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STRONG STOCHASTIC STABILITY
AND RATE OF MIXING FOR UNIMODAL MAPS

BY VIVIANE BALADI AND MARCELO VIANA

ABSTRACT. - We consider small random perturbations of a large class of nonuniformly hyperbolic unimodal
maps and prove stochastic stability in the strong sense (L1 -convergence of invariant densities) and uniform bounds
for the exponential rate of decay of correlations. Our method is based on an analysis of the spectrum of a modified
Perron-Frobenius operator for a tower extension of the Markov chain.

1. Introduction

Let I C R be a compact interval and / : I —> I be a smooth unimodal map with
f(I) C int (I). The prototype we have in mind are the quadratic maps f(x) = -x2 + a
but our arguments and conclusions hold in the general context of maps with negative
Schwarzian derivative and nondegenerate critical point. Let c G I be the critical point of
/ and Cfc = fk(c) for k > 0. Throughout this paper we assume that

(Al) l/^c) - c| > e-^ for all k > Ho,
(A2) ICWci)] > ^ for all k > H^
(A3) / is topologically mixing on the interval bounded by ci and 02,

where HQ > 1, 1 < Ac < 2, and 0 < a with e20" < \/r\c are fixed constants.
Conditions (Al), (A2) are inspired by Benedicks-Carleson [BC], where it is proved that

they are satisfied by quadratic maps for a positive measure set of values of the parameter
a. Moreover, they imply the conclusion of Jakobson's theorem [Ja]: The map admits
a (unique) invariant Borel probability measure mo which is absolutely continuous with
respect to Lebesgue measure on I . This invariant measure is ergodic and describes the
typical asymptotics of orbits of /, in the sense that ^ ]C ô1 ^P'(a-) "̂  m^ ^or Lebesgue
almost all x C J. Assumption (A3) is used only in Section 5 and we discuss it there
(quadratic maps satisfy all three conditions simultaneously, for a positive measure set of
values of a).
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484 V. BALADI AND M. VIANA

Our purpose is to show that (A1)-(A3) ensure stability of the dynamics under random
perturbations of the map: The asymptotics are only slightly affected when one replaces fn

by (/ + tn) o • • ' o (/ + ^i), with ^ i , . . . , tn chosen at random in a small interval [-e, e]
following some probability distribution 0^. This contrasts with the structural instability
of these maps: For g arbitrarily close to / the asymptotic behaviour of g71 may be very
different from that of /n (e.g. it may be of periodic type).

Stability under random perturbations may be expressed more precisely as follows. For
each small e > 0 we consider the Markov chain ^€ on the a-algebra of Borel subsets of I
whose transition probabilities are given by P€(x, E) = f^ O^y - fx) dy. Our conditions
on the probability density 6^ are stated in (2.2)-(2.4). Then (see Section 2) for each e > 0
there exists a unique probability measure m^ which is stationary under ^6, i.e.,

m^(E) = / P^x.E^dm^x) for every Borel set E.

Moreover, m^ is absolutely continuous with respect to Lebesgue measure and satisfies
^ Z^=o ̂  ~^ m^ ^or most ^ndom trajectories xj = (f + tj) o • ' ' o (/ + t^)(x).

We want to call / stochastically stable if these asymptotic distributions m^ converge to
the invariant probability mo of / as the noise level e goes to zero. More precisely, we say
that / is weakly stochastically stable under ^€ if m^ —^ mo in the weak*-topology. This is
the same as having pg —^ po in the weak sense, where po and pg are the Radon-Nikodym
derivatives of mo and m^ with respect to Lebesgue measure. We say that / is strongly
stochastically stable under ^6 if m^ —^ mo in the strong (norm) topology or, equivalently,
if pe converges to po in ^(dx).

Obviously, every strongly stable system is also weakly stable. A simple example of
a sequence of functions in [0,1] which is weakly convergent but not L1 -convergent is
9n(x) = (-1)^^, where [z] is the integer part of z. This example illustrates a main
advantage of strong stochastic stability over its weak analog: preventing large oscillations
of the p^ around the limit density po. For uniformly bounded sequences of functions having
uniformly bounded variation, it is not difficult to check that weak convergence implies
strong convergence. This provides a (very partial) explanation for the role of the variation
in the theorem below.

Another important stochastic parameter we analyse here is the exponential rate of
decay of correlations, which measures the mixing character of the dynamics. Let F be
some Banach space of test functions on I (we shall always consider F = BV(I), the
space of functions with bounded variation). We say that (/,mo) has exponential decay
of correlations in F if there exists 0 < r < 1 and for any ^,^ G T there exists some
C = C7(TJH|J|^||) > 0 satisfying

/ (^ ° /n)^ dmo - ^p dmo o f^^dmo - / ydmo \ ̂  dmo\ < Cr^ for all n > 1.

Then the rate of decay of correlations of (f,mo) in T is the infimum TO of all such
numbers r. Analogously, we define the rate of decay of correlations of(^m^) in T to
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STRONG STOCHASTIC STABILITY AND RATE OF MIXING FOR UNIMODAL MAPS 485

be the infimum Tg over all r > 0 such that

[ ( [ ^(y)P^x,dy)^(x)dm^x)- ipdme ^dm^ < Cr71 for all n > 1,
J \J / J J

with C = C{r, ||(^||, H'011), and where P^(x, dy) denotes the n-step transition probability.
We shall now state our main result. Here we call a differentiable map f : I —^ I

unimodal if it has a unique critical point c and c (E int (I). We take / to be C4 and to have
Schwarzian derivative Sf < 0, recall that Sf = ( f ' / f ) - ̂ I W I f ' Y . We also let c
be nondegenerate, i.e., /"(c) -^ 0 (but our arguments may be adapted easily to the case
when c is only nonflat, meaning /^(c) exists and is nonzero for some i ̂  1). Finally,
we suppose /(J) C int (I) and that / admits an extension to some compact interval J D J,
preserving all the previous properties and satisfying f(9J) C 9 J .

Main Theorem

Let f : I ^ I bea unimodal map with negative Schwarzian derivative and nondegenerate
critical point as above, and let (^e be random perturbations of f as introduced before.
If f satisfies (A1)-(A3) then

(1) (Strong stochastic stability.) The density pe of the unique invariant probability measure
m^ of^ converges in ^{dx) to the density po of the unique absolutely continuous invariant
probability measure mo of f.

(2) (Uniform rates of decay of correlations.) The systems (x^^e) and (/,mo) have
exponential decay of correlations in the space BV{I) of functions with bounded variation,
and their rates of decay are uniformly bounded: There exists f < 1 depending only on f
such that Te < maxf^o^) < 1 f^ smal1 enou^h 6 > °-

Stochastic stability and decay of correlations have been investigated for many dynamical
systems, see e.g. Kifer [Ki2] and references therein. Let us focus on quadratic maps. Katok-
Kifer [KK] proved weak stochastic stability under a uniform hyperbolicity assumption
(nonrecurrence of the critical point). Then Benedicks-Young [BY1] showed that a large
set of nonuniformly hyperbolic maps are weakly stochastically stable (they use a different
form of assumptions (A1)-(A3) above). In fact, abundance of stochastic stability (in the
strong sense) among nonuniformly hyperbolic quadratic maps had also been obtained
in an unpublished work of Collet [Co]. Exponential decay of correlations was proved
independently by Keller-Nowicki [KN] and by Young [Yo], for classes of nonuniformly
hyperbolic maps related to ours.

Our basic approach in the proof of the main theorem is inspired by Baladi-Young [BaY]
who obtained similar results for some uniformly hyperbolic systems. Indeed, we introduce
certain transfer operators Co and Ce associated with / and ^e, respectively, and derive
the statements in the theorem from showing that these operators are quasicompact (the
peripheral spectrum is discrete or, in precise terms, the essential spectral radius is strictly
smaller than the spectral radius) and that £e is "close" to CQ for small e > 0. As a
by-product, this method permits us to recover and unify in the present setting many of the
results mentioned previously, including the existence of absolutely continuous invariant
measures [Ja] and the exponential decay of correlations [KN, Yo]. We also expect it to
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486 V. BALADI AND M. VIANA

be useful in more general situations, e.g. for higher-dimensional systems such as those
in [BC], [BY2].

Let us sketch in more detail how this basic strategy will be carried out, describing
the main new ingredients necessary in the present situation to overcome the lack of
hyperbolicity. In Section 2, we construct a tower extension f:I —^ I for the map /.
Towers are now a standard tool in 1-dimensional dynamics and were also used, e.g., in
[KN, Yo]. However, neither of these constructions can be used directly in a random setting
such as ours: Our tower must also support extensions ^6 of the Markov chains ^€. In
Section 2 we also introduce transfer operators Co and £g, acting on a Banach space BV(I)
of functions of bounded variation. For the definition of Co we must use a convenient
cocycle WQ:I —^ [0,oo):

)̂̂ E^
(this corresponds to a change of coordinates and is required to remove the poles of 1/|/'|
and to enforce the expansion during the "recovery" phases of orbits). Perturbed cocycles We
and perturbed operators £g, corresponding to ^€, are also defined, involving averages over
past (random) orbits. This seems to be the first time that perturbed cocycles are introduced.

Building on several preliminary results obtained in Section 3, we derive our main
estimates in Section 4. We show that Co satisfies a Lasota-Yorke [LY] type inequality, i.e.,
that there are C > 0 and a- > 1 such that for all n > 0,

var£^ < Co- "(vary? + sup \(p\) + C \ \^\WQ <

;vpe are also central to FKN1 and FYol. We also r

\(p\wodx .

Estimates of this type are also central to [KN] and [Yo]. We also prove a similar fact for
Ce. Combined with our other bounds, this yields that C^ is close to Co in the following
sense: There are C > 0 and f < 1, and for each n > 1 there are e(n) > 9 and a norm
|| . ||(,), such that \\C^ - C^ < C^ for e < e(n).

Ergodic properties of our systems may then be deduced from the accumulated knowledge
on these operators. This is done in Section 5, and follows well-known lines. First, if po
is a (normalized) fixed function of Co then rho = wopo dx is an absolutely continuous
invariant probability measure for /, and it projects down to the invariant measure mo of
/. Moreover, after lifting the correlation functions to the tower, one sees that the gap
in the spectrum of Co separating 1 from the second largest eigenvalue is directly related
with the rate of decay of correlations of the system (/,mo). Similar statements hold for
positive e. Finally, using the above closeness between Co and £g, and applying nonstandard
perturbation results from [BaY], we obtain the claims in our main theorem.
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STRONG STOCHASTIC STABILITY AND RATE OF MIXING FOR UNIMODAL MAPS 487

± The tower

Throughout, the notation C represents a generic (large) positive constant, and C(-),
respectively c(-), is some positive function tending to infinity, respectively tending to
zero, with its argument. We also use Cn(-), respectively Cn(-), to denote a sequence of
positive functions which, for each fixed value of n, converge to infinity, respectively to
zero, with the argument.

We make frequent use of the following easy inequalities. Let J, J be compact intervals,
^i 5 '02 ' ' I —^ C be functions of bounded variation, and h: I —^ J be a homeomorphism.

(a) varj(^i + ̂ ) < varj'0i + varj^2»
(b) varj('0i • ^2) < varj ̂  supj \^\ + supj |'0i| varj -02,
(c) varj('0i o h) = varj'0i,
(d) varj('0i^j/) < varj'^1 + 2supj/ |'0i| for each interval F C J.
Moreover, given ( f ) : I x J —^ C, ^ : J —> [0, +00) such that <^(a;, •)'^(') e ̂ ^^ ̂ ) f01"

each fixed x, and (^(•,^) has bounded variation for each fixed t, then
(e) ^iif(t){x,t)^{t)dt < f(v^i(f)(x,t))^(t)dt.

The dynamics

We always take / : I —^ I to be as in Section 1. Without any restriction, we take the
critical point c to coincide with zero; sometimes we denote a = c\. Condition (A3) will
not be used until Section 5. We fix A > 1 and p > e0' so that

(2.1) e^^vC^.

