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INDUCED EXPANSION FOR QUADRATIC POLYNOMIALS

BY JACEK GRACZYK (1) AND GRZEGORZ SWI^TEK (2)

ABSTRACT. — We prove that non-hyperbolic non-renormalizable quadratic polynomials are expansion inducing.
For renormalizable polynomials a counterpart of this statement is that in the case of unbounded combinatorics
renormalized mappings become almost quadratic. The reason for both results is in the properties of "box mappings".
This class of dynamical systems is systematically studied and the decay of the box geometry is the reason for both
results. Specific estimates of the rate of this decay are shown which are sharp in a class of S-unimodal mappings
combinatorially related to rotations of bounded type. For real box mappings we use known methods based on
cross-ratios and Schwarzian derivative. To study holomorphic box mapping we introduce a new type of estimates
in terms of moduli of certain annuli which control the box geometry.

RESUME. - Nous demontrons que les polynomes non-hyperboliques, non-renormalisables ont la propriete des
induites dilatantes. Pour les polynomes renormali sables Ie resultat correspondant est que dans Ie cas d'une
combinatoire non-bomee, les transformations renormalisables deviennent presque quadratiques. Ces deux resultats
se deduisent des proprietes de « box mappings ». Cette categoric de systemes dynamiques est etudiee et la
decroissance progressive de la taille de boites est la raison de ces deux resultats. Les estimations detaillees du taux
de decroissance sont presentees dans cet article. Ces estimations sont precises pour la categoric de transformations
S-unimodales liees aux rotations de type bornees. Pour les transformations reelles nous appliquons les methodes
bien connues basees sur les techniques de birapport et derivee schwarzianne. Ann d'etudier les « box mappings »
qui sont holomorphes nous introduisons un nouveau type d'estimations en fonction de module de certains anneaux
qui controle la taille de boTtes.

Part I

Introduction

1. Main Results

1.1. Overview

In recent years, rather dramatic progress occurred in the study of real quadratic
polynomials, or, more broadly, S-unimodal mappings with a singularity of quadratic
type. New results include better understanding of measurable dynamics and a proof of the
monotonicity conjecture in the real quadratic family.
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400 J. GRACZYK AND G. SWI^TEK

This progress was partly based on new estimates. The main breakthrough, however,
was in achieving a better understanding of the rich dynamics of unimodal mappings in
conjunction with their geometry, and thus being able to apply appropriate tools in different
cases. Most of the progress in this direction seems to be due to the application of the
idea of inducing. The first application of inducing to the study of unimodal maps was in
the work [9]. In that work useful geometrical and analytic estimates were obtained only
in special cases. Another notable step was the work of [7]. An attempt was made there
to handle all cases, though some patterns emerged as analytically unmanageable. Another
work which ought to be noted is [16] where a somewhat simpler inducing construction
was developed leading to many conclusions, in part the equivalence between the non-
existence of weird Cantor attractors and induced expansion for non-renormalizable maps of
quadratic type. For the authors, the inducing construction of [10], became the underlying
approach of the present paper. Here a complete topological model of unimodal dynamics
was obtained. Another achievement of [10] was the discovery of the phenomenon of
decaying box geometry. It was observed that the occurence of the decay of box geometry
leads to induced hyperbolicity. An estimate called the starting condition was provided
which, if satisfied, allowed one to prove the decaying geometry in general for S-unimodal
maps. The starting condition was shown to hold on a robust set mappings in the quadratic
family, but not all. From this point of view, our work on is a completion of [10] and our
achievement is showing that the starting condition always holds. Moreover, we extend the
method to some renormalizable maps.

It should be noted that about the same time a similar case of decaying geometry was
observed independently by [24] and [4] for circle mappings with a flat piece. It is not
known whether there is more than an analogy between both cases.

The direction for getting rid of the starting condition was shown by [23], see [17] for a
description. The work was done for non-renormalizable quadratic polynomials, complex as
well as real. Inducing was not directly mentioned, but implicitly present in the construction
of a Markov partition. It is believed that the approaches of [10] and [23] give equivalent
sequences of partitions for real polynomials. In [23] a "hard case" emerged (and was called
persistently recurrent). For real polynomials, the persistently recurrent case contained some
examples which the approach of [10] could only treat under the assumption of the starting
condition. The estimates of [23] were done by watching how pieces of the partition nest
in one another thus defining certain annuli. Then a computation involving the moduli of
these snnuli, quite similar to one done in [2], implied that the sequence of partitions was
converging to the partition into points. The work of Yoccoz was not directly concerned with
the box geometry and it was not clear for a while that the decaying geometry was implied.
However, the idea of watching the annuli was another important inspiration for our paper.

In the real situation, the proof of decaying box geometry was obtained for the so-called
Fibonacci polynomial. This map was proposed in [8] as an interesting example to study.
From the point of view of [10], the Fibonacci polynomial required the starting condition
to be assumed in order to prove the decay of geometry and it was persistently recurrent in
the sense of [23]. [15] was an important step since it solved one of the "hard examples".
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INDUCED EXPANSION FOR QUADRATIC POLYNOMIALS 401

The proof was obtained using ideas of holomorphic dynamics, and a conjugacy with
cubic polynomials was invoked. The same approach based on piecewise linear models
and conjugation with higher degree polynomials was further applied in [14]. This work
demonstrated decaying box geometry in all non-renormalizable quadratic polynomials. The
main result of [14] was non-existence of non-Feigenbaum type Cantor attractors.

However, we give a completely different proof of the decaying geometry. The main
draw-back of the approach of [15] or [14] to proving the decaying geometry was that it only
applied to non-renormalizable maps. On the other hand, the renormalizable case emerged
as very important in the attempts to construct a quasiconformal conjugacy between any
two topologically conjugate infinitely renormalizable polynomials. After the achievement
of [23], this was a missing link in the proof that hyperbolic polynomials are dense in real
quadratic family. The decay of box geometry was an important premise of the first proof
of this in [21]. In that paper the proof of decaying geometry was extremely involved.
However, a certain important step of [21], the construction of complex box mappings
by inducing, is followed in our paper. The difficulty of the proof by the method of [21]
made us a look for a more robust argument more in the spirit of [23]. We show this
proof here as Theorem C. Theorem C states the decay of box geometry in an abstract
class of "box mappings". Box mappings appear naturally in inducing. Theorem C works
without a distinction in non-renormalizable and renormalizable cases. The proof is based
on considering the moduli of certain annuli. In this, it is quite similar to [23] or [2].
However, our estimates are stronger and imply the decay of box geometry. Our Theorems
1 and 2 are applications of Theorem C.

The proof of Theorem C proceeds most of the time by considerations of holomorphic
dynamics. However, here a difficult case emerges (called "rotation-like") in which we need
to apply real estimates to get the starting condition. We provide a proof in all rotation-like
cases (in the case of the Fibonacci pattern this result is implicit in [12]). This gives us
the decay of box geometry in a class of real box mappings (only negative Schwarzian
derivative needs to be assumed.) In certain situations, these estimates are sharp. This is
the content of our Theorems A and B.

In spite of connections and partial overlaps with so many works, the paper is self-
contained. No technical references are made to any of the recent works quoted above. We
thought that this was a reasonable trade-off for the paper's large size.
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402 J. GRACZYK AND G. SWI^TEK

1.2. Statement of results

Definition of our class of mappings

DEFINITION 1.1. - A mapping f of the interval [—1,1] into itself is called unimodal
provided that:

/(-i) = -i
• the mapping f can be written as h(x2) where h is an orientation-reversing

dijfeomorphism from [0,1] onto its image [—l ,a] with 0 < a < 1.
We can classify unimodal mappings according to the smoothness of h. So, we get the

following definition.

DEFINITION 1.2. - Let 77 > 0. We define a class T^ of unimodal mappings by writing
f(x) = h(x2) (compare Definition 1.1) and imposing the following conditions on h.

• h~1 has an analytic continuation to a univalent mapping from the upper half-plane
into the upper half-plane,

• h has an analytic continuation to some open interval U D [0,1] as a dijfeomorphism
onto (—1 — rj^ 1 + rj).

We also define

^=U^-
??>o

It should be observed that Definition 1.2 implies that the Schwarzian derivative of h
continued to U is non-positive. This observation is due to [20]. Indeed, look at any four
points a < b < c < d in the image of the continuation of h. Let A, 5, (7, D denote the
respective preimages in U. Then h~1 can be continued to a univalent mapping from

G= (C\R)u(a,d).

Compose this with a Mobius map which sends A to a, D to d and B to 6. This
composition maps G into itself, and hence it does not expand the Poincare metric on G.
Since (a, d) is a Poincare geodesic, then c has to move towards 6. Since points a, 6, c, d
were arbitrary, this means that the Scharzian derivative of the composition, hence of h~1

itself, is non-negative.

Theorem about non-renormalizable mappings

THEOREM 1. - Let f G Tr) be non-renormali^able. Then on an open, dense and having full
measure subset of the fundamental inducing domain one can define a continuous function
t(x) with values in positive integers so that f^ is an expanding Markov mapping.
That is, restricted to a maximal interval on which t(x) is defined an constant, f^ is a
dijfeomorphism onto (1 — q^ q), expanding, and with distortion (measured as the variation
of the logarithm of the Jacobian) bounded by depending on T] only. Here, q is a fixed point.

Theorem 1 has a number of consequences (see [10]). It gives an alternative proof of the
non-existence of "exotic" attractors in class ^ (already known from [14]). It also gives
an approach to constructing invariant measures.
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INDUCED EXPANSION FOR QUADRATIC POLYNOMIALS 403

Theorem in the renormalizable case

DEFINITION 1.3. - Let f G T. A point x in the domain of f is called almost parabolic
with period m and depth k provided that:

• the derivative of /m at x is one,
• /m is monotone between x and the critical point,
• k consecutive images ^(l/^),..., fkrn{l/2) are between x and 1/2.

THEOREM 2. - Let f G ̂  be renormalizable, and let n be the return time of the maximal
restrictive interval into itself. Denote by k{n) the maximum of depths of almost parabolic
points with periods less than n. Specify a number D > 0. For every given k, a number
7V(?7, D, k) exists independent off so that ifn> N(r]^ D^ k) and k{n) < k, then /n on a
neighborhood of 1/2 is conjugate to a mapping from J^D by an affine transformation.

Theorem 2 "almost complements" the theory of renormalizable mappings developed
in [20]. In fact, it says that such a theory at least in some aspects is much simpler for
renormalizable mappings of unbounded type. The exclusion of the unbounded case with
almost parabolic returns is the only gap. Theorem 2 is a critical step in the proof of
monotonicity in the real quadratic family, see [21] (where, by the way, the theorem is
stated wrongly without excluding the almost parabolic case).

Technical theorems

The strongest results of our paper are contained in technical theorems A,B and C. They
imply theorems 1 and 2. In addition, Theorem B gives exact bounds on the exponential
rate of decay of box geometry for S-unimodal rotation-like maps. Theorem C concerns the
decay of complex box geometry and can serve as an important step in proving the density
of hyperbolicity in the real quadratic family, see [21]. The technical theorems are stated
for objects that we call box mappings.

Plan of the work

The paper is divided into four parts. The first part discusses results and ideas of the
work in general. The first section is introductory and will be completed by this description
of the work. The second section introduces box mappings and inducing. The procedure of
inducing is based on the algorithm of [10], but is somewhat different. The main formal
difference is that we work in the abstract setting of "box mappings" which can be studied
completely apart from unimodal dynamics. At the end we state our technical Theorems
A, B and C.

Part II of the work deals with inducing on real box mappings in the so-called "rotation-
like" sequences. The purpose is to prove the decay of box geometry without assuming
the starting condition. The term "rotation-like" refers to a very particular combinatorial
pattern of the dynamics. In the rotation-like case the decay of box geometry is particularly
slow and not so easy to get with purely holomorphic methods. The advantage is a the
combinatorial simplicity. First, we prove the decay of box geometry under a specific and
rather weak "starting condition" (the box ratio less or equal to 0.37). Then, we prove
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404 J. GRACZYK AND G. SWI^TEK

that this starting condition is satisfied after a number of inducing steps depending only
on the initial geometry.

Part III is probably the most important. We introduce the concept of separating annuli
and show a quantity which is weakly increasing in the inducing process and whose
growth implies the decay of box geometry. This is an important achievement, since the
simplest measure of box geometry, the modulus of the nesting of the related quadratic-
like mapping, does not increase monotonically. Then we have to work to show that this
"separation index" actualy increases at a linear rate. By purely holomorphic methods
we show that the separation index is strictly inreasing except in rotation-like sequences
of bounded type. The proofs involve a lot of simple-minded estimates which use no
more than the superaddivity and conformal invariance of moduli, though may be involved
combinatorially. To see the actual increase of the separation index stronger tools are applied
based on Techmullefs theorem that gives a "sharp" inequality for the superadditivity of
moduli. Finally, in order to see the increase of separation in the remaining rotation-like
case, results of the real-variable work in Part II are applied.

Part IV shows how the technical Theorems, and more precisely Theorem C proved in
Part III, imply Theorems 1 and 2. The main step here is the construction of a holomorphic
box mapping by inducing on a unimodal mapping / e T. If the mapping / is a polynomial,
the problem is very easy because a box mapping can be obtained from Yoccoz partitions.
But even for renormalizable polynomials, if one is interested in uniform bounds of the
initial box geometry, the consideration of renormalized mappings leads to the class ̂  and
not just polynomials. The construction of box mapping is quite different from the method
originally used in [21], as well as from the work of [14] done in non-renormalizable cases.

2. Induced Dynamics

2.1. Box mappings

Real box mappings

The method of inducing was applied to the study of unimodal maps first in [9], then in
[7]. In [11] and [10] an elaborate approach was developed to study induced maps, that is,
transformations defined to be iterations of the original unimodal map restricted to pieces
of the domain. We define a more general and abstract notion in this work, namely box
mappings. Box mappings can occur in two contexts, as transformations of the real line
with certain smoothness and as holomorphic dynamical systems in the complex plane. We
define the notion of a real box mapping first.

DEFINITION 2.1. - Consider a transformation (f) defined on an open subset U of the real
line into the real line. Restrictions of (j) to the connected components of U will be referred
to as branches of ^. For (j) to be a box mapping, it must satisfy the following assumptions:

• B = (-a, a) for some a > 0 and B will be further called the central domain, while
^ := ^\B receives the name of the central branch,

4s SERIE - TOME 29 - 1996 - N° 4



INDUCED EXPANSION FOR QUADRATIC POLYNOMIALS 405

• B' is chosen to be the smallest interval symmetric "with respect to 0 which contains the
range of ̂  and it is assumed that B/ contains the closure of B,

• -^ = h(x2) where h is a dijfeomorphism onto its image B' with non-positive Schwarzian
derivative,

• all branches of(f) different from the central one are dijfeomorphisms onto their respective
images and have non-positive Schwarzian derivative,

• ifD is any connected component ofU, then D is disjoint from the border of B ' ,
• ifV is the range of some monotone (i.e. non-central) branch of'(/) and D is a connected

component of U, then D D 9V = 0.

A real box mapping is shown on Figure 1.

0

Fig. 1. - A sample graph of a box mapping. "Boxes" Bn and B'^ are
shown. Be aware that typically a box mapping has infinitely many branches.

The definition of a holomorphic box mapping is the same conceptually and formally
obtained by changing a few words:

DEFINITION 2.2. - Take a holomorphic transformation (f) defined on an open subset U of the
complex plane into the complex plane. Restrictions of (f) to the connected components of U
will be referred to as branches of'(/). We introduce the following assumptions and notations:

• there is certain open topological disc B which is a connected component of U and is
mapped onto itself by the transformation z —> —z; this B will be further called the central
domain, while ^ := (J)\B receives the name of the central branch,
• B' is the range of ̂ ,

• '0 = h(x2) where h is univalent onto its image B',

• all branches of 0 different from the central one are univalent onto their respective
images,

• ifD is any connected component ofU, then D is disjoint from the border of B ' ,

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



406 J. GRACZYK AND G. SWI^TEK

• ifV is the range of some univalent fi.e. non-central) branch of(j) and D is a connected
component of U, then D D 9V = 0.

We will use the expression box mapping where both real and holomorphic box mapping
can be substituted.

Particular types of box mappings

We distinguish two special types of box mappings, both real and holomorphic. A type I
box mapping is determined by the condition that all non-central branches have range B.
A type II is chracterized by the property that all non-central branches have range B ' . A
complex box mapping of type I is shown on Figure 2.

Fig. 2. - A type I complex box mapping. Dotted lines show domains of canonical extensions. Domains C and
D look like they are maximal. Then D^ and D^ are subordinate to C, but apparently independent from one
another as well as from D. C and D are also independent. There may be univalent domains outside of B^,
not shown here.

DEFINITION 2.3. - A box mapping is called terminal if there is an open interval I C B
containing the critical point of(f) so that (f)(I) C I and (f)(9I) C 91. The interval I (which
must be unique) will then be called the restrictive interval of (f).

2.2. Inducing algorithm

Step A - filling in

Suppose that (f) is either a real box mapping in the meaning of Definition 2.1, or
a holomorphic box mapping according to Definition 2.2. Choose a set S of monotone
(univalent) branches of ( / ) all with the same range R which must contain the closure of B.

Then define a sequence of box mappings <^ as follows. (/)Q is equal to (f) outside of B and
the identity on B. SQ is S. Given <^, i > 0, and a set Si of monotone (univalent) branches
construct <^+i as follows. Set <^+i = <^ except on the union of domains of branches of
Si, and <^+i = (f>Q o (f)i on the union of domains of branches from Si. At the same time,
S^+i becomes the set of all branches of <^+i in the form (i o ̂  where Ci? €2 belong to Si.

The box mapping $ which is the outcome of Step A is defined on the set of
points z such that the sequence <^(^) is defined for all % and eventually constant. Then
^(z) := lim,_oo<M^) if z 1 B and ^0) ''= ̂ ) if z G B.

When $ is compared with <^, we see that all branches except those with range R have
been left undisturbed, while those branches onto R have all vanished and been replaced
with compositions among themselves and with other branches with different images.
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INDUCED EXPANSION FOR QUADRATIC POLYNOMIALS 407

Filling-in of a type II map

A typical example of filling-in occurs if (f) is a type II box mapping. In that case there
is only one possibility for R, namely R = B ' and the outcome is a type I (holomorphic)
box mapping with the same B and B ' ' . Each branch C of <1> is a restriction of

C = Cn 0 . . . 0 Cl

where ^ are branches of (f). In that context, Ci ls called the parent branch of ^, and the
domain of Ci is called the parent domain. Certainly, the domain of C is compactly contained
in its parent domain. Notice also that C, naturally maps onto B' even though ^ by definition
maps onto B. Hence, every monotone (univalent) of a type I (holomorphic) box mapping
arising from a type II (holomorphic) box mapping has a monotone (univalent) dynamical
extension onto B ' . If we pick another branch of $, say 77, it may be that rj = ^n+fc o • ' ' orj
or that rj = (^n-k ° ' ' ' ° Ci- In the first case, we say that T] is subordinate to ^, in the second
case C, is subordinate to rj, and in the remaining case will say that they are independent.

Step B - critical filling

Suppose that a box mapping (j) is given. For Step B to be feasible, the critical value of
(f) has to belong to the domain of (f). Construct <^o by changing (f) on the central domain
only, and making it the identity there. Then define $ again by changing <p on the central
domain only, where we set <I> == <^o ° 0. This $ is the outcome of the Step B applied to (f).

Observe that for $ the range B' is the central domain of (f). The central branch of $ has
the form C ° ̂  where ^ is the central branch of (f) and ^ is either a monotone (univalent)
branch of 0, or the identity restricted to B.

Again, the particular case of most interest to us is when <p is a type I box mapping. In
that case, $ is a type II box mapping. According to whether the critical value of 0 is in the
central domain of (f) or not, we describe the situation as either a close or a non-close return.

Inducing steps for type I box mappings

We will now define a simple inducing step for type I box mappings. If (j) is such
a mapping, the simple inducing step is defined to be Step B followed by Step A. As
remarked above, the outcome will be a type I box mapping. We make a distinction
between a close and non-close return for ^>, depending on whether the critical value of <f)
is in the central domain of (f). The simple inducing step is defined provided that Step B is
defined, i.e. the critical value of (f) is in the domain of (f).

