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PICARD'S THEOREM, MITTAG-LEFFLER METHODS,
AND CONTINUITY OF CHARACTERS

ON FRECHET ALGEBRAS

BY J. ESTERLE

ABSTRACT. -The general question of continuity of characters on commutative Frechet algebras can be reduced to
the question of continuity of characters on some "test algebras". We discuss the algebraic structure of some quotients
U 11 where U is one of these test algebras. The notion of Picard-Borel algebra, related to the classical Picard
theorem, plays an important role in these investigations. We also use the Mittag-Leffler theorem to exhibit large
semigroups in quotients of the form A/J where A is a commutative unital Frechet algebra and I a dense, countable
union of closed prime ideals of A. We point out new algebraic obstructions to the construction of discontinuous
characters on U related to the Picard theorem, and relate to extension properties of joint spectra of finite families of
a quotient o f Z ^ a question about iteration of Bieberbach mappings raised in 1986 by P. G. Dixon and the author.

1. Introduction

In this paper we consider Frechet algebras, i.e. algebras A over C equipped
with a nondecreasing family (|| • | |)n)n>i of submultiplicative seminorms, such that
n^>iKer|| • \\n == {0}, with respect to which A is complete (when A possesses a unit
e, elementary standard arguments show that it can be assumed without loss of generality
that ||e||, = l(n > 1)).

Whether characters are necessarily continuous on Frechet algebras is still an open
problem. This question, known as Michael's problem, was raised by Michael in 1952 in
his memoir [36] where he established a structure theorem which shows that a Frechet
algebra A is isomorphic to a projective limit lim (An, On) where An is a Banach algebra
and On '. A^+i —^ An a norm-decreasing algebra homomorphism with dense range for
every n > 1 (in fact An is the completion of the quotient algebra A/Ker|| • \\n with
respect to the norm induced on A/Ker|| • \\n by the seminorm || • ||n). It follows easily
from this structure theorem that if A is commutative and unital, then the spectrum a A {x)
of any re e A is given by the formula a A {x) -=• {^ (x)} ^ where we denote by A the
set of continuous characters of A.

Despite a lot of effort by various mathematicians to solve Michael's problem, it seems
that only four significant ideas appeared in the literature since 1952.
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540 J. ESTERLE

1) Arens [2] proved in 1958 that if (ai, . . . , a^ is a finite family of elements of a unital
Frechet algebra. A, and if ai.A . . . + a^.A is dense in A, then ai.A . . . + a^.A = A. This
shows in particular that if A is commutative and unital then the joint spectrum a A (b) of
any finite family b = (&i, . . . , bk) of elements of A is given by the formula

^A(& )= {X (&1 ) , . . . ,X(^)}^A-

It follows from this fact that if A is polynomially generated by a finite set
a = (ai, . . . , an) (which means that the continuous map P -^ P (a) from C [Xi, . . . , XJ
into A has dense range) then all characters on A are continuous (this result extends to
Frechet algebras which are rationnally generated by a finite set). For example denote by
0 (M) the algebra of holomorphic functions on a Stein manifold M. It follows from the
classical embedding theorem for Stein manifolds and from Cartan's theorems [31, p. 224
and p. 243] that 0 (M) is polynomially generated by a set of 2 n + 1 elements, where n
is the dimension of M, so that characters on 0 (M) are continuous (hence given by point
evaluations f -^ f (z) for some z G M).

2) Real-valued characters on real Frechet algebras are continuous. This follows from
results obtained in 1960 by Shah [47] concerning positive linear functionals on Frechet
algebras equipped with a continuous involution. In particular if ^ is a locally compact
space such that ^ = Un>iK^ where Kn C-ft^+i is compact for every n > 1, then all
characters on the Frechet algebra C (0) are continuous.

3) Clayton produced in 1975 [9] some "test algebras" for Michael's problem, i.e.
commutative, unital Frechet algebras A such that the existence of a discontinuous character
on some commutative, unital Frechet algebra would imply the existence of a discontinuous
character on A. Craw [11] had produced in 1970 a locally multiplicatively convex complete
algebra B such that the existence of a discontinous character on some commutative, unital
Frechet algebra would imply the existence of an unbounded character on B. Other examples
of test algebras were obtained by Schottenloher [46] and Mujica [37], and a noncommutative
test algebra was given by P. G. Dixon and the author in [16].

4) P. G. Dixon and the author proved in 1986 [16] that the existence of a discontinuous
character on some Frechet algebra would imply that lim (C^, FJ / 0 for every projective
system (0^, Fn) where {pn)n>i is a sequence of positive integers and F^ : C^1 -^ C^
a holomorphic map for every n > 1. It follows immediately from Picard's theorem [41]
that if (/n)n>i is any sequence of entire functions on C there exists a sequence (zn)n>i of
complex numbers such that Zn = f^ (^+1) for every n > 1, so that lim (C^, FJ is indeed
nonempty if p^ = 1 (n > 1) (in fact if f^ is nonconstant for every^ > 1, the first term
^i of the sequence {z^)n>i can be chosen arbitrarily in /i (C), and Card (C\/i (C)) < 1
by Picard's theorem). But the "Poincare-Fatou-Bieberbach phenomenon" ([5], [26], [42])
shows that there exist entire, one-to-one maps F : C2 -^ C2, ofjacobian equal to 1, such
that F(C2) is not dense in C2. This gives some hope to construct a sequence (Fn)n>i of
entire mappings from C2 into itself such that n^>i(Fi . . . o Fn) (C2) = 0, which would
give a positive answer to Michael's problem.

There was some recent progress in the study of one-to-one (or nondegenerate) maps
from C^ into C^ with nondense range ([10], [30], [39], [40], [43], [44]), and in the
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PICARD'S THEOREM, MITTAG-LEFFLER METHODS 541

study of complex dynamics in several variables related to these map [27], [34], but the
existence of a projective system (0^, Fn), with Fn : D37^1 -^ C" entire for every
n > 1, such that lim (0^, Fn) / 0 is still an open problem. It is even unknown whether
n^iF71 (C2) 7^ 0 (the power F71 being computed with respect to the composition of
maps) for every entire map F : C2 —^ C2.

The purpose of the paper is to propose a direct attack of Michael's problem (we will be
only interested here in the commutative case, i.e. continuity of characters on commutative
Frechet algebras). We discuss in Section 2 the test algebra U. This algebra is the second
of the test algebras considered by Clayton in [9], and it is also the commutative version
of the algebra of weighted power series in infinitely many variables considered by P. G.
Dixon and the author in [16].

The algebra U is a subalgebra of CN [{X}}, the algebra of formal power series in infinitely
many (commuting) variables Xi, . . . , Xn, . . . , and it can also be interpreted, in a natural
way, as the algebra of entire functions on £°° (see the precise definitions in Section 2). Let
M be the ideal of U consisting of elements of U with zero constant term, so that M is the
kernel of a continuous character on U. Let Jn == X\.U .. .-}-Xn.U (n > 1), Joo = ^n>iJn'
Then, as observed already by Clayton in [9], the existence of a discontinuous character on
some commutative Frechet algebra is equivalent to the existence of a (nonzero) character
on the quotient algebra V = M.I Joo- It is also equivalent to the existence of a character
on the quotient algebra V (/) = U/Joo + (/ - 1)^ where / = ̂ ^ \n Xn and where
(An)n>i is any element of ^coo. These quotient algebras are described in Section 2. The
ideals Joo and Joo + (/ - Y)U are prime, and they are also "of countable type", in the
sense of [24], which means that they are the union of a nondecreasing sequence of closed
ideals of U. This implies in particular that there exists a natural injection from the set of
free ultrafilters on N into the set of maximal ideals of V (/) of infinite codimension [24].

The main new idea in Section 2 is the notion of Picard-Borel algebra. We say that a
commutative, complex unital algebra A is a Picard-Borel algebra if any family (x\)\^A of
invertible elements of A such x\ ^ C.x^ for A / JJL is linearly independent over C. Borel's
extension [7], [38] of Picard's theorem shows T-t (C), the algebra of entire functions over
C, is a Picard-Borel algebra and we deduce from this fact that the algebras U, V, V (/)
are also Picard-Borel algebras. A Picard-Borel algebra A is always semisimple, and if
x e A\C e then the cardinal of C\(TA (x) (where we denote by a A (x) the spectrum of
x in A) is at most 1.

We introduce also in Section 2 the notion of Picard-Borel ideals: an ideal I of a
commutative, unital complex algebra is a Picard-Borel ideal if the quotient algebra A / I is
a Picard-Borel algebra. A routine application of Zom's lemma shows that every Picard-
Borel ideal is contained in a maximal Picard-Borel ideal. A maximal Picard-Borel ideal
which is not the kernel of a character is of course infinite dimensional. Since the ideals
Joo + (/ - 1) C introduced above are Picard-Borel ideals of U, the algebra V possesses
a large quantity of maximal Picard-Borel ideals. The author believes that the study of
maximal Picard-Borel ideals of V should play an important role in future research about
Michael's problem (the existence of a discontinuous character on some commutative
Frechet algebra is equivalent to the existence of a maximal Picard-Borel ideal of V distinct
from M.I Joo of codimension 1).
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542 j. ESTERLE

Some properties of the algebra V might depend on axioms of set theory. If the continuum
hypothesis is assumed it follows from a general result of the author [20] that V possesses
an algebra norm. It would be interesting to check whether there exist models of set theory,
including the axiom of choice, for which the algebra V is not normable (for a discussion
of the normability of the quotients t00 /JF, where 7 is a free ultrafilter on N, see [14],
[28], [51]).

The third section is devoted to a systematic use of the Mittag-Leffler theorem to
investigate the structure of the quotient algebras A / ' I where A is a commutative Frechet
algebra and where J is a dense ideal of A. Recall that the Mittag-Leffler theorem shows
that lim {En, On) / 0 for every projective system (En, On) where En is a complete metric
space and On : En+i —> En a continuous map with dense range (more precisely, the first
projection of lim {En, On) is dense in £'i). The Mittag-Leffler theorem was used explicitely
by Arens, and by Dixon and the author to establish the results mentioned above [2], [16]
(see the comments about the theorem of Arens at the end of the paper). The result of Shah
[47] is also a consequence of the Mittag-Leffler theorem, see remark 3-8. We give a version
of the Mittag-Leffler theorem suitable for "projective systems of quotients" (theorem 3-2)
and then give various applications. For example, defining F : B1' —^ B'1 in the natural way
when F : C^ —^ C9 is an entire map and when B is any quotient of a commutative, unital
Frechet algebra A by an ideal of A, we show that lim (B^, Fn) / 0 when B = A/J, when
J is a dense ideal of a commutative, unital Frechet algebra A and when Fn : O^1 —^ <D)n

is entire for every n > 1 (corollary 3-5). This result applies in particular to the quotient
algebras V (f) discussed above, and the fact that lim^71, Fn) / 0 if there exists a
discontinuous character on some commutative Frechet algebra appears as a consequence of
corollary 3-5 (see proposition 3-6 and corollary 3-7). But these "Mittag-Leffler methods"
lead to some other new results about the quotient algebras B = A / I where J is a dense ideal
of a commutative Frechet algebra. For exemple, if we denote by TT : B —^ ^}n>lXn.B the
canonical surjection, then TT (x) belongs to the radical of B/ D^>i xn .B for every x e B
(see corollary 3-4 and remark 3-17).

Also if J is a prime, dense ideal of countable type, and if B = A / I is nonunital, then
B possesses nonzero rational semigroups (lemma 3-9). In particular the maximal ideal
J^IJoo of V has nonzero rational semigroups. Using the algebraic methods introduced by
the author [18] for his construction of discontinuous homomorphisms of C (K), we show
that the quotient algebra CN [[^]]/^N,oo contains a "big" algebra of formal power series
in ^i variables in which every elements possesses roots of all orders (corollary 3-16). The
structure of this very natural (in the author's opinion) quotient algebra certainly deserves
more investigations.

In section 4 we investigate the multiplicative structure of the set S (B) of noninvertible
elements of a quotient algebra B = A / I , where A is a commutative, unital Frechet algebra
and where J is a dense, prime ideal of A of countable type. The author showed in a
previous paper [25] that S (B) is a universal multiplicative monoid, in the sense that,
if the continuum hypothesis is assumed, every cancellative, non unital monoid without
torsion can be embedded in S (B). Using some technical results from [25] we establish in
Section 4 a deeper result, via the "lifting lemma" (lemma 4-8): if b is any nonzero element
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PICARD'S THEOREM, MITTAG-LEFFLER METHODS 543

of S (B), then ^n>lbn.5'(B) is a universal multiplicative monoid. This result applies in
particular to the quotient algebras V (/) introduced above. This multiplicative property of
the algebras V (/) shows a sharp contrast between V (/) and U, since n^i^.^/ = {0}
for every noninvertible element g of U (see remark 2-21).

The reader interested in Kaplansky's conjecture ([12], [19]) noticed some analogy
between the above results and the fact that H^ia71.?^ is universal for every nonnilpotent
element a of a commutative, radical Banach algebra 'R such that an G [a71^1.??,]"" for
some n > 1 ([21], [23]). In fact, the methods of Section 4 lead to a major simplification
of the most technical part of the author's construction of discontinuous homomorphisms
of C{K) ([19], [21], [23], [55]). This new approach is outlined in remark 4-11. The
fact that (f/7^, +) embeds in n^ia71.?^ where £ is the set of sequences of positive
integers dominated by an arbitrary given sequence converging to infinity, and where
(^n)n>i ^(^n)n>i when Un agrees eventually with Vn. could open the gate to the
construction of new models of set theory where discontinuous homomorphisms of C (K)
exist and where 2^° > ^i (the first models of this type were recently constructed by
Woodin [51] and by Frankiewicz and Zbierski [28]. In these models, 2^° = ^2).

In Section 5 we "test the test for the test algebra U\ The fact that the existence of a
discontinuous character on some commutative unital Frechet algebra implies the existence
of a discontinuous character on U, and more precisely the existence of a character \
on V such that x(Z^i ^nXn 4- Joo) = /^ where {\n)n>i in any element of ^\coo
and IJL any complex number, is based on the following simple property (see the proof
of theorem 2-7): let I be a dense ideal of a commutative, unital Frechet algebra A, and
let J°° be the set of all bounded sequences of elements of I . Then if / G ^coo, the
map a —^ f (a) is a surjective map from J°° onto A (for a precise definition of g (a) for
g G U, see Section 2; all test algebras are based on a functional calculus operating on
bounded sequences of elements of Frechet algebras). We show in Section 5 that the map
a —^ f (a) is also necessarily onto when / = Z^i ^nX^, with {\n)n>i € ^coo and
where p is any positive integer. This nontrivial fact is based on an elementary formula
(formula 5-2) which shows that if A is any unital complex algebra and p any positive
integer then every x G A can be written in the form x = ̂ p^ ^ p , where Xi € A (% < p).
It is then possible, given a dense ideal I in a commutative, unital Frechet algebra A and an
arbitrary element x of A, to find a sequence (a*i^, . . . , Xp^)m>i of elements of P such
that ^L,i x? ^———>x with some control on ||a^yn||n, and the result follows. We then

' m—^oo
produce "recalcitrant" elements of M. (the terminology is borrowed from Thomas's proof
of the Singer-Wermer conjecture [49]), i.e. elements g of A^\Zoo such that g (a) ^ InvA
for every bounded sequence of noninvertible elements of a Picard-Borel Frechet algebra
A. The basic idea of the construction is that the function z cannot be written as the sum
of the cubes of two elements of ^(C), and that if u, v e T~L(C), and if u3 + v3 is
invertible, then the family (u^ v) has rank one, so that u and v are either invertible or
identically equal to zero. These properties follow from Picard's theorem and have been
known since the last century. The last property extends easily to Picard-Borel algebras.
By using some version of normal families for the algebra U, we construct a sequence
(fn) of elements of .M, where fn depends only on the variables {Xm)m>n^ such that
fn == ^n'X^ + /^i (n > 1), where {£n)n>i is a suitable sequence of positive reals. Then
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544 J. ESTERLE

each fn is recalcitrant (theorem 5-9). We also observe that if / is a recalcitrant element
of A4 and if u = (un)n>i is any bounded sequence of elements of U such that Un + loo
is noninvertible in V for each n > 1, then / (u) + Zoo is noninvertible in V (a similar
property holds for the quotient algebras V (/). It would certainly be interesting to get more
information about the class of recalcitrant elements of M.. Also it would be interesting
to check whether there exist elements g G M\Ioo such that the ideal of A generated by
g (I00) is a proper ideal of A for some dense ideal I of some commutative, unital Frechet
algebra A (if g is such an element, there would be some hope to prove that g + Joo belongs
to the intersection of the kernels of the characters of V).

In Section 6 we discuss joint spectra. We define the joint spectrum a A (M) (often
denoted by a (M)) of a subset M of a commutative, unital complex algebra A in the
usual way. We first observe that, in general, a (M) is not given by the restrictions to M of
elements of o-(TV) for M C N (this situation occurs if and only if all maximal ideals of A
are given by the kernels of the characters of A). We then discuss the countable (resp. finite,
resp. ^-extension) property for joint spectra. These properties are equivalent to the fact that
if I is an ideal of A which is countably generated (resp. finitely generated, resp. generated
by at most p elements of A) then the spectrum of x-\-I in A / I is nonempty for every re G A.

