp (-^A)/ G C^(X) for all h G N*.
Observing that

/ - fh = ̂  ̂ -(1 - exp (-\j/h))(f)j
j>i

and proceeding as in the proofs of Lemmas 5.7 and 6.5 shows that dominated convergence
arguments apply to prove that

/*+oo /.
/ dt / [TMt, -)i^K(t,) ̂  - K(t, <^'T/,«,) /^]

J Q •JoY

tends to
/.+oo /.
/ dt [W^d^t,)^-^<ra^T/(t,)/^"]

JO JQY

as h —> +00. This completes the proof of Theorem 0.4.

7. Proof of Theorem 0.3

In this section we make no particular assumption on —gY. In Theorem 3.4 of Section 3
we have constructed a pseudo-heat kernel K(t^p^ m) on ]0, +oo[xy x Y for Of — /^Y such
that K{t^m) = K{t^q^m) satisfies the estimates gathered in the following proposition
(for any e e]0,6i]).

PROPOSITION 7.0.
a) For all smooth vector fields U on the manifold with boundary Y there exists a positive

constant D(U) such that:

\/t G]0,l], sup \U-K(t,m}\ ̂  ̂ (^r1-71/^-62/4'
mCOY

(we recall that for all m G 9Y e2 = —(^(q^m}).
b) There exists a positive constant R such that for all m in Y

WG]0,1] , \K{t,m}\ <,RG(t,q,m) = ̂ T^)--^2^"^

c) For any function (t^ m) — u{t^ m) bounded and continuous on [0,1] x Y

lim / u(t^m)K(t^ m^p^im) = u(Q^q).
t^0+ JY

We do not know whether K{t^ m) is bounded as t —^ +00.
Next we go back to the proof of Theorem 0.3 and assume, to begin with, that the function

/ is real-analytic on X and orthogonal to the space of harmonic functions on X, that is,
the constants: f^ fp = 0. It was proved in Theorem 3.4 that (A^f - Qt)K{t,m) ^ 0.
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Therefore (proceeding as in the case of the equation (5.1)) integrating by parts with respect
to t shows that for 0 < t^ < t^,

(7.1) 0= F dt [ ^(^(Alf+^r/^m^m)
Jti JY

= I Tf^.m^K^.m}^^} - \ Tf{t^m)K(t^m)|JY{m)
JY JY

+ Fdt ( [Tf^ <^K(t,.) ̂  - K^ <rad^T/(t,.) ̂ y] •
J t\ J QY

In the sequel we shall be working with some fixed t^ > 0. Since the kernel K(t^m}
satisfies (7.1) and all the estimates of Proposition 7.0, one can proceed as in Section 5
(see Remark 5.3) to prove the two following lemmas.

LEMMA 7.1.

lim / Tf{t^m)K(t^m)^{m^f{q).
ii-.o+ JY

LEMMA 7.2. - Assume that f "only" has Sobolev regularity: f G H6^4^). Then the
following integral converges:

Fdt [ [Tf^^Y^^ -^,<^T^,)^] <+^
JO JQY

Taking into account the formula (7.1) and applying Lemma 7.1 and 7.2 leads immediately
to the inversion formula of Theorem 0.3. Assuming that the function / is no longer real-
analytic but only in H6n^4(X), one can apply Theorem 0.3 to the real-analytic functions
on X fh = exp(-^A)/, h G N*. The proofs of Lemma 5.7, 6.5 and 7.2 show that
dominated convergence arguments apply to show that

( 'dt ( [Tf^ -)^^(t,) ^Y - ̂  <rad^(t,) ̂ y]
JO J QY/O JQY

tends to

f'dt t[ ' d t [ [Tf^ <^ ,̂) /^ - K^ <^TAt,) ̂
Jo JQY

Y ,.Y T^(+ ^•y y-]
grad^TAt,-) ̂  JJ o JQY

as h —^ +00. This completes the proof of Theorem 0.3. D

8. The Case of the Symmetric Spaces

In this section we examine in more detail the consequences of the assumption that X
is a locally symmetric space. Recall (Proposition 1.17) that this is the case precisely when
—gY is a field of real, positive definite quadratic forms on V, for each fiber Y. Our main
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technical result in this section is Theorem 8.6, which shows (in the locally symmetric case)
that the analytic continuation of the square of the distance function is negative one times
the square of the distance function in the Riemannian manifold (V, —gY\ We will use this
in Theorem 8.9 to give a nice connection between the heat kernel of X and any "good"
heat kernel of (V, -5^) (see Definition 8.8). This combined with the remarks following
Definition 8.8, shows that there is a natural choice for the kernel K (t^ m] in Theorem
0.4, up to a term which is exponentially decreasing as t —^ O"^.