Other constants 0 < 6 <€ a and 1 < a < X will be introduced later on.
Now we fix some small eo so that ft(I) C int (I) for all \t\ < eo. Here ft{x) = f{x) -\-t,

and we also write f^ = /^...ti = /in ° • " ° fti for each n > 1 and f= ( t i , . . . , tn). As
explained before, we are interested in Markov chains ^e, with 0 < e < eo, whose transition
probabilities P^rr,-) have densities 6e(y — fx). Each 6e is a probability distribution on
[—e,e], i.e., a nonnegative function with

(2.2) supp Oe C [-e, e] and / 6^(rr) dx =- 1.

We also assume the 0^ to satisfy

(2.3) M = sup(esup |0J) < oo
e

and, denoting J^ = [t \ 6^(t) > 0},

(2.4) Je is an interval containing 0 and </)g == log(0g|jj is concave.
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488 V. BALADI AND M. VIANA

The technical condition (2.4) is introduced here in order to simplify some of our
arguments, a weaker regularity assumption should suffice. In any case, it holds in most
interesting cases, e.g. Gaussian and uniform distributions. Note that (2.2)-(2.4) are automatic
if 0e has the form 0e(t) = ( l / e ) 0 ( t / e ) for some 0 satisfying (2.2) and (2.4).

Clearly, <^g is concave if (<9e|jj is concave. On the other hand, (0e\j,) is at most two-
to-one if 0g is concave: Otherwise, there would be a point y with at least three preimages
by 0g, and therefore there would be some z with at least three preimages by ^g, so that
^e would have to be constant, a contradiction.

It follows from our assumptions that, for all small enough e, the Markov chain ^e has a
unique invariant probability measure mg (we do not need (A3) for this) and this measure
is absolutely continuous with respect to Lebesgue. (See [BY1, Part II] for a proof of
uniqueness. We do not assume, as they do, that 0e is bounded from below, but if e is
small enough it is still true that an invariant measure for ^6 must contain c = 0 in the
interior of its support.) Uniqueness also implies that mg satisfies an ergodicity property:
The product measure m^ x 0^ is ergodic (and invariant) with respect to the map on I x R^
defined by (rc^i,^ . . . ) t-^ (/ti (x), t^ , ^ 3 , . . . ) , see [Kil, Theorem 2.1]. It follows, using
the ergodic theorem, that the Birkhoff averages of random trajectories xj = f{ ....^(rr)
converge to m^ for (Lebesgue) almost every (a ; ,^ i , . . . , ^ , . . . ) e suppm^ x suppff^, as
already mentioned in the Introduction.

The tower

We now construct a tower extension / : I —» I of /, as well as its deterministic
perturbations ft, for \t\ < e < 60. Let a < /?i < /?2 < 2a be two constants; note that (2.1)
above implies e^^Xp < ̂ /\c for % = 1,2. The tower I is the union I = Uk>oEk of levels
Ek == Bk x {fc} satisfying the following properties. The ground floor interval Bo = [ao, bo]
is just the interval I . For k >_ 1, the interval B^ = [a'k^k\ is such that

[ck - e-^\ Ck + e-^\ C Bk C [c, - e-^\ c, + e-^].
Observe that 0 = c ^ Bk for all k > Ho, where Ho is given by (Al). For future use we
introduce B^ = [0,&o], -BO" = ^0,0] and E^- = B^ x {0}.

Now we fix some small S > 0, in particular, we assume that

(2.5) \fj(x) - c,\ < mm{|c, e-^\ e~^23} for all 1 < j < Ho and \x\ < S

(the other conditions on S are stated later in this subsection, in Lemmas 1 and 2, in the
proof of the Sublemma, cf. (4.15), and in the proof of Corollary 2, cf. (5.1)). Then we also
set B^ = B^ H (-6,8) and E^ = B^ x {0}.

Given x / c we shall denote by x- the unique point rc_ / x with f(x-) = /(rr). It
is no restriction to suppose that there is an uncountable set of arbitrarily small values of
8 > 0 for which (—^)- < 8 (just change coordinates x ^ —x otherwise) and we do so.
Let us write {0, ±6} U {aj \ j > 0} U {bj \ j > 0} = {eo = 0, ei = 6, e^ = -6, e^...}.
We may, and do, require additionally that for all j > 1 and k ^ £ > 0

(2.6) ^'(e,)^^.
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STRONG STOCHASTIC STABILITY AND RATE OF MIXING FOR UNIMODAL MAPS 489

Indeed, our assumptions on / imply that p(0) / 0 for all j > 1. We choose 6 such that
±S do not belong to the critical orbit, and that P(=b5) ^ {0, ±6} for all j > 1 (these are
co-countable conditions). For each i > 3 we impose the co-countable conditions that e^ is
not /-periodic, e^ ^ U ,{p(eo ) , . . . , P'(^-i)} and p'(e^) i { e o , . . . , e^-i} for all j > 1.

For (x,k) G I?fc and \t\ < e we set

( (/t(^), fc + 1) if fc > 1 and ̂ ) G B^i,
/,(^ fc) = (ft(x), k + 1) if fc = 0 and rr (E (-^ <5) ,

(/t(:r),0) otherwise,

and we define /^ ^ as above. (We write f = fo') Denoting TT : I -^ I the projection to
the first factor we have ft o TT = TT o /^ on J.

Define ff(^) = ff(^, eo) to be the minimal k > 1 such that there exist some x G (-8, 6)
and some f == ( ^ i , . . . ,^,^+i) G J,̂ 1 such that /^(^O) G ^o. We observe that
H(6) can be made arbitrarily large by choosing small enough 8 and eo (by continuity). In
particular, we assume that H(6) > max(2, Ho), cf. (2.5). We define the Markov chain ̂
by considering the transition probabilities P6^, k), E) = ̂ ^lo LE °e((yJ)^ /(^ fc)) ̂
where 6^{yJ)J(x, k)) = 0 if fy-f^x.k) i £„ and 0 e((y J ) J (x ^ k)) = O^y - fx)
otherwise (in which case fy-f^(x,k) = (y,jY when there is no ambiguity, in particular
when j = k + 1, we simply write Oe(y - fx)).

The cocycles

We wish to consider transfer operators C and £g related to the (unique) absolutely
continuous invariant probability measure of / and each ^€. For this, it is useful to
introduce cocycles in order to suppress the singularity of the weights l/\fi\.

We first give the definition of the unperturbed cocycle w = w o : i ^ R . l f k > 0 1
then for each {x,k) G Ek H Im(^) there is a unique (y, k - £) G Ek-e such that
f\y, k - £ ) = {x, k) and f^y) has the same sign as Ck-^j for 0 < j < i (the second
condition is needed only if k-£ < Ho). We write f^\x, k) = y . If (x, k) G ^Him (/fc) we
also define / ^ ( x . k ) = y where (^,0) is the unique point in E^ with ^(^,0) = (rr,fe).
We set

.o(^)={ 1(^(^(^)1 ^^^^ I m ^) '
10 otherwise.

(In particular, wo(^, 0) = 1.) Note, for further use, that the support of the cocycle wo in
Ek is an interval for each k > 1, with endpoints in the set QEj, U {^(0,0), ̂ (±^0)}.
F o r f c > l and (rr ,fc) G Im/ we have wo{x, k) = \wo(f^\x,k),k - l)/\f\f^\x, k))\.

The perturbed cocycle w^ is defined by:

f 1 if fc = 0 ,
w,(rz, fc) = \ x !^ ̂ x -fy)^ if fc = i.

A ;̂  w,(^/, fc - l)0,(x - f y ) d y if fc > 2 .

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



490 V. BALADI AND M. VIANA

Defining (rr^...^, k - K) = f^..t^+{x, k), with k > i > 1, as in the unperturbed case,

w,(a; , l )=A/ t | / / (^) | - l^W^,

w,(x,k) =\ I w^Xt.k-l^f^x^e^dt, for k > 2 ,

(integration is over the t such that Xf is defined, with Xt € [0,^) and Xt € S^-i,
respectively). Introducing the notation d0e(t) = (9g(ti) • • • Oe(tk-i) d^i . . . d^-i, we also
have for fc > 2

w,(.r, fc) = A^-1 y w,(^_,..^, 1) |(/^...^n^_,..tJ|-1 dC(Q,

where the integral is over the fe J^~1 such that Xt^_^...^ € I?i exists.
Our assumptions imply that 0^ converges to the Dirac function as e tends to zero. It

follows that We{x^ k) converges pointwise to wo(x^ k) = w(x^ k) as e —^ 0. Moreover, for
small enough 6, and for all k > 0, the support of w^ in Ej, is an interval with endpoints
close to the endpoints of the support of w = WQ in Ek. Writing dx for Lebesgue measure
on /, we introduce the positive measures /^o = WQ dx and /^g = w^dx. It will follow from
our analysis, e.g. the proof of Lemma 7, that these measures are finite.

We use the cocycles Wg to define nonnegative weights g^ on J, for 0 < t < e, by

( ^ _ w^y^k) 1
g t ( y ' '-^{Uy^fW

(if the denominator is nonzero, otherwise we leave gt(y, k) undefined). Note that whenever
wo(^&) / 0 we have g ^ y ^ k ) = (A'/K^/^^ k))\) . (l/\f(y)\) if f ( y ^ k ) G E^
9o(y^) = d/'^-)!^!/'^)!) if {y,k) G E^ and go(y,k) = I/A in all other cases. We
shall use the notation g == go, ^(n) = n^o1^ ° f3)^ ^d similarly for g^.

The transfer operators

Now we introduce a linear transfer operator C == Co acting on functions (p : J —^ C
as follows. For fc > 1 let (a fc , fc ) , (6^^) be the endpoints of the interval Imfk H £'/,,
with dk < bk. Given (rr, k) such that either k = 0 or fc > 1 with a^ < x < bjc (in both
cases w(rr, k) ^=- 0), we set

r ^/r ^.^ 1 v^ ^(yJ^^yJ) ^
^^^w^ ^ ——7^——= S ^^)^^)-

A^J)=(^^) Ayj)=(^,fc)
Moreover, we setC(p{x,k) = limsupy-^^ 9f,C(p(y, fc)+%limsup ^ QC(p(y,k), i f f c > l

and x > bk, and similarly if k > 1 and x < a^.
Analogously, denoting (a^,k), (b^,k) the endpoints of (u^jjjm/^) HE'^, we define

/- ,n(^ n 1 v^ ^(yJ)^e(yJ) v-^ / -\ / •\
^^^'W^fc) 2. ————J7^————= E ^^W^^)

/ f\{yj}=(x,k) u V C 7 / 1 /t(?/^)=(^^)
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STRONG STOCHASTIC STABILITY AND RATE OF MIXING FOR UNIMODAL MAPS 491

and

C^(x,k)= f Ct^,k)0^t)dt=V I ————T^{yJ)w^yJ)()^(x,k)J(yJ))dy
J ^O17^ W^{X,K)

if k = 0 or k > 1 with a^ < x < b^. For k > 1 and x ^ (a^ 6|.) we define C^{x, k)
using limits in the same way as before.

We consider the Banach space BV(I) of functions (^ : I —^ C such that

IMlay = IHI = sup H +var(^+ / |^)|wo0r)cte
j i J i

is finite. It will follow from the results in Sections 3 and 4 that C and £e are bounded
operators on BV(I) (in particular that BV{I) is invariant) and, in fact, that they are
quasicompact.

Intervals of monotonicity

An interval 77 C Ek for some k > 0 is called an interval of monotonicity for a map
F : I —^ I if the map F == TT o F is monotone on 77 and if there is a j such that
-F(Ty) C Ej and 77 is maximal with this property. Let Z^ be the set of intervals of
monotonicity of f^, i.e.,

Z^ = {771 H /o'1^ H • • • n fo^iln \ 7 7 1 , . . . , rjn intervals of monotonicity of Jo} .