If A has the countable extension property, and if the continuum hypothesis is assumed,
then A possesses a character (proposition 6-2). Unfortunately, if the quotient algebra A / I
has the countable extension property for some ideal J of a commutative, unital Frechet
algebra A, then the spectrum of every element of A / I is a (nonempty) compact subset of
C (proposition 6-3). So the algebras V and V (f) certainly do not possess the countable
extension property. We then discuss a question which seems crucial in order to make
progress on Michael's problem: does the algebra V have the finite extension property? If
the answer was no, this would give a finite family of elements of V the joint spectrum of
which is not given by characters of V, a big step which could lead to a successful strategy
to give a positive answer to Michael's problem. If the answer was yes, there would still
be a long way to go to build a nontrivial character on V (V indeed does not have the
countable extension property), but this would show that rip>i(.Fi . . . o Fn) (CP) / 0
for every p > 2 and every sequence (Fn)n>i of entire, one-to-one maps from Cp into
itself (theorem 6-6). Some sophisticated use of the theory of analytic functions of several
complex variables is probably needed to make progress on this question.

The author hopes that the present work will encourage some people to invest some
time and energy in order to make progress on the old standing question of continuity of
characters on Frechet algebras.

2. A test algebra for Michael^ problem

First, we introduce some notations and recall standard facts about the algebra of formal
power series in infinitely many variables. Let A be the set of all sequences a = (an)n>i
of elements of Z such that Suppa = {n > l\an / 0} is finite. Let a = (an)n>i and
(3 = (/?n)n>i be two distinct elements of A, and let m > 1 be the largest integer such
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PICARD'S THEOREM, MITTAG-LEFFLER METHODS 545

that am ^ /3m. We define an order relation on A by setting a < (3 if Oira < /3m- Clearly,
(A, <) is a linearly ordered group.

Now set S = {a = (ajn>i <E A|o^ > 0(n > 1)}, and, for k > 1, Sj, = {a G S\
Suppa C {1, . . . , fe}}. Then S = U^fi^, and (5^ <) is isomorphic to (Z+) fc equipped
with reverse lexicographic order. If a G 5^, /3 < a then /? e Sk, and so (5\ <) is
well-ordered.

We denote by CN [{X}} the algebra of formal power series in infinitely many variables:
CN [[X]} is the linear space C5, equipped with the product topology and with the usual
convolution product (/a) (^a) = (S/?+-y=a fft9^'

Fora=(a^>i C S set |a| = E^=i o-n, so that |a+/3| = IO-H/?] (a,/3 <E 5), and for
/ = C/a)a€5 e CN [[X]], n > 1, set ̂  (/) = E IU The given topology on CN [{X}}

aCSn

is the topology defined by the family (j»n)n>i, and so CN [{X}} is a Frechet algebra.
For a, /3 G 5 denote by 6a,(3 the usual Kronecker symbol. Set X13 = (^a^)aes.

Clearly, X^ = X^X^ (/?, 7 <E 5), the family (f^X^^s is absolutely summable
in CN [[X]] and / = Eaes ̂ xa for ^Y / = C^e5 e CN [[X]]. If we denote by
0 G S the null sequence then 1 = X° is the unit element of CN [{X}}. The character
Xo = Y^a^s fa^ ~^ fo ls ^ unique continuous character of CN [[X}}, and so
Sp(/) = ̂  (/)} for every / G CN [[X]]. Hence, as is well known, CN [[X}} is a local
ring and its unique maximal ideal is .MN = Ker^o. For / = ^^5 faX^ C CN [[X]].
set Supp/ = {a G 5|/a / 0} and for / + 0 set v (/) = inf(Supp/). Let /, g be two
nonzero elements of CN [{X}} and let a = v ( / ) , / ? = v (g). Then 7 + 8 > a + /3 for
7 G Supp/, ^ G Supp^, (7, 6) / (a, /3) and ̂  ^ 0, v (fg) = a + /3 = ^ (/) + v (g).
In particular, CN [[X]} is an integral domain.

Set pm = (^m,n)n>i, ^m = X^. If a G 5, then X- = X^ ... X^. Now identify
Sk with (Z+) fc . Then the algebra {/ G CN [[X]]|Supp/ C Sk} becomes C^ [[X]], the
usual algebra of formal power series in k variables. The map Trj, : Z^e5 fa ̂ a ~^
Y^ g faX^ is a continuous homomorphism from CN [[X]} onto C^ [{X}}, and this
is "also true for 7r^n : Cn [[X}} -> Cfc [[X]] defined in a similar way for n > fe. It
is easy to see that 0 \ f —> (TT^ {f))k>i is a topological isomorphism from the algebra
CN [[X}} onto the projective limit lim (Cfc [[X]}, 71-^+1) = {fk)k>i ^ Y[k>i ̂  [[X}]\fk =
7Tfc , f e+ l (A+l ) ( f c > 1)}-

The structure of closed ideals of Ck [[X]} is well-known (see for example [52, p. 260]):
every ideal of Ck [[X]} is closed and finitely generated. This is not the case for
CN [{X}}: if we set J^n = XI.CN [[X]] . . . + X^.CN [{X}} (n > 1), ^oc = U,>iJN,n
then ^N,00 is dense in M^, but ^N,00 £ A^N. Also if ^i, . . . , ^fc ^ ^N,00 then
^I.CN[[X]] . . . +^.CN[[X]] C jN,n £ ^N,n+i for some n > 1, and so JN,OO is
not finitely generated. Now let / ^ 0 be an element of CN [{X}} and let g G [/.CN [[^]]]~.
These exists a sequence (fap)p>i in CN [{X}} such that g == lim /./ip, and so TI-A; (5') =
lim TTfc (/) TTfc (fap). Since all ideals are closed in Ck [[X]} there exists ̂  G CA; [[X]] such

J?—>00

that TTfc (p) = TTfc (/).^fc. Let r > 1 such that TIV (/) ^ 0, so that TT^ (/) 7^ 0 for k > r. Then
7Tfe,fc+l (Hfc+l)'^ (/) = ^fc+l [TTfc+l (/)-^fc+l] = 7Tfc,fe+l [TTfc+l (^)] = TTfc (^) = Hfc.7Tfc (/)

and so Uk = 7Tfc,fc+i (^fc+i) (^ > ^)-
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546 j. ESTERLE

Set Vk = Uk for k > r, ̂  = TT^ (^) (fc < r). Then (^)fc>i e lim(CN [[X]], Tr^+i),
and so there exists z; G CN [[X]] such that TT^ (v) = ^ (fc >T). Since TTk(fv) =
^k (f) Vk = TTfc {g) for each k, g = fv and we see that principal ideals of CN [[X]] are
closed.

The author does not know whether finitely generated ideals of CN [{X}] are closed
in general. Nevertheless the ideals J^^ are indeed closed, since J^k = {f e
A^ISupp/ H Vk = 0}, where Vk = [a G 5|Suppa H {1, . . . , k} = 0}. Clearly,
if a + (3 e Vk, then a e Vk and (3 G Vk. It follows from this observation that
6k '' Sacs faX0' -^ SaeVfc ^ xa is a homomorphism. We have Ker(9fc == J^N fc,
Im(^) = {; e CN[[^]]|Supp/ C Vfc}. For a = (a^>i € 5, set T, (a) = (/3,),>i
where /?i . . . = ^ = 0 and where /?„ = On-k for n > fc + 1. The map ^^^5 f^ X0' -^
Eae5 ̂  xrk (a) is an isomorphism from CN [{X}} onto Im (0k). Hence CN [[^]]/^N,fc is
isomorphic to CN [[X]}, and J^^ is a prime ideal for each k > 1. So ^N,00 = ̂ k>iJN,k
is also prime.

The following notion was introduced in [24].

DEFINITION 2.1. - An ideal I in a commutative Frechet algebra A is of countable type if
there exists a nondecreasing sequence (In)n>i of closed ideals of A such that I = Un>iln'

It follows then from the above considerations that we have the following result.

PROPOSITION 2.2. - The ideal ^N,00 is a prime ideal of countable type in CN [[X]}, and
JN,OO is dense in A^N-

The structure of the quotient algebra CN [[^]]/^N,oo, which is of course a local ring,
will be investigated later. We now turn to a test algebra for Michael's problem. This
algebra is isomorphic to the second test algebra introduced by Clayton [9]. It is exactly
the commutative algebra discussed by P. G. Dixon and the author in [16].

DEFINITION 2.3. - Set U = {/ = E.es foX- e CN[[X]]| ||/||, = |̂  /,|nH <
+00 (n > 1)}, J^ = U^>iJ^ where Jn = X^U ... + Xr,U, and M = {f =
Zaesf^X- G U\f, = 0}.

It follows from the definition of U that (U, (|| • | |n)n>i) is a commutative, unital
Frechet algebra and that the injection U -. CN [[X]] is continuous. Also if Xi.f e U, with
/ € CN [[X]], then / e U, and it follows easily from this observation that Jn = J^n^U.
So each Jn is prime and closed, and J^o = J^, oo H U is a prime ideal of countable type
in U. This ideal is dense in M and distinct from M, since ̂ ^ x^ ^ -M\Joo.

Recall that a sequence (an)n>i in a commutative Frechet algebra (A, (|| • \\m)m>i) is
said to be bounded if sup \\an\\m < +00 for every m > 1.

n>l

If a = (an)n>i is a bounded sequence in a commutative unital Frechet algebra and if
^ = (oin)n>i G Sk set a0 = a^ . . . a^ (with the convention x° = 1 for every x e A).
This definition does not depend on the choice of k and if we define the product of bounded
sequences in the obvious way we see that the map (a, a) -^ a0' obeys the usual rules for
exponents. If / = ̂ ^ ̂  X^ G U then the family (/„ a^^s is absolutely summable,
hence summable, in A. The following result follows from the definitions.
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PROPOSITION 2.4. - Let A be a commutative, unital Frechet algebra and for V C A let
V00 be the set of all bounded sequences of elements of V. For f = ̂ aes fa ̂ a G ̂
a = (an)n>i ^ A°° set f (a) = ]^^ /a ^a. Then the map 0a : / -^ f (a) is continuous,
and 0a(Xn) = an{n > 1).

For z = {zn)n>i € C00 define / {z) as above. The following easy proposition can be
found in [9].

PROPOSITION 2.5. - Set Xz (/) = f(z) {z ^£°°, f eU). The map z -^ Xz is a bijection
from I00 onto the set U of continuous characters ofU, which is a homeomorphism between
the w*-topology on I00 and the Gelfand topology when restricted to bounded sets. Also,
U is semisimple.

The nontrivial fact in proposition 2.5 is the semi-simplicity ofU. An easy way to prove
it is to remark that U is a subalgebra of the group algebra (1 (A). The dual group of A
(we consider A as a discrete group) is the compact group r1^, where we denote by F the
unit circle. Hence if / (z) = 0 for every z C F^ with / G U, then the Fourier transform
of / vanishes, and so / = 0.

If A is a commutative, unital complex algebra and if a = (a^AcA is a family of elements
of A we will denote by E^A ^-A the set of a11 finite sums ^1^1 • • • + ̂ k^k where
Ai, . . . , \k ^ A, -ui . . . Uk € A. The joint spectrum of the family (O^ACA is then the
set a A (a) = {(^OA€A e CA| EAGA (^ - ^A.I) A $ A}. We will write a (a) instead of
O-A (A) when there is no risk of confusion.

For L C U we set Z(L) = {z e i°°\f' (z) = 0(/ G L)}. If g = (g^ . . . , ^) G U\
z C i°°, we set g (z) = (^i (z), . . . , gk (z)).

COROLLARY 2.6. - For 1 < m < oo let TTrn \ U —> U/Jrn be the canonical map,
and for m G N set ^ = {z = (Zn)n>i € i°°\z^ . . . = Zm = 0}. Then for every
9 = (^i, • • • , 9k) ^ ̂  ^e have a (71-00 (^i), . . . , TToo (^)) = ^m>i9 (0 {k > 1).

Proof. - Set TVm (g) = (^m (gi), . • . , TTm (^fc)) (1 < rn < oo). Since Joo = U^>i^n,
we have a (71-00^)) == n^>ia (TT^ (g)). A basic result of Arens [2] shows that if
a = (ai, . . . , a/c) is a finite family in a commutative, unital Frechet algebra A, we have
O-A (a) = {^ (ai), . . . , x (ftfc))^eA' where we denote by A the set of continuous characters
on A. We have Z {Jm) = Z ({Xi}) ... H Z ({Xm}) = C. and so continuous characters
on U / J m have the form TT^ {h) -^ h(z) for some z G C- Hence a (^rn (g)) = 9 (0
(m > 1) and the results follows.

The algebra U is a test algebra for Michael's problem, in the sense that if there
exists a discontinuous character on some commutative Frechet algebra, then there exists
a discontinuous character on U. A very short proof on this fact can be found in [16].
Clayton [9] proved more precisely that if there exists a discontinuous character on some
commutative Frechet algebra, there exists a nonzero character on the quotient M/Joo.

We summarize these facts, in a slightly more precise form, in the following statement
(we denote by coo the set of all x = (xn)n>i ^ C^ such that Supprr = [n > l\Xn ^ 0}
is finite).
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THEOREM 2.7. - Let \ = (\n)n>i G ^\coo, and let f = E^=i \^X^ The following
properties are equivalent

(1) There exists a discontinuous character on some commutative Frechet algebra A.
(2) There exists a discontinuous character on U.
(3) There exists a (nonzero) character on the quotient algebra M/Joo.
(4) There exists a character on the quotient algebra U/J^o + (/ - 1)^.

Proof. - The result is essentially contained in [9], but we give a proof for the sake of
completeness. Since Joo is dense in M, and since discontinuous characters on A extend
to A Q C e, the algebra obtained by adjoining a unit to A if A is nonunital, it suffices
to show that (1) implies (4).

Assume that (1) holds and let (rip)n>i be a strictly increasing sequence of integers such
that A^p 7^ 0(p > 1). Set fip = A^, and let \ be a discontinuous character on A. Set
I = Ker^. Since I is dense in A, we can construct by induction a sequence (ep)p>i of
elements of J, which satisfies the condition:

lli-SL^JI^111^1^^10^^).

For p > 1 we have ||1 - ELi ej|^ < 1^1, and so the series E^=i en converges in A,

andE^i en = l.Also ||e,||,_i < ||1-E^1! ̂ llp-i+l|l-ELi ^nll. < ̂  > 2).
So if we set a? = ̂  ^e? (p > 1), we see that \\ap\\^ < ||ap||p_i < 1 for p > m + 1,
and the sequence (ap)p>i is bounded in A. Now set bn = 0 if n / rip for every p > 1,
and &np = ^p (p > 1). Let 6 = (6n)n>i. Set (^ = ^ o (9^, where we denote as above by Ob
the map g -^ g (b) [g G ^/). Then (p is a character on ^, (^ (X^) = ^ (6^) = 0 (n > 1)
and so J^ C Kery. We have ^(/) = x (E^=i A.&n) = x(EF=i 6?) = x(l) = 1.
Hence ̂  + (1 - f)U C Ker^, and the quotient algebra UfJ^ + (1 - f)U possesses
a character. This concludes the proof of the theorem.

We now wish to investigate the algebraic properties of the quotient algebras UjJ^ and
UlJoQ + (/ - 1)U, the notations being as in theorem 2.7. Clearly, the algebra U is in
some sense an algebra of entire functions on i°°. The following easy proposition gives a
connection between U and analytic functions of several complex variables.

PROPOSITION 2.8. - Let 0 C C^ be open, and let

g : n ̂  i°°

u -. (gn (n))n>i

be a map -which satisfies the following conditions
(i) gn '' ^ —> C is analytic (n > 1).
(ii) For every compact set K C 0, there exists MK > 0 such that sup \\g {u}\\^ < MK.

u^K
Then f o g : ^l •—> C

u —> / (^(^)) is analytic for every f G U.
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Proof. - Let / = E^s ̂  xa G ̂  For P ^ 1 set ^ = ^a^, ^ xa- Then fp 0 9
is analytic for every p > 1, and {fp o g) {u) -^ (/ o g) (u), uniformly on compact subsets
of 0. So / o g is analytic.

It is easy to deduce from corollary 2.6 and proposition 2.8 that the cardinal of C\a (/)
(resp. C\a(7Too(/)) is at most 1 if / i C.I (resp. TT^ (/) ^ C.I), by using Picard's
theorem. In order to obtain some more precise information, we introduce the following
notion:

DEFINITION 2.9 - Let A be a commutative, unital complex algebra and denote by Inv A
the group of invertible elements of A. We shall say that A is a Picard-Borel algebra if
every family {x\)\^ of elements of Inv A such that x\ ^ Cx^ for A, p. G A, A ^ fi
is linearly independent over C.

The following observation essentially goes back to Borel [7].

PROPOSITION 2.10. - Let Abe a Picard-Borel algebra, and let x C A. Ifx ^ C.I, then
the cardinal of C\(TA (x) is at most 1. In particular, A is semisimple.