Now we define the type I inducing step. It takes a type I box mapping </). The type I
inducing step is defined recursively so that it is equal to the simple inducing step if cf)
makes a non-close return, and is equal to the type I inducing step applied to ^>i obtained
by the simple inducing step for (j> otherwise. In other words, the type I inducing step is
an iteration of simple inducing steps continued until the first non-close return occurs. This
definition may fail if at some point the simple inducing step is no longer defined, or, more
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408 J. GRACZYK AND G. SWIATEK

interestingly, if a non-close return is never achieved. If the last possibility occurs for a box
mapping <^, and <^(0) ^ 0, then (j) is terminal in the sense of Definition 2.3. Indeed, let ^
denote the central branch of <^), and B its central domain. If a non-close return never occurs,
then the critical value must be contained in ^^(B) for any n > 0. These intervals form
a descending sequence, and the intersection must be more than a point, since otherwise
0 would be fixed by ^. So the intersection is an non-degenerate interval symmetric with
respect to 0 and invariant under ^ which meets the criterion of Definition 2.3.

The construction of the type I inducing step in the case of a close return is shown on
Figure 3. In this case the type I inducing step consists of two simple inducing steps. The
picture shows the mapping (/) obtained after the first simple inducing step.

Fig. 3. - The mapping (f) after one simple inducing step if the escape time is 2. Just one univalent domain of (f),
called C and filled in white is shown. Similarly colored regions correspond by the dynamics indicated with
arrows. A' and A3 are separating annuli for B. g\ denotes tp. g^ means (J)\B o if). D is a maximal univalent
domain of (f). Another domain of (p shown on the picture is the extremely small white disk a bit above D. Their
common parent domain is g]~l(B), i.e. the white-filled ellipse containing D.

Immediate preimages

If a type I box mapping $ was constructed in a simple inducing step from another type I
box map <^, then its immediate or primary branches are those univalent branches which are
restrictions of the central branch of (f). Note that for real box mappings there may be none
or two immediate preimages, depending on whether the real range of the central branch
covers the critical point. In the case of a close return the immediate preimages are formed
at the last stage of inducing on (f). The well-known "Fibonacci case" is an example when
all monotone branches occurring in the construction are immediate.
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INDUCED EXPANSION FOR QUADRATIC POLYNOMIALS 409

2.3. Geometry of box mappings

Rotation-like returns

Let (/) be a type I box mapping obtained in a simple inducing step. Then its immediate
branches are defined as in the previous paragraph.

DEFINITION 2.4. - We say that (f) exhibits a rotation-like return in the following situation.
When the return is not close, it is rotation-like if and only if the critical value lands in an
immediate branch of (f). When the return is close so that the k consecutive images of the
critical point stay in the central domain, then consider the first exit c = (/^^(D). The return
is rotation-like if c belongs to the domain of an immediate branch of (f) and k consecutive
images of (f){c) stay in the central domain.

In other words, if the maximal number of consecutive images of 0 that stay in the
central domain is fc, then the return is rotation-like exactly when the central branch of the
mapping obtained by a type I inducing step is C ° ̂ fc+l where C, is an immediate branch
of (f) and ^ is the central branch.

Rotation-like sequences

We will say that a sequence of type I box mappings is rotation-like if each arises from
the previous one by a standard inducing step, and each return, with the exception of the
first one for which immediate preimages are not defined, is rotation-like.

Fact 2.1.

For a rotation-like sequence, there is an inductive formula relating consecutive central
branches of the inducing procedure

/n+l = fn-lOf^,

where fj denotes the central branch of (f)j, and On is a the smallest i such that the i-th
iterate of the central branch of the n-th mapping maps the critical point outside of the
central domain. E.g., dn = 1 is equivalent to saying that the n-th map shows a non-close
return. We define OQ by a requirement that f^ = /ao o f^.

Following the analogy with the circle homeomorphisms we will introduce a concept of
a rotation number for our class of maps.

DEFINITION 2.5. - The rotation number p{f) of (f) is equal to

Pn = ——;——rai + —L
"1 • 02+---

which can be written shortly as [ao, ai, • • •] using the formalism of continued fractions.
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410 J. GRACZYK AND G. SWI^TEK

Theorem A about real box mappings

We state the theorem as follows.

THEOREM A. - Let (/) = (f)o be a type I real box mapping and let <^ be a rotation-like
sequence derived from of). Let Bi be the central domain of (f>i with B[ := B/ as given by
Definition 2.1 applies to (f) := (j)i. Suppose that the initial ratio of lengths satisfies

\BO |
l^ol

< 1-6.

Specify a S > 0.

Then, for every e > 0 and 6 > 0 there is a number K depending on e and 8 only and
independent of <j), "with the property that for every i > K we get

|B.m <6.

The proof of Theorem A uses purely real methods. It generalizes the result of [12].
A natural question is whether an analogous result can be demonstrated by real methods
for an arbitrary induced sequence. In principle, that should be possible, but technical
difficulties are daunting.

Sharp estimates for rotation-like mappings

THEOREM B. - For any S-unimodal rotation-like map there exist positive constants K^,
K^ and ^1,^2 < 1 depending only on the initial geometry, i.e. the number e of Theorem
A, so that

T^- ai-.-.-On-i ^ ^ T^ a-i-...-a,n-i
-KI/^ S ̂  S 1Y2^2

This is an improvement of Theorem A which also gives the lower bound on the rate of
decay of box geometry. The proof is by purely real methods.

Growth of conformal moduli

THEOREM C. - Let (f) be d type II holomorphic box mapping, (/)Q be the type I mapping
obtained from (j) by filling-in and <^ form a sequence, finite or not, of holomorphic box
mappings set up so that <^+i is derived from <^ by the type I inducing step for % > 0. Suppose
that (f) restricted to the real line is a real type II box mapping as given by Definition 2.1. Let
Bi and B[ denote the B and B ' , respectively, specified by Definition 2.2 applied to <^.

Suppose that mod (BQ \ Bo) > f3o. For every /?o > 0 there is a number C > 0 with
the property that for every i

mod {B[ \ B,) > C • i.
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Theorem C claims a decay of the conformal geometry in a sequence of holomorphic box
mappings derived by inducing. This phenomenon seems to be the basis of some recently
obtained results, see [21].

Part II

Rotation-Like Sequences

3. Real induction

In this section we prove Theorem A. Suppose that in the situation of Theorem A a
rotation-like sequence (f)n is given, n = 0 , 1 , - - - . Thus, every (j)n makes a rotation-like
return and (j)n-\-i is obtained from (f)n by a type I inducing step. Let On denote the number
of iterations of the central branch after which the critical value escapes from the central
domain. So, an > 0 and an = 1 exactly if (f)n makes a non-close return.

3.1. Rotation-like sequences

Notations

The central branch of (f)n will be called /n. Then Bn is the central domain of (f)n and
Bn is the interval B' from Definition 2.1 applied to <f)n. Denote the endpoints of the box
B^ by 5^_i and s^_^. We adopt the following convention of ascribing signs to points: '+'
written as a superscript indicates the endpoint of B^ which lies closer to the critical value
of fn. In other words /n(0) G (0,5^"_i). Also, denote by z^ and z^ the endpoints of Bn,
defined so that z^ and s^ are on the same side of 0. These notations are explained on
Figure 4. Each central branch can be represented as a composition of a diffeomorphism hn
and a quadratic map g. We know that the image of Bn is contained in B^. Generally, we
will use (re, y) to denote the interval from x to y , regardless of the ordering of x and y.

B

"n-1 Bn X" Y+n \ "n-1

Fig. 4. - Notations explained.
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Fact 3.1.

If n > 3, the diffeomorphism hn extends on some neighborhood of g{Bn) so that the
image of the extension coincides with {fn-2W^s^_^).

Proof. - The proof follows by induction. We leave it to the reader as a good exercise in
understanding the notations and the dynamics in the rotation-like case. D

In the "real part" of this paper we will extend diffeomorphisms hn every time only over
one side of their domains. We distinguish between two directions of one-sided extendibility
of hn. The key observation is that the points {/n-2(0), fn(^), fnW.s^} are always
arranged according either to this or the reverse order of the real line. Observe, that fn
extends further "through the head" meaning in the direction of the critical value, where
hn can be extended up to s^_^, than "through the legs" meaning in the direction of
fn{9Bn) where the extension is only up to fn-2W which is closer to B^ than s~^_^.
The extendibility of central branches plays a crucial role in estimates of the distortion.
By real Kobe's Lemma the distortion depends only on the relative scale of the images
of domains with respect to the images of their extensions. As it happens (and will be
proved), these scales will improve during inducing procedure. We will, however, need
some initial extension to start with.

Ratios and cross-ratios

Suppose we have three points a,6,c arranged so that a ^ [&,c]. Let us define a few
relative scales of the interval (&,c) with respect to (a,c).

DEFINITION 3.1. - The exclusive ratio of the interval (6, c) with respect to (a, c) is given by

\b — c\Re(&,c;a) = —-,
dist((&,c),a)

whereas their inclusive ratio by

\b - c\
R,(6,c;a) = ———-——-1———-.

max(|o — a|, |c — a|)

Set R(6, c; a) to be equal to the geometric mean of the inclusive and exclusive ratios.

R(6, c; a) = \/Rz(^ c; cQRe(^ c; a)

Together with ratios we will often use cross-ratios. The types of cross-ratios we use are
expanded by homeomorphisms with negative Schwarzian derivative.

DEFINITION. - Suppose we have a quadruple a, &, c, d ordered so that a < b < c < d o r
reversely. Define their inclusive cross-ratio as

/ |6-c||d-a|Cri(a,b,c,d) =
\c-a\\d-b\'
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and their exclusive cross-ratio as

/ . |6-c||d-a|
Cre(a, b, c, d) = -——^.——

\b — a\\d — c\

Finally set

Cr(a,&,c,d) = ^Cr^a, b, c, d)Crg(a, 6, c, d)

Distortion

Suppose that we have an expression A which is defined in terms of distances between
points (like ratios and cross-ratios.) Then we consider /*(A) obtained by replacing given
points with their images by /. We will measure the distortion of this transformation by the
ratio /^(A)/A. For example, if we set A = Cr(a, 6, c, d) then the distortion by / is equal to

Cr(/(a)J(b)J(c)J(d))
Cr(/(a)J(&)J(c)J(d))'

3.2. Induction parameters

In this subsection we will introduce quantities which will describe geometry of partitions
given by our inducing procedure. Next we will compose a quasi-invariant which after a
finite number of inducing steps will decrease at least exponentially fast. The real induction
parameters formulated here will directly correspond to these in the complex part. The same
concerns induction formulae. This suggests that estimates from the complex part of our
work can somehow be translated into the corresponding ones in the real line. This would
enable one to give a proof by purely real methods. However, the combinatorial complexity
of such an approach seems formidable.

Recall the notations introduced at the beginning of this section. In addition, denote by
( x ^ ^ x ^ ) the domain of the immediate branch of (f)n which contains /^(O). Choose the
point ̂  so that (^n(^n) ^ 9Bn is in the range of /n+i. Set v^ = /^(O).

DEFINITION 3.3. - The center of ( x ^ ^ x ^ ) , denoted by Cn, is defined by the condition
<^n(Cn) = 0.

Observe that Vn G (rc^, Cn) and that for rotation-like maps x^ lies closer to zero than x^.
Parameters of the induction measure sizes of domains of branches as well as and their

separation from the critical point and the-boundary of the relevant box. The distortion of
these quantities will be controlled by bounds on r and extendibility of branches. Here,
we provide a full list of parameters.

• Q^ = R(^,^; 5^_i)
• 7n = R(^,^; 0),
• A, = Cr(^_^^,0).
We will examine how these quantities change after a type I inducing step. Generally, none

of these quantities decreases monotonically in the inducing procedure. Nevertheless, we
can choose products of these parameters that show monotone decay. Consider the products
On7n and OnPn- We will see soon that immediate domains (x^,x^) stay always at the
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definite distance from the boundary of B'^ This implies that in the case of rotation-like
maps these products are equivalent and it is enough to consider only one of them.

PROPOSITION 1. - Consider the quantity a^n for a rotation-like sequence

(f)Q,. . . ,^n,. . . .

If^n < T = 0.37 for every n, then there is an absolute constant A < 1 and a fixed integer
N with the property that

Oinin < ^^0^0

for all n > N.

Auxiliary quantities

Before we pass to the proof of Proposition 1 which will occupy the next three subsections
we will introduce three auxiliary induction quantities ̂ , ujn and ^n-

^n =R(^<; 0)

\fnW\ . o Kl
^n = ————— and on = | + |

\sn-l\ \sn-l\

(we recall that Vn = /^(O).)
In addition, we have already defined Tn and r. The estimates in the next two subsections

will be quite complicated. It may help the reader to think of central branches as quadratic
polynomials, and of monotone branches as affine. In this model estimates are easier and
actually give the right idea of the real situation. Then the distortion might be treated as a
correction to formulae obtained in the "linear-quadratic" model.

3.3. A non-close return

Throughout this subsection we assume that (pn makes a non-close return. This means
that ^ = 4.

The distance of a point z to zero is denoted by |2:|. Observe that in many cases this
is independent of the superscript "+" or "-". We will often drop superscripts "+" and "-"
if it does not matter which one should appear. We will start with the following simple
observation.

a2^ = 4 • Re(^n+i)^(0); g[zn}).

The image of Re(^(^+i),^(0);^(^)) by {hn}^ is equal to

- V^nll/n(0)|
In i i . i — i '

\ nff — | I | Q
l^n I ' l^n-ll
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To find the distortion of (fan) „ on this ratio, we will complete the ratio to the cross-ratio
Cre(^(^n),^(2;n+l),^(0),fa^ l(^_3)). Since the cross-ratio is expanded, we get

(^ 2 ^ . - V\^n\\fnW\ K_i|+K_3|
\ 1 ) "n+l -^ ^ ' 7nn+l- /n M+|^_i| |^_3|-|/n(0)r

Fact 3.2

77^ distortion of ̂  anrf 7^ fry a quadratic map is at least 2.

Proof. - This follows directly from the definition of 7^. D
We pass to estimating ^+1. Take the image of ^^i by the quadratic map g. Fact 3.2

implies that

^ ^ J • R(^n+i(0))^(<); ^(0)).

Complete ^*(;7yl+l) to the cross-ratio

Cr^1^^^)),^^^))^^),^))

and then push it forward by hn. By the property of expanding cross-ratios we have that

(2) ^ < 1 l^+ll+1^+2(0)| |/n-2(0)|+|/n(0)|
n+l-2 V/|/n(0)|2 - |̂ iP V'l/n^WI2 - | l̂|2'

Comment 1

M?^ ^a^ ^/i^ estimate ( 2 ) remains true if we replace fn^W by 2^_i.
Our next task is to combine estimates on T^+i and o;n+i and get the best possible upper

bound of their product in terms of ̂  and a^. To this end we prove

LEMMA 3.1. - For arbitrary n the following inequality holds.

V\^n\\fnW\ |/n+2(0)|4-|^l| ^ 1 |^-i|
7-———7T-7 / . .^.o ———^ ^ -A ' ^^+1(1 + ^n+2)K-l|+KI^|/n(0)P-|^P-4 ———n+l- • —————|/,(0)|+|^|-

Proof. - By the definition of »„ we have that

(3)
l^n+ll / !_ \/|^n-l|2 - M2 / |^n|2 - 1-Zn+ll

^^^-^^_4-a^i^ ^^ V|^(0)[2-|^i|2-
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The last factor in the inequality (3) is decreasing with respect to |^n+i|. Thus, the
right-hand side of (3) is bounded by

.- 1 kn-l|^ - •a^+ia^-——.
- 4 ^——^(O)!-

To complete the reasoning we will need the following elementary fact:
For any three positive numbers 0 < x < y < z the inequality

V^y ^ y
z 4- x z + y

holds.
which can be readily proved by calculus. From there,

V\^\\fnW\ ^ \fnW\

\Sn-l\ + \Xn\ |/n(0)| + \Sn-l\

which completes the proof.

Comment 2

Replace |/^+2(0)| by |^n+i in the estimate of Lemma 3.1. By the same reasoning we
obtain

(^ \/MI/n(Oyi kn+ll . 1 K-l|
W ^———————-T /.. .^.Q . ,o < ^'Q-nO-n-1

^-l|+ ^l^l/nWI2-!^!!2 - 2 n n-i|^-l|+ 1^ (0 )1 -

Multiply the inequalities (1) and (2) and then combine with the inequality in Lemma 3.1.
As a result we get the following recursive formula

On+17^1 <, \n0in^^

where Ay, is less than

^ 1 y ^ , ^ l^n-1____|/n-2(0)|+| /n(0) |^n-l|+|^-3|

2 1^(0)1 +K-l| ^/|/,_2(0)|2- îP ^-3|-|/n(0)r

We will bound from above An by maximizing (5) with respect to a location of /n(0).
To this end consider

C l/n-2(0)|+|/n(0)|n (k-3|-|/n(o)|)(K-i|+|/,(o)|)
as a function of |/n(0)| on the interval (0, |^_i[).
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LEMMA 3.2. - The function On achieves a global maximum in 0.

Proof. - The sign of the derivative of On with respect to |/n(0) | is the same as the sign of

-(|/n-2(0)| - |^-l|)K-3| + 2|/,(0)||/,-2(0)| + |/,(0)|2.

The smaller root of the above quadratic polynomial is always less than zero. Thus, the
function e^ can have only a local minimum in the interval (0, |5n-i|]. A direct computation
shows that if r2 <, 1/3, then e^(0) ^ €^(|^_i|) D

Finally, by Lemma 3.2 and the definition of r > Tn for any n, \n is less than

l+C^+2 1+T2

(6) 2 vT-r6

Comment 3

The same computation based on Comments ( 1 ) and 2 yields

1+T2 _
(7) ^n^n <: , 7^_iQ^-i.

Vl — T

3.4. A close return

Throughout this subsection we assume that n-th return is close. This means that a^ > 1.
The scheme of the proof is much the same as in the previous case. The only difference is
that the reasoning is a bit more way around and requires several repetitions of the estimates
similar to these found in the last subsection.

Let Cn be the ratio of lengths of B'^^ to Bn. Put

c^=R(^i,^+i,^).

Denote the preimage of B^ in {x^,x~^) by /-an by (^+1/2^^+1/2) chosen so that
x^ and ^y^_]/2 are o11 the same side.

Recursion

We will write a recursion for the sequence an^n- By definition,

/o\ ^ ^n+l
(°) ^n+1 ^ . y, .

CnVl-T 2

For i ranging from 1 to a^ - 1 let ^+1/2^ stand for fn'^n^/i) and ^^+1/2^ for

/y,-^(:r^+l/2)• To bound /^>,(7^+ia^+i) from above we will use similar arguments as in
the previous section. Push forward 7^+1 by the quadratic map g. Then

7n+l ^ ^^(^+l)^«+l); ^(0))-
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Complete ^(7^+1) to the cross-ratio

Cr{h^{fn^W)^{x^^g(x^^g(Q))

and then push it forward by hn. By the property of expanding cross-ratios we have that

^ < kz+ll |Jn-2(0)|+|/n(0)|

~ VU(0)|2 - kn+l|2 V\fn-2W\2 - |^+l|2'

In the same way as in the proof of Lemma 3.1 (see the inequality (3)) we obtain

______|^n+l|______ ^ J_ - l^n-l l

^(0)|2-|^|2 - 4 • an+lan |/,(0)| •

By definition of a^+i,

On+l =4-Re(^(^n+l)^(0); ^(^n)) < 4Cr(^(^)^(^n+l)^(0), A^1 (^.a)).