Observe that property (2.6) from the definition of the tower implies that no element 770 of
Z^ is reduced to a point, and that 770 is either disjoint from the support of the measure /^o or
meets this support on an interval with nonempty interior (in the second case, /^o(^o) > 0)-

Note that each level Ek contains at most three intervals of monotonicity of /o for
k > Ho, and at most four such intervals for 0 < k < HQ. Since, by definition, the image
of an interval of monotonicity of /o is always contained in some level Ej, we conclude
that #{77 ^ 2^ \ r] C Ek} < 4^ for all k > 0. For fixed values of n, we will need to
consider monotonicity intervals corresponding to orbit pieces lying in a bounded part of
the tower. Fixing TV > 71 we denote

z^ = L n /o-^ n • . . n /o-^^n e ̂  I ̂  c: fu,<^ , l < i < n\.

The considerations above imply that #2^^ ^ (N-^-l)^ < oo and that there is a constant
Cn{N) > 0 so that H > l/Cn(N) for each nonempty 77 C Z^.

For f= ( ^ i , . . . , tn) € JJ\ let Z^ be the set of intervals of monotonicity of f^:

Z^ = {771 n ft[1^ n • • • n (f^~_\...t,)~l^^n | m monotonicity interval of f^ , 1 < i ^ n} ,

and for N > n

Z^ = {771 n /^ n . • • n (̂ ...J-̂ n e z^ \ 77, c fu^^ , l < i < n].
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Clearly, endpoints of nontrivial intervals in Z^ and Z^ vary continuously with ^ It
follows that given any rjo in Z^, for each f close enough to 0 there is rj^rfo) C Z^
with endpoints depending continuously of fand such that 77(0,7^0) = ̂ o' Moreover, there
is e{n,N) > 0 such that for e < e(n,AQ and any f e JJ1, the map r](t, •) sends Z^
bijectively to Z^. For 7/0 e 2^ and e < e(n,7V) we define

^(6,770)= |j ^(^o) and ^-(e^o) = Q ^(^o).
teJj" feJ;1

Then we have the uniform bounds \ri^~(e^r]o) \ r]o\ < c(e) and \rjQ \ rj~ (6,770)! < c(e).
Therefore for all 0 < e < e(n,N) and 770 ^ ^ ' N (reducing e{n,N) if necessary) we
have |77~(e,77o)| > l/Cn(N). It follows also from the above considerations that for any
0 < e < e(n,N), each point z G (Uo<fc<N^fc) is contained in no more than two Ty^e^o)
(we call this the bounded overlap property). Finally, for fixed N > n, the consequence
of (2.6) mentioned above, the pointwise convergence of Wg to wo, and the properties of
the support of /^o imply that for all 7^0 e Z^ and all e < e(n^ N) (reducing 0(77,, N) if
necessary), either ^(T^e^o)) = 0, or ^-{e.rfo)) > l/Cn(N).

3. Preliminary lemmas

In this section, we derive some preliminary lemmas on the objects introduced in Section 2.
These lemmas will be used to prove our main bounds in the next section. Sometimes one
may omit the hats (e.g. write / for /) without ambiguity, and we do so.

The expansion constant a

LEMMA 1. - There exist a > 1, b > 0 and 60 > 0 such that for any 0 < 8 < SQ there are
c(8) > 0 and €0(6) > 0 such that for any n > 1, | ^ i | , . . . , \tn\ < eo{6) and x G I :

(1) ifx^f^x)^..J^-_^(x) i (-M) then \{f^}\x) > c^;

(2) if, in addition, f^{x) C (-8^6) then |(^...,J'(^) ^ ̂ n.

Proof of Lemma 1. - We begin by noting that given (?i > .0 there are m > 1, o-i > 1
and ci > 0 such that, for all | ^ i | , . . . , \tm\ < ^i,

(3.1) \(f^...tJ(y)\>^ whenever 2/Jt.(2/),...JC:^(^)^(-^^i).

Indeed, by (A2) and [Si], all periodic points of / are repelling. Then e.g. [MS,
Section III.3] implies (3.1) restricted to ii = 0. The full statement follows by choosing
61 small enough. In the sequel we fix 6\ > 0 small, depending only on HQ, a, and Ac,
see (3.4), (3.7), and (3.8). Now, there are 02 > 1, 6^ > 0, K^ > 1 and 62 > 0 such that,
given any 1 < i < m and |^ i | , . . . , , \t^\ < 62,

(3.2) |(^,J^)|>_^ whenever f[\.^{y} e (-(^2).
J^2

46 s6Rffi - TOME 29 - 1996 - N° 4



STRONG STOCHASTIC STABILITY AND RATE OF MIXING FOR UNIMODAL MAPS 493

For ti = 0 this is a consequence of (A2), as proved by Nowicki [No]. The general
case follows, once more, by continuity. Now we take a = mm{cri,a2, A} and
So = mm{^i,^2} and, for each 0 < 8 < So, we define c(6) = (mfj\(_^) l/'l/^^
and €o{8) = mm{e^,e-z,82}. The constant b > 0 is defined below. Clearly, for all £ < m
and |^i|,...J^| < eo(8),

(3.3) l(^,..t,)^)l>c(^ if y^tAy\-'Jt\^y}i{-W
Given n, t i , . . . ,^n, and x as in the statement, we denote xj = f^...^(x). 0 < j < n. If
Xj ^ (-^1^1) for all 0 < j < n then both (1) and (2) in the lemma follow immediately:
Just write n = qm + i, with 0 < i < m, and use (3.1), (3.2), (3.3). From now on we
suppose otherwise and define 0 < 1̂ 1 < ... < z^ < n as follows. Let ^i be the smallest
j > 0 with Xj G (-^1,^1). For each ^, i > 1, define

pi = max{fc > 1: \x^j - Cj\ < e~^3 for every 1 < j < k},

where (3 = 2a. Then let ^,+1 be the smallest n > j > ̂  +^ for which Xj <E (-^i,^i). For
the time being we fix 1 < % <_ s, and simply write p = pi and ^ = ^. The previous definition
and (Al) yield \x^j - cj\ < e'^^l (we reduce 8^ so that this holds also for j < Ho, cf.
(2.5))andso(l-e-^)(l-Ce-^')|n^)| < |f(^+,)l < (l+e-^)(l+Ce-W)|f(c,)|
for some C > 0. Then

(3.4) ^(n î)! ̂  l(AP„...<.„)/(^+l)l ^ CK/")'^)! •
In this proof C > 0 is some large constant depending only on Hy, a and Ac. Moreover,

g-/3(p+D < ]^^ _ cp+i| ^ \x,+p - cp|(l + e-^)!/^^)! + eo ,

and so, by recurrence,

(3.5) e-^) ^ fl(1 + ̂ W^\ [l̂ i - ̂ 1 + ̂  E ̂ ^^^J-'IJ
^•=l L ^=1 lL=iV1 -T-6 ) ^

< cw^ [|^|2 + 60] < GK/^)'^)!!^!2,

where we also use \Xy\2 > 82 > eo. Combining this with (3.4) and (A2), we conclude

/o c\ \( fp^ \ ' ( ^ \\^ > ^ \(fPV(c.\\2\T I2 > — ( X e ^ V ^ 1
(.<J•bJ lUt^+p+r-.^+i/ ^Jl ^ ^IU J ^iJI l^^l :- (^^^ /

Up to taking 8^ small enough with respect to a and Ac. we may suppose the pi (uniformly)
sufficiently large so that (3.6) implies

(3.7) K^:^,.^^)'^)! > ^(Ace-^^/2 > ̂ W- > K^\

for each 1 < i < s. At this point we write K^...^)'^)! = il^=o1 \f\xj)\ and partition
the range [0,n) of this product into subintervals J C [0,n) as follows. Let |J| denote the
number of elements of J . First, we suppose Us ~\~ Ps < ^- Fo1' J = [0?^i) and f01" each
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J = (^ +pi,^+i), 1 <: i < 5, we have IT^j \f'{xj)\ > K^cr^^ as a consequence of
(3.1) and (3.2). The same holds for J = (^s+ps, n) if \Xn\ < 8. In general, J = (^s+j^, n}
has n^j 1^(^)1 ^ c(6)a^, by (3.1) and (3.3). Moreover, ̂  \f(x,)\ > K^\ for
each J = [i^i^i +pi], 1 < i < s, recall (3.7). Altogether, this proves both parts of the
lemma when Vs ~^Ps < ̂  (we shall take b < {1/K^)). Now we treat the case V s - ^ r p s ^ ^-
We only have to consider J = [^s,n), as the previous estimates remain valid for all other
subintervals involved. In general, (3.1) and (3.3) give fl^j \f/{xj)\ > c{6)a^. Part (1)
follows, in the same way as before. In order to prove (2), we let q = n — Vs ~ 1- Then
0 <: q < ps and so, recall also (Al),

(3.8) |̂ J > 6 > \xn\ ̂  |c,+i| - K - c,+i| > (l/CQe-^1)

(when q < HQ just reduce 6\ to ensure \Xn — Cg+i| < |cg+i|/2, then take C large with
respect to |c^+i|; similarly in the next equation). Moreover, (3.4) holds for v = Vs and
p = q. Hence,

l(^^y(^)l > ̂ OT^i)IKI ̂  ^(Ace-)^ > ̂ g+l.

We take b = (CK^)~1, for C > 0 as in the last term. D

Remark. - While the previous general argument gives a < A, better estimates are
possible in some special cases. For instance, it is well-known that for quadratic maps with
parameter a w 2 one may take a close to 2. Note that a~1 will be our upper bound for the
essential spectral radius of Co (Corollary 2), and that the constant r in our main theorem
can be taken to be any number larger than cr~1/2.

LEMMA 2. - Let a, So, c{8) and eo(6) be the objects from Lemma 1. Up to reducing So
and c(8) if necessary, the following holds for ft as long as 0 < S < 60.' Given any n > 1,
there is e(n) > 0 such that, for all t == (^i,..., tn) with |^i|,..., \tn\ < min(e(n), 6o(^))
and any (;r,0) G Eo with f^(x,0) G Eo, we have \(f^{x)\ > c^)^-^ where i is the
maximum integer such that f{. ^(rr,0) G Ej for all 0 < j < i.

Proof of Lemma 2. - Here C = C{Ho,a,{3^,^,\c) > 0. We take |^ i | , . . . , |̂ | bounded
by some e > 0. The case where all concerned iterates of (x, 0) are in Eo is treated in
Lemma 1 (1). Otherwise, the orbit ( rc ,0) , . . . ,/^(a;,0) consists of q > 1 loops of the
form: m ^ 0 iterations in level Eo, climbing the tower up to some level k > H(8) then
falling down to level 0; finally, there may be an additional s > 0 iterations in level 0. By
Lemma 1, it suffices to consider the case q = 1, x e (-8, 8) (that is m = 0), and 5 = 0
and to prove that |(.ffy(^)| > A"/^. As in the proof of Lemma 1, assumptions (Al) and
(2.5) and the definition of Ej yield, for all ( y ^ j ) G Ej and j ^ 1,

(3.9) (1 - e^-^^l - Ce-^f^
< \f\y}\ < (1 + ̂ -^(l + Ce-^f'^ for some 00.

Then, using ̂ ,..^0) e E, for 1 <, j ^ n - 1 and /^O) e Eo (i.e., f^(x) ^ Bn\
we obtain, in just the same way as in the deduction of (3.4), (3.5),

(3.10) e-^ < CKr-1)^!)!^ - /„ (x)\ + Ce] < W-^^W2 + e].
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We take e < e(n) = e'^^CK/71-1)^!)!), where C > 0 is as in the last term. Then
(3.10) implies \f{x)\2 > ^\x\2 > ^e-^'K/71-1)^^)!-1. Hence, using (3.9),

(3.ii) K^y^l > ̂ e-^^Kr-1/^)!-172!^-1/^)! > ̂ ^A71-1.