Proof. - Let x G A be such that {a, b} H a A (x) = 0, with a ^ 6. We have

{x - a.l) + (6.1 - x) + (a - 6).l = 0.

Since a - b / 0, the family (x - a.l, x - 6.1,1) is linearly dependent. Hence one of the
pairs (x - a.l, x - 6.1), (x - a.l, 1), (x - 6.1, 1) has rank 1. But this shows that x G C.I.
Now if x G Rad (A), the Jacobson radical of A, then certainly a A (x) = 0, and so x = 0.

The exponential map on a unital Frechet algebra A is the usual map x -> e" = E^=o ^r-
We will denote by exp A the range of the exponential map.

PROPOSITION 2.11. - The algebra U is a Picard-Borel algebra, and exp U = InvZ^.

Proof. - Let / = Eaes ̂ xa e Inv^' For t e t05 1! set 7^ =

- (Eac5 1 '̂ ̂  xa)- Then 7 : [°. 1] -^ ̂  is continuous. Also 7 (t) (^) = ̂  f (tz) -^ 0
for ev^ry z C ^°°, and so 7 (t) G InvZ^ for every t G [0, 1]. Since 7 (0) = 1, it follows
from [15, corollary 2.5] that 7(1) G exp U, and so / G exp(Z^).

Borel's theorem [7] shows that 7^(C), the algebra of entire functions on C, satisfies
definition 2-9. It is well-known that ^(C^) is also a Picard-Borel algebra for every
p > 2. To see this consider /i, . . . , fk G U (C^) and assume that e^ + ... + e^ = 0.
Then for every z, u <E V there exist %, j G {1, . . . , fc}, with i < j, such that the
function A -^ /z (z + A^) - /j (z + Xu) is constant on C, by Borel9 s theorem. Set
df = ^dz^ . . . + J ^ d z p for / G ^(C^). Then df, (z)(u) - df,{z)(u) = 0, and

C2^ = Uz<, »z,J where ̂ 3 = {^^ u) G C2P I ̂  (;2;)(n) = ̂  (^)(n)}• But it follows

from standard properties of analytic sets [31, p. 9] that we then have C2^ = f^ij for some
pair (%, j) with i / j; so /, - fj is constant, and U (C^) is a Picard-Borel algebra.

Now let ^i, . . . , gk G Z^, with k > 2, and assume that gi - gj ^ C ' 1 for i ̂  j. Then
there exists H^ and z^j G ^00 such that

9i (uij) - 9j (^,j) 7^ ̂  (^,j) - ̂  (^X^ <k, j <k, i< j ) .
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Set p = k{k^ and for (A, /,) e C223 with A = (A^),<,<fc, /^ = (/^),<,<fc, s < k set

fts (A, jj) = gs (Y^ (A^- • ̂  + /^- • Vij)).
i<j

It follows from Proposition 2-8 that hs € T-L (C2^), and it follows from the construction
of the function hg that hs - hs' is not constant for s / 5'. Hence ^^i e^ 7^ 0 in
7^ (C2^), and afortiori ̂ ^=1 egs / 0 m ^- This concludes the proof of the proposition.

We now wish to extend Proposition 2-11 to the quotient algebras U/Joo and
U/Joo + (/ - l)^/, the notations being as in Theorem 2-7.

Notice that if I is an ideal of a commutative, unital Frechet algebra, if a G A and if
h G I , then e^ - e" = ea (e^ - 1) G J. So if we denote by TT : A -^ A / I the canonical
map, we can define the exponential map on A / I by the formula e^ = TT (e^a G A),
even if J is not closed.

DEFINITION 2.12. - (1) A Picard-Borel ideal of a commutative, unital complex algebra A
is an ideal I of A such that the quotient algebra A / I is a Picard-Borel algebra.

(2) A logarithmic ideal of a commutative, unital Frechet algebra A is an ideal I of A
such that exp (A/J) = Inv (A/J).

LEMMA 2.13. - The union of a chain of logarithmic ideals of a commutative, unital
Frechet algebra A is a logarithmic ideal of A.

Proof. - Let (I\)\^A be a chain of logarithmic ideals of A, and let I = UA(-A ^ x '
Denote by TT (resp. TT\) the canonical map A —> A / I (resp. A / I \ ) . Let x e A be
such that 7r(x) G Inv (A/J). Then there exists y G A such that TT (re) • TT (y) - 1 C J,
and so TI-A (^) G Inv(A/./A) for some A G A. Hence there exists u G A such that
TTA (^) = e^^ = TTA (e"), and so TT (^) = 7^) = e^).

LEMMA 2.14. - 77^ union of a chain of Picard-Borel ideals of a commutative, unital
complex algebra A is a Picard-Borel ideal of A.

Proof. - Let {I\}\^\ be a chain of Picard-Borel ideals of A, and set I = (JAGA ^A- The
notations for quotient maps being as above let {xt)t^T be a family of elements of A such
that7r(r^) ^ C-TT {x^} fort ^^•I f7r7r(^ i ) - - -+7fc-7r(^J = 0, where 71, . . . , 7fc G C,
ti, . . . , tk G T, t, 7^ ^ for z ^ j, then 71 • TT^ (a;^). . . + 7^ • TTA (a;tj = 0 for some A G A.
Since TT (a;tj ^ C • TT (a;^.) for i -^ j, we have afortiori TI-A (^tj ^ C • 7r\ (xty) for % ^ j,
and so 71... = 7fc = 0, since the quotient algebra A / I \ is a Picard-Borel algebra. Hence
the family (TT (xt))teT is linearly independent, and A / I is a Picard-Borel algebra.

We deduce immediately from Zom's lemma the following corollary.

COROLLARY 2.15. - Every Picard-Borel ideal is contained in a maximal Picard-Borel ideal.
By maximal Picard-Borel ideal, we mean of course a Picard-Borel ideal J in A which

is not properly contained in any Picard-Borel ideal of A. If follows immediately from
Proposition 2-10 that if J is a maximal ideal of A which is also a Picard-Borel ideal, then
J is the kernel of a character of A.
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We now turn to a version of Taylor's formula for the algebra U. Unfortunately, the author
was not able to find such a statement available in the literature. For a = (an)n>i <= S,
set a\ = n^=i (^n O? wlt^ ^e usua! convention O! = 1.

We will write a > /3 when On > Ai for every n, and in this case we set
a - f3 = (an - Ai)n>i. If A is a Frechet algebra, and if a = (an)n>i? b = (&n)n>i
are bounded sequences of elements of A, we set a + b = (a^ + bn)n>i'

LEMMA 2.16. - For a, /? G 5 set
^(X^O if 0^a

9- (X/3) = —3—— X^ if /3 > a;
(/3-a)!

TT^n r/i6? /am^ (/^(X^))^ ^ absolutely summable in U for every f =
Y,^s f^X^ C U and every a G S. Moreover if ^e set 9°" f = E/3e5 UQoi (x/?)
and if A is a commutative, unital Frechet algebra, then the family ( v ^w 6a)^ ^ is

absolutely summable in A for every f (E U and every a, b G A°°, and we have

f^-T.^-
aCS

Proof. - For a, 0 G 5', (3 > a, n > 1 we have

|| 9" (X^) ||n < n1^"1 I /? I1"1 < ̂  • | /3 I1"1 < K (n, a)(n + l)^

for some A: (n, a) > 0, and so the family (^ Q0' {X^))^s is absolutely summable for
every / = E^s ^x/3 ^ uf

Now let / = E/36S ̂  x/3 e ̂ ' and let a = (^^^i^ b = (^)p>1 G A00- Let ( I I ' l ln)n > l

be the sequence of seminorms which defines the topology of A, fix n > 1 and let m > 1
be such that || a? \\n < m, || bp \\n < m for every p > 1.

Now consider the family
, . ^(/3+7)! . B ^\
( ,̂ 7)^, 705 = ( ~7n~T~ f^ a ' b )

\ P ' I • / /3 ,7€5

We have

l || (/3+7)! . ,/3 ^ < (^+7)! , , ,|̂ |
l^^lln^ ~|^v^^f^ ) < "aTTr IJ/3+71

For a C S, Supp a C {1, . . . , k} we have

S ^7 =(i+ir . . . (1+1)^-21-1
/3+7=a p '7 '

and so if L C S x S is finite we have

^ ||^||n<^ |/.|(2m)H=||/||2^.
(/3,7)=L ^CS

This shows that the family (u^^^^^s is absolutely summable in U.
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We have

and so

J. ESTERLE

E u^^= fa^a-^-b)0' for 0^5',
/?+7=a

E ^-E^^6)'-^^)-
(/3,7)<E5 a€5

Also the family (^^5 u^^^^^s ^s absolutely summable, and we have

EC^^ E ̂ /^^(^^-',7^ — / ^ "'P,7
705 /3eS /3,7€5-V^ y^,^ ^ .-V<=.<?

But

6^E^^ ̂  E^
/3CS 7-

'+7
(/3+7)!

V3(E5 /?!
^

67

7 , E^'97^6) (
be5

(^^M,,

which concludes the proof of the lemma.
Notice that it follows from the lemma that / = Y,^g Qa ̂ Q} • X^ for every / G U

(here we denote by 0 the zero element of £°°).
00

LEMMA 2.17. - Let (\n)n>i ^ ^\Coo and let f = ̂  \n Xn. For m > 1 set
n=l

Um = {g ^ U | 9°" g (0) = 0 for Supp a H {1, . . . , m} / 0}.

Then Urn ^ isomorphic to U and we have the following properties
1) Set Y = (Yn)n>i where Yn = 0 (n < m), Yn = Xn (n > m + 1). Then the map

QY '' 9 —> 9 (Y) is a homomorphism from U onto Um, and Ker (9y == J^.
2) // \m / 0 set Z = (Zn)n>i ^here Zn = 0 (n < m - 1)

Zm = -r- - E T2" xn? zn := xn {n>m-\-1).
Am n=m+l Am

Then Oz '' 9 —^ 9 (Z) is a homomorphism from U onto Urni and Ker Qz =
Jm-l+(/- 1)^.

Proof. - Set T = {a = (a^)^>i G 51 Supp a H {1, . . . , m} = 0}, and set
(7 = {X^m)n>i so that (7 e ^00. For a = {an)n>i, set a (a) = (/?n)n>i, where
(3n = 0(n < m), /3^ = a^-^ (n > m + 1). Clearly, a : S -^ T is a bijection. Also
a ! = a (a) !, | a (a) | = | a | and If = X0' ̂  (a ^ S).

For g G U^ we have

^(.)=E^^)•^(°)•^—^ a!
Q-65

So 0^ (g) G ̂  and || 6u (g) \\n = || g ||n (^ > 1). If h = Eaer ̂ ) • ̂  ^ ^m, then
^ = Sae5 a! ' X^ ^ U, and (9[/ (^) = ft. Hence Ou '• U -^ Um is an isomorphism
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of Frechet algebras. We have Y o i = O i f a ^ T , Y a = X a i f a ^ T . Hence Qy (U) C Um,
and 0Y\Um is the identity map, so that Oy (U) = Um' Since (9y (Xn) = 0 for n < m,
Jrn C Ker(9y. Now set X = {Xn)n>i and let g G Ker(9y. It follows from lemma 2-16 that

,m V- ^^Y)g = g (X) = ̂  —^— (A - V) .
Q^O

But (X - V^ = 0 if a ^ 5w and (X - Y)0' = X^ if a G 5^. Hence ^ e ^n, which
concludes the proof of (2).

We have Zn C Um (n > 1), and so ̂  (ZQ C ̂ . Again, 0, \u^ is the identity map and
so 6, (U) = Um. We have 0, (Xn) = 0 (1 < n < m - 1), and

00 00

0,(/)=^ \nZn=\mZm-^- ^ AH ̂ n = 1.^TH •"m 1 / ^ "n ^^n
n=m-\-l71=1

So J^_i + (/ - 1)U c Ker (9^. We see as above that if g G Ker 0^ then
^ = ^aes^ ^^ (X - ZY, by lemma 2-16. It also follows from lemma 2-16 that

a^O

^^(^)^9ag(Z} -EE
aCS

a'.
x'

a;
< +00

a€5'

for every n. Set as before pk = (^,n)n>i and set A^ = {a = (an)n>i € 5' | Ok / 0,
Q / n = 0 ( l < n < f c - l } . I f follows from the above inequalities that the family
( Q Q ' ̂  (X - Z)"-^} is absolutely summable in U for 1 < k < m So there
exist fai, . . . , hm G U such that

m m-1 -, r rn-1 1

^ = y(Xfc-Zfc)-^= Y"x^+—/4n L f - i - ̂  A,xJ G^-i+(/-i)^.
^ fc=i Am L fc=i J

This concludes the proof of the lemma.
Now for ^ c l o o s e t f l - L = { f e U \ g ( z ) = Q ( z e 0)}.

COROLLARY 2.18. - The notations being as in lemma 2-17, we have Jm = [̂ ]"S

Jm-i + (/ - 1) U = [C-i H Z {f - 1)]^ (m > 1).

Proof. - Let p be the smallest integer such that \p / 0, p > m. Set Yn = Xn for n / p,
n / m, Vp = X^, V^ = Xp, and V = (yn)n>i.

The map y? : g —> g (Y) is clearly an isomorphism from U onto itself, and the quotient
algebra U/Jrn-i + (/ - 1) U is isomorphic to the quotient algebra U/Jm-i + (^ (/) - 1) ̂ ,
hence isomorphic to M by lemma 2-16. Now let J be one of the ideals considered in the
corollary, and let TT : U —> U / J be the canonical map. Then UjJ is isomorphic to U, and
so UfJ is semisimple. So if g <E Z (J^, then cr (TT (g)) = g[Z {J)} = {0}, TT (^) = 0,
and g ^ J . This proves the corollary.

THEOREM 2.19. - Let (\n)n>i C ̂ \c^ an^ /^ / = ̂ ^i A^ X,. Then Inv (^/j7oo) =
exp(^/^oo), Inv (M/Joo + (/ - 1)^) = exp(M/Joo + (/ - 1)^), r^ ̂ ^ Joo ^d
Joo + (/ - 1)^ are Picard-Borel ideals and J^, + (f - 1)U is a dense, prime ideal of
countable type of U.
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Proof. - This follows from lemma 2-13, lemma 2-14 and lemma 2-17.

COROLLARY 2.20. - Let f be as in theorem 2.19. If we assume the continuum hypothesis,
then the following assertions imply each other

(1) There exists a discontinuous character on some commutative Frechet algebra.
(2) There exists an algebra norm on the quotient algebra U/ Joo + (/ — 1)U.

Proof. - A commutative unital normed algebra always has a character, and so it follows
from theorem 2.7 that (2) implies (1). Now assume that (1) holds. By theorem 2.7,
U / J o o + (/ - 1)U has a character. Since U / J o o + (/ - \}U is an integral domain, by
theorem 2.19, it follows from [20, Corollary 5.3] that there exists an embedding from
U/ Joo -}- (f — 1)U into some Banach algebra if the continuum hypothesis is assumed.

Notice that if the continuum hypothesis is assumed then the quotient algebre Uf Joo has
an algebra norm. It would be interesting to investigate the dependence of this property
on the continuum hypothesis. There exist models of set theory for which if T is any free
ultrafilter on N, the quotient algebra i°° fT is not normable [14], [50]. Recently, models
of set theory for which 2^° = ̂  and for which (°° / ^ F is normable for some free ultrafilter
T were constructed [28], [51]. The author believes that there exist models of set theory
in which Uf Joo is normable, but in which for any free ultrafilter T on N, the quotient
algebra £°° fT is not.

The multiplicative structure of the quotient algebras U / J ^ and UjJ^ + (/ - V}U will
be investigated in the next sections. We conclude the present section by a few observations,
which show in particular that the multiplicative structure of U/Jrn and U / J m + (/ - 1) U
(which are isomorphic to U for m > 1) is rather poor. Also the notion of logarithmic
and Picard-Borel ideals are unrelated.

Remark2.21.-l) ^\ gi...gn-MN = (0) for every sequence (gn)n>i of elements of M^.
n>l

2) n ^ ' U = {0} for every g G U\lw U.
n>l

3) There exists a commutative, unital Picard-Borel Frechet algebra such that Inv A is
connected and such that exp A ^ Inv A.

Proof. - For g G MM, g / 0 set V (g) = {a ^ S \9a g (0) ^ 0} and
k ( g ) == mfaev(p) | ̂  |. If 9n ^ 0 for every n, then k ( g ) > n + 1 for every nonzero
g ^ g i ' "gn-M^, which proves (1).

Now let g G U\lwU, and let Za G Z (g). For h G rin>i 9" ' U , z (=. i°°, the entire
function F : s —> h {zo + s (z — Zo)) has a zero of infinite order at Zo. Hence F == 0 and
h(z) = 0(z G f.00) so that h = 0.

Now let A be the algebra consisting of entire functions / on C such that the
sequence ( / (2zp7r) )p>i is convergent. For / G A, n > 1 set || / \\n = max
[^PH^n \f{2} ^Pp^i |/(2^7r)|].Routinevertificationsshowthat(A,(|| • | | n )n> i ) i s a
commutative, unital Frechet algebra. Since Inv A c Inv (H (C)), A is also a Picard-Borel
algebra.
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Let / (E InvA, and fix n > 1. Set i = lim^oo / (2%p7r). Since / G InvA,-^ ^ 0 and
by using a suitable branch of the logarithm on a neighbourhood of i we can construct a
convergent sequence (Xp)p>i such that e-^ = / (2%p7r) (p > 1).