The square of the Riemannian distance function, d^, is C^ near the diagonal in X x X.
Identifying X with the zero section in TeX, we can analytically continue d2^ to a
holomorphic function on a neighborhood of the diagonal mTeX x T ' ^ X and restrict to the
fiber Y xY (after perhaps shrinking e further). Let h be minus one times the restriction
of d2^ to V x V. It is not hard to show, as in the proof of Proposition 1.17, that if X is
locally symmetric then h is real valued. To show that the distance function associated with
—gY is h we will need to understand more explicitly the holomorphic extension of X

Let X be a complete (not necessarily compact) locally Riemannian symmetric space
(we will omit the adjective "Riemannian" from now on). The universal cover X of X
is isometric to a product:

(8.1) X = M, x U / K ^ x Go/K^

where Mo is a Euclidean space and U / K ^ , Go/K^ are globally symmetric spaces of the
compact and non-compact type, respectively. By the proof of Proposition 4.2 in [He I],
chap. V, we may assume that U, Go, and Ki are connected. Furthermore we may assume
that the center of Go is trivial (since the center is contained in K^), so that Go is a
linear group. Let G be the product group, U x Go, K the product K\ x K^ and g and
k their respective Lie algebras, K is compact (see [He I], chap. VI Theorem 1.1, Chap
VII Prop 1.1). We observe that G is a connected, real, semisimple, closed (*) subgroup
of GL(N, C) for some N .

For any Lie group L there exists a unique (up to biholomorphism) complex Lie group
Lc, called the universal complexification of L, and a C^ homomorphism L from L into
Z/c with the following universal property: for every continuous homomorphism 77 from
L into a complex Lie group H there exists a unique homomorphism 770 from Lc to H
such that r]c o L = r]. The map L need not be injective: for example, the complexification
of the universal cover of 5'£(2,R) is 5^(2, C), and the kernel of L is the fundamental
group of SL(2, R). However for the linear group G above L is injective and embeds G as
a closed subgroup of Gc (see [Ho], chap. XVII.5). The inclusion of K in G induces an
isomorphism of Kc with the connected subgroup of Gc with Lie algebra kc := k+ V^Tk,
which we will identify with Kc (to see this note that the complex semisimple Lie group
Gc is necessarily linear, so the induced homomorphism of Kc to Gc can be thought of
as a linear representation of K^ faithful on K. By [Ho], chap. XVII.5, Theorem 5.2,
it is faithful on K^\

(*) A connected semisimple subgroup of GL(N, C) is necessarily closed (see [Hel], chap. II, exercise D.4(iv)).
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PROPOSITION 8.1. - Kc is a closed subgroup of Gc and the natural map, gK —> gKc.,
embeds G / K as a closed, totally real submanifold of Gc/^c-

Proof. - Since G is linear, this is corollary 1 in section 3 of [Hz].
Let G = R^ x G where R/1 is the vector group appearing in the decomposition (8.1).

The universal complexification of R77^ is simply C", and the dual of R7^ is the complex axis
^/z~[1E{n. The universal complexification of G is Gc := C7^ x Gc, and the holomorphic Gc
extension of X (see [Hz], section 3) is the product homogeneous space GC/-KC (identifying
K with the subgroup {0} x K of G and similarly for K^). The natural inclusion is a closed
embedding. We will use GC/KC to describe the adapted complex structure on T^X.

The local symmetry on X induces an involution of g (the Lie algebra of G) whose +1
eigenspace is k. Letting e denote the — 1 eigenspace, we obtain a direct sum decomposition
g = k + e. The derivative of the natural projection TT from G to X identifies e with the
tangent space to the identity coset. Let r(g) be the natural action of G on X. Every
v G TX can be written as V = dr(g)d^e(V) for some (not unique) g G G, V G e, and
dr(g)d7Te(V) = dr(g/)d7^e(V/) if and only if for some k G K, g1 = gk and V = Ad^V'.

PROPOSITION 8.2. - There exists an e > 0 such that the map

$ : rf -^ GJK,

dr(g)d7fe(V) -> gexpV^lV • Kc (V G e)

is a G-equivariant dijfeomorphism onto its image, and induces the adapted complex structure
on T^X.