Again using the expanding property of cross-ratios we get

—2 ^ A 1^+1/2,0^-1 ~ fnW\ \Sn-l\ 4- \Sn-3\

an+l- ' K^/J+|^-l| |^-3|-|/n(0)|-

The estimates for ^n^-i and 0^1 lead to the following formula

l/n(0)| - K+i/2,a.-ll
0^+17^+1 < anrin —. ,

V\fnW\2 -|^n+l|2

where ^ is equal to

K-ll |^-i|+|^.3| |/n-2(0)|+|/n(0)|

|5n-l| + |<+i/2,a,-ll 1^-31 - \fnW\ V/|/n-2(0)|2 - |^+112 '

Let 0 < % < an. We shall write 7n^ for the ratio

(10) 1^(0)1 - K+i/J
^/l/n°"-*(0)|K+i/2,,| '

Now, compute

|/n(0)-<+l/2,q^ll

^l/»(o)|2 ̂ î TF
R(50/n(0),(?(a;^i/2^_i); 5(^+1))

^ ^a'>^+l/2,an-ll

- K+lAa^ll+I^WI'
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Increase this factor to 1/2 and decrease rjn replacing I^.L^a -il wlt^ l/n(0)|. As a
result we obtain an upper bound of 0^+17^+1 which can be written in the form

^an^R(g 0 f^0),g(x^^^_^ g{Zn+l)),

where

K-l| |/n-2(0)| + |/n(0)| \Sn-l\ + \Sn-3\
rfn-ln |/,(0)|+|^_i| ̂ ^(O)!2^-^ |.n-3|-|/n(0)r

By Lemma 3.2 we can only worsen estimates letting |/n(0)| = 0 in the expression for
7^. Therefore,

_ 1 1 + T2

(11) Q^+i^+i <, ^On ^ -gR(^0 fnW,g(x^^^_^),g(Zn^)).

Complete the last ratio to an appropriate cross-ratio by adjoining a fourth point at
/l^ l(/^_2(0)) and then push it forward by hn. The points /n(^n+i) and x~^,^ ^ _^
lie on the opposite sides of zero. The resulting cross-ratio can be only increased if we
move the point /n(^n+i) in the direction of zero. Hence, for a^ > 2

(12) R(^o/,(0)^«^/^_,)^(^i)) < 7^V2^•2

If an = 2 then put 1 — r^ln in the place of the denominator of (12) in order to have
the correct estimate.

We can use the sequence of estimates starting from (10) again to prove

(13) 'V < 1 . 7n+l/2^-1
(^) 7n,z S ^ • ^ _ ̂

provided i > 1 and

fl4) -v 1 < x . 7n+lA^-l
v 4J 7nl1 - 2 1 - TO,

when % = 1. From inequalities (11), (12), (13) and (14) we obtain

(15) an+l7n+l < A^O^n+lAO

where A^ is bounded from above by

(16) 1 1+T2

2^-1 ^/(l-T6)^ - T2)^-2^ - TO,
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In the last step of our reasoning we exploit the fact that 7n+i/2,o is substantially less
than 7^. We claim that

LEMMA 3.3.

7n+l/2,0 < Cn7n-

Proof. - We will actually prove

^(^+1/25^+1/2^) < Cn7n

and use

7n+l/2,0 < R(^+l/2^n+l/25°)

which follows directly from the definition of 7(71 + 1/2,0). First observe that
l^n+i/2 ~ ^+1/2! ^ Cnl^n - ̂ 1- Indeed, the centers of B^ and ̂  coincide and
the hyperbolic length of 2^+1/2 with respect to Bn is not increased by the pullback by
a diffeomorphism with a non-positive Schwarzian. Since the element of the hyperbolic
length is the smallest in the middle of an interval we conclude that pull-backs are nested
with the ratio at most <n+i. Denote by u^ and u^ the midpoints of (^+1/2^+1/2) and

(x^,x^). A straightforward calculation shows that if these midpoints coincide then the
Lemma follows. Suppose that |^i| is less than \u^\ since otherwise then we are done. Push
x~^ toward u^ so far that the centers coincide again. This operation can only increase the
ratio of 7^ to R(^+i/2^+i/2;°)- The ratio of the lengths of the resulting, concentric
intervals, is again at most <^, which completes the proof. D

Finally, Lemma 3.3 and inequalities (8) and (15) imply that

(17) ^n+l7n+l < AnOn^n,

where An is less than

1________________1+T2________________

2^-1 ^(l-T^l-T2)^ - T2)^-^! - T^) '

Clearly, An is the largest for an = 2 since r2 < j. For a^ = 2 we get

(18) 1 (1 + T 2)
2 (1 - Tnn)^/(l-r6)(l-T2)

as an upper bound of An in the case of a close return.
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Comment 4

In this subsection unlike for non-close returns we worked with the quantity 7^ instead
of 7^. The estimates become stronger if we decrease the left-hand side of (17) substituting
7n by 7^.

(19) O^n+l^n+l < ^O^n^n,

where \n is less than

(20) 1+^2 (1 + T 2)
4 ( l-T^)^/(l-r6)(l-T2)

The proof is the same, except that the estimate (9) ought to be replaced by (2).

3.5. Proof of Proposition 1

The sequence ujn plays a crucial role in the inductive formulae derived in the last two
subsections. The decay of geometry depends directly on the separation of this sequence
from 1. We will begin by writing a recursion for the sequence On- Clearly, ujn < ̂ n-
We will consider two cases.

A non-close return

In this case ^n = ^n-

LEMMA 3.4. - Assume that (f>n makes a non-close return. Then

02 ^ /i , 2\^n+^n+2^
^< (1+T) ^^ .

Proof. - Take the image of f^n by the quadratic map g

^=R,(^(^+i)^(0);^(^))

and next push it forward by /in. As a result we obtain

^ . .0 ^ l/n(0)|+|/n+2(0)|
(zl) Jn*(^n+l) = |. .^. , .————p.

|jn(0)| + \Sn-l\

To compute the distortion brought in by hn complete ^*(^n) to the cross-ratio

Cr,(^(^+i)^(^+i)^(0),/i^1^^)).
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Note that the cross-ratio is expanded. We obtain

pn-l| + l^n-sl

kn-3|+|/n+2(0)|.

as a correction to (21). Observe that '^2WI < ^n^r2 which establishes the claim of
Lemma 3.4. D

A close return

Assume that fn shows a close return. Then ^+1 = |^+i|/|5n|. By definition

^+1 = Rz(^n+l)^(0); ̂ n+l/2)).

Complete the last ratio to an appropriate cross-ratio by adjoining a fourth point at
^n^n-sW) and ^en push it forward by hn. By the property of expanding cross-ratios
we get

^2 ^ l/n(0)|+|/n+2(0)| |/n(^)|+|^-3

n+l- l/n(0)|+|/n(^)| |^-3|+|/n+2(0)|-

Let us denote the ratio |/n(^)|/|^| by <r. Replace |/,(0)| by \fn(^)\ in the inequality
above. We obtain a new bound of On+i, namely

(22) ^ < ̂  fl+r^^±^^(l+<TT3).
z \ |^n|^' /

Clearly, z^1^2 < 1. We will estimate o- from above under the assumption that the
critical value of fn remains in the central domain for at least two iterates. The point fn(sn)
is f^a^i^Y rp^ ^ ̂  ̂  greatest when fn(sn) coincides with a boundary point ofB,,.
The next inequality is obtained by completing the ratio g^ (a) to an "inclusive" cross-ratio
with a fourth point at h^^Sn-s) and then pushing it forward by h^.

2 ^ |/n(0)| + \Zn\ \Sn-3\ + K-l|

~ l/n(0)|+|^-i| |^_3|+|^n| '

and finally,

(23) . < f^lT^
~ V l+T

So, we write (22) as

(24) ^+i< J(l+T^)(1+ar3),

where a is bounded by (23).
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A bound

We want to find an upper bound of On. To this end, observe that
• On+i is an increasing function of On and On+2-
• As long as the value of On is greater than 0.7, the estimate of Lemma 3.4 gives a

lower value of On+i than inequality (24).
The last statement can be easily justified by direct computation. Indeed, the right-hand

side of the estimate of Lemma 3.4 is smaller than (1/2)(1 + r2)^ + r2^-^) while that
of (24) is larger than (1/2)(1 + rOn+2)- We will be done once we show that

( i+T^i+o .y . r 2 ) < 1+0 .7 -T ,

which clearly holds for r < 0.4.
So we consider the recursion given by assuming equality in (24). The function

v-^^-2
has exactly one attracting fixed point for y < 0.823562 in the positive domain. It follows
that if On+i in (24) is greater than this fixed point, then On+2 has to be less than On+i.
Thus, we set 0 = 0.823562 as an bound of On and o;n. We note that this bound is attained
in for all values of n sufficiently large depending only on e stipulated by Proposition 1.
Indeed, Tn is smaller than r = 0.37, and then it is clear that On decreases at least by a
uniform amount for each step of the recursion given by (24) as long as it is greater than 0.

Final estimates

After these preparations we will prove Proposition 1. We will conduct estimates by
splitting the sequence of box mappings into blocks. Each block save perhaps the first
will have a mapping with a close return immediately followed by a maximal sequence
of consecutive non-close returns. E.g., a single mapping with a close return is a block.
The only exception from the above rule of constructing blocks occurs when <po makes a
non-close return. Then the first block consists of a maximal sequence of box mappings
with non-close returns.

Below we list the rules which will give recursive estimates within a given block of
box mappings.

1. Suppose <^n exhibits no close return and is the last such mapping in a given block.
Then we use formula (7) to estimate

an+i7n+i < 1.13837. On^n-
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If (f)n is not last in its block, we use the inequality (6)

^n+l7n+l < 0.56919 • (1 + C^+2) C^y,.

2. Let n-th box mapping exhibits close return.
If (j)n is not a block in its own right, then we apply formula (18)

o-n+iTn < 0.80402. a^n.

If (j)n is a block by itself, then (20) implies that

^n+i7n+i < 0.881181 'a^n.

We will consider two cases:

Blocks with at least two box mappings with non-close returns

Suppose that a series of at least two box mappings with non-close returns begins at the
moment n. We will show that the separation of the critical value /n(0) from the boundary
of the box Bn> improves with n growing. Indeed, by Lemma 3.4

"n+l < (1 + ̂ VI-TQ ^ °-76403

and next

^^.)-^^<<™

By monotonicity of this formula with respect to f^, all f^ < 0.751714 for k > n + 2.
Consequently, for k > n we obtain that

^fc+i^+i ^ 0.9971-0^7^

It happens that 0.80402 • 1.13837 < 1. Thus, if a block of length k > 3 starting with
(f)n is taken as whole, then

^n+fc7n+fc < (O l̂̂ a^.

Shorter blocks

For a block of a single map with a close return, or one close and one non-close, it
follows immediately from our rules that the product a^n decreases after passing through
a block by a definite constant less than 1.
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Conclusion

To see that a^n goes down to 0 at least exponentially fast, first wait N steps for
bounds on ^ to be achieved (N is bounded in terms of r). Then pick a k > 2N, and
construct the blocks starting from <^v. Cut off the last block at <^. The uniform exponential
estimate follows at once from our considerations of the rate of decay within blocks. So,
Proposition 1 follows.

3.6. Decay of box geometry

General picture

In this subsection we will estimate the rate of the decay of box geometry proving
eventually that for all S-unimodal rotation-like maps the rate is always at least exponential.
This will prove Theorems A and B. In the course of inducing a subtle interaction between
On and 7n takes place. Namely, after a long series of non-close returns, 7^ is approximately
equal to the second power of On. The first close return will violate this simple relation
between 7^ and On by decreasing On stronger than 7^. If the close return is deep enough
(i.e. the critical value needs a lot of iterates to escape from the central domain) then 7^
and On can even become comparable. At the moment when we are leaving box maps
with close returns, 7y, and a^ will quickly regain (exponentially fast with the number
of steps of non-close inducing) their square-law relation. However, the product a^n for
rotation-like maps of bounded type decreases asymptotically with each step of inducing
by a constant uniformly separated from 0 and 1. It means that while switching between
patterns of inducing "oscillations" between an and 7n destroy monotone (known from the
Fibonacci example) fashion of the decay of boxes.

Theorem B expresses what we mean by an exponential decay of box geometry. From
Theorem B it follows immediately that there is a whole class of S-unimodal maps with at
most exponential decay of box geometry. The dynamics of maps from this class, purely
characterized in terms of rotation number, is certainly different from the "Fibonacci pattern".

COROLLARY 1. - For any S-unimodal rotation-like map with a rotation number of the
constant type (3) there exist constants K > 0 and 0 < ^ < 1 so that

Tn >K^.

The constant n depends only on the upper bound of the coefficients of the continued fraction
representation of the rotation number while the constant K depends solely on the initial
geometry of (J)Q, in particular is uniformly controlled by the parameter e of Theorem A.

Proof of Theorem B. - This proof will be based on Proposition 2 whose proof is
postponed until the next section. We will start the proof with two Lemmas.

(3) Let us recall that a number p is of the constant type if and only if all coefficients in its continuous fraction
representation are bounded.
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LEMMA 3.5. - Under the hypotheses of Theorem B, there is a constant K depending only
on the initial estimate e so that

7n < KOn.

Proof. - The proof follows from the observation that the image of 7^ by fn is comparable
with 7yi and /n*(7n) can exceed a^ by no more than a uniform constant. D

LEMMA 3.6. - The ratio Tn of two consecutive boxes goes to zero at least exponentially fast.

Proof. - Suppose that n is so large that 7-n < r = 0.37. This n can be chosen based
on Proposition 2. Let us recall that a^n goes to zero at least exponentially fast. We
will actually prove that On decreases exponentially which is easily equivalent. Consider
two cases:

• fn shows a close return.
We push forward a^ by f^. Using (13) we obtain

(25) a^i < KX^^

where A < 1 depends only on r. Finally, by Lemma 3.5

^+1 < KX^On.^n.,.

Proposition 1 concludes the proof.
• fn shows a close return.
Similarly as before we get that

^+1 < K^n.

Lemma 3.6 likewise follows. D
Lemma 3.6 together with the inequality 25 give the upper estimate of Theorem B.
To prove the opposite estimate make r go to 0 arbitrary small in all distortion estimates.

So, we can reverse the directions of the inequalities estimating On^n from below. Next,
observe that \n and An appearing in the recursive scheme for for On^n are after a finite
number of inducing step greater than (j - e)^. This completes the proof of Theorem B.

Theorem A follows directly from Theorem B and Proposition 2.

4. Initial bounds

Our goal is to prove the following initial estimate for the box ratio in rotation-like
sequences.

PROPOSITION 2. - Let ( / ) == (f)Q be a type I real box mapping and let (pi be a rotation-like
sequence derived from (f). Let Bi be the central domain of (j)i -with B[ := Bf as given by
Definition 2.1 applied to (/) := <^. Suppose that the initial ratio of lengths satisfies

^<l-e.
\B'Q\ ~
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Then, for every e > 0 there is N with the property that

^<0-37
for every i > N.

The proof of Proposition 2 will occupy the rest of this section.

4.1. Geometrical setup

Notations

Fix the attention on some mapping (/)n from the rotation-like sequence mentioned in the
statement of Proposition 2. The new domain B^+i is formed as the preimage by fn of an
immediate domain of <pn which is always filled-in so that it maps onto B^^. Let us call
this domain {u, v) and let us say that u is closer to the critical point. The branch defined
on (n, v) extends at least onto the image B^. The domain of this extension will be called
(?7, V), and again say that U is closer to the critical point. Then, denote B'^^ := (—w, w)
and say that w is on the side of the critical value. Note that -B^+i equals Bn if <^n makes
a non-close return, but otherwise it is smaller. Also, let —W :== /n(^). Notice that in
the rotation-like return —W and W are on the same side of 0. Finally, let s := s^_^
in the notations of the previous section, or the endpoint of Bn-2 which is on the same
side of 0 as W. The reader may try to get familiar with this notation by trying to see
that the ordering of points is

—W, —w, 0, w, U, u^ v^ V, W, s

or perhaps is completely reversed. These notations are applicable for both close and
non-close returns.

Observe that

Cri(U,u,v,V) < Cri{W,-w,w,W).

We will do the estimates in two rounds. For the first one, we don't assume any estimate
on how much smaller the interval (U, V) is compared in (w, W). In the second round, we
use the results of the first round to get still better estimates.

An extremal problem

Let us recall that /„ can be represented as a composition of the quadratic map g and the
diffeomorphism hn. The extendibility properties of fn are formulated in Fact 3.1. We will
denote preimages of points by hn by adding primes in the notation. To find preliminary
bounds we solve the following problem:

LEMMA 4.1. - Suppose that Cvi(U,u,v, V) = C and that

L-^Cr^-Wy^w^s).
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Then,
\u' - v 1 } ____ C

\{-wy^v'\ < £(vT—c+v /l+^- l)2'
Proof. - This is viewed as a conditonal extremum problem We assume that the interval

( U ' , V) has the unit length. Then \(-WY - w'\ > L. Denote \V - u'\ by p and \v' - U^
by A. Then

(26) C = p + x ~ l

p\

We want to maximize

p + A - 1 p\
L+\ L+A '

which is equivalent to minimizing

M^i-^y
A A /

In the extremal point the gradients of M and C are parallel. Hence

(27) l ^ = l + A .
1 — y9 L

Calculate p from (26) and substitute into (27). The result can be seen as a quadratic
equation for A~1 at the extermal point. The result is

Ao-1 = 1 + v/(l-C7)(l+£-i)

where Ao is the value of A at the extremal point. The value po can then be obtained from (26)
and afterwards the minimal value of M can be calculated. For this minimal value we get

^ifi^)
Po \ Ao /

= (^-1^+^1)+1)(1+L+W(1-C)(1+L"1))
= L{2^/(1-C)(1+L-^+ (1 - C) + (1 + L-1)) = L(VT~C + Vl+L-1)2.

Lemma 4.1 follows directly. D
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Initial estimates

We apply the results of Lemma 4.1 in the following fashion. First, observe that

^ l^n+ll . K-^l
(28) W^\ ̂  \{-wy-.'[

Next, let T be chosen so that |B^|/|B^_J < r for j = n and j = n - 1. If C and L are
chosen as in the statement of Lemma 4.1, then intoduce 7 := \/1 — C and observe that

L-1 = Cre((-W)^w^s) = 7/?-l^±4
1 — T-

with some (3 > 1. The constant /? is equal to 1 if the inequalities defining r are both
equalities, (U^V) = (w,VF), and the return of 0n is non-close. In the second round of
estimates, we will need to use the fact that f3 is strictly larger than 1 in most cases. Let us
introduce T := 1 — r2/! + r2. Then, by (28) and Lemma 4.1, we get

(29) ^<T^••=———v1^——-
' " + 1 ' ^y+A/^

4.2. Computation of initial bounds

Basic procedures

Set T ' = 1 - T^i/1 + T^i where T-n+i is derived from (29). Therefore, T ' should
be thought of as a function of T, 7 and /?. We will study the condition T ' — T > 0. To
represent this difference algebraically, we bring T ' — T to the common denominator and
examine the sign of the numerator. We see that T" — T > 0 is equivalent to

(30) rf(l - T)/^7 + 1) - ̂ ) + 7'(1 + T) + 2/3T(1 - T)Jl+— > 0.

The first procedure finds an answer to the following problem.
Given {3 > 1 and 0 < ̂  < 7^ < 1 ^nJ a value Ti, ̂  rtor T\T^,(3) - T > 0 for

every 0 < T < T\ and 7/ < 7 < 7u.
The idea is to find Ti as large as possible, but we make no attempt to determine the

actual maximal value.
The second procedure is as follows.
Let 0 < 7/ < ^u < 1 be given, together with {3 > 1 anJ 0 < T < 1. F;W T[ so that

r'(T,7,/?) > T[ for every 7 G (7^7n).
Finally, let give an explicit formula for the function T ' \

(31) T(^- ^1^^)^
2-72+^+7+2v /^+J)

where t = /3T.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



430 J. GRACZYK AND G. SWI^TEK

A uniform bound

We also obtain as a corollary:

Fact 4.1.

Let (f) be a type I box mapping of rank n, let \Bn\/\Bn' \ < 1 - e and assume that the
central branch of (f) is e-extendible. If another type I box mapping of rank m is obtained
from (j) in a sequence of type I inducing steps, then

-M < i - w
—^m I

where K is a continuous function of e only, positive when e > 0.

Proof. - Clearly, the ratio will remain bounded away from 1 for two first type I inducing
steps. This gives some value of T bounded away from 0 in terms of e. Then, formula (30)
implies that T ' will never fall below this value as the condition (30) is clearly satisfied for
T close to 0. This means an upper bound for Tn+i, as needed. D

Implementation of the first procedure

The first procedure will take five parameters. Of those, /3, 7^ and 7^ have already been
specified. The other two will have to be picked by trial-and-error to get the biggest possible
TI. For practical reasons, we can assume without a loss of generality that 7^ > 0.1. if
7 < 0.1 then one easily checks that T'(r,7,/3) - T > 0 whenever T < 0.9 and f3 > 1.
Hence, we can always increase 7^ to 0.1 if we agree to get no more than Ti = 0.9 for
the answer of the first procedure.