It follows from the theory of Weierstrass products that there exists g G H (C) such that
Z {g) = {2ip/Jv}p>n-}.l, and by a standard interpolation result there exists h G U (C) such
that fa (2%p7r) = Ap (p > 1). Clearly, ^ and ^ are elements of A.

Let ^ G ^(C) such that eu = /, and for | z \ < 27r (n + 1) set q(z) = ^j^^ .
By using the Taylor series of q at the origin we see that there exists a sequence
Om)m>i of polynomials such that pm (^) -4 Q^) uniformly for -| z \ ̂  27 rn . Set
^m = gpm-^h(m > 1). We see that Vm ^ A° and that || e^ - / ||n ^^ 0. Hence
InvA C [expA]" is connected [15].

Now let y? : ^ —^ e^ be the usual exponential function. Then (p G Inv A, and it follows
from the definition of A that ^ / e" for every u G A (in fact (/? / ^ for every v G A
and every fc > 2).

Notice that if w C ^(C) satisfies a;(2^7r) = 2 % ( p ! ) 7 r ( p ^ 1) and if we set
Vt G e^(t € Q) then ('yt)teQ is a rational subgroup of InvA, but ^ ^ exp A for
every t ^ 0.

The general link between invertible elements and exponentials in commutative Frechet
algebras was described by Davie in [15]. InvA n [expA]" is the component of the unit
element in Inv A, and / G A belongs to exp A if and only if there exists a continuous
path 7 : [0, 1] -^ InvA such that 7(0) = 1 and 7 (1) = / Davie's paper contains also
an example where Inv A is connected and strictly contains exp A, and gives extensions to
Frechet algebras of the Arens-Royden Theorem [4], [45].

3. Mittag-Leffler methods, action of entire mappings and structure of CN [[^]]/^N,oo

The Mittag-Leffler theorem shows that if {En, On) is a projective system where En is
a complete metric space and On : En+i -^ En a continuous map such that 0n (En+i) is
dense in En for every n > 1, then 7Ti(lim(^n, On)) is dense in E^ Here

lim(En, On} ={(Xn)n>l ^ ̂ [ En \ Xn = On (^n+l) (^ ^ l)},
' n > l

and TTfe : (xn)n>i —^ Xk is the fc^ coordinate projection on the cartesian product ]"In>i £^-
This result, explicitely stated and proved by Arens [2], is fact an abstract version of the
argument used by Mittag-Leffler to prove his classical theorem on the existence of
meromorphic functions with prescribed singular parts on a given discrete set [22]. The
Mittag-Leffler theorem was an essential ingredient in the proof of a basic result of Arens [2]:
if A is a unital Frechet algebra, and if (a:i, . . . , Xn) is a finite family of elements of A
such that x^ A... + Xn A ^ A, then [x^ A... + Xn A}~ ^ A. In particular characters on
commutative, unital Frechet algebras which are polynomially (or rationally) generated by
a finite set are necessarily continuous. This theorem was also the starting point of Allan's
embedding of C [[X]} into some Banach algebra [I], and played an important role in the
author's construction of discontinuous homomorphisms of C {K) [17], [18], [19].
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We first give a version of the Mittag-Leffler theorem suitable for quotients. The proof
uses an argument similar to the argument used by P. G. Dixon and the author [16] to
establish a link between Michael's problem and iteration of entire mappings from Cp into
CP (p > 2). We will see in fact that this version of the Mittag-Leffler theorem, implicit in
[16], gives a general powerful tool to investigate the quotient of a commutative Frechet
algebra by a dense ideal.

DEFINITION 3.1. - A projective system of quotients is a family (En, On, Tin)n>i where
(En)n>i is a family of sets, where On '' £n+i —^ En is a map and where Tin is an
equivalence relation on En which satisfies the condition

(1) On (x) Tin On (y) JOT every (x, y) e £n+i x En^i such thatxTin-^-i y (n> 1).

If (En-, On-> Tin)n>i is a projective system of quotients, we will denote by
On : En^-i/Tin-^1 —^ En/Tin the map defined by the commutative diagram

F pn+l F 1-V^n+l ———> ^n+l//<n+l

En ———> En/Tin

where pn : En —^ En/Tin is the canonical surjection (n > 1).

THEOREM 3.2. - Let (En, On, Tin)n>i be a projective system of quotients, where En is
a complete metric space and On : £n+i —> En a continuous map {n > 1). Assume that
there exists for every n > 1 a family Wn of continuous functions from En into itself which
satisfies the following conditions.

(1) / (X) Tin X (X G En, f C Wn, n > 1)

(2) |j (foOn){En+i)isdenseinEn(n > 1).
f^w^

Then \m{En/Tin, On) / 0, and p^ (7ri (\im(En/Tin, On))) is dense in E^.

Proof. - Set Fi = E^ and Fn = En x W^ . . . x Wn-i (n > 2). We equip the sets Wn with
the discrete topology, so that they are complete with respect to the distance d (/, g) = 6f , p ,
where 6f^ g is the usual Kronecker symbol. We equip En with the given topology, and Fn
with the corresponding product topology, so that Fn is a complete metric space.

Define ^ : Fn+i -^ Fn by the formula ^ (x, /i, . . . , fn) = ((fn o On)(x),
/i, . . . , /n-i). An immediate verification shows that ^ is continuous, and it follows
from hypothesis (2) that (pn (-Fn+i)) is dense in Fn.

It follows then from the Mittag-Leffler Theorem (see [8, Chap. II, sect. 3, Theorem 1]
or [22, Corollary 2.2]) that 71-1 (lim(F^ (pn)) is dense in Fi = E^.

Let (un)n>i e lim(Fn, ^n). There exists {xn)n>i e }\n>i E^ and (/n)n>i ^
rL>i Wn such that Un = (xn, fi,..., /n-i) and we have Xn = (fn o On)(xn-^i)(n > 1).
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It follows from hypothesis (1) that Xn^n On (^n+i). So, the notations being as in
definition 3.1, we have

Pn (Xn) = (Pn 0 0n)(^n+l) = OH (Pn+1 (^n+l))^

and so (pn (xn))n>i ^ lim(^n/^n, On)' Hence HI = a;i G pi"1 (7r! (Hm Sn/T^n, On))' So
PF1 (7r! (I1111 (-^n/^n^ ^n))) is dense in i?i, which concludes the proof of the theorem.

Notice that if we define Tin to be the equality on En^ and if we set Wn = {1^ }, where
IE^ is the identity map on £yi, then En/T^n = En^ pn =- IE^ and we obtain the usual
version of the Mittag-Leffler theorem: if {En)n>i is a family of complete metric spaces
and if On '' -Bn+i —)> En is a continuous map such that On (£n+i) is dense in En for every
n > 1, then 71-1 lim(£yi, On)) is dense in £'1.

We now deduce from theorem 3.2 the following corollary, which is a basic tool to
investigate the structure of the quotient of a Frechet algebra by a dense ideal.

COROLLARY 3.3. - Let (Gn)n>i be a family of complete, metrwble abelian groups. For
each n > 1 let Hn be a subgroup of Gn and let On '' Gn^-i —> Gn be a continuous map.
Assume that On (x) — On (y) € Hn "whenever x^ y € Gn+i, x — y € -ffn+i and denote by
On : Gn-^-i/Hn-^-1 —^ Gn/Hn the map associated to On- If Hn is dense in Gn for every
n > 1, then lim (Gn/Hn, On) / 0.

Proof. - For z G Gn denote by Tn,z the map x —^ x + z. Set W^ = {rn,z}z^Hrz ^d let
%^ be the equivalence relation associated to Hn, i.e. x Tin y if and only if x — y G Hn. Then
{Gni Oni Tin-, Wn)n>i satisfies the conditions of theorem 3-2, and the corollary follows.

COROLLARY 3.4. - Let A be a commutative Frechet algebra, let I be a dense ideal of A,
and let (an) be a sequence of elements of A /J. Then there exists a (E A /I such that

n

a - ̂  ai... a^ G (ai... On) A/J (n > 1).
m=l

Proof. - Set Gn = A, ̂  = J(n > 1). Let TT : A —^ A/J be the canonical map,
and let (xn)n>i be a sequence of elements of A such that TT (xn) = On (n ^ 1)- Set
0^ (-u) == .r^ • H + Xn {u C A, n > 1). Then (Gn', Hni On)n>i satisfies the conditions of
corollary 3-3, and On (b) = an ' b + dn (b e A/J). So there exists a sequence (bn)n>i
of elements of A / I such that

bn = On (&n+l) = ̂  ' &n+l + ̂  (^ > 1).

An immediate induction shows that &i = S^z=i 0^1 • • • ^m + ^i • • • ^n &n+i (^ ^ 1)? which
proves the corollary.

We now turn to the action of entire maps F : C^ —^ 0 on (A/J)^, where J is a dense
ideal of a commutative, unital Frechet algebra A. Let

/:(^...,^)-. ̂  A,^1...^
a^
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be an entire function from C^ into C (with the notation a = (ai.. .a?) for a e N23).
If a = (a i . . . a?) is a finite family in a commutative, unital Frechet algebra A, we can
define /(a) by the formula

fW= ̂  A.aF...^
a^

(^ details in [16]); this is in fact a trivial case of the holomorphic functional calculus
in several variables for commutative, unital, locally multiplicatively convex complete
algebras, see Arens [3].

The notations being as above, set Sj, = {a e S\ Supp a C {1, . . . ,&}} , as in section 2,
and denote by a? (a) the sequence (/?n)n>i where /?„ = a^ (n ^ p) /^ = 0 (n > ^) for
a e ISP. The map / -^ EaeN^ A^X^) defines an isomorphism from ^(C^) onto
Z^P) = {/ e U^KO) = 0(a ^ Sp)}, and we can identity in this way ^(C^) with a
closed subalgebra oiU, identifying also N^ with Sp by using Op. Hence if / G ^(€7),
a, 6 e A^ we have /(^)=^^,,

^-^ a!Q'eN^'
by formula 2-16 (this is of course well-known). In particular / (a + b) - f (a) e I if
b € P, where J is any ideal in the commutative, unital Frechet algebra A.

Similarly if F = (Ji, . . . , fq) is a holomorphic map from C^ into C9 and if a e A^
we can set F (a) = (/i (a), . . . , fq (a)) e A9 and F (a + b) - F (a) G J9 if 6 C P,
where 6 is any ideal in A.

For p >_ 1, a == (ai, . . . , a?) € Ap set

^ (A) = (TT (ai), . . . , TT (ap)) G (A/J^.
Then

F : {A/iy -. {A/IY

^(a)^7r,(F(a))
is well-defined. Since F : A^ —^ A9 is continuous, and since J^ can be identified in the
trivial way with a dense ideal of A^ when J is a dense ideal of A, we obtain the following
immediate consequence of Corollary 3.3.

COROLLARY 3.5. - Let (pn)n>i be a sequence of integers, and for each n > 1 let
Fn : C^1 —^ C^ be holomorphic. If I is a dense ideal of a commutative, unital Frechet
algebra A, then lim^A/J)^, Fn) -^ 0.

We now briefly discuss the spectral properties of the functional calculus on A / I
introduced above. If \ is a character on A / I and if b = (&i, . . . , bk) G ( A / I ) 1 ' , we set
^ (&) = (x (&i), . • • , X W), so that Xj, maps (A/J)^ into C^. Also if (p is any character
on A, and if / : C^ ^ C is holomorphic, then y [f (a)] = f [y ( a i ) , . . . , y (a^)] for
a = (ai, . . . , dk) G Ak. As observed in [16], this follows from Arens'theorem [2], since
the restriction of y to the closed unital subalgebra B of A generated by (ai, . . . , a^) is
continuous. A more direct argument is given by formula 2-16. If we set

A = (y?(ai), . . . , ^p(ak)),
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we have

^(^-/(A^JE^^-^1)")^
aG^
a^O

since

V" ^ / (A)(a - A • 1)° € (ai - ̂  (ai) • 1) A ... + (a^ - (^ (a^ • 1) Az-^ r^!. a l
oGis^
a^O

(here we set A • 1 = (y? (ai).l, ..., y? (a^) • 1) € A^).

PROPOSITION 3.6. - L^ J te an ideal of a commutative, unital Frechet algebra A, let
F : C^ —^ 0 be a holomorphic map, and let a C (A/J)^. 77î  the following properties hold

1) F(a(a)) C a(F(a))
2) 7/J ^ cto^rf, or ifp = q and if F is one-to-one, then F (a (a)) = a (F (a)).
3) // x is a character on A l l , then \q (F (a)) = F [\p (a)).

Proof. - Let TT : A —> A / I be the canonical surjection. Set a = (ai, . . . , Op),
F = (/i, . . . , fq) and for i < p choose Xi G A such that TT (^) = a^. Set x = (a;i, . . . , Xp)
and assume that A == (Ai, . . . , Xp) e cr(a).

For % < g, we have

/^)-,f.(A).i= E ^^p^-^)"
aCN"
a^O

by formula 2.16, and so

fi {x) - fi(X) ' 1 € (^i - Ai . 1) A . . . + {xp - Xp • 1) • A.
Hence

fi W-fi (A).l = TT [/, (^)-^ (A).l] G (ai-Ai.l) A / I . . .+(^-A^.l) A / I £ A/J (z < q).

This shows that (A (A), . . . , fq (A)) € a (/i (a), . . . , fq (a)) = a (F (a)), which proves
(1). Now assume that \ is a character on A / I . Then y? = ^ o TT is a character on A,
and we have, for i < q,

x Ui W) = ̂  {fi (^)) = fi ̂  (rr^ • • • ̂  (^))
= A (x (^i). • • . . x (^p)) = fi {xp W).

and so ^(F(a)) = F(^p(a)), which proves (3).
Now assume that I is closed. It follows from the definitions that F (a) is the element

of (A/J)9 obtained by applying directly the functional calculus to the Frechet algebra
A / I . Let H be the set of continuous characters on A / I . It follows from a standard result
of Arens [2] that

a (F (a)) = {x, (F (a))}^ = F [{xp (a)}^] = F (a (a)).
Now let J be any ideal of A and assume that p = q and that F is one-to-one on C^.

Let A = ( A i , . . . , \p) G a (F (a)), and let y G J.
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SinceA€<7(F(a) ) ,wehave(A(^) -Ar l )A. . .+( /p (a : ) -Ap- l ) .A+2/ .ASA,andi t
follows from the theorem of Arens that there exists a continuous character y? on A such that

(^ (A (x) - Ai . l ) . . . = (^ (/„ (rr) - Ap • 1) = ^ (y) = 0.

Hence

/i [y (a:i), . . . , (p (xp)] = y (f, (x)) = \i(i< p)

and A = F { p ) , where p, = ((^(^i), . . . , ^p{xp)). We have

(rri - y? (^i) . 1) A ... + {xp - y (xp) • 1) • A + y ' A ̂  A,

and /^ is independent of ^/ since F is one-to-one. So /^ e cr(a), which concludes the
proof of the proposition.

The link established in [16] between Michael's problem and projective systems of entire
mappings now appears as an immediate consequence of Corollary 3.5 and Proposition 3.6.

COROLLARY 3.7.- Assume that there exists a discontinuous character on some commutative
Frechet algebra. Then lim^71, Fn) i=- 0 for every projective system (C^, Fn) where
Fn : D37^1 -^ C^ is entire for n > 1.

Proof. - We can assume without loss of generality that there exists a discontinuous
character (p on some commutative, unital Frechet algebra A. Set I = Kery?, let
TT : A —> A / I be the canonical map and let \: A / I —> C be the isomorphism satisfying
^ o TT = (p. Then ^ is a character on A/J, and it follows from proposition 3-6 that
X '' (^n)n>i -> {Xpr. (^n))n>i is bijective from lim^A/T^71, Fn) onto Im^O^ Fn).
Since I is dense in A, it follows from Corollary 3.5 that lim^A/J)^, Fn) / 0, and
the result follows.

Remark 3.8. - 1) The proof we give here of Corollary 3-7 is in fact very similar to
the proof given in [16]. The advantage of the point of view presented here is that dense
ideals exist in abundance in commutative, unital Frechet algebras A for which Inv A is
not open [24], so that Corollary 3-5 applies to a lot of situations whereas the existence
of discontinuous characters is still unknown. The reader will check that Corollary 3-5 is
in fact a rather obvious result when A = C'̂ 1 and I = Coo, the set of complex sequences
which vanish eventually.

2) Corollary 3-5 and Corollary 3-7 remain valid for real Frechet algebras if we restrict
attention to entire mappings with real Taylor coefficients at the origin. In particular if we
set p {x) = 1 + x2 we see that rin>i P" (K) = 0 (where p" is computed with respect to
the composition of maps) and so real characters on commutative real Frechet algebras are
continuous (see [47]). Corollary 3-7 is also valid for noncommutative Frechet algebras,
see the details in [16].