Proof. - We recall that the geodesies on the symmetric space X are the images
of one-parameter subgroups of G under TT (see [Hel], chap. IV, §3 (3)). Thus
dr(g)d7v(V) —^ gexp \^—1 V • Kc is the analytic continuation of the exponential map
of X into G^/KC as in (8.1). Since X covers a compact quotient, we can find a uniform
e as in the proposition. The map is clearly equivariant.

Remark 8.3. - Let e^ = V^^Te and let g^ be the subalgebra of g(. given by k + e^.
The Lie algebras g and g^ are said to be dual to each other (see [Hel], chap. V, §2). Let
G^ denote the connected subgroup of Gc with Lie algebra g^. Since G^ is the product
of v/^R^ and a semisimple group it is closed in Gc. The natural map from G ^ / K to
GC/KC, gK —^ gKc. is an embedding in a small neighborhood of the identity coset. After
perhaps shrinking e, the map $ identifies the fiber over the identity coset in T € X with a
neighborhood of the origin in the image of the dual symmetric space, G ^ / K , in GC/-KC-
^(Y) is locally homogeneous, in the sense that every point has a neighborhood which is
mapped to a neighborhood of the origin by an element of G^ C Gc.

Remark 8.4. - If the negatively curved factor Go/K^ does not appear in the
decomposition (8.1), then <I> extends to a global identification of TX with Gc/Kc,
and identifies TepX with the dual symmetric space G ^ / K .

Fixing 6 > 0 so that Proposition 8.2 and the Remark 8.3 following it are true, we can
now prove the main result of this section.
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THEOREM 8.5. - Let X be a complete, connected, orientable locally symmetric space. Let
q G X and Y, gY as in the beginning of this section. Then:

1. The Riemannian manifold (V, —gY) is isometric to a neighborhood of the identity coset
in a symmetric space dual to the universal cover of X.

2. The restriction of the analytic continuation of —d2^ toY xY is equal to the square of
the distance function of the Riemannian manifold (V, —gY).

Proof. - The conclusions of the theorem are local assertions about (X,g). In fact, if
an open set W in {X,g) is isometric to W in (X'\g'\ then the lift of the isometry to
the tangent bundles is a biholomorphic identification of the adapted complex structures of
T^W and TeWI\ which will identify the analytic continuation of the respective distance
functions and metric tensors. So we may replace X by its Riemannian universal cover and
assume that X = G / K equipped with a G-invariant symmetric metric.

Since G acts transitively by isometries, by the preceding remarks it suffices to prove the
theorem for q = eK. We embed X in Gc/Kc, identify T^X with its image in GC/KC as
in Proposition 8.2, and Y with a neighborhood of the origin in the dual symmetric space.

Proof of 1. - We first show that g^ extends to a Gc-invariant holomorphic metric on
Gc/Kc. By the uniqueness of analytic continuation, it suffices to show that there exists an
invariant holomorphic metric whose pull-back to X is the given metric g . Let Qe denote
the Ad(7^)-invariant inner product on e induced by the metric on X and Qe? its complex
bilinear extension to ec := e + ̂ ^le. It suffices to show that Qe? is Ad(^c)-invariant,
for then it induces a Go-invariant complex bilinear form on ^(l'o)C;c/-?Cc. which is
necessarily holomorphic, and whose pullback to X is the given metric. But the adjoint
representation is holomorphic and Qep 1s invariant under the compact real form K, so
it must be invariant under K^.

Let Qe^ be the restriction of Qe^ to ^. Then —Qe^ is a positive definite, Ad(K)-
invariant inner product and induces a G^-invariant Riemannian symmetric metric on
G ^ / K . This in turn induces a metric on V, invariant by the local G* action, which agrees
with -gY sit the origin. Thus (V, -gY) is isometric to a neighborhood of the origin in
G ^ / K , proving 1.

Proof of 2. - Recall that the group operations and the exponential mapping of a
complex Lie group are holomorphic, and that the geodesies through the origin eK in G / K
(resp. G ^ / K ) are the curves

t ̂  exp tV • K

where V G e (resp. e^) (see [He I], chap. V, §3 (3)). We will write down an explicit local
expression for the analytic continuation of d2^ near eKc and use the local homogeneity
to show that it has the desired properties.