By the definition of ft we must have n - 1 > H(8), and we assume that So is small
enough to ensure ^p11^ ^ \/b for all 0 < 8 < So. D

Falling down from the tower
Our next bounds concern the weight gt{y,k) evaluated at points in the support of ^e

which "fall down" from the tower, i.e., such that k ^ H(S) and ft(y,k) e £'0.

LEMMA 3. - There is C > 0 so that w,{y, k)\f(y)\-1 < Cp^ for all e > 0, all k > 1,
and all {y,k) € Ej, having ft{y,k) € Eo for some \t\ <, e,

Proof of Lemma 3. - Suppose first that e = 0. By definition, if wo(y, k) ̂  0 then

wo{y.W{y)\-1 = , . A f c _ ^ , where x = f^^k) € (0,5).
\\J ) v^ /1

Since /^(^O) € Eo, (3.11) applies and yields wo{y^k)\f{y)\-1 < ( C ^ / ^ p ^ .
Assuming now that e > 0, we derive a preliminary estimate for Wg on £1. We continue

to denote C = C(Ho, a, /3i, /?2, Ac) > 0. If z > a+ e then We{z, 1) = 0. Otherwise, we use

l"•(^•l)=>!^dt^•sp9••!\f;^dt•
where Zt = A-^L(^, 1), the first integral is taken over {t > z - aj^l < S} and the second
one over {t > z - a, \t\ < e}. Hence, \ i a - e < z < a - \ - e then

(3.12) w , ( ^ l ) < A s u p ^ - I ———=\supe,l ^=A(esup0e)± ^-7--,
Jz-a \J ^t)} JO c V^

because |^e| < C'v/e. On the other hand, for z < a - e we have

(3.13) w^ 1) ^ A sup^ • f ———— = A sup^^2"^2 < ̂  ,
J-e |J ^t^l ^ -T Z-e ^0

since (^)2 is a smooth function of t and 2^ + ^-e > ^o- Now we consider a general
fc > -ff(^). From the definition in Section 2,

(3.14) w,(^fc)|r(^)|-l-Afc-lyw,(^_,.^,l)|(^^_,..,J/(^^

We split this into a sum Wi + W^, where the two terms correspond to restricting the
domain of integration, respectively, to {|a - ̂ _i *i| ^ ^} and to {|a - ̂ -i •••ti\ < ^}.
In order to bound Wi and IVa^ w^ note that

(3.15) e^2^1) < C-K^y^)! [|a - ̂ _,..^ | + e] .
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This is deduced in just the same way as (3.10), using f{~_\...t^{ytk-r--t^ 1) € Ej for
1 < j < k and /^_,...t,(^_i...ti, 1) e EQ for some |t| < e.

Let first |a - y, .J > 6. Then (3.15) gives |a - ̂ _,...J > (e-^/CK.fflci)!)
and, since |^o| > \/\a - z \ /C , (3.13) then yields

1 \ ( fk\f(r M
^(^_,..t,,l) ^ GAMJI^^1 ^ Ge^/2!^)^)!1/2.

V C

Replacing in Wi and using again the distorsion inequality (3.9),

W, < A^-1 ^^^^-^^^^(^^^ < ̂ (Ae^A;1/2^ < ̂ -fc .
J \\J ) l^iJI

For W"2, we use (3.15) to get that e > (e-^/C^f^^c^) if |a - ̂ _i...t, | < e. Then we
use (3.12) to conclude that We(^,_,...^ 1) < Ce^^^K/^^ci)!1/2. The same calculation
as before gives W^ < Cp~k, ending the proof of Lemma 3. D

For k > 1, we introduce the subintervals of Ek

^ = {(^ fc) I fW > ̂ +1 -€} ^d K = {(v^k) I f(v) < ̂ +1 + ^} •
Note that (y, k) e f3^ U /3^ if and only if ft(y, k) e EQ for some \t\ < e.

LEMMA 4. - There is a constant C > 0 ^MC/I that for all e > 0 aW fc > 1

var^^fc)!^)!-1)^^^?-1)^
^^

Proof of Lemma 4. - Recall that, for each fixed e > 0 and k > 1, {we(y,k) / 0}
is an interval. Denote by 7^ its intersection with f3^. We suppose fc > H(S)
for otherwise 7^ is empty. First suppose that e == 0. For ( y , k ) e 7^ we have
^oQ/,fc)|.fQ/)|~1 = (AV|(^+ l) /(/+ f c(^,fc))|). Note that ^+1 has negative Schwarzian
derivative, because / has. Moreover, /fc+l does not have critical points on .f^^^),
because this last set does not contain c == 0, neither does 7r{Ej D suppwo) for j > 1,
see Section 2. This implies that K./'^1)^/-^^, k))\ has a unique maximum and so
wo(y,k)\f\y)\~1 has a unique minimum, restricted to 7^. Hence

var(wo(^fc)|r^)|-1) < 2sup(wo(^WQ/)|-1),
/3^

and the claim corresponding to e = 0 follows from Lemma 3.
Assume now that e > 0. The main step is to prove that Wg is at most two-to-one on

each Ek. For this we use the assumption that ^ = log(0g|jj is concave. Observe that a
function ^ is concave if and only if

^(a;i) + '0(^4) < ^(^2) + ^(^3) for every x^ < x^ < x^ < x^ with x^ + x^ = x^ + ^3 .
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Given j > 0 (if j = 0 replace By by B^)

W^X^j + l)We(x4j + 1) - W^X^J + 1)W^(X3J + 1)

=X2 f f w,{yj)w^zj)(0,(x, - fy)0^ - fz) - 0^ - fy)0e{^ - fz))dydz
J B j J B j

< 0 , for all x^ < x^ < x^ < x^ with x\ + x^ = x^ + x^ .

For the last inequality observe that the integrand is always nonpositive since we have
(rri - fy) + (x4 - fz) = {x^ - fy) + {x^ - fz) and log((9e|jj is concave. This proves that
log We is concave and so We is at most two-to-one on £^+1, see Section 2. As a consequence

varWeQ/,fc) <, 2snpWe(y,k) < Cp'^ ,
^

by Lemma 3. Therefore, since |cfc| > e"^ and |/'| has a unique maximum on each Bk
for k > H{6) (use Sf < 0 once more) we get

var(w,Q/, k)\f(y)\-1) < varw,(^, k) sup l/'^)!-1 + sup w,{y, k) var \f\y)\~1

^ ^ ^ ^ ^
<, Cp~k • Ce^ + Cp~k • Ce"^ . D

Climbing the tower
We now proceed with some preliminary bounds on £g concerning points which are

"climbing the tower" : {y,k) G Ej, and ft(y,k) € E^i. Given x ^ c we let x- be the
unique point with rr- -^ x and /(rr_) = /(re) and write AT(^) = \ff(x-)\/\ff(x)\. Then
we set K = sup^ Ar(a:), and K = var^^c -^(^). Note that under our assumptions K and
K are finite because K(x) is C1 (apply Morse's lemma; this is the only place where we
use / € G4, in particular, C3 suffices for all our purposes if / is symmetric).

LEMMA 5. - Let (p G BV(I) and e > 0.
(1) For k > 1 and each f3 C E^i H supple, ^e have sup^ \C^\ < { sup^ |(^|, where

7 = UteJ^Al^)"1^) H supp^.
(2) For each j3 C E^H supple, we have sup^ \C^\ < f(sup^+ |^| +sup^- |^[), where

^ = ̂ ejAft\E^~\^
Proof of Lemma 5. - The case e = 0 being easy, we assume e > 0. We first consider

(1). By definition, for k >_ 1 and x G fifc+i such that We(x, k + 1) 7^ O,

^ W e { z , k ) ^ ( z , k ) 0 e ( x - f z ) d z
a^{x, k +1) = ——F——^—-—7—^——,A J^ We(2/, fc)(9e(a: - /2/) dy

and the claim follows. To show (2), we note that if We(x, 1) 7^ O then

f^(z)0^x-fz)dz , f°^(z)e^x-fz)dz
£^{x, 1) = ——.————————— + ———c————————— ?

A ̂  0,(^ - fy) dy A ̂  0,{x - fy) dy

and use the change of variable z = w_, with Jacobian bounded above by K, in the
numerator of the second term (recalling that we take (—8)- < 6). D
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LEMMA 6. - Let y 6 BV(I) and e > 0.
(1) For all k > 1 and each interval /3 C E^i, we have var^ C^ < ^ var^/ (p, where

7 = u^/tk)-1^) nsupp^,.
(2) For each interval f3 C E^, we have var^ C^ < -^ var^+u-y- ^ + K sup^- |(^|, vi^r^

^ wrte 7± = ^eJ.CAI^rW

Pwo/ o/ Lemma 6. - Again, the easier case e == 0 is left to the reader. We start with
k > 1. Consider first (^ = Hn = X\[u^]x{k} for some point u e B^. We shall prove
that C^ is monotone on £'A;+I. Obviously, we may disregard the points (x, k + 1) where
Ce^ is defined by a limit (recall Section 2). At all other points,

r.^+i)= ĵ ^-.^
A ̂  ̂ e{y,k)0,{x - fy) dy

Fix a;i > a;2 in 7r(/3) with Wg(rc,, fc + 1) ^ 0, z = 1,2. Then, up to a positive factor, the
difference C^{x^ k + 1) - C^{x^ k + 1) is equal to
(3.16)

/ dy { dzw^y^k)w,(z^k)(e^x, - fz)0^ - fy) - 0^ - fz)0^x, - fy)} .
JCLk Ju \ /

Assume that f\Bi,r}supp^ is increasing (the other case is similar). Then f(y) < f{z) in
(3.16). Thus rci - fy > max(a;i - fz,x^ - fy), and x^ - fz < min(a;i - fz,x^ - fy\
so that, using (rci - fy) + (^ - fz) = (x^ - fz) + (^2 - fy) together with the
concavity of log((9,|jj, we get (9,(rci - fz)e^ - fy) > 6,{x^ - fz)0,{x^ - fy).
Hence Ce^{x^) > C^(x^), i.e., C^ is nondecreasing on /3. This proves, using Lemma 5,
that var^£g(^ = sup^C^ - mf^C^ < ^(1 - 0).

Consider now the case where
m

(3J7) ^=^d,H^^
3=1

for some u, e Bk and dj > 0. Then var^/:^ = var^/;,(doX7 + Eu,e7^Jff^) for

some constant do > 0. Observe that /^(doX-y) ^ constant on /?. Therefore, by linearity,
var^£^ < ^En,e7^ = i ̂ ^ ̂

If (^1^ is nonnegative and nondecreasing, we take a sequence of (pn of the form (3.17)
with ^pn\Ek < ^Ek ^d converging uniformly to ^|^. Since Ce^n converges pointwise
to C^ on J^fc+i, we get

var£e(/? < liminfvar£g^ < — lim sup var (pn < —var(z? .
f3 n / 3 A n 7 A ^

Finally, if (^|^ is any function with bounded variation, we may write <^|^ =
(^i - ^2) + %(^3 - ^4) with the ^ nonnegative, nondecreasing, and such that
var^y? = E^=ivar^^. Then

var£^< y^var/;,^- < y-var^- = -var^.
P .^ P —— A 7 A 7

3 3
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Consider now f3 C E\. For a function y? which vanishes on [—5,0), the argument above
may be reproduced and yields var^ Ce^p < var/y+ (^/A. It therefore suffices to consider
functions with (p(x^ 0) = const for x > 0. Observe that C^{x^ 1) may be rewritten as

f^- ^(w-,0)(9,(rr - fw)K(w,)dw
C^XE^ 1 ) + - ° — — — — ; , ;———\ = ̂ XE^. 1)+>W)(^ 1) ,

A J Q 0,{x-fy)dy

where we used the change of variable w = z-, with Jacobian K(w-) = \f\w)/f\w-)\
and '0(^, 0) == <^(^-, 0)^(^_)^[_^o)(^-)- This yields var^ £e(^) = var^ Ce(^) and, since
'0 vanishes on [—^,0], we are reduced to the previous case. An application of properties
(b) and (c) from Section 2 ends the proof of the lemma. D