3) It is not true in general that a (F (a)) = F {a (a)), the notations being as in Corollary
3-5. To see this let A = C^ I = c^o and let TT : C^ -^ C^/c^o be the canonical map. Set
u = (2zj?7r)p>o. Then eu is the unit element of C^ so that TT (e") = 1, a (e^)) = {1}.
On the other hand we check easily that a(7r(u)) = 0.
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We now investigate the multiplicative structure of A/J where I is a dense, prime ideal
of countable type in a commutative Frechet algebra A. Here we do not assume that A is
unital, and so the result applies to some Banach algebras.

LEMMA 3.9. - Let I be a dense, prime ideal of countable type in a commutative Frechet
algebra, and denote by B the set of nonzero elements of A/1. Then for every sequence
(^n)n>i of elements ofB there exists a sequence {un)n>i of elements ofB

such that Un = a^ ... <_i • <+1 . <^ {n > 1).

Proof. - Set D = A\I, so that D is stable under products. There exists a sequence
{In)n>i of closed ideals of A such that I == Un>i Jr^ anc^ so ̂  = rin>i (^Vn) is a Gs
set. So P is homeomorphic to a complete metric space. Let Ti be the restriction to D of
the equivalence relation defined by I . Let (xn)n>i be a sequence of elements of D such
that TT (r^n) == a^ (n > 1) where TT : A -^ A / I is the canonical map. For n > 1, 2/ G -D set
0^ (^) = (:n ... rTn-i)71 {xn ̂ )n+l. For z G J, ^/ € P, we have y -\- z ^_ D^ since J is an
ideal, and so r^ : y —^ ?/ + ^ is a continuous map from D into itself. Set IV = (T^)^J and
for n ^ 1 set En = D.Tin = ̂  Wn = W. Then the family (£^, On, Tin, Wn)n^i satisfies
the conditions of theorem 3-2, and there exists a sequence (un) of elements of B such that

,. — a (.. \-.^.(^n n n+l\ n+1 _ n n n+1 n+1
^n — Vn {Un-\-l) — 7T {X^ . . . ̂ _i 3;̂  ) U^^ — d^ . . . 0^_i 0^ "'n+l-

This concludes the proof of the lemma.
We now introduce some notations. We will denote by K^ the rational linear space

defined as follows

(3.10) K^ ={r= (r^<,, € Q"1 | {$ | r^ 0} is finite}

and we equip K^ with the reverse lexicographic order on K^. i.e.
(3.11) (^)^<cc;i < (^)^<a;i if there exists rj < 0:1 such that r^ < r^ and r^ = r^ (^ > 77).

Then -R^i is a linearly ordered rational linear space. Set

L^ = [r G ̂  \r > 0}, L^ = {r G ̂ J r > 0}.

If (G, +) is a linearly ordered, abelian group, we will denote by '̂(1) (G, C) the set
of all formal power series / = i^aeG ^a ̂ a suc^ ^2it ^PP f = {a G G \ \a -^- 0} is
well-ordered and at most countable. It follows from old results of Hahn [32] (see references
in [17], [18]) that ̂  (G, C) is a field. Also J^i) (G, C) is algebraically closed if G is
a divisible group, by a result of Mac Lane [35]. Set.

(3.13)
^•(D {L^ C) = {f G ^(D (^, C) |Supp/ c £.J,

.F(I) {L^ C)={fe ^(D (^,, C) |Supp/ C £LJ-
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Then ^i) (L^, C) is the valuation ring associated to the standard valuation

/ -. v(f) = inf(Supp/)(/ C ^(D {K^ C), / ^ 0)

and the unique maximal ideal of ^(i) (£^, C) is ^(i) (£^, C), which is the kernel of
the (unique) character

^ A.Z^Ao on .F(I)(L^C).
aci/t^

We now deduce from lemma 3-9 the following result (recall that an ideal I of an algebra
A is modular if A / 1 is unital).

THEOREM 3.14. - Let A be a commutative, non unital Frechet algebra and let I be a
dense prime, nonmodular ideal of A of countable type. Then there exists for every nonzero
a G A / I a one-to-one map

^ : L^ -^ F| a71 (A/I) such that ̂  (r + r') = ̂  (r) . ̂  (r')(r, r' G L^).
. n>l

Proof. - Notice that the above condition implies that ^ maps 2^ into the set of nonzero
elements of A / I .

Denote by V the set of all nonzero elements off^>^ a^A/J), and denote by W the set of
sequences u = (un)n>i of elements of V such that Un = u^\ (n > 1). For u = (un)n>i,
v = (^n)n>i ^ W set u.v = (un.Vn)n>i- Also for p e N, q C N, u = (i4i)n>i G iy set

p (nq^)!

n^/9 = (un^ )n>i. Routine verifications show that ^p/g is a well-defined element of W,
and that u^^' = vp^ if gj?' - pq' = 0.

So we can define this way u8 for u € TV, s e O"^* = {5 € Q|5 > 0}, and it follows
from the definitions that the usual rules u8^8' = u8 .u8', (u8)8' = u88' are satisfied for
u <E W, s, s1 G Q4-*.

Apply Lemma 3-9 with On = a(n > 1). We obtain a sequence (^n)n>i of
nonzero elements of A / I such that a'1"1.̂  = (an.^^+l)n+l (n > 1). So if we set
Un = a7'"1.^ (^ > 1), we see that (un)n>i ^ W, so that W / 0.

For T] < uj^ set e^ = (^^)$<cc;i where we denote by <^ the Kronecker symbol,
and set L^ = {(r^<^ e £^J^ = 0 T] < ^ < u^}. We now define by transfinite
induction a family (^)^<o;i, where (^ maps £^ into W, such that ̂  {r8) = (p^ (r)8;
^ (^ + r') = ̂  (r).^ (r'), and (p^ = ̂  for ^ < ri (r, r' ^ L'^ s E Q+*, T/ < cji).

Since W -^ 0, we can set ^{seo) = u^s G Q"^*), where ^o is the element of W
constructed above. Now assume that a family (^)$<y, which has the required properties has
been constructed for some 77 G (0, o;i). Let p : (un)n>i -^ ^i be the first projection map
from W into V. Set ̂  = ̂  (e^) (^ < 77), £' = \J^ L^ (so that V = L^ if 77 = a + 1
is a sucessor ordinal), and define (p : Lf —^ W by the condition ^|i/= ^ (<^ < ^).
If 77 is a limit ordinal, let (^) be a strictly increasing, cofinal sequence in [0, T/). In
this case set r^ = e^. If rj = a + 1 is a sucessor ordinal, set r^ == ne^ (n > 1).
In both cases the sequence (r^)^>i is cofinal in L ' . Set (p(r^) = (ayn,n)n>i. It
follows from Lemma 3-9 that there exists a sequence (vn)n>i of elements of D such that
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01,1 • • • On-1,1 • Vn = (Ol,l • • • On,! ' ^n+l)^1 (^ > l). Set Un = O^i • • • 0^-1,1 • Vn (^ > l)

so that u = (un)n>i ^ W.
Let ee l / ' . Then there exists m> 1 such that r^ > c, so that d = r^ - c e I/.

Let 5 G Q"^* and set n5 = (^n)n>i. It follows from the definition of u8 that if we fix
n > 1 there exists fc > 1 such that Wn € z^.V for fc > p. So for fc = max(jp, m + 1)
we obtain Wn G a^i.V c am,n«^- Hence there exists a sequence {yn}n>i of elements of
V such that Wm == cim.n'yn (ri > 1). We obtain a^n'Vn = ̂ m,n.^^ and so yn = y^\
for n > 1 since! is not modular. So {y-n)n>i ^ W, and u8 G ^(r^}W. Hence
u8 € y? (c).W (c G -L'). Using again the fact that J is not modular, we see in fact that the
equation u8 •= y? (c).rr has a unique solution in W, which we can denote by u8 / ( p (c). Now
let r == (r^<^ G -Z^. If r € Z/ set ^(r) = y?(r). If r E ^\£' then r^ > 0 and we
can write r = r^.e^ + b — c, where 6, c G £'. In this case set ^(r) = [u^ / y (c)].(^ (6).
It follows from the above discussion that this definition does not depend on the choice of
b and c, and immediate verifications show that (^ has the required properties. So we can
construct the family (^r?)y?<o;i by transfinite induction.

Now define (^ : L^ —^ W by the condition ^^\L' =- ̂  (^ < ^i) and set ̂  = /?o^i •
Clearly, '0 satisfies the conditions of the theorem.

COROLLARY 3-15. - Let A be a commutative, unital Banach algebra, let M be a maximal
ideal of A and let I be a prime ideal of countable type of A "which is dense in M. Then for
every nonzero a G M/I there exists a one-to-one homomorphism 0 : ^~(i) (I/a;i? C) into
A such that 6(^{L^ C)) C nn>i^(A/J).

Proof. - Since I is dense in M, I is not modular. It follows from the theorem that
there exists ^ : L^ —^ nn>i ^(A/J) such that ^ (r + r') = ^ (r).^ (r') (r, r ' e L^)
which is one-to-one.

Let ao € M / I , let 02, . . . , an € A / I , and let TT : A —^ A / I be the canonical map.
For k > 2, let bfc G M such that Tr (b fc ) = ^. Set /(a;) = a: + E^^^ G M)'
Then f : M —> M is continuously differentiable on M and Df (0) is the identity map.
If follows then from the standard inversion theorem that there exists p > 0 such that the
equation f (x) = u has a solution in M for every u e M such that \\u\\ < p.

Since J is dense in M, there exists u G M such that TT (zi) = —ao and such that
||n|| < p. Let a; be a solution in M of the equation / (x) = u, and set y = TT (rr). Then
ao + ^ + 02 y2 • • • + On 2/71 = 0.

Since M/J is radical, and since for every sequence (un)n>i of elements of M/I there
exists p G M/J such that p — ^^3 ̂ i . . . Uk G z ^ i . . .1^+1 (A/J), by Corollary 3-4,
we can apply directly the method used by the author in [18] to obtain an embedding
0 : .F(I) (£^, C) -^ A / I such that 0 (Z7') == -0 M (^ ^ ^Li). which proves the corollary.

COROLLARY 3-16. - For every nonzero a € A^N/^N,^ there exists a one-to-one
homomorphism 0 : f(^ {L^^, C) —> CN [[X]]/ZM,OO such that

0(^(1) (£L^ C)) C H ̂ [^N/ZN,oo].
n>l

Proof. - Let ao C M^k = A^N H C^ [[X]], and let 03 . . . an € C^ [[X]], Consider the
polynomial P (t) = r + t71-1 + 02 ao r-2 . . . + a^_i a^~21 + a^.a^"1.
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In Ck [[X]]/MN,k, P(t) = f1-1 (t + 1). It follows then from HenseFs Lemma [52,
p. 279] that there exists a monic polynomial Q (t) of degree n — 1, and an element
u of M^k such that P (t) = (t + 1 + u] Q (t). In particular, P (-1 - u) = 0. Since
Ck [[X]] is a local ring, —1 — u is invertible, and if we set x = (—1 — u)~1 ao, we obtain
0,0 + x + 02 rr2 . . . + On x^ =0, with a; G .MM,A;- Also x is the only solution of this equation
in Alfsi,^ fof if 2/ is any other solution we have (x — y) + 03 (a^2 — ^ / 2 ) . . . + On (xn —yn)=0,
hence (x — y) (1 + w) == 0, where w e A^N,^- Since CN [[X]] ^lim (CA; [[^]], 71-^+1)
(.y^ section 2), we deduce immediately from these facts that if bo G .MM. ^2? • • • ? ^n ^
CM [[X]] then the equation bo + re + b^ x2 . . . + bn x^ = 0 has a solution in A^N- Afortiori
the same property holds for similar equations with coefficients in CN [[X]]/ZN,OO-

Since .MN/^HOO is radical, we can use the same argument as in Corollary 3-15 to
conclude the proof.

Remark 3-17. - 1) Corollary 3-15 obviously does not extend to Frechet algebras,
because the algebra ̂ i) (L^, C) is radical and, for example, the quotient algebra A^/Zoo
is semisimple, as observed in section 2. Also the equation OQ + x + x2 = 0 has no solution
in M./IOQ for some ao G .M/Zoo- To see this it suffices to take ao G .M/Zoo such that
1-4 ao has no square root in U/loo, which is the case for example if ao = ^(S^Li ^n Xn),
where (\n)n>i ^ ^Voo- The details are left to the reader.

2) Lemma 3-9 is no longer true if we omit the hypothesis that the prime ideal I is of
countable type: Dales and McClure construted in [13] a prime ideal J of a commutative,
unital Banach algebra A, which is dense in the kernel of a character (p of A, such that
the quotient algebra A / I is isomorphic to C [[X]], the algebra of formal power series
in one variable.

In the other direction it follows easily from Corollary 3-4 that if I is dense in a
commutative Frechet algebra A then there exists for every a G A / I and every sequence
(^n)n>i of complex numbers some p G A / I such that p — ]^^i \k ^k G a71. A / I (n > 1).
Now let 8 = A / I —^ (A/J)/F[^>^ a^ • A / I be the canonical map. If I is prime and
nonmodular, and if a -^ 0, it is easy to see that the map 0 : ^^=1 A^ X71 —^ S(p) is
a well-defined one-to-one homomorphism form Co [{X}} into ( A / I ) / rin>i an ' ^ / ^ suc^
that 0 (X) = 8 (a), where Co [[X]} = {E^°=i >nXn eC [[X}}\\o = 0}. "Similarly if I is
a dense, prime, modular ideal of a commutative Frechet algebra A, and if a ^ 0 is a
singular element of A / I , there exists an embedding 0 : Co [[X]] —> (A/J)F|^>^ a71 • A/J
such that 0 (X) = 6 (a), the notations being as above. If we omit the condition that I
is prime, then there still exists a unique homomorphism 0 from Co [[X]} (resp. C [[X]])
in the modular case) into the above quotient algebra such that 0 (X) = 6 (a), but 0 is
not necessarily one-to-one. Since Co [[X]] is a radical algebra, we see in both cases that
6 (a) (E Rad ( ( A / I ) / n^>i ^n • A / I ) . Now let TT : A -^ A / I be the canonical map. Since
(A/JYri^i^W^/^is isomorphic to A/^^I + &71 • A for 6 e A, we see that
TT (b) e Rad (A/ rin>i ^ + ^n • A) for every b G A if I is a dense ideal of A (the quotient
algebra A/ rin>i ^+ ̂ n • A reduces to {0} in the trivial case where I is modular and where
TT (b) G Inv ( A / I ) ) . In particular, if J is a dense ideal of A and if \ is a (discontinuous)
character of A such that Hn>i I + b" ' A C Ker^, then ^ (b) = 0.
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4. Universal multiplicative properties of the quotient of a commutative,
unital Frechet algebra by a dense, prime ideal of countable type

We showed in the previous section that if I is a prime, dense, nonmodular ideal of a
commutative nonunital Frechet algebra then there exists for every nonzero a C A / I a one-
to-one map ^ : L^ —^ nn>i an A / 1 such that ^ (r + r/) = ̂  (r) ̂  (V) (^ ^/ ^ ^Li)- In
this section we prove a stronger result for rin>i an (^-/-O ̂ ere a ̂  0 is a singular element
of A / I and where I is a dense, modular prime ideal of countable type in a commutative
Frechet algebra A. In fact, if the continuum hypothesis is assumed, there exists for any
cancellative, abelian, non unital monoid (V, +) without torsion such that Card V < 2^° a
one-to-one map ^ : V —> rin>i an ' ^ / ^ suc^ ^lat ^ (r ~*~ r/) = ̂  (r) ̂  (r/) (r^ r/ G ^)-

We first introduce some notations used in [17], [18].

(4.1) We denote by S^ the set of all dyadic sequences (e^)^ < ci;i, with e^ G {0,1}
(^ < 0:1) such that the set {^ < a;i[^ = 1} is nonempty and possesses a largest element.
We equip <?^ with lexicographic order.

(4.2) We denote by G^ the real linear space consisting of all functions p : <S^ —> R
such that Supp p = {r G <S^i |p(^) 7^ 0} is a well-ordered, at most countable set.

For p, p ' e G^, p / // set p > p ' if p(^) > p1 (s) where 5 =inf {r (E <?o;i|p^) 7^
p ' (r)} so that (G^ i , <) is a totally ordered real linear space.

(4.3) We set T^ = [p G G^|p > 0}, T,, = T^ U {0}.
An abelian additive monoid is a nonempty set V equipped with an associative, abelian

law (x^ y) —» x-^-y. We will say that (V, +) is cancellative if the map x —> x-\-y is one-to-
one for every y G V, and we will say that (V, +) is without torsion if n.d. ̂  nd! for n > 2,
ri, d' G V, d T^ d'. Also we will say that the positive rationals operate on (V, +) if there
exists a map (r, d) —^ r.d. from Q"^* x V into V such that l.d = 1, r (d+d') = r.d+r.d',
(r+r^.d = r.d+r'.d, r ( r / d) = (rr^.d (r, r' 6 Q-^*, d, d' G V). Clearly, (V, +) is
without torsion if the positive rationals operate on (V, +). We define in a similar way
multiplicative abelian monoids, cancellative multiplicative abelian monoids, etc.