Choose a connected neighborhood Wep of zero in ec such that the map

A c Wee 1-̂  ex? A • K^

is a biholomorphic diffeomorphism onto a neighborhood of eKc in GC/KC, and such that
the canonical projection TI-C is a biholomorphism from exp We? onto a neighborhood of
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eKc (for the existence of such a local cross section see [He I], chap. II, Lemma 4.1
and the remarks following). Choose a connected subneighborhood Ve? C We? of zero
with the property that

exp - Ve^expVe^ • ̂ c C expH^ < ^c-

We can do this because if exp A • K^ and exp B • Kc are in exp We .̂ • Kc, the map

(exp A • T^c, exp B • Kc) i-̂  exp —Aexp B • Kc

is well defined and continuous. If A, B are in Ve^ there is a unique V in We^ sucn tnat

exp —Aexp B ' Kc == exp V • J^c-

Define a function H on the Cartesian product of exp Vep • Kc, with itself by

ff(expA • Kc, expB . ̂ c) = Q(V,V}^

where V is as above and Qe? is the complex bilinear extension of Qe to ec. We will
show that H is the analytic continuation of d^.

We first claim that H is a holomorphic function. The map A i-̂  exp A • J<c provides
holomorphic coordinates near eKc, and the form Qe? is complex bilinear; so the map

expV.^c^QCWec

is holomorphic. To prove that H is holomorphic we must show that the map

(8.2) (exp A • Kc, exp B • Kc) i-̂  exp -Aexp B ' Kc

is holomorphic (as a map from expire • Kc x expVec > Kc to Gc/Kc). Since the group
operations on Gc are holomorphic and expVe^ is a complex submanifold of Gc, the map

(exp A, exp B) i— exp —Aexp B

is holomorphic, as a map from expVe? x expVec to Gc. Since the projection TI-C is a
biholomorphic identification of exp We? and exp We? • ̂ c. we can write the map (8.2) as
the composition of holomorphic maps, verifying our claim that H is holomorphic. Since
exp Ve? • Kc is a neighborhood of eKc in GC/KC, it contains the image of a neighborhood
of eK in G/I? and G ^ / K . We will show that there is a neighborhood of eK in G/J^C
(resp. G ^ I K ) such that the restriction of H to this neighborhood (*) is d2^ (resp. -d^,,
the square of the distance function on X^ := G ^ / K ) . We can find a neighborhood U^
of zero in Ve? H e a^ a neighborhood U^ of zero in k, the Lie algebra of K, such
that (V, W) \—^ exp Vexp W is a G^ diffeomorphism from ^/e x ^fc onto a neighborhood
of e in G, and such that the canonical projection maps exp^e diffeomorphically onto a

(*) (i.e., the image of this neighborhood in expVec • -^c)
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neighborhood of eK in G / K . We may further assume (shrinking Ue) that for each V G Ue,
the distance minimizing geodesic path from eK to exp V • K is

t^ exptV ' K, 0 <, t < 1.

Finally let Ve be a subneighborhood of zero in Ue, such that

exp—Ve^xpVe C expZ^e^xpZ^

We have now arranged that for A, B in Ve. the unique V in We/, satisfying

exp —Aexp B • Kc = exp V • Kc

is in e. Since the restriction of Qe^ to e is the original inner product Qe, we conclude
that for A, B in Ve.

ff(expA . Kc, expB • K^) = Q(V, V)e.

We can also find neighborhoods Ue^, Ve^ °f zero i11 ^ep n ^* ^th the corresponding
properties, since we have only used the local structure of homogeneous spaces. For A,
B in Ve^

(8.3) ff(expA . K^ expB . K^) = Q(V^ V)e^

where V G e,, and the right hand side is the restriction of Qe? to e*-
The action of G on X preserves distances so for A, B in Ve,

d^(exp A • K, exp B ' K) = d^{eK, exp —Aexp B • K)
=d^(eK, expV - K )
= square of the Euclidean length of V in e

=W^)e.

proving that H is the analytic continuation of d^. Under the identification $ of Y with
G ^ / K , expVe^ • KC. corresponds to a fiber neighborhood of zero in Y. Restricting H
to exp Ve^ • Kc we obtain the expression (8.3). On the other hand, the distance between
points in G ^ / K can be computed as above, except that the square of the Euclidean length
of V in e, is -Q(V,V)e^. D