The measures /^o and ^

LEMMA 7. - Imig^o Sfc>o SB ^(^ ^) ~ 'WQ{X^ k)\dx == 0.
Proof of Lemma 7. - The term for k = 0 vanishes. For k = 1 we have

, ,, f O xif{-6^) J O xiU^jjt(-8^6)
wo(x, 1) = ^ A otherwise we(^1) == 1 A f g£( t )d t otherwise

I |r(a-o)| ubll^lwlbty? I ^Je |J'(^t)| ollleiwlbe5

with Xt = /t--^(^? 1) for ^ > 0. Therefore, for small fixed ^ > 0 we have, by a computation
similar to (3.12), f^-x\<c '^(^ ̂  ̂ x = ̂ (^(^ — C? 1) "̂  ^o(^? 1)) < A(7\/C. Since Wg(rr)
converges uniformly to wo(rr) on |a — x\ > ^, the integral f^-x\>c ^we ~ ̂ l ^x can ^e

made arbitrarily small by taking e small. We split J^_^|<^ ^e(^ 1) dx into a sum W^ -\-W^
where W\, W^ correspond to restricting the domain of integration to ( > \a — x\ > 26,
respectively |a — x\ < min(26, ^). The first term vanishes if C < 2e, otherwise it satisfies

W,< ( \————dx<C^,
J\a-x\<C ?0)!

since |a — x +1\ > |a — x\/2. For the second summand, we have (recall (3.12))

W^ < I CXM dx < c mm(2e, C) < C mm(^/e, y/C).
^|a-a-|<mm(2e,C) V 6 V 6

We have thus proved:

(3.18) lim /e-%,
lim / \wo — Wf, | dx = 0 ,
e-"0 J E ,

(3.19) / w,{x,l)dx< GV/C.
J|a-.c|<C

For the levels k > 2, we get by the definition of Wg(rc, k) and a change of variable

(3.20) { w,(x, k) dx = A^-1 / ( w,(y, l)dy d^(f)
JBk J^J^~1 Afc(Q
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where 7fc(0 C Bi is defined by ^k(t} = 7^((^-l)-l(£'fc) n supp/^). To control the top
levels, we shall use the fact that for all k > 1, fc J^~1 and y e 7fc(Q

(3.21) \y - a\ < Ce-^X^-^ < C^X^ .

(To prove (3.21), use \Bk\ < 2e~/31fc and (3.9) to obtain a constant C > 0 such that for
all k > 1, all fe J^-1, and all y G 7fc(0 we have K^"1)'^)! > (1/C)A^-1.) It then
follows from (3.19)-(3.21) that for any No > 2

(3.22) ^ f w,{x,k)dx< ̂  CX^^X^-^ <, ̂  (^(e^1/2?)-^.
fc>M) V B k k>No k>No

Therefore, by taking No large enough we may assume that ^>^y SB we(x,k)dx is
arbitrarily small, uniformly in e. The same argument also gives

(3.23) ^ / wo(x^k)dx= ̂  A^-1 / ^ w^y^)dx< ̂  C(ea+/31/2^)-fc

k^No^k k>No ^fe^) fc>No

which is small if NQ is large. It remains to bound ^2<fc<N JB \^e{x, k) - wo(x, k)\ dx.
Using (3.20), and the equality in (3.23), we find

/* r /*
^ / |we(^,fc) -wo{x,k)\dx < A^oA^max / |we(2/, 1) - wo(y, 1)| d?/

2<k<No J B k L^7fc(?)n7fc(0)

+ / |w,(^l)|ch/+ / |wo(^ 1)1^1
^7fc(Q\7fc(0) ^(O)^^) J

(the maximum is taken over all fand 2 < k < No) and the three terms of the right-hand-
side tend to zero with e, by (3.18), (3.19) and the properties of the intervals of monotonicity
from Section 2 (note that 7fc(f) is contained in some element of Z^). D

LEMMA 8. - For all e > 0 and y e BV(I) we have ff C^ d^ = fr ^ d^e'

Proof of Lemma 8. - The presence of the Wg factor in the integrand means that we do
not need to consider the points (x, k) for which C^{x, k) is defined by a limit. If e = 0,
use the change of variable formula in the integral. For e > 0, by Fubini's theorem

^ y Ce^(x,k)we(x,k)dx
k>0 VBk

="E I ^yJ>e(yJ)(^[ ee{(x^k)^f(yj))dx\dy
j>0 v B] ^k>0UBk ^

and (using /,(J) c J, all t) Ek>o SB, °e((x,k)J(yj))dx = 1 for any (yj) e I (this
just corresponds to the fact the Markov transitions P6 are probability measures). D
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4. Main estimates

Bounding the variation

We prove our main estimate:

Variation Lemma

For each OQ < a there is a constant C > 0 and for each n > 1 there is an e(n) > 0
such that for all 0 < e < e(n) and all (p C BV(I)

var/^y? < C'crQ'^var^+supl^l) + C \ \(p(x)\wo{x) dx .
i i f J i

We shall need:

Sublemma

There is C > 0 ^nd given n > 1 r/î  ar^ e(n) > 0 ^md C(n) > 0 ^MC/Z that for every
0 < e < e(n), ^v^ry y? G 51^(7), an^ ^v^ry interval A C £'o,

var/:^ ^ Ca'^var^+supl^l) + C(n) / |^|^e.A i i J i

Proof of the Sublemma. - We only consider e > 0: the case e = 0 is obtained by (simpler
forms of) the same arguments, using the versions for e = 0 of the lemmas in Section 3.

Fix A C EQ and n > 1. Our starting point is the following decomposition of backwards
orbits. Let e > 0 and f = ( ^ i , . . . , t n ) € JJ1 be fixed. For each 0 < j < n we
define G{j) = G{j,e,tn,... ̂ n-j) to be the set of all nonempty intervals of the form
/-y = r] n [f^.t^-Y (^) n supple, where r] is an interval of monotonicity of /^tn-j
with rj C (Uk>iEk) and /t^^...^..,^) C Eo for 0 ^ ^ < j. Moreover, we let ̂  = ^(f)
be the set of all nonempty intervals of the form ^ = T] D (/^...tj (A), where ^ is an
interval of monotonicity of f^...^ with f^...^^) C EQ for 0 < £ < n.

Using this decomposition, the definition of /^, and (a), (c) from Section 2, we obtain
the basic inequality:

(4.1) var(xA^)< ^ E var(^a+l)^~^l-.-l^+E
7 0<j<n7e0(j) J J^Q_

(we write ^^^ = ^...tn-e+i ^or slmpllclty)• Note that varA^y?) ^ varj(^A^^). Hence,
by the definition of C^ and using inequality (e) from Section 2 (observe also that neither
^O+i) ^r ^) depend on t^ . . . ^n_,_i),

var(/;^)< ^ sup ^ var(x^a+l)£^J-l^) + sup ^var(^M^).
O^^n^-^-^-yC^O) J ^'-^^^ I
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Writing the right-hand-side of the above inequality as 5i + 52, we first bound 5'2 (recall
(b) and (d) from Section 2):

5'2 < supV^var^ +2sup^ ( n )) -sup|^| +vary? -sup^).
^CG 1 2 1 2 2

By Lemma 1 and the definition of 7 and g^,

(4.2) sup^n)=sup|(CT- l<{CCT",-„ ifAC^^ ^ l v t / t / l ~ [ C { l / 6 ) o - n in general.

Also, since f^ has negative Schwarzian derivative and no critical points in 7^, the function
g^ has at most one local minimum on 7. Therefore

(4.3) var^ ^ 2sup^ ( n ) .
2 ^

For each ^y € ^ let 97 be the corresponding interval of monotonicity of /n. This is the
continuation (in the sense of the last subsection of Section 2; we assume e < e(n)) of
some interval rjo e Z^. Then 7 C 77 C ^(e,^)- We write 7"^ = 7+(7) = ^"^(e^o) and
denote ^~{S^) the set of all ̂  found in this way. By the properties of the monotonicity
intervals described in Section 2, we have l//^^^) <, C{n) for all ̂  e G_ (observe that
^\Eo = l^o\Eo is Lebesgue measure on £'o). Altogether, this allows us to write

(4.4) sup H < sup H < var ̂  -h —7—77- / |^| d^ < var ̂  + C{n} / |^| d^ ,
^ ^+ 2^ /MT1) ̂  2"^ ^J

for all e < €(n), where 7"^ = 7+(7). Combining the bounds (4.2)-(4.4) with the remark
that ^e^) < Z^ < C{n), we obtain

(4.5) 52 < ^ [cQ^-var^+cQ)^) /l^l^)
^+€^+(52) \ ^ ^ 2 \ ^ J I )

^cf^-^ ^ var^l+cQ)^)/!^^
v / \^+e^+(52) :I / v / t7J

where C(l/5) may be replaced by C if A C (-8,S).
We now move on to bound 5i, and again start with the observation that

(4.6) 5i < Y^ sup ^
o^Kn^-^-'^^e^O)
((var^^ +2sup^a+l))sup|/:^J~ l^l +sup^+l)var|£^->7-l^|) .

7 7 7 7 7
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Note that for 7 G G(j) with 7 C Ek, Lemmas 3 and 4 together with the analogues of
(4.2)-(4.3) obtained replacing j_ by ft^_j (7) and n by j, yield for all f

[supp^ = sup(^') o /^. . g) < Cdl^cr-3?^ ,
7 7

^ ) var^0'4-^ ^ sup ^var^-h var g^ supg < C^l/^o-^^
[ 7 ^_,(7) 7 ^n-^) ^

(we used (b), (c) from Section 2), where C(l/6) may be replaced by (7 if A C (—<?), 6).
For 7 € 0(j) we write .7(7) = '̂, and also ^(7) = fc if 7 C i?fc. Observe that we always

have ^(7) > H(6), because 7 C (U^iEfc) H supp/^ and /t,_,(7) C I?o. Fixing a large
value of N > n, to be determined below as a function of n only, we split the sums in 5i into

£ , sup, ( S + S + £ ) = ^1 + ^2 + 53 .
7€^0-): 7€^(j):fc(7)<N 7e^(j): /

fe(7)>N fc(7)>n-j-l fc(7)<n-j-l
O^j^n^-^-'^ ^e^O): 7€^(j):fc(7)<N 7e^(j)

We now proceed to bound ^i, ^2, and 53, using each time a decomposition such as in
(4.6) as a starting point.