DEFINITION 4.4. - 1) A partially ordered set (f, <) is universal if there exists a map
0 : 5^ —>' £ such that 0 (u) > 0 (v) for u, v G <S^i? u > v.

2) An additive (resp. multiplicative) monoid (V, +) (resp. (V, .)) is universal if there
exists a one-to-one map ij} : T^ —> V such that ^(p + ^/) = ^{p) + ^(p7) (resp.
^(p+p') =^(p).W))(p, p' er^).

It is well-known that for every partially ordered set (J~, <) such that card T < ^i
there exists a one-to-one, order preserving map T —> <?^i. Similarly for every cancellative,
non unital additive (resp. multiplicative) monoid (V, +) (resp. (V, .)) without torsion
such that card V < ^i there exists a one-to-one map ^ : V —^ T^ such that
(p{x + x ' } = ^p(x) + ^(^ /) (resp. (^(a: + ^/) = ifi{x).^p {x ' ) ) {x^ x1 e V). So if the
continuum hypothesis is assumed, and if £ is a universal set, then every partially ordered
set T such that card T < 2^° is order-isomorphic to a subset of £. Similarly if V
is a universal abelian monoid, and if W is a cancellative, non unital abelian monoid
without torsion such that card W < 2^°, then W is isomorphic as an abelian monoid to
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a sub-monoid of V. All these results are well-known, and the details can be found in
[17], [25] (the corresponding result for algebras shows that if the continuum hypothesis is
assumed then any commutative, non unital complex algebra B which is an integral domain
is isomorphic to some subalgebra of the algebra C^ introduced in [18], see [20]). The
perhaps simplest example of a universal set is given by a natural quotient of the set N^^
of sequences (pn)n>i of positive integers.

We equip N1^ with coordinatewise addition, and with the following binary relations,
defined for p = (pn)n>i, q = (^n)n>i ^ NN as follows

(4.5) p > q if p G q + N^

(4.6) pKq if [n > l\pn ^ Qn} is finite or empty.
The equivalence relation % is compatible with addition and order on N'^ and so the

quotient N N / / J i is a partially ordered, abelian, cancellative, non unital abelian monoid.
It is a standard fact that (N^/U, <) is a universal set. It is also true that {N^/U, +) is

a universal additive monoid. More precisely we have the following result, proved in detail
in [25] (there should be much earlier references for analogous results).

LEMMA 4.7. - Let {pn}n>i be a sequence of positive integers such that pn ——> oo.
n—>oo

Set £ = f (mn}n>i G N^ rn-2- ——> o ) . Then (<?/7Z, +) is a universal additive abelian
\ pn 7W00 /

monoid.
The author showed in [25] that if J is a dense, prime modular ideal of countable type

in a commutative Frechet algebra A then the set of nonzero, singular elements of A / I is
a universal multiplicative abelian monoid. We now wish to extend this result to the set of
nonzero elements of rin>i an ^ - / I where a is a nonzero, singular element of A / I . The
method of [25], based on natural infinite products in A, cannot be applied directly here,
because remark 2-21 shows that rin>i a n ' ^ ^^Y ^duce to {0} for every singular element
a of A. We will need the following technical result.

LEMMA 4.8. - Let (G, +) be a totally ordered, divisible group, set V = [d G G\d > 0},
and let (B, .) be a cancellative, unital abelian monoid. Let a be a noninvertible
element of B, and assume that there exists a sequence {dn)n>i of elements of B
such that ai = a and dn = c^\ {n > 1). For o;i, a^ G B set aiT^o^ if and
only if {ap.a^}p>-i n {aP.a^}?^ •=^- 0. Let (p : V —> rin>i an B ^e a maP suc^ ^lat

(p (di + ^2) %a ^ W.(p (^2) (^i, d'2 € V). Then there exists ^ : V -^ f^i an B which

satisfies the two following conditions
(1) ^ (di + ^2) = ^ (rii).^ (^2) (ril, ^2 C V).
(2) For every d € V, there exists n > 1 such that ^ (nd) 'Ra{? (nd).

Proof. - Since G is linearly ordered and divisible, the equation nx = d has a unique
solution in G for every n > 1, and routine, well-known verifications [29] show that
G possesses a structure of totally ordered, rational linear space which extends the map
(n, d) -> n.d. (n G Z, d € G). For p > 1, q > 1 set oP^ = a^9"^'. As in the proof of
theorem 3-10 we see that the map r —> a^ is well-defined on Q4'* = {r G Q\r > 0} and
that a^' =: a^a^ (r, ^ G Q^). Clearly, a1 = a, and rin>i an B = rireQ+* ar B '
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Let u e H^^o^B. Since B is cancellative, the equation (f .x = u has a unique
solution in B for r € Q"^, and re G nn>i an ̂ ' ^° we can d^^ ar •u ^ C\n>ian ̂
for r G Q, H e n^i^5' and we have ^.(a^.^) = a^^2.^ a7'1 (m>) = (a^ n).v
(^ ^ ^ n^i^5^ ^ e Q).

Now let d e V, and let r € Q, n > 1. There exists j? G Z such that
a^ . y^)71 = y?(d). Hence [a^+^.^d/n)]71 = a^(d), and we see that we can
constmct by induction a sequence (rn)n>i of rational numbers, with r\ = 0, such that
a^.^d/n) = [a7'7^1 .(^ (d/n + l)]^1 (n > 1).

Let (d^)^^A C V be a Hamel basis of G over Q- For every A G A there exists a sequence
(^n,A)n>i of rational numbers, with y-i^ = 0, such that if we set dn,\ == arn .^p(d\/n),
we'have d,,A = (dn+i,^1 (n > 1)'.

For p > 1, g > 1 set (p {d^^ == d^'^ \ We see as above that we obtain a well-defined
map r -^ ^p{dxY from Q+* into rin^i^5 such that ^{dxY1^2 = y {dxY1 .y {d^Y2

for ri, r2 G Q"^*, and such that for every r G Q^ there exists s € Q satisfying
^W = ^.^K).

Denote by W the set of elements of V with nonnegative coordinates with
respect to the basis d\)\^^. For Ai, ... , \k € A, 7*1, ... , n; € O"^* set
^ (Eti ^.^,) = nti ̂ J^. Then ^ : W -^ ^\n>lanB is a well-defined map
such that '0 (di 4- da) = '0 (di).'0 (^2) (di, ^2 G IV). Also for every d ^ W there exists
s € Q such that '0(d) = a8.^^).

Now let d G V, and let ^ 1 , ^ 2 ^ ^ such that d = di — ^2- Since y?(di) =
(^(d + ^2)^0 ^(d).^(d2)^ there exists s ^ Q such that ^(di) = ^.(^(d).^ (^2)- Set
'0(d) = as.y?(d). Since -B is a cancellative monoid, an easy verification shows that this
definition of '0(d) does not depend on the choice of c?i and c?2. Now let d, d' G V,
and let di, c?2, d'i, d^ € TV be such that d = d^ — d^, d' = d[ — d^. We have
^ (di + d[) = ̂  (di).^ (d'l) = ^ (d)^ (d') ̂  (d2 + ^2). Bnd so ^ (d + d') = ^ (d).^ (d').
Also, if d € V, there exists s G Q such that '0 (d) = 0s.y? (d). Set 5 = p / q , where p G Z,
9 > 1- We have '0 (g.d) = ap.(p{d)q Tia ̂  (^-d), which concludes the proof of the lemma.

THEOREM 4.9. — L^ Abe a commutative, unital Frechet algebra, and let I be a dense,
prime modular ideal of A of countable type. Let B be the set of nonzero, singular elements
of A / I . Then B ^ 0, and f^^G^J? is a universal multiplicative abelian monoid for
every a E B.

Proof. - If A is not unital, let A^ be the Frechet algebra obtained by adjoining a unit
element to A, and let / e A be such that x - xf e I (x € A). Set J = A e C (/ - 1).
Easy verifications (see [25]) show that J is a prime, dense ideal of A^ of countable type,
and that the quotient algebras A / I and A ^ / J are isomorphic. So we may assume without
loss of generality that A is unital. Since J is a dense ideal of A of countable type, there
exists a continuous, onto map (p : A —^ C^ such that y?(J) = Coo [24, Theorem 3-1].
So I certainly not maximal, and B / 0 (of course, the fact that 5 / 0 also follows
from [25, Theorem 2-10]).

Let a € B. It follows from Lemma 3-9 that there exists a sequence (6n)n>i of elements
of rin>i an ̂  suc^ ^B1 ̂  = ^Ui (n ^ ^)- ^et (^n)n>i ^>e a sequence of positive integers
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such that pn ——> co, let TT : A —^ A/J be the canonical surjection and let b e A\J
n—^oo '

such that 7r(6) = 61.
Since I is of countable type, A\J is a Gs subset of A and we can define the given

topology on A\J by a distance d with respect to which A\J is a complete set. Since I is
dense in A, there exists a sequence (yn)n>i of elements of I such that 6 + y^ ——> 1.

n—»-oo
Hence (6 + ̂ p ——> 1 for every p > 1.

n—>oo

So we can define by induction a sequence (^n)n>i of elements of A\J, with ^i = 0,
which satisfies the following condition

'n—l n 1(D ^ n (6 + ̂ mfc' n (6 + ̂ mfc <2-n
.A;=i A;=i j

(0 < mi < pi, ..., 0 < rrin < pn, n > 2).

Set £ = \ m = (mn)n>i € N^ m£- ——> 0 L It follows from condition (1) that for every
1 . n^00 -'

p > 1, the sequence (^nLp (6 + zk)rnk) converges in A\J for m = (m^)n>i e £.
Set ^ (m) = Jim^ nLp (6 + ̂ )mfc (m ̂  ^). Then ^ (m + m') = ̂  (m) ̂  (m)
(m, m' G ^).

Since ̂  (m) = fl^ (b + ^)mfc ^p+g+i (m) (p > 1, 9 > 0) we have (TT o ̂ ) (m) G
nn^i^.A/J C ^ i ^ ' A / I and (TT o^ ) (m)R^(7 r o ̂  (m) (m G <?, p >_ 1),
the notations being as in Lemma 4-8. Now if m, m' G £ and if m % m' in
the sense of definition 4-6, we have y?p (m) = y?p (m') for some n > 1 and so
(TT o (^i) (m) TZfc, (TT o (^i) (m').

Let uj : £ —^ £/U be the canonical surjection, and let 8 : £ / T i —> £ be a map such
that (uj o 6) {u) = u{u € f/%).

Since £/Ti is universal, by Lemma 4-7, there exists 0 : T^ —^ £ / T i such that
(9 (di + ^2) = 0 (di) + 6> (^2) (di, ^2 € r^). Set (p = TT o y?i o 6 o 0. For di, d2 e T^,
we have {uj o 8 o 0) (di + ^2) = 0 (di) + 0 (c^) = a; [(<? o 0) (di) + {8 o 0) (d^)]. Hence
{6 o 0) (di + ^2) 7Z [(<? o 0) (di) + (<? o 0) (d2)]. So

^ (rfi + ̂ 2) = (TT o (^i) ((^ o 0) (di + ̂ 2)) 7Z^ (y) (di) + ̂  (^2)).

It follows then from Lemma 4-8 that there exists ^ : T^ —^ ^n>l6?•A/J c

nn^i^^/7 = nn>i^^ such that ^(di + ^2) = ^(di).^(d2) ?7 ̂  G r^).
Hence rin>i an'^ ls a universal monoid, which concludes the proof of the theorem.

Remark 4-11. - 1) The reader has certainly noticed that Corollary 3-4, Lemma 3-9
and Theorem 3-14 remain valid for general commutative, metrizable complete algebras.
Theorem 4-10 is also valid for quotients A / I where J is a dense, prime, modular ideal
of a commutative, metrizable complete algebra A if J is not maximal. The author did not
investigate whether the hypothesis that I is not maximal is redundant in this context.

2) The most technical part of the authors's solution of Kaplansky's problem consists
in embedding T^ in the multiplicative monoid 0 = {a G Ti\[aTi}~ = %} where % is
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a (nonzero) commutative radical Banach algebra which possesses dense principal ideals
(the case of a commutative, radical Banach algebra which possesses elements of finite
closed descent in the sense of Allan [1] reduces easily to this situation, see [23], [55]).
The strategy used in this section suggests a much simpler approach. Denote by Ti* the
algebra obtained by adjoining a unit element to %, and set Q = exp(7?^) == Inv(7?^).
Since 0 is a G^-subset of %, Q is homeomorphic to a complete, metrizable set. Also a.Q
is dense in Q for every a e 0 since Ti is radical.

A direct application of the Mittag-Leffler theorem shows then that for every a G ^ there
exists a sequence (&n)n>i of elements of f^^a71^ such that &n = b^\ (n > 1).
Fix p > 1, and set b = &i. Since b.bp.G is dense in 0, there exists a sequence
(^n)n>i of elements of Q such that bp = lim b.bp.en' Hence for 1 < k < p,

— Ti—>00
p! p! p!

we obtain bjF = lim hj b.e^. So & = [fcj? ̂  = lim b.bk.ek^, and more generally
n—>-oo n—>oo

u = lim u.bk.ek^ {1 < k < p) for every n € b.7^^.
n—»-oo

The given topology on 0 can be defined by a distance d such that (0, d) is a complete
set. Let {pn)n>i be a sequence of positive integers such that pn ——^ oo. It follows from

— n—^oo
the above discussion that we can construct by induction a sequence {un)n>i of elements
of Q such that the following condition holds

"n-ln^^r. 11^^(2) d |[] fc^.H^, JJ bmfc.^fc < 2-
.fc==l fe==l

(0 < mi < pi, ..., 0 < rrin < pn, mi • • • + rrin-i > 0, n > 2).

Define f as in the proof of Theorem 4-10. Clearly, for every p > 1 and every
m = (rnn)n>i € S the sequence (n^=D ^^•'^I1/ ^as a ^mlt ^p (m) ln ̂  B^— \ p /n>p

y?^ (m) = (n^=i ^mfe•'u^fc) t (^p+l (m)' Now for ai, 02 C 0 set ai Ttb ^2 if there exists
P > 1» 9 ^ 1 and ZA G S such that bP.c = bq.u.d. We obtain an equivalence relation on
the cancellative monoid (0, .), and since £ fTi is universal we can construct as in the
proof of theorem 4-10 a map (p : T^ —^ C\n>i ̂ n'^ suc^ ̂ ^ ^ (^1 + ^2) ̂ b ̂  (rii)-^ (^2)
(di, ^2 ^ T^). But 0 is a divisible abelian group, and a slight modification of the proof
of lemma 4-9 gives a map ^ : T^ —^ rin>i ^nt^ suc!'1 ^at '0 (di + ^2) = '0 (di).'0 (^2)
(di, ^2 ^ ^i) (^d ^^ ^at for every d G T^ there exists n > 1 satisfying (p{nd)
Ub ^{nd)).

The situation is even simpler if we restrict attention to the case where the radical Banach
algebra Ti possesses a sequential, bounded approximate identity. We can assume without
loss of generality that % possesses a sequential bounded approximate identity (e^) such
that ||eJ| = l(n > 1), see [48].

Choose A G (0,1). We can construct by induction a sequence (/n)n>i of elements
of Ti such that for every m = (mn}n>i ^ S and every p > 1 the sequence
fnLp (1 - A (e - e^))^) has a limit ^p (m) in ,̂ so that y?i (m) % ^i(m') if
\ / yi^p
mTim' (m, m' € f). Here we define % to be the relation ai % 02 if and only if
o^i e 02 ̂  on n. Since Q is a divisible group, a modification of the proof of lemma 4-9
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gives again a map ^ : T^ -^ 0 such that ^ (di +^2) = ^ (di).^ (^2) (di, ^2 C T^) (and
such that ^ (d) T^i (d) for every d e T^). By using standard factorization methods [48]
it is also possible to arrange, a G % being given, that a C ^ (d).% for every d G T^ (in
fact, the construction of the map y?i is sufficient to perform the embedding: C^ —^ T^ as
in [18], and so the construction of [19] and [54] can be replaced by a few lines to obtain
a quick solution of Kaplansky's problem, assuming the continuum hypothesis).

The details of the above computations will be published elsewhere. The proofs we
outlined here are clearly much simpler than the original proofs by the author [19], [21],
and also significantly simpler than the improvements of these proofs given in [23], [54],
[55].

Elements of £/U such that the equation m.x = d has a (unique) solution in (<?/%, +)
for every m > 1 can be constructed very easily. Construct a strictly increasing sequence
(fc,),>i of integers such that pn > ( % + ! ) ! for every n > fc,, set ko = 0 and for
ki < n < fc^+i set Un = %!. Then u = (un)n>i e <?, and the equivalence class d of u
satisfies the required condition. The proof of lemma 4-7 (see the details in [25]) is then
based on the standard arguments, which go back to the last century, used to prove the
universality of the set (N^ <). Also the arguments given here show that if the set of
positive elements V of a totally ordered group G can be embedded in (£/%, +), then it
can be embedded in the multiplicative monoid (0, .) where 0 = {x E %|[;r7^]~ = Ti}
for every commutative radical Banach algebra % which possesses dense principal ideals.
Conversely, if there is an embedding of V into (U, .), where we denote by U the set
of nonzero elements of %, then V is order isomorphic to a subset of (NN//R, <) (see
[50]). Since (<?/%, +) is an object familiar to logicians, the new approach presented here
of the constructions of [18], [21] should be helpful in the discussion of the dependence
of existence of discontinuous homomorphisms of C (K) on axioms of set theory (there
was recent progress in this area, see [28], [51]). We refer the reader interested in this
matter to [14], [50].