Exemple 8.6. - X = 5^ = [x G R/^1 : x^ + • • • + ̂  = 1} endowed with the usual
metric. The complexification of Sn is the complex quadric

r\n f /- /"m+l 2 i i 2 i 1
QC = {2; c c : ^0 + • • • + ̂ n = 1 } -

The identification of T5'71 = {(^,^) C 5'71 x R?^+l : x ' v = 0} with Q^ is

(rc,^) i—^ (cosh 1'L'I)^ + \/^I(sinh H)—7.
M
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Let e o , . . . , On be the standard basis vectors of R^^ The fiber T^S^ can be identified
with the hyperbolic space form

Q(1'-) = {-^ + ̂  + • • • + ̂  = -1} n {^ ^ 1}

by the map

(a;o,rri,...,a;n) ̂  (xo, V^I î, • . . , V^lXn)'

The analytic continuation of the distance function on 5^ is
, _______>. 2

d^(z,w) = 4^ sin-1 ̂ ^(^ - ̂ z)2 ^ •

Since (sin~1t)2 is an even analytic function of t, d^,^ is an analytic function of
^(zi - Wi)2. It is invariant under the diagonal action of the complexified group
S0(n + 1,C), and so it is invariant under the action of the subgroup isomorphic to
50(1, n) preserving Q^^. The geodesic parameterized by arclength through Co in Q^^
with tangent vector ei is

t ̂  (cosh ̂  sinh t, 0 , . . . , 0).

Since Q^^ is a rank one symmetric space, all other unit speed geodesies are
obtained by the action of S0(l,n). Restricting d|n to the image geodesic w =
(cosh^)eo + v^^U13111^)6! ln Qc we °btain

^(eo, w) = 4(sin~1 -\/2-2cosht)2.
z^

Since ^/2 - 2 cosh t = -^v^Ismhl,

d^(eo, w) = -t2,

where ^ is the hyperbolic distance from Co to w.
Now, let ( X ^ g ) be a compact locally symmetric space, and let (V, —gY) be "the dual

space" considered in Theorem 8.5. We recall that

(8.4) V = Y, = {Exp^^l^ : ^ € T,X, |$| < e}

We are going to use Theorem 8.5 to establish a nice connexion between the heat kernel
of X and any good heat kernel (see Definition 8.7 below) of (V, —gY}'

DEFINITION 8.7. - We say that K^{t,x,y) G C0^"^* x Y x Y) is a good heat kernel
of (V, —gY) if the four following properties hold:

1) Ki(t,x,y) is of class C^resp. C2} with respect to t > 0 [resp. y C V].
2) For any x G V, (t,?/) —^ K^(t,x,y} is a solution of the heat equation of (V, -gY}

and J^i(t ,rr,-) -^ ^a. as t —> O"^ (weak convergence on the vector space of continuous
functions on Y: i.e up to the boundary).
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3) A T l C , - , ' ) is bounded on [l,+oo[xy x Y.
4) For any smooth partial differential operator P on Y of the first order we have:

P[K^x^)](y) ~ P^r^e-^-)/4^) as t^ 0+,

uniformly with respect to ( x ^ y ) G Y x Y.
It is well known that the heat kernel of a compact Riemannian manifold satisfies the

four properties of Definition 8.7. Thanks to Theorem 8.5, we can isometrically identify Y
with a neighborhood of the "dual" symmetric space, whose universal cover is a product
of symmetric spaces of compact and non-compact type. The noncompact ones cover a
compact quotient (see [Bo]), so if Y is small enough, it can be isometrically embedded in a
compact Riemannian manifold. Therefore, if Y is small enough, it has a good heat kernel.

The next theorem combined with Theorem 0.1 and Definition 4.3 shows, roughly
speaking, that one goes from the heat kernel E(t,x,y) of X to a good heat kernel
K^(t, x, y) of (V, -^y) modulo an exponentially decreasing term by replacing t by minus
t. Moreover, K ' = (v^l)"71^ may be used in the inversion formula (0.5).

THEOREM 8.8. - Let K^{t,x,y} be a good heat kernel of (Y, -^y). With the notations
of Theorem 0.1, there is 8 > 0 and an open neighborhood Y ' of q in Y such that for
all (x,y) G y'2 :

K^x^y) = (47^t)-n/26^^/4t ̂  u^x^y)^ + 0(exp (-6/t))

k<T-t

as t —^ 0"^, the O(') being uniform with respect to ( x ^ y ) .

Note. - With the notation of formula (8.4) we can assume that V = Y^ for some
ef G]0,6[.