First, using Lemmas 5 and 6 (n — j — 1 times) together with (4.7), we get

(4.8) 5i < ^ sup V^ cf^p-^-^-^-^^r^+e^sup^),
~~~^ f • + ~^ \ 0 f 7 /v

0<.7•<n7^-J'•••'TT^7^0•):A•(7)>N v / - ±

where ^ = ^(7) = (u^(/^:^^)-l(7^ n supp^ C ^^)-(n-,-i) and C(l/6) may
be replaced by C if A C (-<?, ^). Since f^.,.^_ +1 |£;o ls at most 2^-to-l, and Ek contains
at most two intervals of monotonicity mapped to £"0 by /^-^ each sum on 7 C G(j)
in 5i (or ^2) ranges over at most 2-74'1 elements for each given value of k = ^(7).
Therefore, (4.8) yields

(4.9) 51 < ^ ^2^1C7[lVea^)fc(A/^A-n(var^+sup|^|)
0<j<nk>N v / J J

(1 \ /f3a\N / 2A^ n F^M /^^
<c A - - A-n(va^^+supM)<-^a-n(var^+sup|^|)0 } \ P } \(J } I I Cn[N) I i

(recall that p> e^ and (T < 2A). As usual, C(l/8) may be replaced by C if A C (-^, S).
Analogously

(4.10) 52 < ^ sup ^ ^^^-^"^-^-^-^-^(var^+supl^l)
O^^n*"-^-'^ 76^a):fc(7)<^^ v / 2 2

A-(7)>n-J-l

where ^ = 7^(7) c £'fc(7)-(n-j-i) is as defined after (4.8). Note that 7 is an interval
if ^(7) > n - j - 1 and j_ is a union of two subintervals of E^\ respectively E Q , if
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^(7) == n — j — 1. In what follows we consider the first case, the second one being
entirely analogous (just treat the two subintervals separately). Proceeding as before in the
case of 52, we find 770 G Z3^^ such that 7 C ^(e^o) and also ^o ^ ^N such that
7 C ^^(e^o)- Observe that

(4.11) r-^-^C^ and r-3-1^ H supp/^o) = ^o Hsupp/^o.
Indeed, the first statement is a direct consequence of the properties of the partitions
into intervals of monotonicity studied in Section 2. For the second one, recall also that
EI D supp fjio = E^ n Im f^ is an interval for each i > 1 and that / is monotone on each
of these intervals. Now we write ^+ = 7+(7) = ^(e^o) and denote G^^) the set of
^+ obtained by varying j and 7 C^Q") in (4.10). Clearly, #0^^) ^ #Z^ < Cn(N).
We also claim that l//^^) < Cn(X> for all ^+ G fi^^), as long as e < e(n,7V).
To prove this, combine the properties of the monotonicity intervals with the remark that
^o(^o) > 0» which is a consequence of /^e(7) > 0 and (4.11).

Hence, we are in a position to apply the same kind of calculations as in (4.4)-(4.5)
and (4.9), to get

(4.12) .2^ S ^ ^Of^) A-^a-^var^+C,^)/1!^^)
0<J<n 7e<?(j):fc(7)^ v / v ^ / 2 (7) J I

k^>n-j-l

^C^a-^ ^ var^+cQ^C^^)/1!^^,
v / ^+e^+(s2) 2 v / JI

(we use /? > e0' and cr < A) where, again, C(l/8) may be replaced by (7 if A C (-<!), ^).
Using similar arguments and similar sets 7+(7) G ^(^s), we get

(4.13) .3< ( ^ ^Of^) ^var(/;r^)) +c(l)c7(n) / |̂ |̂  ,
\^+e^+(s3) v / v ' / 2 / v / JJ

where, for simplicity, we write i = j + 1 + k. Note that we used Lemma 8 in the integral
term. As before, C(l/6) can be replaced by C if A C (-6,6).

Putting together (4.5), (4.9), (4.12), and (4.13), we obtain for general A C EQ

(4.14) v^^cQV- ^ var^+^^a-^var^+supH)
v / ^+^+(S2)U^+(S2) 1 n{ ) I i

+cQ)c,(7V) />|^|^+ ^ cQ^a-Sar^r^).
v / t7J ^+€^+(S3) v / 2

and for A C (-6,6)

(4.15) var(^) < Co-71 ^ var (̂  + ————a-^var ̂  + sup |^|)
^^+(S2)U^(.2) " nv / J i

+ C,(^) / |^[ d^ + V 1 • a-^ var(£r^) •
/ r ' ~ ^/+
' ^+^+(^3) -
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Note that the previous calculations, for A C {-6,8), yield a factor C^/p^ in the last
term of (4.15), see (4.13). On the other hand, since p > e^ and k >_ H{8), we have
C^ I pY < 1 has long as 8 has been fixed small enough. This allows us to replace that
factor by 1, as we did, which is necessary for the sequel of our argument.

If the sum over ̂ + G ^(^s) in (4.14) is not void, we need to proceed by recurrence. We
change the name of the ^+, the ̂ +, and their indices fc^^), j(^~) in (4.14)-(4.15), to Q^,
^+ fci, and j^i. The corresponding objects appearing at the Ith step (for each fixed ^~_ )
will be denoted Q^', 74", ki, ji and we also let ii = ji + 1 + fc^. Since every such 74' is, by
construction, a subset of (—8, 8), we may apply (4.15) to it. After one induction step, we get

v^r^^cQ^-^^r^+^^a-^v^^+supH
^i

+c(^\Cn(N) /H^+ ^ ^G)^1

:^ee?(o3) v /

x pa-^1 ̂  var <p + ̂ —^(7-n+€l (var v + sup bD

L + ^2 nv / -̂  J
-'-2

+ Gn(^) / |^| d^ + ^ a-12 var^r'1-^)'! ,
•/J ^€^(.3) 12 ]

the first sum being over -^ e ̂ (5'2) ̂ G^^), the third one over ̂  G 0^(5'2) U0^(s2).
This gives,

var/^^C'f^CT^Iyvary+C' V" vary)
A € V ^ / ^2-^7+ 2 - ^ 7 + ;\^ -1 1^'lt-2 )

+ Y^ C^a-^-^vax^-11-^^)
it'i! 22+

+ (1 + ̂ lh(s3))G(l) [———r<T-"(vary + sup H) + C'»(^) /' M dJ ,
o L0"^'1^ i i Ji 1

the sums running over ̂  e ̂ (fi'2) U^(s2), over ̂  € ^(^3), ̂  € ^(-^z) U^2'(s2),
and over ̂  e ^(sa), ̂  e 02'(S3), respectively. Now, #^(83) ^ #^l'<^l ^ <^(^)
because fci < ^i ^ n. In fact, #^(53) < C'(n) for all 1 < i < n, for a similar reason.
Hence, after at most n steps we get

(4.16) VM/^W1)^-71^ ^ vary)
\ / 1=1 ^^+ -y+ -Y+ 2. /-'.i '•••'_,_i'2i

+G(n)cOV^^(7-"(v^y+supM)+^(Ar)^|y,|^,
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the second sum being over ̂  e ^(53),... ,^ G ̂ ..i^), j_t G ^(^2) U ̂ t^).
Now observe that the intervals ^/+ occurring in (4.16) are all distinct elements of
{^(e.rjo) | 770 G -Zo^}- Therefore, they have the bounded overlap property (overlap
bounded by 2 in fact, recall Section 2) and so the first term on the right-hand-side
of (4.16) is bounded by 2C{l/6)o•~n y8n'^. Also, fixing N > n depending only on
n, we may ensure that C{n)/Cn(N) < 1, so that the second term is bounded by
C(l/8)(T~n(va,Tf (p + supj |(^|). Finally, since 6 is fixed at this point, we may omit the
dependence of the constants in (4.16) on it (i.e., we just write C instead of C(l/6)\ thus
ending the proof of the Sublemma. D

Proof of the Variation Lemma. - We start by fixing some n = no and decomposing
var^£^°^ = Z^^^fc^0^ f01 e > 0. Note that for k > no. Lemma 6 yields
var^£^°(^ < A"^ var^ _^ (p. For k < no, we first use Lemma 6 (k times), then
invoke sup^ |£ |̂ ^ var^o C[^ + C7j^ |£ |̂ d^e (for (. = no - k), finally apply the
Sublemma (for A = Eo and n = no — k <, no) and Lemma 8. In this way we get

var£^ < C^ [Ca-^-^var ̂  + sup H) + C(no) ( \^\ d^} ,
Ek i i J i

for all 6 < e(no). Therefore (recall that a- < A),

var^0^? < A-^var^+no^cr-^^ar^+supl^D+noC^o) / |^| ̂ e.
^ i i i J i

Hence, for each fixed (TO < OQ < a there is C > 0 and there are C(no) > 0 and
^o) > 0 such that

(4.17) var£^ < Ca^0^^ + sup |^|) + C7(no) / \^\d^ ,
^ ^ i J i

for all 6 < e(no). We also need an analogue of this inequality for the supremum:

(4.18) sup |/^V| < Cao-^var^ + sup H) + C(no) I \^\d^ .
i i i J i

To prove (4.18) distinguish two cases. If supj \C^°^\ = sup^^ ^ \^o(fi\. simply apply
Lemma 5 repeatedly. Otherwise, use

sup|£^|^ sup ^var£^+——— ( \^°^d^} < var^°^+C7(no) I \^\ d^,
j f c < n o \ ^ ^e(Ek) J E , ) i J f

where we have invoked Lemma 8 and the fact that sup^^l/^J^)) < C(no) if
6 < e(no).

Now the lemma follows easily. Fix q > 1 large enough so that 2C7ao-g < a^ < 1 and
then, for arbitrary n > 1, write n = pq+r with 0 ^ r < q. Using (4.17)-(4.18) recursively,
p times with no = q and then once with no = r (together with Lemma 8),

var(£^) < Ca^ { var (p + sup |^| ) + C / H d^,,
^ V i i ) J i

for all n > 1 and 0 < e < e(q) (the constants (7 depend only on q). The lemma is thus
proved for e = 0. If e > 0, we also use ^ H^ < ff H dp,o + sup; |(^| J; |wo - wj drr,
restricting if necessary to e < e(n), some e(n) > 0, to ensure f. |wo - w^\dx < a^
(recall Lemma 7). D
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Bounding the supremum

The following is an easy consequence of (4.17)-(4.18) (use the same argument as in
the proof of the Variation Lemma):

Supremum Lemma

For each (TO < a there is a constant C > 0 and for each n > 1 there is an e(n) such
that for all 0 < e < e(n) and all y E BV{1)

sup |/ |̂ < Ccro'^var^+supl^l) + C / \y(x)\wo(x) dx ,
i i i J i

Remark. - It follows from Lemma 8, the Variation Lemma and the Supremum Lemma
that the operators £g preserve the Banach space BV(I) and are bounded for all e > 0.

Bounding the integrals

We now deduce our final estimate:

Integral Lemma

There is a constant C > 0 and for each n >_ 1 there is an e(n) > 0 such that for all
0 < e < e(n) and all ^ € BV(I)

[ |(£^ - >C^)wo| dx < Ca-^var ̂  + sup H).
J i i i

Proof of the Integral Lemma. - This time, we use the decomposition ffC^wodx =
ff^k>o^((PXEk)wocf'x• We first bound the integral on the unbounded top part of the
tower. Fix some large N > n and write T = Uk>N-nEk' Then, using the positivity of
£g. Lemmas 7-8, and the Supremum Lemma (recall also from the proof of Lemma 7, e.g.
(3.22), that We is integrable over I for e > 0), we have

(4.19) [\£^^XT)\wodx< f\y\XTWedx+supjC^\^\XT) f\wo-We\dx
J i J i i J i

<, sup|^|^g(r) + [Cao^supl^l +var(^) + C / |y?|woGte]' / \Wo-We\dx
i i i J i J i

< S^PH^ ..n + (supH +vary?)c(e) < C^'^var^ + sup |y?|) ,i Cn{N) f i i f

for 0 < e < c(n), as long as N is fixed large enough, depending only on n.
It remains to control the bottom part of the tower B = Uk^N-n-Ek' We shall do

this by "trimming" intervals as in [BaY, Section 5]. Our notations are as in the last
subsection of Section 2. First, we note that B C U^rj^rjo) C Uk<NEjc for all fe JJ\
the union being over all rjo G Z^. Given any such rjo let ^"(e^o) = ̂ ^^^{^(t^o}}
and define ^(e^o) m a similar way, replacing intersection by union. Let I = i{r]o]
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be defined by 770 C E^. Clearly, given { x ^ k ) G ^"(e^o) C E^ and Fe JJ1, there is
exactly one y^= y^(r)o) such that {y^t) C 77(^,770) and /-^(^^) = (a:, fc). Now we define
^(0,770) C C"^6^) by the condition that either y^ G suppwo or else y ^ ^ . suppWe for all
t G JJ\ Observe that, for each fixed 770 and n, all three sets C^6? ^o) and ^(e, 770) converge
to r(77o) as 6 ̂  0. Set Y^ = U^C^o) \ ^(6,770)). Then, using ^o^ < C(n)
(recall that N is fixed depending only on n\ we get /^o(^,n) ^ Cn(e). Together with the
Supremum Lemma, this gives