Another parameter a gives the step size. We will cover the range [7^7^] with finitely
many closed intervals of length a. We will solve the first problem for each subinterval
separately, and give the answer equal to the minimum of estimates on all subintervals
and 0.9. Lastly, we have a parameter 0 < y < 1 which must be no less than Ti for the
procedure to be valid. So the game here is a trial-and-error picking v small, but then
having to try again if Ti turns out larger that v.

To finish the description, we have to explain how the problem is solved on a subinterval
[71,72]. The condition of [30] is clearly weaker than

T((l - T)/?f72 + ]-} - 2) + 7l2(l + T) + 2/3T(1 - T)Jl+71- > 0.
\ 72 7 V (Jv

This gives us a quadratic inequality on T which is solved to give us Ti on this subinterval.

Implementation of the second procedure

This procedure will take five parameters. Four are already determined in the statement
of the second procedure. Again, we make 7^ ^ 0.01. If 7 < 0.01, then from formula (31)
it is evident that T'(T^^} > 0.9 provided that T > 0.2 and /? > 1. In all cases when
we use the second procedure this makes no difference, since T is always more than 0.2
and the answer T[ is never more than 0.9.
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We use the same procedure of dividing [7^,7^] into subintervals, taking a lower bound
for T' on each interval, and taking the minimum with respect to all subintervals for a final
answer. The fifth parameter a gives the length of subintervals.

On each subinterval [71,72], formula (31) bounds T ' from below by

r= ^72+^+2^rr?)+7i2

2 - 7i2 + ̂  + 71 + 2 V^T?)

The first estimate on T

The first estimate on r is obtained by calling the first procedure with parameters 7^ = 0,
^ = 1, /? = 1, ^ = 0.7, a = 10-5. The result is Ti > 0.69901. Since

T-1^2

' " l + T ^

r(l) = 0.4209 will guarantee that T ' - T > 0. We claim that from any initial box mapping
the value of r will eventually drop below r(l) in a number of type I inducing steps
bounded in terms of the e from the statement of Proposition 2. Indeed, from (30) by a
compactness argument it is clear that if 0 < rj < T < 0.69901, the increment T" - T is
bounded away from 0. However, r] is bounded away from 0 in terms of e by Fact 4.1.
So we can proceed as follows. Start with T = T]. After three type I inducing steps we
can adjust T := T ' ( T ^ , 1 and this increases T be a definite amount. We proceed in the
same way until T is decreased below 0.69901. But means that r-n+i is always bounded
from above by r(l).

Better estimates on the box ratio

We assume that an estimate r is chosen so that |jE^|/|B^\ < r for j = n - 2, n - 1, n.
First, we take r := r(l). We will get improved estimates for r^i based on making (3
larger than 1. The procedure depends on the combinatorics of close and non-close returns.

A close return for (f)n

The opportunity to significantly improve f3 arises for the following reason. The immediate
branch has an extension onto J3^, and so it follows that

\V-U\ ^\Bn\

\w-w\-m- •
Hence, one can take (3 = r~1. Next, one uses procedure two with

^
a = 10~5 and the full range of 7 from 0 to 1. For r = r(l) this gives r(21) = 0.29728.
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A non-close return following a close return

In this case, we will use the second procedure and get an improvement from two sources.
First, 7^ will be quite large as a result of the box ratio being very small in the case of a
close return. Secondly, (3 is greater than 1 as well, since |-BJ/|B^_J is at least r times
\B^\/Bn-i. This last ratio b is estimated from above by

"'Vr^1^2'-
Now j3 is at least

1 - bd2 1+d2

' - 1 + bd2 ' 1 - d2

where d < T. Thus, if we want to get a better estimate on the box ratio, d should be no
more than this expected lower estimate. Using d = 0.37 and r == r(l) we get /3 > 1.04694.
Also, 7/ > ̂ j^. With 7^ = 1, a = 10-5 and t = 0.749, procedure one gives
T = 0.7483 corresponding to r(22) = 0.3795.

A non-close return followed by a non-close return

In this case we also use procedure two. The improvement is obtained from a better
7^ given by

^=l——^w

1+T(1)

as well as better /3. Here, f3 can easily be estimated

/?> / 1^
2T(1+T2)

Taking r := r(l) with a = 10-5, 7^ = 1, this (3 and T determined by r(l), we get
T = 0.7449 which gives r(23) = 0.38236.

Now, the combination of estimates in all cases implies that the box ratio will eventually
decrease below the maximum of r(21), r(22) and r(23). In fact, this will happen after
no more than four inducing steps since the box ratio has sunk below r(l). The minimum
happens to be r(23). So, we can take r(2) = r(23) = 0.38236.

A second round of estimates

We now repeat the same sequence of estimates in all three cases using r2 as our original
bound instead of r1. In the case of a close return this gives

r(31) = 0.27736.

In the second situation, we get b < 0.79629. With this, and d = 0.369, we obtain
(3 > 1.05793. Also, ̂  = 0.56572. With T = ̂ ^y this (3 and a = 10-5 procedure
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two yields r(32) = 0.36983. In the last case, we get ^ = 0.4468 and (3 = 1.25582. We
feed those into procedure one together with 7n = 1 and the same T to get T = 0.75983
which corresponds to r(33) = 0.36942.

We see that indeed the box ratio eventually goes below 0.37 which proves Proposition 2.

Part III

Growth of Separating Moduli

5. Combinatorial Analysis

5.1. Plan of the work

Introduction

In this part of the work we will prove Theorem C. Consider a holomorphic type I
box mapping (j) which arose from another type I holomorphic box mapping <^_i by the
way of a simple inducing step showing a non-close return. This is always the case if
(j) was obtained from a type I inducing step, since that by definition is a sequence of
simple inducing steps ending with one showing a non-close return. In this case immediate
branches of (j) are defined as the only univalent branches of (f) which are restrictions of
the central branch of ^-i. If (f) arose in a simple inducing step showing a close return,
then ( / ) has pseudo-immediate branches defined inductively as follows. Immediate branches
defined above are also pseudo-immediate. After a simple inducing step in the situation of
a close return, look at the parent branches in the form b o ̂  where b is pseudo-immediate
for (f). The maximal branches belonging to the parent branches are pseudo-immediate for
the mapping obtained from (j) by a simple inducing step.

We then say that (j) shows a rotation-like return if the critical value of ( / ) lands in the
domain of a pseudo-immediate branch. Otherwise, we say that (f) exhibits a non-rotational
or non- rotation-like return. This is in agreement with Definition 2.4.

The statement of Theorem C is that the moduli mod {B[ \ Bi) grow at a certain rate. The
problem is that they do not grow monotonically. This is the reason why we will introduce
another quantity, called the separation index. The separation index differs from the moduli
mentioned in Theorem C only by a multiplicative constant, so it is sufficient to show that
it grows with % at a linear rate. It is not difficult to see that the separation index does not
decrease in a sequence of simple inducing steps. In order to prove Theorem C, we are still
required to show that the separation index actually increases, though not necessarily by
each step. First, we will see such increase in "typical cases" which occur in a sequence of
a few type I inducing steps not all of which are rotation-like and none of which shows a
close return with a large escaping time. Typical cases are handled by very simple-minded,
yet quite involved combinatorially, considerations of the separating annuli.
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More advanced tools are needed to solve the remaining special cases. Those include
Teichmiiller's Modulsatz as well as Grotzsch9 extremal domain. The case of a close return
with large escaping time is dealt with directly using complex-analytic tools only. It should
be emphasized that the entire part of the proof which reduces the problem to rotation-like
sequences only requires complex-analytic tools and therefore is valid for all holomorphic
box mappings. The assumption that restricted to the real line they give real box mappings
is only used in the analysis of rotation-like returns. Here Theorem A and other statements
proved for real rotation-like sequences will be used.

Separation bounds

Let ip be a type I holomorphic box mapping. As usual, B is the domain of the central
branch of (p and B' is the range of the central branch. Let D a univalent branch of (p.
It is assumed that y? was obtained by filling-in from some type II holomorphic box map.
In particular, every univalent branch of (p has an analytic continuation as a univalent map
onto B ' . This continuation will be denoted by £r>. The domain of £r> is contained in
B' \ B provided that the domain of D is contained in B ' \ B.

Separating annuli

The separating annuli for D are any five annuli Ai(D), i = 1, • • • , 4, and A\D\ either
open or degenerated to Jordan curves, which satisfy the conditions listed below.

• All annuli are contained in B ' .
• The complement of A^(D) contains B in its bounded component and the domain of

D in its unbounded component.
• The bounded component of the complement of Ai(D) contains A^(D).
• The annulus A\D) is uniquely determined as the set-theoretical difference between

the domains of ED and D.
• The complement of As(D) contains A\D) in its bounded component and B in its

unbounded component.
• The complement of A^{D) contains A3(-D) in its bounded component.
Figure 4 shows a choice of separating annuli for domain D, which is the same as

domain D from Figure 2.

Separation symbols

Remain in the same set-up, i.e. assume that y is a type I holomorphic box mapping
derived by filling-in from a type II holomorphic box mapping and that D is the domain
of a univalent branch of y?.

DEFINITION 5.1. - A separation symbol s{D) for D is a choice of separating annuli as
described above together with a quadruple of numbers Si{D) for i = 1, • • • , 4 so that the
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0
ĉ

A.^

Fig. 5. - A choice of separating annuli for C. Note that the outermost annuli Ai and A^ are filled in white.

following inequalities hold:

S2 (D) < mod A'z{D)and
s^{D) < mod A^D) + mod A^(D) and
ss{D) < mod A'(D) + mod A^D) and

s^D) < mod A'(D) + mod A^D) + mod A^(D).

The dependence on D will often be suppressed in our subsequent notations, so we will
just write 5i or A'.

Normalized symbols
We will now impose certain algebraic relations among various components of a separation

symbol. Choose a number /?, and a := ( 3 /2 , together with \i{D) and \2(D). Assume that

a> Ai(P),A2(D) > -a

and
Ai + \2 > 0.

If these quantities are connected with a separation symbol s{D) as follows

5 i (P)=a+Ai(P) ,
s^D)=a-\2(D),
s,(D)=(3-\,{D)^
s^D)=(3+\^D).

we will say that s(D) is normalized with norm (3 and corrections \i(D) and \2(D).
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This leads to a definition:

DEFINITION 5.2. - For a type I holomorphic box mapping, a positive number /3 is called
its separation index provided that normalised separation symbols with norm f3 exist for
all univalent branches.

Nesting annul!

We introduce an "addition" of nesting annuli. Suppose that A1 is contained in the
bounded component cut off by A2. Then we define A1 9 A2 = A2 9 A1 to be the annulus
contained between the inner component of the boundary of A1 and the outer component
of the boundary of A2. We have mod (A1 9 A2) > mod Ai + mod As.

Statement of the result

Suppose now that a type I holomorphic box mapping (f) is given which later undergoes
k consecutive type I inducing steps. We denote by <^ the complex box mappings obtained
in the process so that (/)Q = (f) and <^+i arises from <^ in a type I inducing step. Also,
let us use notations ^ for central branches of <^ as well as B{ and B[ for the domain
and range of ^, respectively.

PROPOSITION 3. - Choose 0 < j < k. Let ft be a separation index for (f). Assume in
addition that j > 3 and <f)j does not show a rotation-like return. Assume that for each
1 < i < J if the escaping time of (f)i is Ei, then for some constant L > 0 independent ofi,

mod^-^^B^B^^L.

Then, for every f3 and L positive, there is a positive number K such that (3 + K is a
separation norm for <^j+i.

As will be shown later, L can be determined in terms of (3 with the exception of
hyperbolic close returns with very large escaping times in which cases the increase of the
separation index can be seen by other methods.

The set-up

We assume that a type I holomorphic box mapping ( / ) is given which arose in a simple
inducing step. Let ^ denote the central branch of ^ with domain B and range B ' . Recall
from Chapter I about parent branches, subordination of branches and maximal branches.
Making assumptions about the normalized separation symbols for branches of (/), we will
proceed to construct separation symbols for branches of the mapping (j) obtained from (f) by
a simple inducing step. Our estimates will depend on the combinatorial situation as follows.

We fix a univalent branch b of (f>. Let p be the parent branch of b so that p = p o ̂
where p is a univalent branch of (f). Another important branch of 0 is P defined by the
condition that the domain of P contains the critical value ^(0). The process of building
the separation symbol for b will depend on the combinatorial situation.
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Combinatorial analysis

We will distinguish the following combinatorial situations and handle them one by one.
• b is not a maximal branch,
• p = -0, i.e. (f) makes a close return,
• (j) makes a non-close return which is subdivided further:
1. p is immediate,
2. p and P are independent,
3. p is subordinate to P,
4. P is subordinate to p.

5.2. General returns

All lemmas we state in this section have implicit assumptions spelled out above under
the heading of the "set-up".

Separation of domains

LEMMA 5.1. - Let (j) be a holomorphic type I box mapping derived from another
holomorphic type I box mapping <f) by a simple inducing step showing a non-close return.
If f3 is a separation index of (/), then the domain of any branch of (f) which is contained in
B is separated from the boundary of B by an annulus of modulus at least (3/4:. Here, B
denotes the central domain of (f) which is the same as B' for (f).

Proof. - As usual, define P as the branch of (f) whose domain contains the critical value
of (f). Since the central domain of ^, called B, is the preimage by ^ of the domain of P,
the preimage by ^ of A'(P) ® A3(P) is an annulus separating B from the boundary of
B. The modulus of this annulus is at least ^"^^ > /?/4. The domain of any univalent
branch of (f> is surrounded by the preimage of this annulus using its canaonical extension.
Thus, the domain of any branch of (j) is indeed separated from the boundary of B by an
annulus of modulus at least /3/4. D

Separation of parent branches

LEMMA 5.2. - Let (f) be a type I holomorphic box mapping which arose in a type I
inducing step from another map. Denote the central branch of(f) by ^ and the escaping time
by E < oo. As usual, let B be the domain of the central branch and B' its range. Assume that

mod^l~E(Bf\B)>L.

If(j) is derived from (f) by a type I inducing step, then the domains of all all parent branches
ofcj) are separated from the complement of B' by ring domains with moduli at least L/2.

Proof. - Consider the type I holomorphic box mapping (^ chosen so that (j) arises from
(j)' in a simple inducing step. This means that (j)' is obtained from (f) by a sequence of E — 1
close returns. The central domain of (j)' is '^1~E{B), and the range of its central branch is
^-E(^Q'Y Now the domains of all branches of (^ are separated from the complement of
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the range of its central branch by annul! with modulus at least £. Since the domains of
the parent branches are the preimages of those by ^, the claim follows. D

Remarks on separation symbols

LEMMA 5.3. - Consider a normalized separation symbol

s = (^i = ft/2 + Ai, 52 = /?/2 - A2, S3 = (3 - Ai, 54 = P + A2)

and suppose that (5i, 52,53 + e, 54 + c) LS' another valid separation symbol where e > 0.
Then there is a normalized separation symbol with norm f3 + |.

Proof. - If we take /?=/?+1, A'i = Ai — i, A^ = As + i, then the normalized separation
symbol with norm (3 and corrections \[ and A^ is

( 3 3 ^
51,52,53 + -e,54 + -e

< 4 4 .

which is obviously valid. D

LEMMA 5.4. - Suppose that for some univalent branch of a holomorphic type I box
mapping one has a normalized separation symbol with norm (3 + e, /3, e > 0. Then, for
the same branch a normalized separation symbol (5i,52,53,54) exists with norm (3 so that
mod (A^b) C A^b) C A'(&)) - 54 > e/2.

Proof. - Consider the normalized symbol with norm /? and corrections \[ = Ai—
and A'2 = \2 j~ where A, are corrections for the symbol with norm /3 + e. Observe
that this will give an algebraically admissible separation symbol, moreover with weaker
estimates, and that

5 4 = / ? + A 2 < / 3 + A 2 - J = 5 4 + J

and our claim follows from the superadditivity of moduli. D

b not maximal

The next lemma will allow us to consider separation symbols for maximal branches only.

LEMMA 5.5. - Suppose that b is not a maximal branch of (f), thus another branch b1 exists
so that b is subordinate to b ' . Assume that the domains of all branches of(f) are separated
from the complement of B' by ring domains with modulus at least 2L'. Also, assume that
A^V) separates the domain of b1 from A'(b'\ If a separation symbol for b' has bounds
(51,52,53,54) and a separating annulus A^{b'), then there is a separation symbol for b
with bounds

(51,52,53 +£',54 4- L')

with As (b) disjoint from the unbounded component of the complement of A^(V).
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Proof. - Observe that as a consequence of our assumption, the domains of all parent
branches of ( / ) ' are separated from the complement of B by annuli with modulus L ' .
We can take Ai(6) = Ai(?/) and A^(b) = A'z(b'). Likewise, we can certainly adopt
A^(V) = A^(b'\ The annulus A'(h1) is the preimage of the annulus Bf \B by the parent
branch of b. The annulus A(b} is the preimage of the same annulus by the canonical
extension of 6, so it has the same modulus. By assumption, there is an annulus A of
modulus L surrounding b inside the domain of its canonical extension, hence inside the
bounded component of the complement of A^V). Thus, we can adopt A^b) = A (D A^V)
and the claim of the Lemma follows directly. D

We observe that the assumption about A^b') separating the central domain from A ' ( b ' )
and not just the domain of b' is automatically satisfied for the separating annuli constructed
in all lemmas of this section.

b immediate

LEMMA 5.6. - Suppose that cj) makes a non-close return and let P have a normalised
separation symbol (^i, 53, .93, s^) with norm {3 and corrections Ai(P) and ^(P)' Then an
immediate branch b of (j) has a normalized separation symbol with norm /3 and corrections

x ^ W) \ (^ Al^Ai(o) =—^—, \2W = — ^ — •

If, in addition, D is the domain of P and

mod {B' \ P) > 84 + e,

then a normalized strong separation symbol exists for b with norm f3 + -. In both cases,
the complement of A^(b) contains the immediate branches of (f) different from b itself in
its unbounded component.

Proof. - The annulus A^) will be the preimage of A'(P) C As(P) by the ^. Then,
Ai(6) is the preimage of A4(P) by ^. It follows that we can take

. /3+A2(P)
sl=——2——

and

, /3-Ai(P)
S 2 =——2——

However, if the additional assumption holds, we can add e/2 to both estimates.
The annulus A (&) is determined and biholomorphically equivalent to B \ B. Hence,

if the additional assumption is satisfied, its modulus is at least ^i + j. Make A^{b) the
preimage of A2(P), and A^(b) the preimage of Ai(P) by ^. We get

. (3+W) . ..p.53 = ——^—— + a - \2{P)
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and
, . . Ai(P)+A2(P) 0 Ai(P)
5 4 = 5 3 + ————2———— = 2^ a ^~^

Thus, if we put

\ ̂  W) \ ̂  x1^^W = ——9——^ ^W = ——^——

we get a normalized separation symbol.
If the additional assumption is satisfied, then 53 and 54 can be increased by e/2, hence

by Lemma 5.3 a normalized symbol can be built with norm /? + ^. Q

p subordinate to P

LEMMA 5.7. - Suppose that (j) makes a non-close return, b is a maximal branch of (j),
p and P are chosen as explained in the introduction to this section, and p is subordinate
to P. Assume that f3 is a separation index for (j) and that the domain of the canonical
extension Pe ofP is separated from the complement of B' by a ring domain with modulus
at least L ' . Then, a normalized separation symbol exists for b with norm /3 + ^. The
complement of A^{b) contains the immediate branches of (f) different from b itself in its
unbounded component.

Proof. - The canonical extension Pe maps the domain of P onto B and the domain of
p goes onto the domain of some univalent branch pf of (f>. Denote G = Pg o ̂  and let A
be the annulus separating the domain of Pe from the complement of B ' . Set

A^b)=G-lWpf))
Ai^G-^Ai^e^A)

A,(b)=G-lWp/))
A,(b)=G-l(A,(p)).

The separation symbol is like in the proof of Lemma 5.11 except for extra terms due
to the existence of A, hence:

. a+W) . V
s l=——2——^
. a-W)
^= ————————Q————————2

q-Ai^+J/
h =0+' / 2
. , , a^W)^L1

.4= /?+——————^——————.