Proof. - By Theorem 0.3 and equation (0.4), there exists a real p > 0 and of a function
K(t,x,y) G C7°(]0,+oo[xy x Y) which is of class C1 [resp. C2] with respect to t
[resp. y] such that (<9f - ^ )K( t , x , ' } EE 0 and:

(8.5) K^ x ^ y ) : = (V^T)71^, x, y)

= (47rt)-n/2e^(a^)/4t ̂  u^x.y^-t^ + 0(exp {-p/t))

k<T-t

uniformly with respect to (x,y) € Y x Y as t —^ 0^. But, Theorem 8.6 shows that for
{x,y) G Y x V, d^{x,y) = -d^(x,y)', moreover uo(x,x) = 1. Therefore for each
x G y we can use the exponential normal coordinate system centered at x of (V, —gY)
to see (as in [B-G-M] page 208) that K^t.x,-) — 8^ as t -^ 0+. So K^{t,x,y) is
a "fundamental solution" of the heat equation of (Y,-gY). Therefore for each x G V,
(^ y) -^ (-^i - ̂ 2) (^ x, y} is a solution of the heat equation with initial data equal to 0.
We can shrink Y so that K^ - K^ is continuous on]0 ,+oo[xyxy. Using the equation
(8.5) and the properties (see Definition 8.7) of K ^ ( t ^ x ^ y ) one checks easily the existence
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of a real 8 G]0, p\ and an open (relatively compact in Y) neighborhood Y ' of q in V and
of a positive constant G such that:

W G]0,1], V(rr^) G V x 9V, sup |^i(^^) - K^s,x,y}\ < Ce-8^.7 - 1
J^ J-J, V ̂ , /̂ ̂  ^ ± /\ ^J. , O L I p j ^ l ^ O , . ^ , ^ — — -Al-^O,.^,^

0<s<t

Using the maximum principle for the heat equation one sees easily that:

V(a^) G Y'\ K^x.y) - K^x,y)\ = 0(exp{-p/t))

as t -^ O^ The Theorem 8.9 then follows from the equation (8.5). D

9. Appendix. The Rank One Case

In this section we assume that the n-dimensional Riemannian manifold ( X ^ g ) is a
compact globally symmetric space G / K of rank one. As usual we write g = k + p where
p is the orthogonal complement to k with respect to the Killing form on g (the Killing
form B is negative definite on g). We identify the inner product space (ToG/K.go} with
(p,-B|p) via the natural projection TT : G —> G / K . Since -B\p is invariant under
Ad {K) (in fact B is invariant under Ad (G)), this identification gives rise to a G-invariant
metric on G / K which, under suitable assumptions on the pair (G,K), turns G / K into a
compact globally symmetric space of rank one. We recall that the geodesies on G / K are
the projections by TT of the one parameter subgroups of G.

The following theorem will be proved at the end of this section and shows explicitly that,
in this case, the "formal solution" of the heat equation satisfies the estimate of Proposition
3.1 and has nice geometric properties.

THEOREM 9.1. - There exists two positive constants R, P and for each nonnegative integer
j a function z —^ aj{z) holomorphic and bounded by R^j! on the open disk D(0, R) in
C such that ao(0) / 0 and F ( t , x , y ) = (47^t)-n/2e-d2^/4t E,->o ̂ (d^x.y^t3 is the
formal solution of the heat equation on the domain R^_ x {(re, y) G X x X; d2^, y) < R}:
i.e., the equations (4.3) and (4.0)^ are satisfied for each nonnegative integer k.

Remark. - The proof will provide an algorithm which allows us to compute recursively
the functions dj(z) and will show that these functions are determined by three invariants:
A, p, q, (see [He2] page 164) of the root system associated with X. In general this
expansion does not converge and the equation (9.3) of the algorithm shows that the
estimation of theorem 9.1 for the aj is probably the best possible.

Parts 1) and 2) of the next proposition give crucial geometric information for the proof
of Theorem 9.1, moreover its part 3) improves (in the case of a compact symmetric space
of rank one!) part i) of Theorem 0.1.

PROPOSITION 9.2:
1. Let L be the diameter of X. There exists an entire holomorphic function on C,

z —> b(z), such that for any x G X the normal exponential system coordinate centered at
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x is defined on {y G X : d(x^y) < L} and the Riemannian volume (in this coordinate
system) is defined by:

^detgi,(y) - b(d2(x,y})

Moreover we have b(r2) = (sm^x)p (^y^)q' ^nere tne rea^ ^ ana tne nonnegative
integers p and q are determined from the root system associated wth X(see [He2] page 164).