5. Testing the test for the test algebra U

The notations being as in section 2, set V = UjX^ and denote by 71-00 : U —> V the
canonical surjection. Denote by V the set of all characters of V. Then V contains at
least one element, the trivial character ^o : Ti-oo (Z^es ^X^ -^ \o. Of course, if all
characters on commutative Frechet algebras were continuous, then V would reduce to ^o.
In the opposite direction it follows from Theorem 2-7 that if / is a linear element of M,
l ' e ' f = £^=i ^nXn, where (\n)n>i G f1, and if we set v = 71-00 (/), then assuming
that there exists a discontinuous character on some commutative Frechet algebra we would
have a(v) = {xM}^ (the case where (\n)n>i € Coo is trivial; notice that a (v) = C
when (\n)n>i e ^\c^).

Let M C A, where A is a commutative, unital Frechet algebra. As in section 2 we
denote by M°° the set of all bounded sequences of elements of M. For / G U, a e A°°,
/ (a) G A is defined as in Proposition 2-4.
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A special case of the following easy observation was used in the proof of
Theorem 2-7 (4).

PROPOSITION 5-1. - Let v G V, and let f G 7r^1 ({^}). Denote by A(v) the set of all
A G C such that, for every dense ideal I of an arbitrary commutative unital Frechet algebra
A, there exists a G I00 such that f (a) — X e G I . Then the definition of A (v) does not
depend on the choice of /, A (v) C a (v) and if there exists a discontinuous character on
some commutative Frechet algebra A, A(?;) C {x(v}} 9-

Proof. — If g G Zoo? then g (a) G J for every a G J°°, and so the choice of A (v) does
not depend on the choice of /. Let I be a dense ideal in a commutative unital, Frechet
algebra A and let TT : A —» A / I be the canonical map. The map 0 :71-00 {g) —^ TT (g (a)) is a
homomorphism from V into A/J for every a C J°°. If / (a) — A e G J then 0 (v) = X.e and
A G a (0 ('?;)) C a (v). Now assume that A G A (v), and that there exists a discontinuous
character ^ on some commutative Frechet algebra A. We can assume without loss of
generality that A is unital. Set I =Ker ^ and let a G J°° such that / (a) — X.e G I . The
map y? : Ti-oo (^) -^ TT ((7 (a)) is well-defined, and (^ C V. We have (p (v) = \ (f (a)) == A,
which concludes the proof of the proposition.

The proof of theorem 2-7 (4) was based upon the observation that if (\n)n>i ^ ^Y^oo.
and if we set / = ^^Li XnXn, then the map a —^ f (a) is a surjective map from
J°° onto A if I is a dense ideal of a commutative Frechet Algebra A. So in this case
A (Ti-oo (/)) = C. In this section, we produce examples of less trivial elements / of M.
for which A (71-00 (/)) = C. In the opposite direction, we will construct some g C .M\Joo
for which A (71-00 (^)) = {0}. So for these elements g , the existence of a discontinuous
character on some commutative Frechet algebra would not give any direct information
about the set {x (TToo (^))}^9'

We will use the following elementary identity, which is valid for p > 2 for any element
x of a complex algebra with unit e.

(5.2) p^.x = ]C^=i Pj (x + Pj^Y where p i . . . pp are the p* roots of the unit in C.
Identity 5-2 follows immediately from the fact if k G Z, k ^ p Z then ̂ p-^ p1] = 0.

LEMMA 5.3. - Let (A, (||.||n)n>i be a commutative, unital Frechet algebra, let x G A,
let I be a dense ideal of A, and let n > 1, p > 2. Then there exists a sequence

{a^rn, ' ' • , ap,m)m>i ofelements of? such that lim ||a^||n < 2 IH); (j <p,m> 1),
— m—^oo p

and such that x = lim V ^ i o33-rn'
m—f-oo 3 L J i

Proof. - Let (em)m>i be a sequence of elements of I such that Cm ——^ 1, so
— m—>oo

that 11 Cm 11 n ——^ 1- Then e^ ——> 1. The notations being as in formula 5-2, choose
m—>oo m—>oo

8j e C such that ^ = pj (j < p), and set Em = \\x\\n + ^, aj,m = Sj.p-2^.{e~^.x +
pj.e).^}^^^)^ ^ 1). Then lim ||a^||n < 2.p~2/p ̂ x^^, and it follows from

m—>-oo

formula 5-2 that x = lim rr.e^- = lim e~^.x (e}^ .e^Y = lim V^ a ^ , which
m—^oo m—^oo m—^oo J~1 J • ' " i—— -~ "-Tn —— '^m \-"t '^uhf ^—.
m—^oo m—^oo m—^oo

proves the lemma.
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THEOREM 5.4. - Let (A,),>i G ^\coo, P > 1, let f = °̂=i An% ^ = ^00 (/),
anJ /^ I be a dense ideal of a commutative, unital Frechet algebra A. Then f {I00) = A.
In particular, A (v) = C.

Proof. - The result has been proved in section 2 when p = 1, and so we can assume
that p > 2. Also we can assume without loss of generality that \n / 0(n > 1),
since (S^=i ^n^ ̂ ) (^°°) C f {I00) for every strictly increasing sequence (rik)k>i
of positive integers. Let x G A. We construct by induction a sequence 14 =
(^n,i, . . . ^n,p)n>i of elements of P such that if we set Wn = Z^=i ^n-i^+j^ •,
^n = p"2^"^"1 mf{|A^|}(^_i)p+i<^<^, the following properties hold

(1) x- ̂  Wy,
m==l

< ^n+1 (n > 1)

n+1

(2) Ihnjn^l ( l <J<P ,n>2 )

Choose a sequence (/^)j>i of complex numbers such that ̂  = A^ (p > 1). It follows
from lemma 5-3 that there exists a sequence (ai^, ... ap^)k>i of elements of P such
that x = Jirn^ ̂ ^ a^fc. If we set Vi = (^1 ai,fc, . . . , ^p1 a?^) with fc sufficiently
large, we see that condition (1) is satisfied by V\.

Now assume that have constructed Vi, . . . Vn so that (1) holds for 1 < m <^ n
and (2) holds for 2 < m < n. Then ||̂  - E^=i ^m||^+i < ^n+i. It follows
then from lemma 5-3 that there exists a sequence (61^, ... , &p^) of elements of
P such that x - S^ w^ = lim ^p W ̂  and such that ~[im"||^ fc||,,+i ^

____A;—^oo •' "' k—>oo '

2.p-2/P.4/-fl (j < p). Hence 'lim'll^1^. ^,fc||n+i < 1, and we see that if we set
k—^oo

Vn+i = (A^+i&i,^ ... , ^np^-p^^) with fc sufficiently large then (1) and (2) are
satisfied. So we can construct the required sequence (Fn)n>i = (^n,i? • • . , ^n,p)n>i by
induction. Set u^-i)p-^-j = Vnj (n > 1, 1 < j < p), u = (un)n>i- It follows from (2) that
u e J°°. We have /(n) = lim E^i^n<= lim ^m Wn = x, and the theorem

m—^oo 't'—-l- m^-oo *-^";—-l-
is proved.

We now deduce immediately from proposition 5-1 the following result (proved in
section 2 for p = 1).

COROLLARY 5-5. - Let {\n)n>,i ^ ^\coo', and let p > 1. Let v = 71-00 (E^=i ^n^).
If there exists a discontinuous character on some commutative Frechet algebra, then
{xW^= c.

Theorem 5-4 and corollary 5-5 extend, with a similar proof, to elements of M\I^o of
the form / = ]^^ (E^=p^~1 ^j X^ j where (pn)n>i is a strictly increasing sequence
of positive integers and where (gn)n>i is a sequence of positive integers such that
Qn < Pn+i - Pn when n is sufficiently large, with suitable growth conditions on (\j)j>i
to guarantee that / e U. More generally it is possible to extend along the same lines
theorem 5-4 and corollary 5-5 to elements of U\I^ of the form / = Y,^ fn (^n),
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where (/n)n>i is a sequence of elements of H (C), satisfying ^^=i[ sup \fn {z)\} < +00
\z\<m

for every m > 1 and vanishing at the origin, with some suitable conditions on the sequence
(7n)n>i where 7n is the order of the zero of fn at the origin. We leave the details to
the reader, and some new ideas would be anyway necessary to remove the restrictions on
the sequence (7n)n>i (the method used to prove theorem 5-4 does not apply for example

p Y^oo ( X n \
tO / = En=l (-^)'

Formula 5-2 shows that if A is a commutative, unital complex algebra then for every
x G A there exists x\^ . . . , Xp G A such that x = x \ ' ' ' + x^. In particular, any re € A
can be written in the form x = x^ + x^ + rrj.

It is not possible in general to obtain a decomposition of the form x = y^ + y^. To see
this, consider the Frechet algebra "H (C). For u, v G "H (C), we have, with J = — j + ^-^
u^-^v3 = {u-\-v} {u-\-jv} {u+j'v) = {u-{-v) {{l-j)u-{-j{u-\-v)) {{l-j)u-}-j(u-^-v)).
If u^{z) + v3 {z) = z for every_z € C, we can assume that u + v never vanishes on C. Set
(p = ^— Then y?~1 ({-^-p -J^'?}) C {0}. It would follow then from Picard's theorem
that (p is a nonsurjective polynomial function, hence a constant. But then (u, v) has rank
one, and so, say, u = Xv where A € C. We would obtain (1 + A3) v3 (z) = z (z € C), a
contradiction. A similar argument shows that if u, v G T~i (C), and if u3 {z) + v3^) = 1
for every z G C, then u and ^ are constant. More generally, we have the following
property, which is the starting point of the construction of some nonzero v G V such that
A (v) = {0} which will follow.

LEMMA 5.6. - Let A be a Picard-Borel algebra, and let u, v E A. If u^ + ^m G Inv A
for some m > 3, then (n, z?) te^ mn^ one. In particular, {u^ v} C Inv A U {0}.

Proof. - Let 71, . . . , 7m be the solutions in C of the equation ^m + 1 = 0. Since
^m + ̂  = (z& + 711;) . . . (n + 7m ^), we have n + 7^ v € Inv A for every k < m. Since
m > 3, the family {u + 71 v^ ..., u + 7m ^) is linearly dependent, and so there exists
ki / A;2 such that {u + 7^ v, ^ + 7^2 v) has rank 1. So (n, i?) has rank 1. If u / 0,
there exists A € C such that v = Xu, and so (1 + A"") ̂ m € Inv A. Hence 1 + A"" -^ 0,
z^ G Inv A and u C Inv A. Similarly v C Inv A if v / 0.

We will also need the following technical result.

LEMMA 5.7. - Let {£n)n>i be a sequence of positive real numbers and let (pn)n>i be a
sequence of positive integers. If\imn—,oo ̂ ±i < |» then there exists a sequence (/3n)n^i of
positive real numbers such that f3n > (^-^n)^ + /^^i (^ > 1)

Proof. - There exists no > 1 such that 2 £yi+i.(n+l) < n.£n < 1 for n > no. For n > no
set (3n = 2.^.?^. We have /%_i + (n.^n)^ = 2^ [(n + l).£n+l]PTl•pn+l + (n.^n)^ <
^n^^.^+ip^n.^)^ <2.(n.^)^ =/3^ (n > no). We then define /3^_i, . . . , / ? i
by the formula /^_i = [^^-i (% - I)?1-1 + y?^"1 (2 <, i < no) to obtain the required
sequence.

If A is a commutative, unital complex algebra, we will denote by Sg (A) = A\Inv A
the set of singular elements of A.
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DEFINITION 5.8. - A recalcitrant element of M is an element f e M\JQQ such that
f (u) G Sg A for every commutative Picard-Borel Frechet algebra A and for every
u G [SgA]°°.

We now produce recalcitrant elements of M. We set Mo = M, Mn = Un D.M (n > 1),
the notations being as in Lemma 2.17.

_THEOREM 5.9. - Let {en)n>i be a sequence of positive real numbers such that
limn^oo ̂ ±1 < j. Then for every sequence (pn)n>i of positive integers there exists a
sequence (/n)n>i of elements of M\J^ such that fn G Mn-i and fn = (en Xn}^ +/^i
(n > 1). If, further, pn > 3 for every n > 1, and if (/n)n>i satisfies the above conditions,
then fn is recalcitrant for every n > 1.

Proof. - For p > 1 set W, - {/ = ̂  f^X- ^ CN [[X]]\ \\f\\p = E.e5 \UP^ <
+co}. Then Wp, as a Banach space, is isomorphic to i1 (N). Since t1 (N) is the dual
space of Co, this isomorphism induces on Wp a w*-topology which we denote by w*.
Clearly, the w^ -topology agrees on bounded subsets of Wp with the topology of pointwise
convergence, i.e. the restriction to Wp of the natural topology of CN [[X}}. Let (/?n)n>i be
a sequence of positive integers which satisfies the conditions of Lemma 5.7 with respect
to (^n)n>i and (pn)n>i- Set

Kl={f='E^f^XaeW,\fo =0, H/Hi < A}, and for n ̂ 2 set

Kn={f= ̂ ^ fa.X- € W^\ 11 /H, < A, /o = 0,

fa = O f o r S u p p a n { l , . . . , n-l}^0}.
Clearly, Kn is w^ -compact for every n > 1. We now define

On '' -Kn^-1 —^ W^n+1

f-^^nXnY^f^

We have On (AT,+i) c TVn+i C Wn, and if we set On (/) = ^ -.Eaes ̂ -xa for

/ G ATn+i, we have ̂  = 0 if Suppa H {1, ..., n - 1} / 0. Also ||M/)lln <
(^.n)^ + 11/H^i < (en.n)P- + /3^i < /?„ and so 0, (^,+1) C ̂  (n > 1).

For a G 5, the set {(/?i, . . . , /3^) e 5m|/3l .. . + j3^ = a} is finite for every m > 2.
It follows immediately from this observation that On : (ATn+i, w^) -^ {Kn, w^) is
continuous.

Since (Kn, w^) is compact for every n > 1, a standard consequence of TychonofTs
theorem shows that lim(A^ 0^) ^ 0. So there exists {fn)n>i e rin>i ^n such that
fn = 0n (/n+l) = (C^n)^ + /^l (n > 1).

An immediate induction shows that fn G rip>iw? = U, and it follows from the
definition of Kn that fn G A^n-i for every n >~1.

We have f^ e A^n, A^n HZ, = {0} and /, = (^n^n)^ + / î, and so /, / 0,
f^ i In. and /, ^In (n> 1).

We see by induction that A - f^^ G Jn (n > 1). Since In is prime, /^i-4'^ ^ In
and fi ^ 1^ = Un>iln. But TToo (A) = ^(/n+i)^-^ and so 7r^(^+i) / 0,
/n+i ^ ^oo for every n > 1. Hence fn ^ loo (n > 1). This proves the first assertion of the
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theorem. Now assume that pn > 3(n > 1), and let u = (un)n>i be a bounded sequence
of singular elements of a Picard-Borel Frechet algebra A. Let m > 1, and assume that
f^ {u) G Inv A. We have (^ UmY- + f^ {u) € Inv A, and it follows from Lemma 5.6
that Um == 0. Hence /^+i (u) G Inv A.

Assume that Up == 0, and that Jp+i (n) G InvA for m < p < n. Then
(£^l.U^l)^+1 +/^21 (n) G Inv A? and k follows BgB111 from Lemma 5'6 that ̂ +1 === °'
so^hat /n+2 (^) ^ l^v^ we thus see that ^n = 0(n > m). Since fm € A^m-i, we
obtain fm {u) = 0, a contradiction. Hence fm is recalcitrant for every m > 1.

Of course, if / € A^ is recalcitrant, then A (71-00 (/)) == {0}. the notations being as in
Proposition 5.1. Notice that if we set Vn = TToo {fn) {n > 1) where (Jn) is the sequence
of recalcitrant elements constructed in Theorem 5.9, then Vn = <^i, with pn > 3, and so
a (-yj = {A^l-AecrC^+i)- Since C\a (z'n+i) contains at most one element, a {vn) = C for
every n > 1. Notice also that Theorem 5.9 gives a new construction of rational semigroups
in the set of nonzero elements of A4/Zoo. We do not know whether the fact that TToo (/)
has roots of all orders in A^/Zoo, with / G M\I^ implies that / is recalcitrant.

Concerning action of recalcitrant elements of M on the quotients of Frechet algebras
by Picard-Borel ideals, we have the following observation.

PROPOSITION 5.10. - Let A be a commutative, unital Frechet algebra, let (Jn)n>i be
a nondecreasing sequence of Picard-Borel closed ideals of A, let I = Un>i ̂  and let

^ : A -> A / I be the canonical map. Then TT (/ {u)) is a singular element of A / 1 for every
recalcitrant element f of M and for every bounded sequence u == {un)n>i of elements of
A such that TT (ztn) is singular for every n > 1.