(4.20) / |/^((^B)|wod;r < (sup \(p\ + vary?) Cn(e) < Ca^^Kp + sup |^|)
^,n J ^ I f

for all 0 < e < e(7i). On the other hand, clearly, (£^(y?^a) • wo)(rc, fc) = 0 if (a;, fc) does
not belong in X^^n = ^oC^^o)- Hence, we are left to bound

(4.21) / |(£^ - ̂ )(^B)|wo ̂  < G sup |(^ - ̂ )(^a)|.
J{X,^\Y,,^ (Xe^W.n)

For the rest of the proof we fix an arbitrary (x^ k) G {Xe,n \ Ye,n) H supp /^o. By definition,

(4.22) (^-C^XB){x^k)

= E A^^^M^M)^^) - W'^^o),^)),
^0 7

where ^^\ ^(n) are the iterated weight functions introduced in Section 2, y = y^, and the
sum is over all 770 G Z^ with 770 C B and (rc,fc) G ^(6,770). We fix 770 and consider
two possibilities. If y ^ suppwo then y^ ^ suppWg for all t, recall the definition of
^(e,77o). This implies g^^y^) = g^^y) = 0, hence 770 does not contribute to (4.22). In
the opposite case, the term in (4.22) corresponding to 770 is bounded by (we omit the
reference to 770 in i, y and y^)

(4.23) ( h(̂ ) - ̂ (^^)|4n)(^^)^(r) + ( ̂ ^^{y^l) - g^\y^)\de,(t)

<var^ L^^^^+supl^l /I^^^-^^^IX^),
< J i J

with 77^ = 77+(e,77o). Note that g^^y.i) = X^ ^a^i f^+Ti-A^O.For^+Ti-fc > 0
we claim that

f4 24) a^(y 1) - WOM) 1 - ^h^^k)
' ) g ^ ) ~ ̂ k) W{y)\ - |(y^-.)/(^(^^)| - ca -

4e SERIE - TOME 29 - 1996 - N° 4



STRONG STOCHASTIC STABILITY AND RATE OF MIXING FOR UNIMODAL MAPS 509

where h{x,k) = ̂ (/^{x, k})/ft{fn-k{y))\. Indeed, we use that /^(x.k) is either
fn~k(y) or (fn~k{y))- (recall the notations x-, K(x) introduced before Lemma 5) for
the second equality, then we obtain the last inequality by applying Lemma 2 to the
fn-^£-k -trajectory of {f^(y,l\ff) (recall that 6 is fixed) and noting that \h(x,k)\ < K.
Now for f(E JJ\ u G J^ and i7 G J^ we write Xu = f^(x,k) and y^ = f^{y^t\
whenever these objects are defined. Then, restricting to the case t + n — k > 0 (the case
^ + n - f c = 0 i s simpler) and recalling the definition of the perturbed cocycles Wg,

(4.5) j^M, - ̂ / ̂ 'î ^gî n î-1^^
_ y-fc /• JM^^K^y^)!-1^^) ^ , ^ 1 - 1 ^ ^= A 7 ;i(/̂ )i-^(.) K/? )(^)1 £ ( ) '

where we write f = (^_A;+I, ... ̂ n) and ^ = (^ i , . . . , ̂ , t i , . . . , tn-k). and denote
h(x^ = \f\x^lf\f^-\y^\. Observe that f^-\y^ is either x, or (^)_, the
choice between the two possibilities depending only on (re, k) and 770 to small enough
e(n). Hence, Lemma 2 yields

(4.26) I^W) ̂ (^) < A^-^sup K/^-'y^)!-1 < Ca- .
^ f,^

To control the last term in (4.23), we bound ^{y^l) - ̂ ^^l by

(4 27) ^^Wx f) - /.(. k)\ + ,(n)(, ^ "r^h^ - i
(4t27) ^r) \^^r) ^^+9 [V^) gW(y^)^^

and observe first that

(4.28) f
Jn)gr^^h^k)
g^\y^} h(x^

- 1 \d0^(t) <supKr^^yq^^^))!
K/?^-')7^)!

-1 <c,(e).

Indeed, the first inequality follows from previous considerations, see (4.24)-(4.25).
Moreover, by construction, (/^'^y^) has the same sign as (/n-K-A;y(/+^^))
and their difference is bounded by (note that f^(y^f.) = y^o)

supK/^-T^)! • \y^- f+\y^)\ < c{n)c^e) < c^e).
z,f

Combining this with Lemma 2 (to bound the denominator) we obtain the second inequality
in (4.28). Observe, moreover, that the first term in (4.27) is also bounded by c^(c), because
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l/h(x^ r) < K and \h{x^ T)—h{x^ k)\ <^ Cyi(e) (use here that K(x) is Lipschitz). Therefore,
we obtain from (4.23)-(4.28) that (4.22) is bounded above by

Vs (Ca^ var (p + Ca^c^e) sup |^|) < Gcr-71 var ̂  + cr-^e) sup |^|
-^n.N ^ J J J^oe^o'

for all 0 < e < e(n) (use the bounded overlap property to sum the variations and
-#•2^ < C{n) to sum the suprema). Replacing in (4.21),

(4.29) / |GQ - /^)((^B)|WO dx < Ca-^var (̂  + sup |(^|)
^(x^\y^) ^ j

Together, (4.19), (4.20), and (4.29) prove the lemma. D
In Section 5, we shall also need the following version of the integral lemma:

Nommiform Integral Lemma

^ |£^ - £^| d^o < Cn(e) for each fixed y C BV{I\

Proof of the Nonuniform Integral Lemma. - Fix y € BV(I) and n > 1 and let r > 0.
Reading the proof of the Integral Lemma, first choose N so as to make l/Cn(N) < r
in (4.19) (restricting to e < e(n,JV) if necessary). Next, since (p has bounded variation,
there are e = €n,<p(r) > 0 and E = En^{r) C I with Lebesgue measure \E\ < r (hence
^o(E) < c(r)), such that \^{y^i) - ̂ (^)| < r for all f e J^ whenever (y,i) ^ E.
For (a;, k) C Xn,e \ (/"^(-E) u ^n,e) this permits us to replace var + y by r in (4.23) and
so also Ccr"71 vaij (p by C{n}r in (4.29). On the other hand, in just the same way as in
(4.20), the integral of |£e((/?^B)| over ./^(t?) is bounded by c(r). Finally, take e > 0 small
enough so that the factors c(6), Cn(e) in (4.19), (4.20), (4.29) be smaller than T. Putting
all this together, we conclude that J \{C^ — /^)((^)|woAr < Cn(r) if e > 0 is small. Since
T > 0 is arbitrary, this proves the lemma. D

Balanced norms

We introduce a family of equivalent norms on BV (J), defined for 0 < ^ < 1 by

(4.30) |H|c=C-(var^+supH)+ l\^\d^.
i i J i

(Analogous "balanced" norms are used e.g. in [BaY].) We now state an immediate
consequence of the Variation, Supremum and Integral Lemmas:
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Dynamical Lemma

For any r with a~1 < f2 < 1, there is C > 0, and for any n > 0 there is e(n) > 0 such
that for each 0 < e < e(n) we have \\C^ - /^||fn < C . r^

5. Conclusion of the proof

We first reprove the result (essentially due to [BC], see [MS]) that / satisfies the
conclusion of Jakobson's theorem [Ja]:

COROLLARY 1 (Invariant measure). - Let f satisfy assumptions (A1)-(A2). Then f has
an absolutely continuous invariant probability measure mo = po dx.

Proof of Corollary 1. - (The arguments are fairly standard, see e.g. [Ry].) We start by
constructing an absolutely continuous /-invariant probability measure mo. Consider the
sequence of nonnegative functions ̂  = (^ EF=o1 ̂ (x^o)) • I I follows from the Variation
Lemma (for e = 0) that var^ ̂ n < C, and from the Supremum Lemma that supj ipn < C,
uniformly in n. By Helly's theorem, a subsequence of (pn converges in 1^(1, dx) to some
po ^ BV(I) which, by construction, is a fixed function of CQ. By Lemma 8, J po dp,o > 0
and mo = po/^o is an /-invariant measure. We replace po by po/ J po d^o in what follows.
Now, let P : ^(I.dx) -^ L^{I,dx} be the usual Perron-Frobenius operator for / (i.e.,
^W = Sf =x ^o^(.y)/\f/(y)\^ and ^ be the usual Perron-Frobenius operator for
/. Then, P(po^o) == Po^o. and an easy computation shows that P(po) = Po. where
Po(^) = E^oO^o) o (TrI^)"1^). Note that fjpodx = 1 because f^poWodx = 1. By
well-known arguments, the probability measure mo = po dx is /-invariant. D

Remark. - Lemma 5 applied to po provides the following additional information on the
measure mo: sup^ po < const A"^ for all k > 0, in particular Efc ̂ P^ Po ls fi11116-

Condition (Al) combined with [Si] ensures that / has no periodic attractors. Hence, by
a result of Blokh-Lyubich (see e.g. [MS, Theorem V.I.2] for a statement and references),
/ is ergodic with respect to Lebesgue measure. It is easy to deduce that / is ergodic
with respect to mo and, moreover, that this is the unique absolutely continuous invariant
probability measure of / (see e.g. [MS, Theorem V.I.5]).

By [BL], the entropy of / with respect to this absolutely continuous invariant probability
measure is strictly positive. Now, since we also assume (A3), /n is ergodic with respect
to mo for all n > 1. Indeed, almost every ergodic component of mo for /n is absolutely
continuous [Le, Corollary 4]; there are finitely many such components and their supports
consist of finitely many intervals [Yo, Proposition 3.3]; the topological mixing assumption
(A3) then implies that these supports must all coincide, hence mo is ergodic for /n.
Therefore, [Le, Theorem 1] gives that the natural extension of (/,mo) is Bernoulli, and
thus (/,mo) is exact (that is rin^o./'"7^) contains only zero or full mo-measure sets,
where B is the Borel d-algebra of I). This conclusion plays a central role in the proof
of the next corollary.

Let us also note that in this context (A3) may be formulated
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(A3) for any interval J C I there is n > 1 such that ./^(J) contains the interval bounded
by ci and 02 (which coincides with /^(T") for all k > 2),

and is equivalent to / being non-renormalisable, see [BL]. Finally, [Yo, Lemma 2.1], for
quadratic maps with parameter a close to 2, conditions (A1)-(A2) imply (A3). Combined
with [BC], this gives that the three conditions hold simultaneously for a positive measure
set of values of a.

COROLLARY 2 (Quasicompacity). - Assume (A1)-(A3). The spectrum of the operator Co
acting on BV{I) decomposes as S(£o) == Si U {1}, where TQ = sup{|^| | z G Si} < 1
and 1 is a simple eigenvalue with a positive eigenfunction po and spectral projection
7To(^) = po fr ^ d p o ' Moreover, the essential spectral radius of Co is at most I / a < 1.

Proof of Corollary 2. - We shall first show that the essential spectral radius of Co acting
on BV{I) is at most I / a < 1. Since the Variation Lemma, the Supremum Lemma, and
Lemma 8 imply that \\C^\\ is uniformly bounded, in particular the spectral radius of Co is
equal to 1, it will immediately follow that the spectrum of Co decomposes as the union
of a finite set of eigenvalues of finite multiplicity on the unit circle and a compact subset
of a disc of radius TO < 1 (note that TO is either the essential spectral radius of Co or the
modulus of the second largest eigenvalue). We have already observed that (A3) ensures
exactness of (/,mo). We shall then deduce that (/,mo) is also exact and, from this, that
the only eigenvalue of Co on the unit circle is 1, and is simple.

Lemmas 1 and 2 (see also (4.24)) imply that there is a constant C > 0 such that
supj^^ < Co-"71 for all n > 1. Let N > n be such that p,o{^k>NEk) < o'"71, and define
projections a^ and On,N '- BV(I) —^ BV{I) by chosing an arbitrary point x^ in each
monotonicity interval 77 G Z^ and setting

a^ = ̂  ^(^r?) Xr? and an,N(^) = O^ • X(Uk<NEk)) •

r?€^