2. There exists a positive real J?i and a numerical function (t, s) —> K(t^ s) defined on
R^ x R+ such that the heat kernel E(t, x, y) ofX is given by K(t, d2(x, y)), and for any
t > 0 K(t^ •) may be extended as a holomorphic function on the open disk 15(0, J?i).

Remark. - In the proof of 3) (and of 3) only) we use the result of Theorem 9.1. The
fact that ^detgij(y) is a holomorphic function of the square of the distance from x to
y will be crucial in the sequel.

Proof of 1). - Fix x G X and let / be an element of K^ the identity component of
the isotropy group at x. For y in any geodesic ball about x where normal coordinates
are defined, let ~g(y) = detgij(y) where the matrix gij is expressed in normal coordinates
determined by an orthonormal frame e i , . . . , e^ for T^X. We claim that ~g o f = ~g. Since
/ is in K^, it preserves the normal coordinate system and its orientation.

Let x^(q) = g((Exp^)~l(q)^ e^x be the normal coordinates and let a; = ̂ / g d x 1 ^ ' ' '^dx71

be the Riemannian volume form. Since / is an orientation preserving isometry, f*uj = uj.
i.e.,

^/1jofd(xlof)^^d(xnof)=^.

Let y^ = x1 o f. Since / o Exp^ = Exp^ o dfx,

V\q) = 9(df^ o (ExpJ-1^ e,), = ^((ExpJ-1^), {df^e^.

Since dfx is an orientation preserving linear isometry of T^X, the y\q) are related to the
x\q) by a matrix in S0(n). Thus dy1 A • • • dy71 = dx1 A • • • dx^\ and ~g o f = ~g.

If X is a rank one symmetric space, the linear action of K^ is transitive on the unit
sphere (See [W], Theorem 8.12.2). So K^ acts transitively on the geodesic spheres centered
at x in the normal coordinate neighborhood. Since ~g is constant on each such sphere, it
is a function of the distance d(x^ y} only.

It is well known that for any x G X, the exponential map is a diffeomorphism from the
ball of radius L = diameter of X in T^X to its image (see [He2], chapter I, §4.2). As we
will see, it is easy to understand how ~g depends on d(x^ y). Since d(x^ y) is invariant under
the diagonal action of G on X x X, we may assume that x = o (= K). We recall Helgason's
formula for the derivative of the exponential map (see [He I], chapter IV, §4): for V € p,

/oc ^ \
d(ExpJ,,(y) = dr(expV) o d^ ^ .. . ̂  := dr(e^pV) o d7v(Av)

\ o (zn^ 1)' )

where Ty is the linear operator on p, ad^)2]?,
oo ^

Av = S r^.^n^1
^(2n+l)!- y?
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and T(expV) is the map: x —^ ex.pVx. Then setting x == o, y = Exp^(d7r(y)),
9/9xi\y = d(ExpJ^(y)((^), and ̂  the basis of p corresponding to e,,

g i j ( y ) = g(dr(e^pV) o dTr(Ay^), dr(expV) o d7r(AyI^))^expy).o

-^(d7r(AyE,),d7r(AyE,)),

=-B(AvEi,AvE,).

Since B is ad(g) invariant, A is symmetric. Thus

,/det^(Exp^7r(y)) = |detAy|.

We evaluate this determinant as in [He2], loc. cit., and find that there is a real number A
and integers p and q, with p + 9 = n — 1, such that

^ sin rA \ P ( sin 2rA \ 9_ / s i n r A \ P / s m ^ r A \
= ^ " r A y I 2rA JrA Y Y 2rA

where r = d(^ ?/) < L. The parameters j), q, and A are determined from the root system
associated with the X. From this it is clear that ^det^- is a function of (P{x,y} and
1) is proven.