As shown in the proof of Lemma 5.11, when L' = 0 these estimates yield a normalized
separation symbol with norm /3. By Lemma 5.3, the presence of these extra terms allows
one to construct a normalized symbol with norm f3 + L^. D
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P subordinate to p

LEMMA 5.8. - Suppose that (f) makes a non-close return, b is a maximal branch of (f), p
and P are chosen as explained in the introduction to this section, and P is subordinate to p.
Assume that f3 is a separation index for (f) and that the domain of the canonical extension pe
ofp is separated from the complement ofB/ by a ring domain -with modulus at least L'. Then,
a normalised separation symbol exists for b with norm /3 + L-. The complement of A^(V)
contains the immediate branches of(f) different from b itself in its unbounded component.

Proof. - The canonical extension pe maps the domain of p onto B and the domain of P
goes onto the domain of some univalent branch P' of (j). Denote G = pe o ̂  and let A be
the annulus separating the domain of pe from the complement of B ' .

This case becomes similar to the case of immediate branches covered by Lemma 5.6.
If we construct the separating annuli as preimages of the appropriate separating annuli
for P ' by G, we get the same separation symbol as in the proof of Lemma 5.6. The
existence of A gives us an extra contribution of I//2 in 53 and §4. The proof is concluded
by invoking Lemma 5.3. D

P and p are independent

LEMMA 5.9. - Suppose that (f) makes a non-close return and let (3 be a separation index
for (f). Suppose that the domain of the canonical extension of P is separated from the
complement of B' by a ring domain "with modulus at least L ' . We make two claims:

• If b is a maximal univalent branch of <p, p and P are chosen as explained in the set-up
for this section, and p and P turn out to be independent, then a normalized separation
symbol exists for b with corrections

Ai(&)=|,
a — \^=-Y-

where S = max(A2(P),A - a + L'\ If Ai(P) + A2(P) > e, then b has a normalized
separation symbol with norm j3 + -

• Let s = (51,52,53,54) be a normalized separation symbol for P with norm {3. If,
in addition,

mod (A'(P) C A3(P) C A4(P)) > 54 + e,

then a normalized separation symbol exists for b with norm (3 + - In all cases, the
complement of A^(V) contains the immediate branches of <f) different from b itself in its
unbounded component.

Proof. - Observe that Since p and P are independent, the domains of their canonical
extensions are disjoint. To pick A^(b\ we take ^^(A^P)). The ring domain A'(P) is
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biholomorphically equivalent to B' \ B, and hence its modulus is at least a + A. Hence,
a + A52 =^-

Set Ai(6) = '^-1(A3(P)®A4(P)). There are two ways of estimating si. One estimate is

, _/?+A2(P)
s l -——2——•

Another is based on the observation that mod Ai > L ' . So, we can also put Si = sg + k-
Thus,

, /3+^s^=~^
is always a valid estimate. Observe that if the extra assumption is satisfied, we can pick
6 := mm(A - a + £, -^(P) + c) and the estimate for 5i is still valid.

As always, A'[b) is determined with modulus at least si. The annulus A^(b) will be
obtained as the preimage by ^ of A\p). This has modulus at least a + A in all cases as
argued above. The annulus A^(V) is the preimage of A^(p) 9 A^{p). By induction,

~ ^ + s . ,53 = ——— + a + A

and

/ 3+A2(p ) -a -A q+g+A+A2( j9 )
"4 — "S i <^——————— — P I2 " ' 2 •

If the extra assumption is satisfied, then both 53 and 54 can be increased by e/2.
We put Ai(6) = | and \^(b) = °^. We check that

53 + Ai(6) = ' + a + 6 + \ ^ / 3 + 6 + \ .
^

Note that

^ + A > A + A 2 ( P ) >0.
Moreover, if the extra assumption is satisfied, the 6 + A > e.

In a similar way one verifies that

54-^(ft)^/^^.

Also, it is clear that A i ( & ) , A 2 ( & ) > 0. Finally,

\ / L \ i \ / 7 \ / , c \ \ ^ ^ — A - r A — CK -r JL/ ,Ai(&) + A2(6) = ,(a + S - A) > —————.————— > 0.
•̂  z

Hence, by possibly decreasing 53 and ^4 we get a normalized separation symbol with
norm /3. If either 6 + A > Ai(P) + A2(P) > e or the extra assumption of the second
claim holds, we actually see that 53 and 54 should both be decreased by at least 6/2
to give a normalized symbol. In that case. Lemma 5.3 implies that the norm can be
increased by e/4. D
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Summary

The results of this section are summarized as follows.

LEMMA 5.10. - Suppose that (f) makes a non-close return. Assume also that the domains
of its parent branches are all separated from the complement of Bf by ring domains
with modulus L ' . Suppose that (3 is a separation index for (j), and that the post-critical
branch P has a normalised separation symbol (^1,52^3^4) -with norm f3 and that
mod (A'(P) 0 A3(P) C A4(P)) - 84 > e. Then for every e > 0 and L' > 0 there is
a K > 0 so that the mapping resulting from (f) after a simple inducing step (here equivalent
to a type I inducing step) has separation index f3 + K.

Proof. - Let (j) denote the mapping obtained from (j) by a simple inducing step. Let
us choose a univalent branch b of <^, and find the corresponding branch p of (j). If b is
not maximal, our claim follows from Lemma 5.5. So let us assume that b is maximal.
If b is immediate, our claim follows from Lemma 5.6. If p and P are independent, or p
is subordinate to P, or P is subordinate to p, the claim follows from Lemmas 5.9, 5.7
and 5.8, respectively. D

5.3. Close returns

(f) makes a close return

LEMMA 5.11.- Suppose that (f) makes a close return. Assume that a normalised separation
symbol exists for p with norm f3. Then a normalized separation symbol

S = (^1^2^3^4)

exists for b with norm f3. Moreover, 53 < s^ 4- mod ( B ' \ B) while As is conformally
equivalent to A'(p) (B A^(p).

Proof. - We mostly repeat the analysis of the close return from Chapter I. Consider A^(p)
and Ai(j?). Their preimages by the central branch give us As (6) and Ai(6), respectively.
The estimates are

a - X^p)
S2=^^-

and

^ ^ a+Ai(p)
2

The annulus A'(V) is uniquely determined with modulus at least ^i, and A^(V) will
be the preimage by ^ of A^{p) 9 A'(p). Finally, A^(b) will be the preimage of A^p)
by '0. The estimates are

^=a^+0-^p)=^a^
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and
, . . W-^-W _ ^ . a-^-W
°4 — °3 ~r ^ — P T ———^———.

Set
„ -a+Ai(p)
xl=———2———

and
. a+\2{p)
\2=——^——.

The requirements of a normalized symbol are satisfied. D

Improved separation bounds

LEMMA 5.12. - Under the hypotheses of Proposition 3, suppose that some (f>i for i > 1
makes a close return with escaping time E > 1. Let (f) denote the mapping obtained from
(j)i by E — 1 simple inducing steps. Thus, (f) shows a non-close return and <^+i results from
(f) in a simple inducing step, so we denote (f> = <^+i.

Assume that /3 is a separation index for <^. Then every univalent and non-immediate
branch b of <^-(-i has a normalised separation symbol with norm f3 + K where K > 0
depends only on L from the statement of Proposition 3. The complement of A^b) contains
the immediate branches of<^+i different from b itself in its unbounded component.

Proof. - To fix the notations, assume that (f) arose from some ^>_i in a simple inducing
step showing a close return. Let B-i and B'_^ denote the domain and range of the central
branch of <^_i, respectively. Take some univalent non-immediate b branch of (j) and find
branches p and P of (f) in the usual way. Unless b is maximal, we are done by Lemma 5.5.
Observe that any parent branch of 0 extends in a univalent fashion onto the image B[.
By assumptions of Proposition 3, mod (B[ \ J?i) > 2L. Hence, if p and P are in the
relation of subordination, we are also done by Lemmas 5.7 and 5.8. Hence we only need
to consider the case when p and P are independent with b maximal.

Let us next look at the simple inducing step in which (f) was created. Unless P is
maximal, we are done. Indeed, by Lemma 5.5 P then has an improved separation symbol.
By Lemma 5.4 this means that the extra assumption of Lemma 5.11 is satisfied and
Lemma 5.12 follows. So let P' be the parent branch of P, and define P_i (a univalent
branch of <^_i) by the requirement P' = P_i o '^-\. Similarly, Let p ' be the parent branch
of p so that p ' = p_i o '0_i. There are two distinct cases we encounter depending of
whether ^_i is subordinate to P_i or they are independent.

Ifp_i is subordinate to P_i, then there is a mapping P-i,e (the canonical extension of
P) which sends the domain of P_i to B-i, and the domain ofp-i to the domain of some
branch p'_^ of <^_i. Denote G = if) o P-i^e and consider annuli defined as follows:

• A^P) = G-^O/.^eA^P), '
• A^P) = G-^A^.i)),
• A\p) = G-^AaQ/^eAV.i)] e A7^),
. A^p) = G-^O/.i)).
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To estimate their moduli, we observe that G maps univalently onto B'_^ and that A'{p)
and A'(P) are confbrmally equivalent to B' \ B, hence they have modulus at least L. So,

mod A*(P) > L + a - W-i)
mod A^P) + mod A*(P) ^ L + a + Ai^-i)

modA'^^L+^-Ai^. i )
mod A*(p) + mod A^p) ^ L + /? + A2(j/_i)

We now define A^b) = z{j~1 (A1 (P)) and

, 0-W-i) , L
^———2———+^

Next. Ai(&) = ^(A^P)) and

a+W-i) , ^
s l =———2———+^

Then A'(6) is determined with modulus at least 5i, and we set A^(b) = ̂ "^A^J))), hence

- . , o^-W-i) , .^3 = /3 + ———^——— + L.

Also, A4(&) = ^(A6^)) and

/Q.^j^h^) .
54 = P + ———^——— 4- L.

With L = 0 these are the same estimates as in the analysis of the close return (see the
proof of Lemma 5.11). So they yield a normalized symbol with norm /?. The extra L term
gives the possibility of constructing a better symbol with norm /? + e/2 (see Lemma 5.3.)
Hence in this case Lemma 5.12 follows.

We still need to analyze the situation with P-i and p-i independent. In tis situation,
we get the annulus A = ^^(A'^-i)) with modulus at least 2L which separates p
from P inside A^(p). Moreover, from the analysis of the close return (see the proof of
Lemma 5.11), we see that

/? - >i(p) > mod A'{p} + mod A + mod ^(As^-i)).

The annuli Ai(6) and A^(b) are chosen exactly as in the proof of Lemma 5.9, hence

. /3+<^

and

o;+A
'2=-2-

Next,
A^b)=^-\A)eA\p)
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and
A4(&) = ̂ -^-^(p-i)) e A4(p))

to get (in the notations of Lemma 5.9)

and

/?+<?S3 = ——— + a + A + 2L

^y^^^4-^^
Zi

In the proof of Lemma 5.9 we show that for L = 0 this yields a normalized symbol
with norm /?, so by Lemma 5.3 our estimates give a norm /3 + -|. This concludes the
proof of Lemma 5.12 D

5.4. Derivation of Proposition 3

Reduction

First, note that Proposition 3 follows if we can prove the following

Statement

For all non-immediate univalent branches of(f)j normalized separation symbols exist with
norm /3 + K where K > 0 depends on L only. Indeed, let (f) be chosen so that <^+i is
derived from (j) by a simple inducing step. In particular, 0 shows a non-close return and
(/) is either equal to ^ or derived from it by a sequence of simple inducing steps all
showing close returns. As a consequence of our assumption, using Lemmas 5.5 and 5.11
we show that all branches of 0 save the pseudo-immediate ones have normalized separation
symbols with norm f3-{-K' where K ' only depends on L. By Lemma 5.4, this also implies
that normalized separation symbols with norm f3 can be built for all univalent and not
pseudo-immediate branches so that mod (A' 9 A3) - 53 > K^-. Note here that the parameter
L' which occurs in the statement of several lemmas can be taken to be L / 2 by Lemma 5.2.
Now our reduced statement implies Proposition 3 by Lemma 5.10.

So we will concentrate on proving the reduced statement. If <^_i shows a close return,
our statement is a direct consequence of Lemma 5.12. We consider two distinct cases:

• (f)j-2 shows a close return, or
• (f)j-2 shows a non-close return.
Either way, this is followed by a non-close return for ^-i.

A close return for (f>j-2

Notice that we are done if ^_i shows a non-rotational return. Indeed, by Lemma 5.12
it means that the post-critical branch has an improved normalized separation symbol with
norm (3 + K. Hence, in view of Lemmas 5.3 and 5.10, the separation index improves
already for ̂ . So let us assume that ̂ -i makes a rotation-like return. Notice that in view
of our constructions separation symbols for branches of 0j-i, for every univalent branch
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pf different from P, the annulus A-^{p1} separates the domain ofpf from the domain of P.
Let us use the established notations with <p := (f>j-i and 0 := (f)j. Choose a non-immediate
univalent branch 6 of (j> and try to pick a separation symbol for b with norm /? + K where
K > 0 depends on L. If b is not maximal, or p and P are in a relation of subordination, this
is possible as seen in the proof of Lemma 5.10. So the only case we need to concentrate
on is when b is maximal and p is independent from P.

In this case, we construct the separating annuli Ai(&) and A^(b) is in the proof
of Lemma 5.9. However, A^{b) can be set equal to ^^(As^)), and then A^(b} =
^~l(A4{p)). Using notations A and 8 introduced in Lemma 5.9, this leads to estimates:

. (3-^-S
51 =^-

a + A
52 = ~2~

33=/3-Ai(^)+^

~ Q • ^+ g • A2^)-Ai(y)
.4=/?+-^-+—————3—————

If we set

Ai(6) == 5/2

A2W = ̂

then we already checked in the proof of Lemma 5.9 that \i{b) + Aa(6) >. 0 and
|Ai(&),A2(&) | ^ a. Next,

33 + Ai(6) = /3 + a + 8 - Ai(p).

As 6 ^ A - a + L, we get

/ ? + a + i $ - A i ( p ) ^(3+L.

Then

. . . „ , a+A+g+A2(p)-Ai(p)
S4 - ^2(7?) == P + ———————————^———————————

^ a+^+A2(p)

>^A+4 )+L^+^^ ^
where we again used the estimate 8 > A - a + £. Hence, after decreasing 53 and 54 by at
least £/2, we still get a normalized separation symbol with norm /3, hence by Lemma 5.3,
a normalized symbol with norm /? + ^ also exists.

This shows that Proposition 3 holds if ^-2 shows a non-close return.
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(f)j-2 makes a non-dose return

Again use our usual notations making (j) := c^j-i ^d choose a univalent non-immediate
branch b of <p := (j)j. Like in the previous case, we can restrict our attention to the case
when b is maximal while p and P are independent. We first analyze the combinatorial
situation of P. If P has a normalized separation symbol with norm /3 + K where K > 0
depends only on L, we are done by Lemmas 5.4 and 5.10. Hence P must be maximal.
Next, suppose that P is immediate. Then we are exactly in the situation considered above
when <^_2 made a close return. Again, we are done.

For further analysis, we need the post-critical branch P* of ^-2 and a univalent branch
P ' of (f>j-2 defined so that P ' o ̂ -2 is the parent branch of P. Unless P* and P '
are independent, we are done by Lemmas 5.7 and 5.8. If they are independent, then by
Lemma 5.9

A,(P)=|

W = a^

where the improtant feature of 61 is that 6 ' > \ — a + L, thus

Ai(P)+A2(P)>J.

Now Lemma 5.9 implies that b has a normalized separation symbol with norm (3 + -|.
This concludes the proof of Proposition 3.

6. Consequences of the Modulsatz

6.1. Technical machinery

Plan of the work

In the preceding section we analyzed cases when an increase of the separation index
followed by "combinatorial" reasons. We are left with two situations left unsolved by
Proposition 3:

• when the assumption about L is violated, that is when a close return occurs with
large escaping time,

• an unbroken sequence of rotation-like returns.
In both cases, the increase will follow from the fact that the equality in the superadditivity

estimate for nesting ring domains

mod (A 0 B) >, mod A + mod B

occurs only in a special geometric configuration. Based on this, we will be able to solve
the first difficulty completely and for all holomorphic type I mappings by showing that
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if it occurs, then an increase in the separation index follows for reasons related to the
Modulsatz. For the second difficulty (rotation-like returns) we will furnish a solution based
on assuming that the holomorphic box mappings are extensions of real box mappings.
Here the estimates we got for real rotational-like sequences will be crucial.

The statement of Teichmiiller's Modulsatz

Fact 6.1.

Let AI and A'z be two disjoint open annuli situated so that A\ separates 0 from A^
while As separates A\ from oo. Assume further that both are contained in the ring
A = {z : r < \z\ < R} for some 0 < r < R. By C denote the set (annulus) of all
points from A \ (Ai U As) separated from 0 and oo by A\ U As. Then, for every 8 > 0
there is a number e > 0 with the following property: if

mod Ai + mod As > mod A — e,

then a p exists for which the ring

{ z : p < \z\< ( l+<5)p}

contains C.
Fact 6.1 follows directly from the "Modulsatz" of [22].

Conformal roughness

DEFINITION 6.1. - Let w be a Jordan curve in the plane. We say that w is (e, M)-rough
if for every pair of open annuli C\ and C^ subject to the conditions

• C\ is contained in the bounded component of the complement of w,
• w is contained in the bounded component of the complement of Cs,
• the moduli of both annuli are at least M,

the inequality

mod (Ci C Cs) > mod Gi + mod 62 + e

holds.
For example, a consequence ofTeichmtiller's Modulsatz is that every non-analytic Jordan

curve is (0, M)-rough for every positive M. The important idea is that the Modulsatz can
imply roughness of some curves and that roughness can help us get stronger estimates
for separating annuli.
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Technical facts

We will first prove a few technical facts. The reader may choose to skip them now and
return when they are referenced from the text.

LEMMA 6.1. - Let Wi and Wo be Jordan curves in the complex plane so that Wo is contained
in the unbounded component of the complement ofwi. Let G be the ring domain bounded
by Wi and Wo. Let Vi be a Jordan curve in the unbounded component of the complement
ofwi situated so that the Hausdorff distance from Wi to Vi is less than 8 ' diamwi. Let M
denote the modulus of the ring domain bounded by ^ and Wo ifvo is contained in G, or 0
otherwise. Then for every e > 0 there is a So > 0 so that if 6 < So, then mod G - M < e.

Proof. - Fix an e > 0. If mod G < 6, there is nothing to prove. Otherwise, consider
the Jordan curve t which is the image of a circle centered at 0 by the canonical mapping
of G, chosen so that the modulus of the ring domain bounded by w, and t is 6. We will
be done if ^ is enclosed between Wi and t. We need a fact which follows directly from
Teichmuller's module theorem stated on page 56 in [13]:

Fact 6.2.

If the ring domain G separates the points 0 and z^ from z^ and oo, then the bound

^dG<^-^+^+C
Fll

z!
^1

holds where the function C is bounded by 2 log 4 and goes to 0 as its argument decreases to 0.
Choose a point on w,. By moving the frame we assume without loss of generality that

this point is at 0. There is a point 2:1 on w, whose distance from 0 is at least half of the
diameter of w,. If z^ is a point on t, then Fact 6.2 allows one to bound |^2|/|^i| in terms
of e. Taking twice this bound as 80, we conclude the proof. D

If 71 and 72 are Jordan curves in the plane, let M(^,^) denote the modulus of the
ring domain bounded by 71 and 72 if the curves do not intersect, or 0 otherwise.

An application of the Modulsatz

LEMMA 6.2. - Let w be a Jordan curve in the plane. For every M and S positive there
numbers K, which is independent of 6 and A > 0 so that ifw is not (A, M)-rough, then
there is a K-quasiconformal Jordan curve in the Hausdorff distance less than 6 • diam w
from w.

Proof. - Choose annuli Ci and 62 as in the Definition 6.1 so the both have the same
modulus M > 0. Let C be Ci e C^ and H be the standard conformal mapping from a
ring [z : r < \z\ < R}. We can choose the scale so that r = R~1. Let t = ff'^w) and
choose the smallest closed ring with inner radius r-i and outer radius jRi which contains t.
Then for every M > 0 there is A > 1 so that r-i > \r and R^ < R/\. Indeed, this follows
from Teichmuller's module theorem, quoted earlier in this paper as Fact 6.2.