Proof. - Assume that u € A°° and that TT (/ (u)) is invertible in A / I . Then there
exists m > 1 such that -Km (/ W is invertible in A/Im where TT^ : A -^ A/Im is the
canonical map. We have ^m U (^)) = / (^m (^)), where ^m (u} = {^m (^n))n>i. Since
/ is recalcitrant, and since A / I n is a Picard-Borel Frechet algebra, ^m (un} e InvA/J^
for some n > 1, and so TT (^n) G InvA/J.

Notice that Proposition 5-10 applies in particular to the ideals I = Zoo + (/ - 1)^
discussed in Theorem 2.7.

The fact that the function z cannot be written as the sum of the cubes of two entire
functions was observed in the last century. See Halphen [33, Chap. II] for a discussion
of more general equations involving entire functions, and Bloch [6] for a discussion of
the existence of meromorphic curves on "irregular" surfaces. Of course, is J^i^s a dense
ideal of a commutative, unital Frechet algebra, the trivial formula x = lim^o £L— shows
that for every p > 2 and every x e A there exist two sequences (an)n>i and (&n)n>i of
elements of I such that x = limn-.oo < + ̂  but the sequences (an)n>i and (&n)n>i
are in general unbounded.

It follow from the definition of the set U of recalcitrant elements of M that fg G TZUZoo
for every / G Ti U Zoo and every g G V. The author did not investigate whether U U Joo
contains some ideal J of M. such that Too £ ^«
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6. Joint spectra in V and Michael's problem

Let A be a commutative, unital complex algebra. If M c A, M ^ 0, the joint
spectmm a A (M) (denoted by a (M) if there is no risk of confusion) is the set of all
maps A : M -^ C such that the set {x - \(x).e}^M is contained in some proper
ideal of A. One can also define the joint spectrum (TA ((^W), where (.r^er is an
arbitrary family of elements of A, to be the set of elements (A^er of C71 such that the
family (xf - Ai.e)^T is contained in some proper ideal of A. We will occasionnally use
this point of view (see below). There is of course no danger of confusion, because if
(At)ter ^ CTA ((^Otcr) and if Xf = Xf, then certainly \t = A^/ , so that the map Xf —^ \t
is well-defined on the set [xt}teT-

Denote by A the set of all characters on A. Then {x\M}^A c a (M) for ̂ ^ M c A.
Now if a, b e A, ^ G C and if (z^ z^ z^) G a (a, b, a + 6), (z^ z^) G a (a, ^a)
then zs = z^ + ^2, ^4 = ̂ i. Also if (^i, ^2, ^3) e a (a, 6, a6) then ^3 = z^ z^ since
a& - Z3 e = a.(& - z^ e) + 2^2 (a - ̂ i e) + (^1.^2 - ̂ ).e.

So, with the above notations, we have a (A) = A. It follows then form the results of
section 2 that the existence of a discontinuous character on some commutative Frechet
algebra is equivalent to the fact that a(V) does not reduce to {^J, the notations being
as in section 5.

Now if A is a complex, commutative unital algebra, and if N / 0, N c M C A we
will denote by PN^M : A -> A^ the restriction map from a (M) into a (N).

When every maximal ideal of A is the kernel of a character of A, then a (M) =
{x\M}MeA and so ^V,M : cr(M) —^ a (N) is always onto. Conversely assume that
T^N, Nu{x} is onto for every nonempty subset N of A and every x e A. If J is a maximal
ideal of A, let rr e A\J. Since the map u -> 0 belongs to a (J), there exists A G C such
that JU {x - \e} C J . Hence a; - A e e J and J has codimension 1 in A, which means
that J is the kernel of a character of A. So the following conditions are equivalent

(i) Every maximal ideal of A is the kernel of a character of A
(ii) a(M) = {x\M}^A (M c A, M / 0)

(iii) PN,NU{X} : o- (N U {^}) -^ a (TV) is onto (x e A, TV C A, JV ^ 0)
(iv) PAT,M : o-(M) -^ a ( N ) is onto (JV c M c A, TV ^ 0).
This situation occurs if A is a commutative, unital Banach algebra, or if A = B / I

where B is a commutative, unital Banach algebra and I an ideal of B, closed or not. The
above property never holds if A is a commutative, unital Frechet algebra such that InvA
is not open, for in this case A has infinite - codimensional maximal ideals [24], [53]. This
suggests the following weaker notions.

DEFINITION 6.1. - Let A be a commutative, unital complex algebra. Then A has the
countable (resp. finite) extension property if P^ ^vuM : o- (NU {x}) -^ a {N) is onto for
every at most countable (resp. finite) nonempty subset TV of A and every x G A. Similarly
A has the ^-extension property if PN,NU{X} : a(NU {x}) -^ a (N) is onto for every
subset N of A such that Card N < p and every x G A.

Clearly, A has the finite extension property if and only if A has the ^-extension property
for every p > 1. Notice also that if M = Uier^r, where (M^CT is linearly ordered
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by inclusion, and if (At)ter ^ HteT^{Mt), with \t\M^ = Af/ for M(/ C Mi, then
X : M —> C defined by the relations A)^ == Ai (^ G T) is an element of a (M). It follows
immediately from this observation that if A has the countable extension property then
T^N, M '- 0' (M) -^ o- (N) is onto if N / 0, N C M C A, and if M is at most countable.
Similarly if A has the finite extension property then PN, M '• cr {M) —> a {N) is onto if
N ^ 0, N C M C A, and if M is a finite set.

It follows from the theorem of Arens [2] that if A is a commutative, unital Frechet
algebra and if M C A is finite, then a(M) = {x|M}yeA where we denote by A the
set of continuous characters of A. Hence a commutative, unital Frechet algebra has the
finite extension property. Of course, this property does not extend to quotients of Frechet
algebras (consider a quotient by a maximal ideal of infinite codimension). More precisely
it follows from [24, Theorem 3.1] that if A is a commutative, unital Frechet algebra and if
Inv A is not open, then A has a dense ideal I of countable type such that a (x) = 0 for
some x G A/J, so that A/J does not even have the 1-extension property.

The following observation is probably known by everyone who seriously tried to
construct discontinuous characters one some Frechet algebra. Since the author did not find
it in the literature, a proof is included for the sake of completeness.

PROPOSITION 6.2. - Let A be a commutative, unital complex algebra such that
Card A = 2^°. If A possesses the countable extension property, and if the continuum
hypothesis is assumed, then A / 0 and a (M) = {x|M}yeA f01" every nonempty M C A
such that CardM < ^o-

Proof, - We can assume without loss of generality that 1 G M and that CardM = ^o-
Since the continuum hypothesis is assumed we can write A = {<^}^<^i, where we denote
by c<;i the first uncountable ordinal, and assume that M == {^^}^<c^o' wltrl ^o = 1- For
0 < ^ < cc;i set N^ = {a^}rj<^. Since A indeed has the finite extension property we
can construct by induction a sequence (\n)n>i^ with \n G o (Nn) (n > 1) and with
AnjTv^ = Ayn for 1 < m < n. Define X^ : N^ -^ C by the formulae A^(^ = \n
(n > 1). Then A^ G a (A^J = cr(M), and so a(M) / 0.

Now let fji G a(M). Set A^ = /^|^ for 0 < ^ < ci;o- We construct by transfinite
induction an extension (A^<^ of the family (A^<^o defined above, with A^ e a (N^)
and A^ = A^ for 0 < T] < ^, $ < 0:1.

Assume that a family (A^) with the required properties has been constructed for ^ < 77,
where 77 > o;o- If ^7 = a + 1 is a successor ordinal, then A^ == ̂  U {a^}. Since A has
the countable extension property there exists Ay, G a (A^) such that A^|^ = A^, and the
family (A^<y, satisfies the required conditions. If 77 is a limit ordinal, then N^ = IJ^< ^
and we define A^ G o ' ( N ^ ) by the condition Ay^ == A^ (^ < 77). Again, the family
(A^<y, satisfies the required condition. So we can construct the desired family (A^<c^
by transfinite induction.

Now define A : A —> C by the conditions A|^ = A^ (^ < 0:1). Then A E a (A) = A,
and JLA == A)M- This concludes the proof of the proposition.

Unfortunately, the algebra V does not have the countable extension property. More
generally we have the following result (we adopt the convention that a compact set is
nonempty).
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PROPOSITION 6.3. - Let A be a commutative, unital Frechet algebra, and let I be an
ideal of A. If the quotient algebra A / I has the countable extension property, then a (u)
is compact for every u G A / 1 .

Proof. - Set B = A / I . If a (u) = 0 for some u G B, then B does not have the
1-extension property. If a (u) -^ 0, and if a (u) is not compact for some u 6 A/J, then
a {u) is unbounded or a (u) is not closed. In the second case let 8 G a (u)\a (u) and set
v = (u — 8e)~~1. Let (<?n)n>i be a sequence of elements of a (u) such that 6n ———> 6.

n—>oo
Then j-^ G a (v) (n > 1) and so we can assume without loss of generality that a (u) is
unbounded for some u G B. Let (z^)n>i be a sequence of distinct elements of a {u) such
that \Zn\ ———> oo. It follows from the theory of Weierstrass products that there exists for

n—>oo
each p > 1 an entire function fp on C such that /p~1 ({0}) = {zn}n>p-

For / G T~L (C), a G A we set as in section 3 / (TT (a)) = 7r(/ (a)) where TT : A —^ A/J
is the canonical surjection. Then f (b) — f (z).e G (& — ze).B (b G B, z G C).

For p > 1, set z»p = fp (u). Since /^ (^p) = 0 for n < p, we have z^i.B . . . + Vp B C
(u — Zp.e).B S B. So if we set M = {vp}p>i we see that the zero map OM : fp —> 0
(j) > 1) belongs to a(M). Let ^ G C. Since ^p>i{zn}n>p = 0 there exists p > 1 such
that fp (z) / 0. Since Vp — fp {z).e G (u — ze).B, we have e ^ Vp.B -{- {u — z.e) B. In
particular \\M i=- OM for every A G cr (M U {^}), and B does not have the countable
extension property.

It is well-known that if the group of invertible elements of a commutative, unital Frechet
algebra A is not open, then A has elements u such that a (u) is unbounded (this follows
for example from the fact that there exists a surjective homomorphism from A onto C^
see [24]). So in this case it follows from Proposition 6.3 that A does not have the countable
extension property, despite the fact that A has the finite extension property by the theorem
of Arens [2] mentioned above.

More generally if J is a dense ideal of countable type in a commutative unital Frechet
algebra A, there exists a surjective homomorphism from A / I onto C^/CQQ [24] and so
a (u) is unbounded for some u G A / I , since a similar property holds for C^/CQQ. This
shows that A / I does not have the countable extension property. Of course, it follows also
from Proposition 6.3 that if J is a Picard-Borel ideal of a commutative, unital Frechet
algebra A, and if I is not the kernel of a character of A, then A / I does not have the
countable extension property. In particular we cannot apply Proposition 6.2 to V = U/loo
or to the quotient algebras U/loo + (/ — 1)^ introduced in section 2. It seems that a
crucial step to make progress towards a solution to Michael's problem would consist in
answering the following question.

PROBLEM 6,5. - Does the algebra V = U/loo possess the finite extension property?
A negative answer to Problem 6.5 would give a finite family (14, . . . , Up) of elements

of V such that a (1^1, . . . , Up) -^ {\ (14), . . . , \ ('^p)}^^^' a ^^ i111?011^ piece of
information to build any strategy to construct some \ G V\{Xo} (or to prove that
V == {^o}). In the other direction, a positive answer to Problem 6.5 would give an
important information about the "Poincare-Fatou-Bieberbach phenomenon", given by the
following result.
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THEOREM 6.6. - Let p > 2, and assume that V possesses the p-extension property. Then
r\n>i(Fi ... o Fn) (C23) 7^ 0 for every sequence (Fn)n>i of entire, one-to-one maps from
CP'into C^.

Proof. - Let / = °̂=i ^n^n- where (A,),>i e ^\coo, let J = Zoo + (/ - 1)^
and let TT \ U —^ U / I be the canonical map. Then J is dense in U, and it follows
then from the results of section 3 that C\n>l(F^ •- ° F^) [ ( U / I ) P } ¥" 0- So there
exists a sequence (Un)n>i = (^i,n; • • • ? ^ , n ) n > i of elements of (U/I)10 such that
Un == Fn (^n+i) (^ > 1). For 1 < j < p, let fj G U such that Tr(^) == z^i. Since
1 G o- (71-00 (/)), and since we assumed that V possesses the ^-extension property, there
exists (Ao, Ai, . . . , Xp) G a (71-00 (/), Ti-oo (A), . . . , TToo (fp)) such that Ao = 1. But this
shows that Zoo + (/ — 1)^ + (/i — ^i)U • • • + ( / ? — \p}U is contained in some proper
ideal of U, and so /^i = (Ai, . . . , Ap) € a (?7i).

Since F^ ^ C^ —> C^5 is one-to-one, it follows from the results of section 3 that
a(Un) = Fn (a (?7n+i)) (u > 1). Hence, /^i being defined as above, there exists a
sequence (/^n)n>i of elements of Cp such that /^ = F^ (/^n+i) (^ > 1), which concludes
the proof of the theorem.

We see at this point which role Corollary 3.7 plays with respect to Michael's problem:
if lin^C^, Fn) •= 0 for some family (Fn)n>i of entire maps and some family (pn)n>i
of positive integers, then U/loo + (jf — 1)U could not have any character, because some
necessary condition on the values of characters on the terms of a sequence (Un)n>i, where
Un = Fn (t7"n+i) G [(U/I^ +(/-!) U)}^, could not be satisfied.

If we knew that liir^O371, Fn) is indeed nonempty, this would just mean that some
obstruction related to joint spectra of special finite families of elements of UjT^ + (/ -1) U
disappears, but constructing a character on Z^/Zoo + (/ — 1)U means dealing with joint
spectra of all subsets of lAfl^ + ( /—!) U. So there would still be a long way to go before
getting a character on U / I ^ + (/ — 1)U, hence a discontinuous character on U.

7. Appendix : a remark on the theorem of Arens

The basic theorem of Arens [2], mentioned repeatedly in the present paper, shows that
if A is a (nonnecessarily commutative) unital Frechet algebra and if (ai, . . . , Op) 6 A^ is
such that ai A ... + dp A is dense in A, then ai.A ... + Op.A = A.

Since A is isomorphic to a projective limit lim(An, On) [36], where An is a unital
Banach algebra and On '' An-^-i —> A^a continuous homomorphism such that On (Ayi+i)
is dense in An for every n > 1, we can write aj = (ftj ,n)n>i where a^n ^ A^,
^n = 9n (a,,n+l) (1 < J < P. U > l). It WC Set On (&1, . . . , &p) = (^n (&l), . . .\ 0n (&p))

for (61, . . . , 6p) G A^i, Vn = { (&i , . . . , &p) G A^|ai^&i . . . + a p , n & p = 1}, we have
On (Kz+i) C Pn. and Vn / 0 since ai^.A^ ... + Op.n-An, being dense in the Banach
algebra An, must equal An.

The proof of Arens consists in showing that 0n(Vn+i) is dense in Vn, and then in
applying the Mittag-Leffler theorem (see section 3) to show that lim(V^, On) / 0- If
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(z;i^, . . . , Vp^n)n>i ^ lim (Vn, On) and if we set Vj = (u,,n)n>i, then Vj G lim(A^, 6>n),
(j < J?) and a\v\ . . . + a? Vp = 1, the desired result.

The simplification of the original proof of Arens we propose here concerns the proof
that On (Vn+i) is dense in Vn. If F is a Banach algebra and if u = (^i, . . . , Up) G F^,
v = (z^ . . . ^ ^) (= Fp, a ^ F we set a.n = (a^i, . . . , aup), z^.a = (^i.a, . . . , Up.a),
^ v) =^1^1 . . . + Up Vp so that a.(n, v) = (a'u, ^), (n, v).a = (i6, v.a).

Now let F, G be two unital Banach algebras, and let 0 : F —^ G be a continuous
homomorphism with dense range. Let n G Fp and set .L = {v C ^K^, v) = 1},
M = {w G G^K^), w) = 1}, so that 6 {L) C M. For v = (v^ . . . , Vp) G FP, set
0(-y) = (<9('yi), . . . , 0(vp)) ^ GP. Assume that L / 0. Let w G M. There exists a
sequence (cc;n)n>i of elements of FP such that 0 (ujn) ———)>^-

— n—»-oo

Let v G £. We have (n, v+ci;n — v (n, o;n)) = (u, v)-^-(u^ u^n) — (u, v) (u^ Un) == 1, and
SO V+^n—V (lA, (j^n) G £. A1SO 0 (v+a^—'y (lA, C(;^)) = 0 (v)+0 (^n)~0 (v)'^ ((u^ ^n)) =

0 (v) + 0 (^n) - ̂  M.̂  (n), 6 (^)) ———. 0 {v) + w - (9 (^). <(9 u), w) = w. This shows
n—)-oo

that 0 {L) is dense in M and so, with the above notations, 0 (V^+i) is dense in Vn (this
approach seems technically much simpler than the original computations of [2]).
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