Proof of 2). - It is well known that E(t, x, y ) is invariant under the diagonal action of the
isometry group on X x X. Fixing x and t, we get a function Ex,t{y) on X which is invariant
under the action of the isotropy group at x. By the argument above, E^^{y) depends
only on d{x,y), so there is a numerical function K(t, s) defined on ]0,+oo[x[0,+oo[
such that E{t,x,y) = K^t.d^^x.y)). Therefore for $ G T^X small enough, we have:
E{t,x,Exp^) = K(t,\^\2). Proposition 2.4 shows that for any {t,x) G R^ x X,
^ -^ £(t,.z;,Exp^) is holomorphic on a complex neighborhood (which does not depend
on (t, x)) of the origin of T°X^ using the expansion in power series in (real) ^ G T^X, we
easily see that this function is even with respect to ^. Let ( e i , . . . , e^) be an orthonormal
basis of T^X. Then, considering vectors of the form $ = $1 ei + $1 62 • • • + ^i e^ we
see easily that there exists I?i > 0 such that for any t > 0 K(t, •) may be extended as
a holomorphic function on D(Q^R^). D

Now we use the construction of the formal solution of the heat equation given in [B-G-
M], page 208. Let us fix x G X and consider a normal exponential system of coordinates
centered at x. Their function 0 satisfies the relation 9(y) = b(d2(x,y)) where b{z) has
been introduced in Proposition 9.2 (see [B-G-M], page 55).

X being compact globally symmetric of rank one, we look for a formal solution of
the form:

F(t,x,y) = (4^)-rl/2e-d2^/4t ̂ (^(.r,̂ .
j^O

The equations of [B-G-M], page 208, then show that:

(9.0) ao^,?/))-^5^2^))
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and that for each integer k > 1:

(9.1) r9,[a,(d2^^))] + (^^^-+k\ak^^[ak-l(d2{x^))] =0.

Proposition 9.2 allows us to give the following definition:

DEFINITION 9.3. - Let us fix J?2 > 0 such that there exists a function U(z) = ̂ +^ UpZ1'
holomorphic and bounded by M on the disk D{0, R^) so that for y e X close to x we have:

U(d2(x^))=d(x^)^

Let us recall that when applied to radial functions (which depend only on d{x^ y)) the
Laplacian is equal to As = --^ - (OJ/- + ^'-T1)^:- So equation (9.1) is equivalent to
the following one (with k > I):

(9.2) 2z20^k{z2) + (^U(z2) + k\ak{z2)
\zl )

= 2(n + [7(^))9,afc_i(^) + 4^afc_i(^).

Now for each nonnegative integer k let us write: ak(z) = ̂  >o ^A;,p^- Then, using the
definition 9.3 we see that for each integer k > 1 the equation (9.2) is equivalent to:

fcafc,o = 2nafc-i,i, and for each p >_ 1 :
^P-I

(2p + fc)afc,p + ̂  ̂  ̂ p-^fcj
j=0

p-i
= 2n(^ + l)afe_i,p+i + 2 ̂ (j + l)Up-j(ik-ij+i + 4(p + l)^afc_i,p+i.

j=o

It is clear that these last equations (for k ^ 1) are equivalent to the following ones:

(9.3) OA.,O =~r^k-i,i^ and for each p > 1 :
Ki

-l p-l

a^=2(2p+k)^up-jak'3

2n(p+l) 2 ^.
+ -^T^-1'^1 + 2p^k ̂ u + ̂ P-^-W

p-i

•E(
j=o

, 4(p+l)p
+ ̂ pT^T^-1^1-

Since ao(^) is given by the equation (9.0), we see that the equations (9.3) define by
induction a unique sequence of formal power series {ak{z)}k>i.

4e SERIE - TOME 29 - 1996 - N° 6



INTRINSIC MICROLOCAL ANALYSIS 735

Now we are going to prove Theorem 9.1 by using the classical method of the majorizing
series. We use the notation « as in Definition 3.2. Let us fix J?i > 0 such that
ao{z) = b^~(z) (see (9.0)) is holomorphic and bounded on the open disk J9(0,J?i) of
C of center 0 and such that:

+°° / D \ i 1(9-4) ^(SN
where R^ and M have already been introduced in the definition 9.3.

DEFINITION 9.4. - For each nonnegative integer k, we define $fc(^) = by

^(^^^•••^Gjj-
We have 9^k(^) = ^fe+i(^)- Since ao(z) is bounded on D(0, R^_) we can fix a constant
C > 0 such that ao(z) « C^o(z) and \C > 2n + 4 + j. Theorem 9.1 is a consequence
of the following proposition the easy proof of which is left to the reader.

PROPOSITION 9.5. - The formal power series ao(^), defined by the equation (9.0) and
^fc(^), k > 1 defined recursively by the equations (9.3) satisfy for each k > 0 the
inequality: dk(z) « C^1^^).

Note. - We get Theorem 9.1 by letting R = ^- and P = 2CR^.
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