Assume that mod C < 2M+logA. Observe first that it implies ri < V\exp(-M) and
RI > exp(M)/V\. Change the frame so that the diameter of w becomes 1 and w separates
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0 from oo and consider the family of mappings H from the ring [z : (O-M < \z\ < (3M}
onto ring domains containing w but avoiding 0 and oo. This is an equicontinuous family
(which follows from Fact 6.5). Hence, for every 6 > 0 there is a 8^ > 0 so that if
logJ?i/ri < &i, then the Hausdorff distance from w to the image s of the circle centered
at 0 with radius ri is less than S. Note that s is a AT-quasiconformal Jordan curve where
K only depends on \ (from Lemma 6.3), thus ultimately on M. On the other hand, if
log-^ > 5i, then Teichmuller's Modulsatz (quoted here as Fact 6.1) implies that

mod C > 2M + A

where A depends on ^i.
We see that for every M and 8 either s can be chosen which follows w in the Hausdorff

distance 8, or for every C\ and 62 chosen as above with modulus exactly M

mod C > 2M + A

with A depending on 8 and M. This last situation implies (A, M)-roughness since when
C\ has modulus larger than M it can be split into the sum of two nesting annuli whose
moduli add up exactly to mod C\ and the one adjacent to w has modulus M. The same
reduction applies when the modulus of C^ is larger than M. D

Bounded turning

A very convenient critierion for checking whether a Jordan curve is AT-quasiconformal,
was given by Ahlfors, see [13] where it is called "bounded turning" (also known as the
"three-point property"):

Fact 6.3.
Let U be a Jordan curve in the Riemann sphere. For every pair of points z\ and z^

consider 14 and u^ defined as diameters, in the spherical metric, of the two arcs cut from
U by z\ and z^. Define

(mm(u-^.u^) --1
Z:=snp{——r——— : Zi^2^U\.

' [ dist^i ,^2) J

For every finite Z there is a Q so that U is Q-quasiconformal. Conversely, if U is a
Q-quasiconformal, then Z is bounded in terms of Q.

Distortion in ring domains

LEMMA 6.3. - Let G be a ring domain. Let g be a canonical univalent mapping from a
ring domain bounded by two circles concentric at 0 onto G. Let w be the image by g of
some circle centred at 0 so that both components of the complement of w in G are annuli
with moduli at least 8 > 0. For every 8 > 0 there is a Q so that g restricted to ^(w)
can be continued to a Q-quasiconformal homeomorphism of the plane. In particular, w is
a Q-quasiconformal Jordan curve.

Proof. - Lemma 6.3 is a direct corollary from the following.
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Fact 6.4.

Let WQ : G —> G1 be a K-quasiconformal mapping and F a compact subset of the domain
G. There exists a quasiconformal mapping of the -whole plane -which coincides with WQ on
F and whose maximal dilatation is bounded by a number depending only on K, G and F.

Fact 6.4 is a verbatim quotation of Theorem 8.1, page 96, from [13].
Normalize our situation so that g1 of w is the unit circle. Then WQ is defined at least

on the ring

[z : e~6 < \z\ < e6}

and we can take this ring as G in Fact 6.4. Then WQ is g restricted to this ring, which is
1-quasiconformal, while F is the unit circle. The claim of Lemma 6.3 follows directly. D

6.2. Deeply nested close returns

PROPOSITION 4. - Let (f) be a type I holomorphic box mapping. Denote by ft a separation
index of (j). Also, adopt the usual notations ^ for the central branch of (f), B for the domain
of '0 and B/ for its range. Let E be the escaping time of <f) -with E > 2. Suppose that
(3 > A) and mod (B' \ B) > ao.

For every ao > 0 and 0o > 0 there are positive numbers 60 and 8-^ so that one of the
following holds true:

• after three type I inducing steps (assuming that they are feasible), ( / ) yields a type I
holomorphic box mapping with separation index f3 + 60, or

mod ^-^(B' \ B) > ^i.

The first step of the proof is as follows.

LEMMA 6.4. - Let (j) be a type I holomorphic box mapping. Denote by (3 a separation
index of (j). Also, adopt the usual notations ^ for the central branch of (f), B for the domain
of ^ and B ' for its range. Let E be the escaping time of (f) with E > 2. Suppose that
0 > A) and mod (B' \B) > ao. Let (f)\ denote the holomorphic box mapping derived from
(f) is a type I inducing step.

For every ao > 0, /3o > 0 and M there are positive numbers 60^ 8-^ and rj so that one
of the following holds true:

• (j)\ has separation index (3 + So, or

mod ^-^(B' \ B) >6^or

• the boundary of the central domain of(f)^ is the preimage by z —> z2 of an (^ M}-rough
curve.

Proof. - We will split the proof of Lemma 6.4 into a number of steps.
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Step I of the proof

Let us introduce the notation B1 for 0 < i < E to denote ^"'(J?'). Consider the
following statement:

Choose parameters 8 > 0 and K > 1. For every such choice, and for every OQ > 0 in
the statement of Lemma 6.4, there are parameters Ao > 0, ^i > 0 and 7^1 > 0 for which
at least one statement in the following alternative holds true:

a.

mod (B^-1 \ B^ + mod {B' \ £^-1) < mod {B' \ B^ - ̂

b.

There is no K-quasiconformal Jordan curve contained in the closure of BE in Hausdorjf
distance less than Ao • diam BE from the border of BE.

c.

The Hausdorjf distance from BF~1 to BE is less than S • diamBE.

d.

The modulus of BF~1 \ BF is at least ^.
Let w be a AT-quasiconformal Jordan curve contained in the closure of BE'. Consider

the ring domain G delimited by w and the boundary of B ' . Let H be the canonical
(conformal) mapping from the round ring

[z : 1 < \z\ < R}

onto G chosen so that w corresponds to the circle with radius 1 by the continuous
continuation of H. Observe that H can be continued as a K2 -quasiconformal mapping
defined on {z : R~1 < \z\ < R}. Indeed, this is done by the quasiconformal reflection in
w and the inner boundary of G'. Keep the notation H for this extended homeomorphism.
As a consequence of E > 2, we have R > Ro := e0'072. Adjust the frame so that 0
belongs to the bounded component of the complement of w and diamw = 1. Consider the
family W containing all eligible mappings H, that is the family of all K2 -quasiconformal
homeomorphisms from the ring G' = {z : Ro1 < \z\ < Ro} which avoid a point ZQ
with \ZQ | < 1 and the complement of the unit disk. We now quote Theorem 4.1 from
page 69 in [13]:
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Fact 6.5.

Let W be a family of Q-quasiconformal mappings from the domain G into the complex
plane. If every mapping w G W omits two values whose spherical distance is greater than a
fixed positive number d (the omitted values need not to be fixed), then W is equicontinuous
in G.

We see that our family W is equicontinuous. Let fi be the module of continuity, i.e. a
function chosen so that if \x — y\ < ^(c), then \H(x) — H(y)\ < e for every e > 0 and
x ^ y G G ' . The module of continuity only depends of K and ao. For every 8 > 0 specified
in the claim of Step I, choose the number €1 to be the minimum of Ro — ^/Ro and /^(^-).
Next, specify ^i in the claim of Step I so that e61 is the minimum of ei and -So-

Let t be the preimage by H of the border of BE~1. Suppose that case d. fails with this
choice of 8-^. This means that t contains a point ZQ with \ZQ\ < e61. Then ask whether t is
contained in the annulus [z : 1 < ri < \z\ < r^} with log r2- < 61. By the choice of S^
and 61 this implies that t is contained in G ' . Moreover, the Hausdorff distance from t to
the unit circle is less than p,(8). We see that case c. must occur. If t is not contained in
this band, then by Teichmiiller's Modulsatz (quoted as Fact 6.1), for some 7^2 > 0 we get

mod (B' \ BF~1) + mod U < mod V - ̂
Here U is the annulus delimited by w and the border of B^"1, and V is bounded by w
and the boundary of B ' ' . Observe that 772 depends only on ei, thus ultimately on ao, S and
K. From Lemma 6.1, for every 772 we can choose Ao > 0 so that if the Hausdorff distance
from w to the border of BE is less than Aodiamw, then

mod U < mod (B^-1 \BE)+r]2-

mod V < mod {B' \ B^ + ^.

With this choice of Ao in the claim of Step I, and 7^1 := 772/2, we see that either case a.
or b. occurs. This concludes the proof of the claim of Step I.

Step II
We show the following statement:
Given any ao and K in Step I, by choosing S appropriately and making Ao possibly

smaller than in Step /, but depending only on ao and K, it is possible to get rid of case c.
Observe that BE is a preimage of BE~1 by '0, and hence is a topological disc bounded

by a Jordan curve and symmetrical with respect to the transformation z —> —z. Let us first
make S < -^. If case c. holds, then there is a point on the border of BE1 in the distance
at least jdiami?^"1 from ^°, and another one in the distance less than ^diamJS^"1. The
branch ^ is a composition H(z2) where H is univalent and extends at least onto B\ so
by Kobe's distortion theorem its distortion on the preimage of BF~1 is bounded in terms
of ao. It follows that on the border of BE there are points z^ and z^ so that

(32) |^i| <K^\\T6
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where K^ depends on ao only. Now suppose that Ao < ^. Choose points z[ G w on
the segment (0,^i], z'{ e w on the segment (0,-^i], 2:2 e w on the segment (0,2:2] and
z^ C w on the segment (0,-^]. Clearly, z^|, |̂ | < |2:i| and \z^\, \z'^\ > 1^. Both arcs
of w joining z[ and z'{ have diamters at least ^, while the euclidean distance between
these points is at most 2|^i|. For every K and by estimate (32), one can choose a small
6, depending on ao and K so that the corresponding three-point property (Fact 6.3) is
violated for w, thus w is not AT-quasiconformal. Then case c. in Step I can be eliminated
by showing that it leads to case b. The constant Ao should ultimately be chosen equal to
mm(Ao, —) where Ao is obtained from Step I for Q;o, K and 6 picked out above.

Step III

We show the following:
For every Mo, it is possible to specify K in the claim of Step I I , and to find another Ao,

both depending only on MQ and OQ, so that if case b. occurs, then the boundary of BE is
(^^M)-rough in the meaning of Definition 6.1.

Our tool here is Lemma 6.2 applied with w := 9BE and M := Mo. Using that lemma,
first choose K depending on M only. Then specify Denote by 8 as chosen in Step II for
ao and some value of K. Then the claim of Step III is implies directly by Lemma 6.2.

Step IV

Now we move towards proving Lemma 6.4. Given arbitrary parameters Mo, ao from the
statement of Lemma 6.4, we specify K by Step III. Then we return the triple alternative
left by Step II and assume that case d. occurred. This leads immediately to the second part
of the alternative of Lemma 6.4 being satisfied if we choose 8-^ as in Step II.

It requires a little work to see that case a. leads to the first possibility in Lemma 6.4.
Let us observe that case a. implies

E

^ mod (B3-1 \ B3) ^ mod (B° \ B^ - r/i
j=i

If (f)' is the mapping obtained from (/) after E - 1 simple inducing steps, then a normalized
separation symbol with norm /? is obtained for (j)' by iterating the construction of
Lemma 5.11. According to the extra claim of the lemma in an inductive fashion, for
every univalent branch b of <j)',

E

S3 = mod A + ̂  mod (B3-1 \ B3)
j=i

while A^(b) is A 9 A' where A' is conformally equivalent to the 9 sum of B3'1 \ B3

where j ranges from 1 to E — 1. Here A is some annulus nested around the
preimage of B° by the univalent continuation of b. Hence, our assumption means that
mod (A^b) 0 A'(6)) > 53+^1. Also, A^(b) > ao. Hence we can use Lemma 5.10 with
L' = ao and e := T]\ to in order to get the first part of the alternative of Lemma 6.4.
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Step V

In view of Steps III and IV, all we still need to prove is that for every choice of
parameters ao and M in Lemma 6.4, one can choose MQ and A > 0 depending only on
ao and M so that if BE is (A, Mo)-rough, then the third possibility occurs in Lemma 6.4.

Recall the mapping (f)' introduced in Step IV. A simple inducing step performed on (j)'
will result in a mapping <^i which is the same as the outcome of the type I inducing
step carried out on (f). Let Bi denote the central domain of <^i. Then Bi is the preimage
of BE by the central branch of <^i. The central branch of 0i is the mapping z —> z1

composed with a map F that is univalent onto its image B1'. We need to demonstrate to
that the Jordan curve w := F~1(OBE) is (^,M)-rough with rj chosen depending on the
parameters of Lemma 6.4. Let D denote the domain of F. Then let us choose annuli (7i
and 62 as in Definition 6.1. If C^ is in D, then certainly

mod Ci + mod £2 + A < mod (C7i C C^)

with A chosen in Step III. In the general situation, without loss of generality we can
assume that the inner component of the boundary of C^ is w. Suppose that an annulus
U is contained D D C^ and that w is its inner boundary while N > 0 is the modulus.
Consider the canonical map H from the ring domain [z : 1 < \z\ < R} onto C^. Notice
that H~1 (U) fills the ring bounded outside by (7(0,7) where 7 > 1 depends only on N.
Indeed, then 7 is determined from Teichmuuller's module theorem (Fact 6.2).

Next, we bound show how to find U so that N is bounded from below in terms of M
and o;o. If 9D e C^ then just take U = F~l(Bf \ BE) and the bound by ao/2 is evident.
Otherwise, let V be the unbounded component of the complement of w together with the
point at infinity. Now take the Riemann mapping H ' from the unit disc to V taking 0
to the point at infinity. By Teichmuller's module theorem (Fact 6.2) both (If')"1^) and
the preimage by H ' of the outer component of the boundary of Ao are inside .0(0, p)
where p < 1 depends only on the minimum of moduli of the two annuli involved. Hence
we get N =• — log p.

Now let us look at the image C of {z : 1 < \z\ < 7} by H. It is an annulus contained
in C2 H D. Moreover, mod C^ = mod C + mod (C^ \ C). Setting MQ := 7 and choosing
A from Step III, we see that w is (A,M)-rough. D

A property of separation symbols

LEMMA 6.5. - Let (f) be a type I holomorphic box mapping "with separation index f3 > /3o.
Also, assume that mod {B' \B) > ao. Suppose that < î is derived from (f) by a type I inducing
step. For every positive ao and /3o there is a positive rj with which the following is fulfilled.

For every univalent branch b of(f)^, ifD denotes the domain ofb, a normalized separation
symbol with norm f3 exists for which at least one of the two extra estimates holds:

• A^(V) is mapped exactly onto itself by the symmetry z —^ —z and mod A^b) > °^-, or
• 54(6) < mod (B[ \ Bi) - r].

Here, B[ and B\ denote the range and domain of the central branch of (f)\.
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Proof. - Assume that the escaping time of (f) is E > 1 and adopt the notations used in
the proof of the previous lemma. Let <^ be the mapping obtained from (f) upon i simple
inducing steps. Thus. 0° = (j) and (f)' = (^E;-I. Let 61 and 62 be two univalent branches of
(f)E-2 with domains Pi and D^, respectively. Consider annuli U\ and U^ both contained
in BE~1 \ BE so that t/i contains Pi in the bounded component of its complement and
D-z is the unbounded component, while U^ contains D^ in the bounded component of its
complement, and D\ in the unbounded component. The claim is that U\ and U^ like this
exist so that mod E/i + mod U'z > o;o.

The proof goes by induction. For of)0 the analogous claim is obvious. One has to consider
the cases when &i and 62 are independent or one is subordinate to the other and the
claim follows right away since A'(b^) and A' (62) both have modulus at least ao. For the
induction, consider first the case when &i and 62 are independent. This means that their
domains can be mapped forward by a univalent map until they are found in different parent
domains. But parent domains are already separated as needed. If &i is subordinate to b^,
then a common neighborhood of their domains can be mapped by a univalent trasformation
until the domain of 62 go^s onto the central domain, while the domain of &i goes onto a
univalent domain. But the branch from this univalent domain extends to the range Bo, and
so its domain is separated from the central domain by an annulus with modulus at least ao.

As a corollary we get that the analogous separation property is satisfied when D\ and
I?2 are two parent domains of ^ ' .

Let b be a univalent branch of <^i with domain D. The following alternative holds:

• a normalized separation symbol with norm (3 exists for b corresponding to a choice
of separating annuli so that A^{b) is symmetric with respect to the rotation by TT and
satisfies mod A^(b) > ao/4, or

• a normalized separation symbol with norm f3 exists for 6, and M can be chosen in
Step III depending only on o;o so that 54(6) < mod (B[ \ D) - 773 with 773 depending
on PQ, Q.Q and M.

For the proof, we assume first that b has an immediate parent domain. In this case, the
construction of Lemma 5.6 provides for a normalized separation symbol with norm (3 and
^2 ^ Q'o/2. So let us suppose that b is not immediate. Choose p to the branch of <j)' so that
p o ̂  is a parent branch of 6, and choose P so that the domain of P contains ^(0). If p
and P are in the relation of subordination, or p fails to be maximal, then by Lemmas 5.5,
5.7, 5.8 and 5.4, the second part of the alternative holds. So let us assume that p and P are
independent. Since p is maximal, then P and p are in different parent domains. Call Di
the parent domain of P and D^ the parent domain of p. Suppose that D^ is surrounded
inside BE~1 \ BE by an annulus with modulus at least ao/2 separating it from D^. One
can choose 70 > 0 depending on ao so that this annulus has modulus 70 and is bounded
by the outer boundary of A'(P) and an image of a circle centered at 0 by the canonical
mapping from a round ring domain onto the annulus delimited by the border of BF~1 and
the outer boundary of A'(P}. This reasoning is analogous to the bound on 7 is Step III.
Then the construction of Lemma 5.9 can be amended so that A^(V) has modulus 70/2
while the estimates are unchanged. So the first part of the alternative holds.
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The other possiblity is that an annulus with modulus ao/2 surrounds D^ separating it
from D^. Again, one can choose 70 > 0 depending on ao so that the outer boundary of
this annulus is the image of a circle by the canonical mapping. In this case, estimates
53 and 54 obtained in Lemma 5.9 can be increased by ao/2 leading to the first part of
the alternative being satisfied. D

6.3. Rough central domains

LEMMA 6.6. - Let (j) be a type I holomorphic box mapping derived in a type I inducing
step and with separation index f3 >_ /3o and mod (Bf \B) > OQ. Assume that the boundary
of B is either (26, M)-rough or is a preimage by z —> z2 of an (c, M) rough Jordan curve.
Suppose that the critical value of (j) is in the domain of a univalent branch 6. Assume that for
P a normalized separation symbol exists with norm (3 and at least of the following holds:

• A'z(V) > ai and A 2 is the preimage by z —> z2 of an annulus,
• 54(6) + A < mod {B1 \ D) where D is the domain of P.
Then for every choice of positive /3o, OQ, ai, A, and e, there is are positive numbers 6

and M, which is inpependent of 6, so that for immediate branches of the map <^i arising
from <j) after a type I inducing step there is a normalised separation symbol with norm f3
satisfying 53(61) < mod {A'(b\) (B A^(b-^)) — 8 where &i is the immediate branch of <j)^.

Proof. - If 54(6) + A ^ mod {B' \ 25), then Lemma 5.6 directly implies that the
separation norm for immediate branches grows by A/4. If we choose 8 to be no more
than A/8, then the claim of Lemma 6.6 follows by Lemma 5.4. So we now assume that
the first part of the alternative holds.

Let (/)]_ denote the mapping obtained from (j) by a type I inducing step. Let B^ and B[
denote the domain and range, respectively, of the central branch of ^i. Also, call &i the
immediate branch of <^i. Consider the annulus A == B[ \ B^. We have mod A > (3-. If M
is chosen equal to the minimum of /?o/4 and ai, then

(33) mod (A C A^) > mod A + mod A^b) + e ̂  ^+ A 2^ + a - X^b) + e.

This follows directly if the border of B is (26, M)-rough. If it is a preiamge by z —^ z2

of a (2e,M)-rough Jordan curve, then map A and As (6) forward by z —^ z2 to get the
estimate. This is possible since both annuli are symmetric with respect to z —> —z.