We first bound H/71 — /^ayjiay, using (a)-(c) from Section

SMp\(Cn-Cnan)^<sup Y, g^^y^y^-^x^^Ca^v^y
1 y ^ T

y^rw
var(/:71 - /^a,)^) < ^ (var^ sup \y - ̂ )\ + sup^ var ̂  - (^)|

+ 2 siipp^ sup | ̂  - y?(^)|) ^Ca^var^
t] Tt] I

[ ̂  -C^On^d^ < CsupK/:71 -Cna^\ ̂ Ga^var^,
J i i i

with y^ = (/"^X^/) (we used Sf < 0 and the fact that K(x) has bounded variation, see
again (4.24), to get var^^ < Csup^^ for all rj e Z^). Now, for any fixed 0-0 < o-,
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the above bounds together with the Supremum Lemma yield

||(/:71 - ̂ a^NM < IK^ - ̂ n)(^ • X(u.<^))|| + 11^ • X(u.>^))||

< Calvary? + C^o'^var^ + sup |^|) +C / |̂  • X(Ufc>^fc)l ̂ o
j i i J i

< C rao -7 l(var^+sup|^|)+Csup|^|^o(Ufc>N^fc) < C^IMI,
i i i

with constants independent of N. Since each On,N has finite-dimensional range and is
therefore compact, the essential spectral radius of Co is not bigger than I/a, as claimed.

We now go to the second part of our argument. We start by claiming that, given any
A e nnx)/"^), where B is the Borel cr-algebra of J, there is a Borel set A C I such that
A = TT'^A), up to a zero mo-measure set. In what follows we disregard zero measure sets,
in particular we always restrict to suppmo, respectively suppmo. Note that B G /""(fi)
if and only if B <E B and satisfies [$ <E B, /n^) = .T(^)] ^ r j e B . Also, there is B C I
such that B = TT-^B) if and only if [{z,k) C B, (z,£) G J] =^ (^) <E B. Therefore, in
order to prove our claim it suffices to show that, given (mo-almost) any (z, fc), (z,i) G J,
there is j > 0 such that f^z.k) = P(^). For x C (-6,8) we define p(x) to be the
"falling time" of x, that is the smallest integer j > 1 such that p+^O) G ^o. Then,
e-/3ip(^) > (l/C^fP^-1)^^)^ - f(x)\ > (l/C^A^a;2: this is proved in the same
way as (3.10) (using the first inequality of (3.9) instead). Moreover, p(x) > H(8) and so,
if 8 > 0 is small enough, the previous inequality implies

(5.1) X^x2 < 72 , where we write 7 = (1 - e^^) min{l, |ci | , . . . , |cjj}.

Now let {z,k\ ( z , £ ) € J. Note that 7r(p(z,k)) = 7r(p(^)) = f^z) for every j > 0.
We suppose that the /-orbit of z is disjoint from the critical orbit (this excludes only
a countable set), so that p(P(^)) is always finite. It is not difficult to see that, either
there is j > 0 such that both f^z.k) and f^z^) belong in JSo, or else there are
0 < z^i < ^2 < •" with f^(z) G (-M) and ^,+1 < ^ +p(/^(^)) (each point starts
climbing up the tower again before the other one falls down) for all i > 1. In the first
case, it must be f^z, k) = P(^), which proves our claim. In the second one, we write
p, = p^^z)) and note that ^+1 - ̂  < pi implies |.P+1^) - q^-^)| < e^1^1-^
which, together with (Al)-(2.5), yields \f^{z)\ > ̂ -a^1-^ > -fe-^. In view of
(5.1) and our assumption e20 < \A^, this gives j?,+i < ( p i / 2 ) for every i > 1. Since the
pi are positive integers, we conclude that the sequence ^ is necessarily finite. This means
that one eventually gets into the first case, thence the claim is proved.

As a consequence, (f.rho) is exact. Indeed, given any A e n^x)/"7^), take
A C I with A = TT-^A). Clearly, A G UnX)/"^) and so, since (/,mo) is exact,
mo(A) • rn^A0) = 0. On the other hand, recall the proof of Corollary 1, mo = Tr^rho
and so mo(A) = mo(A). It follows that mo(A) • mo^A0) = 0, as we wanted to
prove. In particular, / is mixing with respect to mo. Combining this with the equality
ff ̂ C^po) dp.o = f^of^^po dflo for ^, (ppo G BV(!) (use Lemma 8), it follows that
^S(Wo) weakly converges in ^(/^o) to po f (ppo d^o as n —> oo, whenever ^ppo G BV(I).
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Now let AI € S1 be an eigenvalue of Co and pi G -By(J) be a corresponding
eigenfunction. We claim that supp pi C supppo. In view of our definitions, it suffices to
prove supp pi^Eo C supp poHEo. Let J ( S ) be the interval in Eo bounded by f2(-6) x {0}
and f(-6) x {0} (since (-^)- ^ ^, we have |.f(5)| < l/^-^l, for i = 1,2). On the one
hand, supp pi F\ Eo C J(6) because ^ ( I ) r\ Eo C J(8) (points (x,k) with \x\ < 6 have
/'(re, k) = (/"(^), k-\-i} for % = 1,2). On the other hand, infpo|j(6) > 0. Indeed (following
[Yo]), let J C I be any interval with infpo|j > 0. Since / is topologically mixing there
is ni > 1 such that ^(/^(J)) contains a neighbourhood of the (expanding) fixed point q
of /. Then there is 77,2 ^ ^i such that /n2 (J) contains a neighbourhood of (g, 0) in Eo. It
is easy to deduce that /^(J) D J(^) for some 77,3 > n^. This shows that po is positive
on J(6) and so proves the claim. Hence we may write pi = (ppo for some function y?.
Applying the weak convergence statement above we get that A^pi = C^pi — ^ p o f p i df^o.
This implies that Ai = 1 and p\ = po jpi djiQ. Finally, the eigenvalue 1 must also have
algebraic multiplicity one because \\CQ\\ is uniformly bounded. D

From Corollary 2, we recover a result of [KN, Yo]. For a function ^ : I —^ C with
bounded variation, we define ||y?|| = IMlay = varj (p + supj \(p\ + J |(^| dx.

COROLLARY 3 (Decay of correlations). - Let mo be the unique absolutely continuous
invariant probability measure for f and let TO < 1 be as in Corollary 2. For any r > TQ and
(p, ̂  : I —^ C of bounded variation, there is C = C{r, ||(^||, ||^||) > 0 such that for all n > 1

/ (^ ° /n)^ dmo — \ (p drriQ • \ ̂  dmo < Cr71.

Proof of Corollary 3. - The proof uses standard arguments, see e.g. [Yo]. Lifting a
function ^ with bounded variation to i^(x^k) = ^(rc), we have z^po G BV(I), with
II^Pol l < const ||'0|| (recall that ^^ ^PEk Po < °0)- ^Y definition of mo, mo, and CQ, we
may thus write (using Lemma 8 for e = 0)

/ (^ ° /n)^ dmo - ^ dmo \ ̂  dmo
J i J i J i

\ ((p o /n)'0 dmo — \ (p dmo \ ̂  dmo
J i Ji Ji

(p\C1Q{^po) - po{ ^podp.o}\d^o

^£^(7Ti('0po))^0 ^SUpl^lC^^T",
J

where 71-1 is the spectral projection associated to Ei. D
Our main result will now follow from a version of the perturbation theorems on families

of linear operators in [BaY, Section 5.E and Erratum]: Let (X, || • ||) be a complex Banach
space and (Tg, e > 0) be a family of bounded linear operators. Assume that the spectrum of
To decomposes as S(To) = Eo U Ei with So = {1} and /^i = sup{\z\ \ z e Si} < 1. Let
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X - Xo^Xi and -K, : X -^ X,, i = 0,1, be the corresponding vector space decomposition
and projections. Assume further that Xo is finite-dimensional. Now let | . | be a norm on
X with M < 11^1 for all x and let || . ||,, 0 « ^ 1 be the family of norms defined by
II • He - (,|| • || + (1 - C)| • |. Assume that 71-0 is a bounded projection for the norm | • |.

Perturbation Lemma ([BaY])

Suppose that supo ,̂̂  |T,r - T,x\/\x\ -. 0 as e -. 0 and \T,\ is uniformly bounded
Suppose also that there exists ̂  < K< 1 such that for each large enough n ̂  1 there exists
e(n) > 0 with ||T,» - ̂  [I,,. ^ ̂  for each 0 < e < e(n). Then, for each small enough e

(1) The spectrum of T, splits as S(T,) = SQ C S^ with ̂  = sup{M | z e m <
nif{H | z € So}, and limsup^o î ^ max(Ki//t,/0.

(2) Let x = zo£ ® xl£ ^ the ^^^ed decomposition. Then dirnXn = dimXo
M-tcko) -> E(7o|xo), and \^ - 7ro| -^ 0 as e -^ 0.

For the bound on ̂  in (1), just note that the constant K' in the proof of Lemma 1 ' in
IBaY] need only satisfy max(Ki/K,K) < K' < l.

Proof of the Main Theorem. - We will first check that the hypotheses of the Perturbation
Lemma are satisfied, and then derive our theorem from the conclusion of this lemma

We let X = BV(I\ T, = C, for e ^ 0, and consider the norms || • || = || . ||̂  and
I. I - Ji I • I d^o (then || • ||<; is the balanced norm defined in (4.30)). The hypotheses on
roare satisfied for M = TO because of Corollary 2, in particular X, = Cpo has dimension
1. Note that |A| < 1 + c(e) for all e, by Lemmas 7 and 8, and that the assumption
on TTO is obvious from Corollary 2. Fixing 1 > ^ > max(^, ̂ l/a), the bounds on
the differences ̂  - ̂  follow from the Nonuniform Integral Lemma (for y = po) and
the Dynamical Lemma of Section 4. It follows that for all small enough e, the essential
spectral radius of£ is smaller than inax(^/^), which can be made arbitrarily close
to max(^/TQ, ̂ /1/a) < 1. By the same arguments as in Corollary 1, C, has a positive
fixed function p e BV{I\ in particular we have E^ = {1} and ̂  = Cp,. Moreover
we normalize fp d^ = 1 and then TT§ is given by TT^) = ̂  J y>^. Note that, using
the definition of C^ and Fubini's theorem,

j (y ^/jyP^CE,^, d(y,j))\^)(x,k)d^(x,k)

(5-2) =fv(yd)^^p.)(yJ)d^y,j),

for all ^ ^ 1, and ̂  e BV(Z). Taking ^ = 1, this proves that m, = p^ is an
invariant probability measure for x. Now, consider the measure m, on J with density
PeW - ^^o(Pc • W,)(TT\BJ (x). Clearly, m, is absolutely continuous and as it lifts
to m,, it is the unique -̂invariant probability measure; Moreover, the same kind of
computations as in the proof of Corollary 3 (with (5.2) replacing Lemma 8) prove that
the correlations of (^m,) decay exponentially fast, with rate at most T, = ̂  From the
Perturbation Lemma (1), we get limsup r̂, ̂  max(^, ̂ T/a) < i, which proves the
second statement in the theorem, v v / / p
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Finally, by Perturbation Lemma (2),
A / \

/ ^^T^ ~ pe dp'0 = ^o - ̂ o) ( ——. ) dp,o < c(e)
J i A^GO J i \^{I)J

Together with \p,o(I)/^(I) — 1| < c(e), which is a consequence of Lemma 7, this gives
that fj. \pe — po| df^Q < c(€). We claim that supj pg is bounded uniformly in e. Indeed,

/ Pe dp.o < po dp.o + / Ipe - Pol d^o < 1 + c(e) < C .
J i J i J i

Then, the Variation Lemma and the Supremum Lemma yield, for large n and e < e(n),
sup^ pg = supj C^pe < j(varj pe + supj pe) + G, and var^ pe < |(varj pg + sup^ pg) + C,
hence supj pg < 3(7. Finally, using Lemma 7 once more,

/ IPO(^) - Pe(^)| dx = / |peWe - po^o| ̂  < c(^) + SUp pg / \Wo - wj dx < c(e) ,
Jj J i i J i

which completes our proof. D
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