Then we just repeat the reasoning of Lemma 5.6 to construct the separation symbol
for 61. Since A3(&i) = ^-^2(6)) and A'(6i) = ^(A), then (33) implies that
mod (A3(&i) Q A'^i) >_ 53(61) + e and the claim follows if we choose 8 to be no
more than e. D

LEMMA 6.7. - Let (f) be a type I holomorphic box mapping derived in a type I inducing
step and with separation index f3 > /?o and mod {B' \B) >_ OQ. Assume that the boundary
ofB is either (c, M)-rough or is a preimage by z —^ z2 of an (e, M) rough Jordan curve.
Suppose that (f) makes a close return. Then for every choice of positive /SQ, OQ and e, there
are a positive numbers 8 and M, which is independent ofe, so that for /? + 8 is a separation
index for the map arising from (/) after one type I inducing step.
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Proof. - We can apply the first condition with C = ^{B' \ B) and C' = B' \ B.
Hence, M = °^-. If the first condition fails, then by the argument of Step IV in the
proof of Lemma 6.4, after a single type I inducing step we get the desired growth of
the separation index. D

Proof of Proposition 4. - Now we conclude the proof of Proposition 4.
By Lemma 6.4, it is enough to show that if the third alternative occurs, then the

separation index grows by the following two type I inducing steps. We have to adjust M
from Lemma 6.4 to /3o and ao and show that after a few type I inducing steps the separation
index grows. If a close return occurs, we are done with both tasks by Lemma 6.7. So
let us assume a non-close return. Adopt the notations whereby (p is the map resulting
from (j) upon a simple inducing step. We will also use notations B, B' := B and ^
adhering to our usual convention. Let b be a univalent branch of (f). We also use notations
p where p is the branch of (f) chosen so that (j) o ̂  is the parent branch of b and P for
the branch of (f) whose domain contains '0(0). We will construct a normalized separation
symbol for b and prove that mod (A'(6) C A^b)) > s^b) + e where e > 0 only depends
on /?o ands ao. Then, for the mapping derived from (j) by another type I inducing step
an increase occurs by Lemma 5.10 (if (J> makes a close return, note that the condition
53(6) + e < mod (A'(6) 9 As (6)) for every branch persists under simple inducing steps
with close returns) and so Proposition 4 will follow.

To prove this statement, we consider the typical combinatorial case analysis.
• b is not maximal. Here, by Lemma 5.5 the norm of the separation index exceeds

/3. Hence our claim follows by Lemma 5.4. So in the future analysis we assume that
b is maximal.

• b is immediate. By Step VII, either we are done using Lemma 6.6 where M' = 0:0/4,
or the additional assumption of Lemma 5.6 is satisfied with e == 773. In both cases, we are
done. So in the future analysis, assume that b is not immediate.

• P is not subordinate to p, i.e. either p and P are independent, or p is subordinate to
P. In those cases the domain of the canonical extension pe of p does not contain '0(0).
By inspection of the construction of the separating symbol carried out in the proof of
Lemma 5.1, we see that A^(b) has the structure ^(p^^B' \ B) e A) where A may be
A^(p) or may be degenerate. The estimate ^3, at the same time, is a lower bound for

mod A'(V) + mod -^(A^p)) + mod ^(A).

So, it suffices if we show that

mod (A'(&) C ̂ ~\A\p)) ̂  mod A\b) + mod ̂ A^p) + e

where e only depends on /?o. However, A' (b) = {pe o ̂ ^(B \ B) while A\p) =
p^l{B' \ B). Applying the assumption of the Lemma with A = B \ B and M = /3o/8,
we are done.

• P is subordinate to p. Notice that Lemma 5.8 is pretty useless here since we have
no bound for the parameter Lf used there. However, the argument of Lemma 5.8 about
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the analogy with the immediate case still applies. More specifically, P is then in the form
P ' o p^ where P ' is another univalent branch of (f). We define the separating annuli

Af{b)=^-l{p;l(B\B))
AsW^io^A^PQ)

The proof of Proposition 4 is finished.

7. Rotation-Like Returns

7.1. Outline of the work

In order to finish the proof of Theorem C, we need the following:

PROPOSITION 5. - Let (f) := (f)Q be holomorphic type I box mapping. Suppose that (j)
restricted to the real line is a type I box mapping. Let f3 be a separation index of (f). Let
cf)^ for i = 0,1, • • • be a sequence (finite or not) of type I holomorphic box mappings set
up so that (f)i is derived from <^_i by a type I inducing step for i > 0. Assume also that
all (pi show rotation-like returns.

Then, for every /?o > 0, if (3 > /?o, there is an integer jo and a number e > 0 so that
f3 + e is a separation index for (^.

Note that Proposition 5, unlike our past work in the direction of Theorem C, requires
the mapping to be real. The proof uses already familiar tools, such as the Modulsatz, and
some real-variable work. The absolute version will be derived in the following chapter
using the technique of pull-back.

Plan of the proof

The proof will be presented as a sequence of steps. We will pick some j and will try
showing that i f j is large enough, than j + 10 can be used as jo in Proposition 5. We begin
by reducing the problem to the situation when central domains have suitable geometric
shape (no pinching). Next, we introduce a real measure of separation and show that in
the quasi-roundness situation it is equivalent to a separation index. Finally, we prove that
the real measure of separation increases.

Estimates in rotation-like sequences

We begin the proof of Proposition 5. Consider the rotation-like sequence <^ introduced
in the hypothesis of the Proposition. This is a subsequence of the sequence of type I
holomorphic box mappings (pk which is derived from <^o by simple inducing steps. We
have (pi = (pki for every i. For every k we define u(k) to be the greatest i for which
ki is not greater than k.

LEMMA 7.1. — For every (3o, there are numbers rj^0 > 0 with the following property.
Choose any k > k^ and assume that {3 + rj is not a separation index for (f)u{k)^- Then a
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pseudo-immediate branch b of (pk has a normalized separation symbol -with norm f3 and
selected so that s^b) > 0.

Proof. - The claim of our lemma is obvious when k = ki for some %. From the way
A^(b) is selected in the construction (see Lemma 5.6), s^ is at least /3/4. In the same
situation, we can also assume that

(34) /3/2 > 2^i (&) > mod {B[ \ B,

Indeed, the subsequent estimates are based on the presumption of equality, so if this were
violated, we could get an improved norm of the separation symbol for immediate branches
right away. That would lead to the increase of the separation index after another type I
inducing step (see Lemma 5.10.)

Passing to the case of an arbitrary fc, consider m = k - u{k). From the construction of
separating symbols in central returns, we see that s^{b) > |3/2rn^2. Now apply Proposition 4
and specify rj equal to So from that Proposition. We see that either we get growth of the
separation index, or mod (B' \ B) > <?i for y?fe. From estimate (34), we get /? > 2m+25l,
hence s^(b) > f^. D

LEMMA 7.2. - There are numbers Q and 77 > 0 depending only on /?o with the following
property. Choose some k > k\ and consider ^pk- Suppose that ? + T] is not a separation
index for u(k) + 5. Let x and y be two points of the boundary of the central domain B
of (^. Then \x\/\y\ < Q.

Proof. - First we will show that the boundary B is not (e, M)-rough for some positive e
and M. Assume without loss of generality that for the normalized separation symbol of the
immediate branch with norm /3, we can assume s'z > 0 where 6 comes from Lemma 7.1
and depends only on /3o. Indeed, otherwise Lemma 7.1 implies that the separation index
grows by a definite amount r] for <^u(fc)+5. If we choose the same T] in Lemma 7.2, this
will be ruled out.

Next, we have two cases depending on whether (pk shows a close return or not. In the
case of a non-close return we refer to Lemma 6.6. Use that Lemma with parameters /3o
taken from the hypothesis of Proposition 5, ao and o;i equal to 0 from Lemma 7.1, A
equal to 0. The last parameter e will be specified later. By Lemma 6.6 we get that for
every positive e there are M, independent of e, and 6{e) so that if the central domain is
(e,M)-rough, then the separation index for <^(fc)+3 grows by 8{e). In the case of a close
return for ( p k , we get to the same conclusion by Lemma 6.7.

Next, we specify e depending ultimately only on /3o. If we specify rj in Lemma 7.2 to
be less or equal to S{c), the property derived in the preceding paragraph means that the
boundary of B is not (e, M)-rough. The parameter e will be chosen from Lemma 7.2. The
parameters of that Lemma are set as follows. M is the M chosen above which ultimately
depends only on /?o, and S is free. This gives us a K which only depends on /3o and
A(^). We pick e equal to A(^).

We need only to prove that making 8 small enough, depending on K, implies the desired
property of the border of B. Observe that if diamB/|^/| = C~1, y on the border of B, then
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there are points y ' and y " on w so that \y' -y"\ < (C + 2<?)diam5 while the diameters of
both arcs of w joining y ' and y " are at least (1 — 2^)diam B. This is true since —y is also on
the border of B, and y " can be chosen close to -y. But {C + 2^)/(1 - 26) > Qi(K) > 0
from the three-point property (see Fact 6.3). So choosing ^ < 1/4 and C ^ S < -^Q-^{K)
will imply the desired property. D

7.2. Real separation

The real separation index

Let ( / ) = (f)j for j > 2. Denote by J9o the domain of the central branch on the real line
and by D\ the domain of some univalent branch also intersected with the real line. Let
2rri be the length of B H R and x-z denote dist(0, jDi) + |Di|. Then, the quantity

7(<^) = log x\x^

|A)| • l^i
is the real separation index.

Real and complex separation

LEMMA 7.3. - Choose k > k^ with separation index f3 so that ^pk makes a non-close
return. Assume that 7 is the real separation index of (pk-

Then, there are numbers K and T] > 0, both only depending on the parameter /3o from
Proposition 5 so that the following alternative holds:

• /3 + rj is a separation index for (j)u{k)^
• the immediate branches of'(^+1 have normalized separation symbols with norm 7 — K.

Proof. - Choose rj the same as obtained in Lemma 7.2 and suppose that the first part of
the alternative does not hold . Then the hypotheses of Lemma 7.2 are satisfied for (^-i,
(pk and (^fc+i. and hence if B is the central domain of any of these maps, then |.r|/|^| < Q
for all x ^ y in the border of B and with Q dependent only on f3o. Notice that for (^ and
(^fc+i the same estimate holds for x, y in the border of B\ since B ' is the same as B
one simple inducing step before.

Let (f) be either (^ are (^+1 with real parameters x\ and x^ as in the definition of the
real separation index. Use notations DQ and D\ for the intersections of domains with the
real line. We first build A^ (b) as the round ring domain bounded by the circle centered at
0 with radius Q • DQ\ and another concentric circle with radius x^ /2. Let us assume that
x^ > 2Q\Do\. Otherwise, make A'z(b) degenerate. Then A^(b) contains B in the bounded
component. The domain of b is the preimage of B by the canonical extension of 6. This
canonical extension has distortion bounded on the domain of b depending on /?o, from
Kobe's distortion lemma. Hence, this domain is contained in the disc of radius Qi|2?i|
centered in the endpoint of D\ further from B. The constant Qi is determined by Q and
the distortion of the canonical extension of 6, hence ultimately by f3o only. Thus, unless

^2<2Qi|J9i
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the domain of b is in the unbounded component of the complement of A^{b\ On the
other hand, if

T^<20i
1-Dil "1

then also —L) < 2Qi this time using the canonical extension on the real line which has
negative Schwarzian derivative. In that case, 7 is bounded by a constant and we take the
whole separation symbol to be degenerate. Then we built Ai(6) as the ring domain

f ^2 . i , ^i 1
[ Z : ^ < ^ < Q ] •

Since \x\/\y\ < Q for x, y in the border of B\ this is a valid choice. Hence we can pick

i ^1 v51 =log.—,- -K^
l^o |

i x2 v52 = log ———. - Ki
l^ol

where K\ is a constant depending only on /3o.
Next, construct the separating annuli for an immediate branch b of ^A;+I- The construction

of A^b) follows the same reasoning as above. By elementary calculation,

where K^ is a positive constant depedning on the distortion, and thus on /3o. Similarly,

Hence, we can take

1 1 x^ v
51=210g^-^

1 i x2 ^^^m-^
Then A\b) also has modulus at least 5i. The annulus A^(b) is obtained by taking the
preimage of A^(V) constructed for (j) by the central branch of ^, and to get A^b) we take
the preimage of Ai(b) by the central branch. We get

53 ̂ -li10^"2^3
1 x\ \. x\

54=7-2log,^+2log^-2^3

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



464 J. GRACZYK AND G. SWI^TEK

where K^ is a constant determined by /3o. Set

^=^-2K,
1 1 7Ai =^logrri - ̂ log|Di| - ,

^2=-^ log^+^ log | I5 i |+ j

It is clear that Ai + \^ > 0 and Si are determined by /?' and the corrections as demanded
by the definition of the normalized separation symbol. It remains to see that |A,| < 2. To
this end, it is sufficient to demonstrate Ai, A2 < /372 = 7/3 - K^. We estimate

A i = ^ l o g m - ^ l o g | P i | - j = j - ^ l o g r r 2 + ^ l o g | £ ) o | - j < -

We indeed have 7/6 < ^ - K^ unless 7 < 6^3, which means that 7 is bounded by
a constant depending only on /?o and we can take the complex separation index to be 0.
To bound ^2, observe again that

^1 . ^2

|A)| - 1-DiF
Thus,

A2 = -|(log^ - log \D,\) + j < -^ + j = ̂ .

Again, either 7/12 < /?72 or 7 is bounded by a constant. D

Proof of Proposition 5. - We are assuming that we are in the situation of Proposition 5.

Step I

We prove that (J)Q has a real separation index at least (3 — K where K depends only on
A). Also, | Bo | /| BQ | < 1 - K ' where K ' > 0 also depends on A) only.

We will use the notations Di and Xi as introduced by the definition of the real separation
index. Shift the frame by a translation so that zi > 0 is an endpoint of Do, 0 is the other
endpoint of Do and z^ > 0 is an endpoint of D^ closer to DQ. From Fact 6.2 we get

2x^
— — > ^ i - 2 1 o g 4 .
l^ol

Hence, logx^/\Do\ > 5i -K^ where A^i is a constant. In a similar fashion we estimate that

log —— >s^-K^
l^il

The claim of Step I follows.
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Step II
Next, we prove that the real separation indexes 7(0z) increase. More precisely, for every

Q there is N depending only on Q and Ro so that 7(0,) - 7(^0) > Q for all i ^ TV.
By Theorem A, there is a number A/i depending only on K/ from the claim of Step I

so that | jB,|/|^| < 0.37 for all i > M. Next, we need to look into Proposition 1.
Subsitutting 0o := (f>Ni in the statement of that Proposition, we discover the following
connection between that numbers On and 7^ used there and the parameters used to define
the real separation index:

-1 ^ ^l(^n+Ni)
an ~ |Wn+Nj|

-1 ^ ^2(0n+Ni) _ -.
7n ~ |Dl(0n+Nj| *

Hence,

7(^n+lVi) >log-
O^n^n

In this situation, the claim of Step II follows directly from Proposition 1.

Step III - conclusion
To avoid a clash of notations, introduce K^ and make it equal to K obtained in

Lemma 7.3. In the claim of Step II, choose Q = 2(K + K^) with K from Step I. Take N
from Step II. We know that for any i > N , the real separation index 7(^1) exceeds f3 by
more that 2J^i. Next, pick any i at least equal to N +1 and 3, and pick k so that (pk yields
(f)i in a simple inducing step. We apply Lemma 7.3 in this situation. One thing we leave
to the reader to check is that 7(^) > 7(0n(fc)) d'e. the real separation index does not
decrease in close returns.) Lemma 7.3 leaves us with two alternatives. The first one means
that the claim of Proposition 5 is satisfied with jo = N + 6 and e := T] where T] is taken
from Lemma 7.3. But the second alternative also leads to the Proposition holding true, this
time with jo = N + 2 and e depending and K^. When the second part of the alternative
holds, we get an improvement in the norm of the separaton symbol for the immediate
branches of <^+i, and then we need one more inducing step to translate that to the increase
of the separation index by Lemma 5.10. Now Proposition 5 has been demonstrated.

Proof of Theorem C. - The first step is to estimate the separation index for the mapping
0o in the statement of Theorem C. As a consequence of the fact that 0o is derived from
(f) by filling-in, every univalent branch of 0o can be assigned a separation symbol with
bounds (/3o,0,/?o,/3o). It is easy to see that by decreasing some of these bounds we get
a normalized separation symbol with norm /?o/2.

Next, we prove that the separation symbol grows. That is, we demonstrate the following
Claim:
if (f)o is a holomorphic type I box mapping whose restriction to the real line is a real box
mapping and whose separation index is /? > /?i, then there are numbers N and 6 > 0
depending only on f3\ so that f3 + 8 is the separation index for ( J ) N .
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Let us first look at Proposition 4. Its parameters /?o and ao can be made /?i/4, and then
we can apply this Proposition to any (j) := (f)j for j > 0. In any case, we get parameters So
and §i. Next, try to apply Proposition 3 with j > 3 and L := S^. From Proposition 4, we
see that if the assumption of Proposition 3 is violated, then our Claim holds with N :== j+3
and 6 := 6\. But, if the these assumptions are satisfied and if (f)j makes a non-rotational
return, then the Claim also holds with N := j + 1 and 8 equal to K from Proposition 3.

Now take the parameter jo from Proposition 5. The reasoning conducted above can be
applied with any 3 < j < JQ + 3 and shows that the Claim is valid unless for all these
j the mapping (f)j shows a rotation-like return. Then, however, we apply Proposition 5
to the rotation-like sequence beginning with ^3 and we see that the Claim holds again.
So we proved the Claim.

Now, the separation index grows at a linear rate as is evident from using the Claim to
(I)Q, cf>N, etc. Theorem C follows by Lemma 5.1.

Part IV

Construction of Box Mapping

Preliminaries

The construction of holomorphic box structure is based on two crucial concepts: the
method of inducing and a combination of real induction with hyperbolic geometry. Our
approach to constructing domains in the complex plain avoids complicated initial estimates,
which are usually necessary to make the real induction work. Instead we are looking for a
certain weak topological condition of "expansion" in the complex domain, i.e. small sets
being mapped to larger sets. Expansion measured in terms of moduli, once established
and uniform, will persist (even grow) during the inducing procedure due to our complex
induction until a terminal map is obtained. As we will see, the lack of this weak "expansion"
in the complex plane must be compensated by the rapidly growing expansion on the real line
around the critical point. This will lead to the direct construction of the uniform complex
box structure after a uniform number (large) of inducing steps. Finally, by compactness
argument, we will show that our procedure fails to produce the uniform complex box
structure in renormalizable situation only if a unimodal map exhibits a renormalization of
bounded combinatorics or has an almost parabolic point of large depth.

8. Real box mappings

We review the method of inducing and define the real inducing of real box mappings. We
emphasis that the real inducing, though conceptually very similar, is a different procedure
from type I inducing introduced in the first part of the paper.
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Type III of real box mappings

With a box mapping (f) we can always associate two domains B, and B ' . Suppose that
(j) is not terminal. Then the orbit <^(0) eventually escapes from B. Take the first point of
this orbit not in B and assume that it belongs to the domain Ap of a monotone branch ^p.
We will call Ap a postcritical domain and \p a gostritical branch of <^, respectively.

According to the definition we can have many non-equivalent states of box mappings.
For our current needs we introduce type III.

DEFINITION 8.1. - A box mapping (j) is of type I I I if the range of the postritical branch,
called B " , is an interval symmetric "with respect to 0 and satisfies

B C B" C B'

and the critical value <^(0) belongs to B".

We see that type III box mapping has one marked monotone branch, the postritical one,
whose image is larger than images of all others non-marked monotone branches.

8.1. Real inducing

Real inducing describes the dynamics of real box mappings.

Step A

Suppose that a box mapping (j) is given. Choose an interval U = (-a, a) to be contained
in the range of any monotone branch of 0 and so that a and —a are not in the domain
of (f). We will now describe an algorithm which transforms <j) into a new box mapping
(/)new of type III with B" = U. The operation will be called inducing step A. Note that the
outcome of Step A is determined by (f) as well as U.

Filling-in

For any x e A, where A is a connected component of the domain of (j) different from
the central domain, we define its landing time to be

l(x) :== min{% = 0,1,. • • : ̂ (x) e B}.

Note that the orbit ^(x) may be finite. By convention, l(x) is infinite if the orbit
never hits B. The set of points with infinite landing time is forward invariant and stays
away from B. The outcome of filling-in is the mapping (f)fuied-in defined on the set
W := [x e A : l{x) < 00} by

^ed-^n(^:=^)M.
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Dynamical extendibility of branches after filling-in

After filling-in every monotone branch of (j)fiiied-in has a dynamical extension with
range U. Observe that for every branch of (f)fuied-in, the domain of its extension onto U
is either contained in or disjoint with boxes Bf D B" = U D B.

Definition of (j) new - Consider now the mapping (f)fuied-in on the postcritical domain
Ap of ( / ) . Assume that the critical value ^(0) lands in the interior of the domain V of a
branch of (f)fuied-in' Let C be the extension of the branch defined on V with range U.
Then outside of the domain of C, set (f)new = ^filied-in' On the domain of C set ^new = C-

It is immediately seen that (f)new is a box mapping of type III with the same box structure
as (/). By definition, the central branches of (f) and (f)new coincide.

Step B - critical filling

Let (j) be a box mapping. A box mapping (f)new will arise as a result of critical filling.
By definition, (f)new coincides with (f) except on the central domain B of (f). On the central
domain B, we set <^ew to be equal to:

• (f>o ^ on B \ ̂ {B U A).
• ^ on ^{B).

It can be easily verified that critical filling gives a box mapping.

Complete inducing step

We will join step A and step B into one inducing step which is, by definition, a
composition of a certain number of steps B followed by step A. The number of steps B in
the procedure is determined by so called escaping time of the critical point. The complete
inducing step will transform a type III box mapping into another type III box mapping.

Close and non-close returns

A box mapping (f) exhibits a close return if '0(0) G B. A non-close return is the
complementary case.

DEFINITION 8.2. - The escaping time of (f) is defined to be

E := mm{i = 1,2,3, • • • : ^(0) ^ B }.

By convention, E = oo if the above set is empty.
If (/) is induced by a unimodal mapping /, then E = oo means that / has a restrictive

interval. For now, we rule this case out. We have very simple characterization of returns
in terms of the escaping time. Namely, E = 1 if and only if cf) shows a non-close return.

DEFINITION 8.3. - Given a type I I I box mapping (f) with escaping time E, the complete
inducing step is defined as follows.

^new == stepA o stepB o • • • o stepB ((,6),
E iterates
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Here Step A is carried out -with U equal to the central domain of the box mapping (j)
which results from (j) after E — 1 Steps B.

By construction, (f)new is a type III box mapping. Observe that B\(j)new} equals the
range of the postcritical branch of (f) while B"{(j)new} is contained in the central domain
B of 0, and equal to B exactly when 0 makes a non-close return.

Hyperbolic and parabolic returns

We distinguish between two different types of returns: a hyperbolic return defined by
condition that 0 is covered by the range of the central branch, and a parabolic return
which is the complementary case.

There is an important analytic difference between parabolic and hyperbolic close returns.
A deep hyperbolic close return (E is large) means that the critical value ^o lands in a
great proximity of a repelling periodic point. This implies some expansion and makes the
case relatively easy to deal with. A parabolic close return with long escaping time is the
hard case since no expansion is implied. This is the reason we had to make an exception
for almost parabolic points in the statement of Theorem 2.

9. From real to holomorphic box mapping

Standardized picture

Consider a type III box mapping (p. Let B ' = (-a, a) denote the smallest interval
symmetric with respect to 0 and containing the range of the central branch, B" = (-b, b)
the range of the postcritical branch, B the domain of the central branch, and ^ the central
branch itself. The important measures of the real box geometry of (p are its characteristic
ratio a{(p) = b and the characteristic cross-ratio r(^) = 2Poin(-a, c, b, a). If (p is
not terminal and after a complete inducing step another type III box mapping (^i arises,
analogous notations will be used: B[ = J3", B'{ = (-c,c) and 2?i.

PROPOSITION 6. - Let (p be a type HI box mapping and consider its standardised picture.
Choose the orientation so that ('0(0), a) is the range of the central branch Let the escapng
time of ^ be E. For some e > 0, suppose that a(^) < 1 - e and a point x exists in
(-a,^(0)) but outside of the domain of the postcritical branch of the map obtained from
(p after E - 1 Steps B, so that

2Poin(-a, x, ̂ (0), a) < 1 - e .

Then, a type I box mapping (f) exists which can be obtained from ^ by a combination of
Steps A and B. This (/) has an analytic continuation $ as a type I holomorphic box mapping
(see Definition 2.2) with separation index K > 0 where K depends only on e.

Further on, we will refer to the construction of $ from (p as the general geometric
construction. The proof of the Proposition will occupy the rest of this section. We start the
proof with the definition of a well-known object in holomorphic dynamics.
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Quadratic-like maps

The concept of quadratic-like maps due to Douady and Hubbard turned out to be
especially fruitful in the study of iterates of rational maps. We will generalize their
construction.

DEFINITION 9.1. - A quadratic-like map g : U—>V is a proper holomorphic map of
degree 2 between two open topological disks U and V, U is compactly contained in V. We
call the modulus mod (V \U) a quadratic-like norm of g.

Geodesic neighborhoods

The following convenient tool was introduced by Sullivan [20]. We use several technical
properties and refer to literature for proofs [18]. Consider an interval [x — y^ x + y], y > 0,
on the real line.

DEFINITION 9.2. - Look at two circles passing through x — y and x + y, one centered at
x + it, and the other at x — it where t e R. Suppose that the circles intersect the real line
at angle a < Tr/2. Consider the two open discs delimited by these circles. The union of
these discs -will be called the geodesic neighborhood of [x — y^ x + y] with angle TV — a, and
denoted P(TT — a, [x — y^ x + y\)' Likewise, the intersection of these discs -will be called the
geodesic neighborhood of [x — y^ x + y] with angle a and denoted T>[a^[x — y ^ x -\- y\).

The following property makes the geodesic neighborhoods convenient.

Fact 9.1.

Let h be a real dijfeomorphism with range U and domain V. Suppose that h~1 from V
has an analytic continuation as a univalent mapping of the interior of the upper half-plane
into itself.

Then, for any a £ (0,7r) the preimage ofV(a^U) by the analytic continuation ofh is
contained in V(a^V).

9.1. General geometric construction

Consider the standardized picture for a type III box mapping cf). Choose the orientation
so that the central branch '0 takes its minimum at 0. If the escape time for (p is E, look at
the box mapping (f) obtained from (^ by E Steps B. The box mapping (/) has the postritical
branch \p mapping over B " . Let Ap be the postcritical domain, then Ap is contained in
one connected component of B" \ B'{.

LEMMA 9.1. - Suppose that for some x G (—a,^(0)) 2Poin(—a,rc,'0(0),a) < 1. Then
there exists a disk G so that

^(^CP^-^GQnR).

Proof. - Let G denote 'P(-|, {x^ a)) in the sense of Definition 9.2, or simply speaking just
the geometric disk with diameter (x,a). The key observation is that ^^(C?) C V{^,B)
if only Poin(—a,;r,^(0),a) < j. Indeed, representing ^(x) = h(x2) where h is a
diffeomorphism with non-positive Schwarzian derivative, this assumption implies that
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Ifa-^'^O))! < ^-^(O^a)! while by Fact 9.1 the preimage of G by the analytic
continuation of h is contained in the geometric disc with diameter (/i"1^), fa'^a)).
Now it follows immediately that indeed ^(G) C P(|,B). Observe that if a return is
hyperbolic, ^(0) G (-&,0), and a; < -b then ^(G) C C;. D

Construction of a quadratic-like map

In the hyperbolic case the construction is immediate, if only x < —6, since by Lemma 9.1,
^^(G?) C G. (see F^. 6). In the parabolic case of inducing (p cannot be terminal and
thus ^(0) G (c,6) (recall that (-c,c) stands for B[ in the standardized picture). Assume
that -a < x < c. We proceed to note that

(35) x?1 o ̂ ~\G) C Xp'W)) C V(\ H R) C G .

Fig. 6. - Construction of a holomorphic box mapping in the case of a hyperbolic return. The central branch ^
maps the shaded region onto the ball based on the interval (-b,a). We obtain a uniform lower bound on the
modulus by moving x = —b to the left.

So, the map \p o ̂  is polynomial-like of degree 2

(36) Xp o ̂  ̂ -1 ° Xp o ̂ "'(G) —— ̂ "'(^ •

Figure 7 shows the construction of a holomorphic box mapping in the case of a
parabolic return.
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Fig. 7. - Construction of a holomorphic box mapping in the case of a parabolic return. The shaded regions represent
respectively the central domain of the holomorphic box mapping and the preimage by the postcritical branch
\p of the quasidisk with the bold boundary. By our assumptions, the quasidisk is the preimage of the ball
based on the interval (c, a) by the central branch tp.

Norm of quadratic-like maps

We will estimate the norm of the quadratic-like maps: (36) and ip : ̂ ^(G) —> G in
the parabolic and the hyperbolic cases respectively.

Two estimates

We continue to work in the standardized picture. The configuration in the hyperbolic
setting is defined by: '0(0) G (-6,0) and b < x < '0(0).

Fact 9.2.

Let 7 := 2Poin(-a, x, '0(0), a) < 1 - e, e > 0. There is a positive constant K so that
for every (p in the hyperbolic setting one can choose a point — a < y < x s o that

• Poin(-a^(0),a) < j,
|(^)|.|(-^a)| ^ ^
|Q/,-.r)|.|(a;,a)| ^ A^

Proof. - Let ^ = l - p , 0 < p < l . With y = x, the Poin cross-ratio named is less
than j(l - s). One can move y by 8 := ^(1 - p)e\x\ to the left and the first estimate is still
satisfied. Indeed, |^(Q)| < ^ and j^q^- < ^(1 - p)pe. Therefore, the first cross-ratio is
bounded from above by j(l -pe). Clearly, after this move y > -a. This will make 1(^1

at least ^(1 — p)e while the complementary ratio in the second condition is bounded from
below by 1 - J7 > j by simple algebra. For p < ̂  the Fact follows. Hence, assume
that p > ^. Then Poin(-a,^^(0),a) is bounded from above by ^—^ < \ and we
can move y = x by ^\x\ to the left preserving the first estimate. Evidently, y > -a. The
second cross-ratio is larger than y^.
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In the parabolic setting assume that ^(0) e (c, b) and x = c. We have the following
estimate.

Fact 9.3.
Let 7 := 2Poin(—a, &, re, a) te less than 1 — e, e > 0. There is a positive constant K so

that for every y? in the parabolic setting one can choose a point — a < z < c s o that
• Poin(-a,^'0(0),a) < |,

|(^)|-|(5,a)| > ^
|(^6)|.|(c,a)| -̂ Jrvc?

Pwo/. - With z = c the cross-ratios Pom is less than j(l - e). One can move z by
£|& - c| to the left and the first estimate is still satisfied. Clearly, after this move z > -b.
This will make ^-^- at least e / 2 while the complementary ratio is bounded from below
by 1 - J7 > ^ D

Cross-ratio versus modulus

We choose points y and z from Fact 9.2 and Fact 9.3. As a consequence of
Proposition 10.3 and Facts 9.2 and 9.3, we have ^(G) C V(^,B) and

(37)
\(y,x)\ • \(-x,a)\
K^-^HMl -

(3,) N^ >- ̂
v / IM)1- IMI
where X is a positive constant.

In the hyperbolic setting G C ftp~l(G) while in the parabolic the preimage of the
diameter G n R of G by \ o ̂  is contained in (-&, -c). In both cases, the cross-ratios
which measure the nesting of {\~p1 o ̂ "^(G) and ^"^(G) respectively inside G are at
least Ke. Since both cross-ratio and modulus are linear-fraction invariants, the moduli of

(39) G \ [(x?1 o ̂ -^(G)] and G \ ̂ -\G)

are larger than the modulus of the annulus P(-l, 1) \ V(-r, r), where r satisfies

(1-r)2

= K e .
(1+r)2

By algebra, |r| < 1 - K ' e for a different constant K ' and finally we get K" ̂ /e as a
lower bound of the moduli (39). This completes the estimates in the hyperbolic case. In
the parabolic case we use a simple estimate of the modulus of the preimage of the annulus
A by a holomorphic mapping ^ of the degree 2

(40) mod (^(A)) > 1 mod (A).
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Therefore, by (40), the modulus of

^-loXp^~l)(G)\^-l(G)

is larger than (l/2)Kff^/£. The estimate depends only on e.

Complex domains of monotone branches

Concentrate on the mapping ^ derived from (f> by E — 1 Steps B, but let ^ still be
the "old" central branch of (p.

The range of every monotone branch \ of y/ contains B and therefore, the branch can
be analytically extended on a neighborhood of its real domain A^ so that the image of this
extension contains V(B) C ^^(G). For a hyperbolic return it is sufficient to construct a
holomorphic type II box mapping <&. Although the border of G may intersect the domain
of some univalent branch, the preimage of this domain will have no intersection with the
real line and hence can be dropped.

In the parabolic case (^ cannot be terminal and the analytic extension of \ maps

X-\^-\G))cV(^

univalently onto ^^(G). Now, do the critical pullback of all univalent branches ^. By
the Markov property and Fact 9.1, again we obtain a holomorphic box mapping of type II.

In both cases, after holomorphic filling-in, we get a type I box mapping $ with the box
structure B := '0-l o ̂  o ̂ "^G) and B' = ^^(G). We already know that the number
m := jmod (Bf \ B) is larger than zero in terms of e only.

Separation index

We are left with the task of estimating the separation index f3 of the box mapping
$. By the construction, the domain of every univalent branch of <I> together with its
natural univalent extension (mapping over B ' ) is either contained in B ' or disjoint with
B''. Thus, the separation symbol (^), % = 1, 2,3,4 of $ might be bounded from below by
(m, 0, m, m). Elementary algebra shows that a separation index f3 = m/2 will work for $.

10. From unimodal to box mapping

10.1. The initial box mapping

The fundamental inducing domain

DEFINITION 10.1. - The interval (~q,q) mil be called the fundamental inducing domain.
By the assumption that all periodic orbits are repelling, every chaotic / has a fixed

point q > 0.
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Induced mappings

If / is a unimodal polynomial then a piecewise map (f) is said to be induced by f if
every branch of (j) has the form f^ for some i > 0.

Construction

Given a mapping / G T^ there is a standard way of obtaining a box mapping <^i induced
by /. Let B° = J be the fundamental inducing domain of /. Then ^i is defined as the
first return mapping from the interior of the fundamental inducing domain into itself. One
easily verifies that so defined <^i is a box mapping. Let B1 be the central domain of <^i.
The box structure of <^i consists only of two boxes B° D B1.

Real a priori bounds

LEMMA 10.1. - There exists a constant e-o dependent only on T], f G ^, so that
IB1!/^0! < i -^o .

Proof. - Define Jk for k > 0 as the set of points in 1 > x > 0 whose first entry time into
the fundamental inducing domain is fc. Then J^+i = /y~l(-.4) where fr denotes the right
"lap" of /. The derivative of fr on (q, 1) is greater than 1, since it is so at the endpoints
q and 1 and Schwarzian derivative is negative. So \Jk\ form a decreasing sequence. Now
B1 is the preimage by / = h(x2) of this J^o which contains the critical value of /. At the
same time, B° \ B1 is the preimage of the union of Jk for k < fco. The Poincare length of
Jko with respect to (g, 1 + rj) is less than a uniform constant depending solely on 77. Since
h~1 contracts the Poincare distance and x2 distorts the ratio by at most squaring, the ratio
| B1 I / I 2?° | is indeed bounded away from 1 in terms of 77 only. D

Every monotone branch of 0i ranges over B°. We subject 0i to Step A with U chosen
to be B°. That results in a box mapping <^i of type III with B\(J)^) = B"(<^i) = B° and
the same central domain as (j). As we proceed by another complete inducing step applied
to <^i, we get a mapping ̂  with boxes B, B" C B and Bf = B" = B ' . As the result of
the estimate of I^^/IB0], for the characteristic ratio of ^2 we get 0(^2) < 1 - £o-

The induced sequence

DEFINITION 10.2. - The sequence (j)zfor i > 2 constructed so that (pi is obtained from (f)^
by i — 2 complete inducing steps is called the induced sequence.

10.2. Conditional construction property of the real inducing

Now, we are in position to formulate the main geometric property of the real inducing
procedure. Loosely speaking, we have always two possibilities: either the induced sequence
terminates (< N{rj)) almost immediately or after n < N(r]) complete inducing steps we
can build an induced holomorphic box mapping $ with the separation index [3(r]) > 0.

PROPOSITION 7. - Let f € J^r] be a polynomial unimodal map. Then there are numbers
K and N dependent on T] only, so that for every f G ̂  an induced sequence of the box
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mappings (j)z, 0 < i < n exists, which satisfies the conditions:
1. n < N ,
2. there is either a holomorphic box mapping $ obtained from (pn by the general geometric

construction with the separation index larger than K or (f)n is terminal.
The following observation stated as Lemma 10.2 plays the crutial role in the proof of

Proposition 7. The characteristic ratio a(^i) of the output of the real inducing procudure
is either smaller by the definite factor then that of an input or the characteristic cross-ratio
r(0i) is smaller than 1. In the latter case, one will always be able to apply Proposition 6
with x = c for parabolic returns and x = b for hyperbolic ones and thus prove the existence
of an induced holomorphic box mapping <&.

LEMMA 10.2. - Consider a type I I I box mapping (p and choose 6 so that a((p) < S. Then
for every S < 1 there is a number X < 1 so that whenever in the standardised picture

^ > Aa((^),

then r(y) < 1 - (1: .̂

Proof. - Denote a = a((p) and ai = j.

(41) rW = 2Poinf-l, a, 1,1) = - 4a(l -al) . .
\ a a ) (1 — a-^a)(l + a)

Notice that this expression decreases with ai increasing as a is kept fixed and increases
as a increases and ai is fixed. Hence, assuming ai > \a for some positive A, we get

4ao(l - Aao)1 — r [ ( p ) > 1 —
( l -Aa§) ( l+ao) '

The difference on the right-hand for A = 1 expresses nicely as

/ l - a o V ( l - a o ) 2

V l + a o Y - 4
The value of A < 1 can be picked for every 8 to satisfy the claim of the lemma by
continuity. D

Estimates of characteristic cross-ratios

LEMMA 10.3. - There are constants e and N depending only on the a priori bound 1— eo
(EQ is a function of T] only), and an index 2 < j < N so that either

• <j)j is terminal
• both oc((j)j) and r(^) are less than 1 — e.

Proof. - Assume that for j < N none of the box mappings ^ is terminal. We will
show that there is a universal constant K and an index j < N so that a((f)j) < 1 — £o and
r((f)j) < 1 - Ke^, where eo is a constant from Lemma 10.1. We know that 0(^2) < 1 - ̂ o-
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Substitute 8 := a((f)^ into Lemma 10.2 to get the A. Observe that A is a universal constant.
Next, choose j as the smallest integer at least equal to 2 so that either a(<^+i) > Aa(^j)
or a((f)j) < \. Proposition 10.3 follows when we show:

• that j is bounded from above depending only £Q.
• that the estimates claimed in Proposition 10.3 hold for (j)j.
The first statement is immediate since until j is reached a{(f)j) have to decrease with

ratio A. For the second statement, observe first that a((f)j) < 1 - £o. Indeed, this estimate
held j := 2 and the characteristic ratios keep decreasing until j is reached. If o^+i > Ao^,
then the needed estimate for r(^) follows directly from Lemma 10.2 with K = ̂ . All we
are left to do is to prove that r(^) is bounded as needed when a((f)j) < ̂ .

The case of a small nest

Returning to the proof of Lemma 10.2, we recall the estimate (41) which is applied here
for (p := (p j , a := a{(f)j) and ai := a(^+i). If a < ^, the maximal value of the right-hand
side is obtained by setting ai = 0, and this value is |. In this case, K = j will do. D

Now, Proposition 7 follows from Lemma 10.3 and Proposition 6 applied with x = c for
a parabolic return and x = -b for a hyperbolic one.

11. Long return time

For a map / G T^ let k denote the maximum depth of almost parabolic points with
periods less than the return time of the restrictive interval if / is renormalizable, or oo if not.

PROPOSITION 8. - Suppose that the map (f)n in the induced sequence (<^)?=2 ls terminal and
n < N, where N is a constant of Proposition 7. If the return time of the restrictive interval
is larger than M(k, 77), then there exist a number K{r]) and an induced holomorphic box
mapping $ obtained from (f>i, i < n, by the general geometric construction so that the
separation index of $ is larger than K{r]}.

We will start with the following observation. Even though a box mapping in an induced
sequence is not derived from its predecessor as the first return map to the central domain,
recall close returns, it shares one important property with the latter.

LEMMA 11.1. - Every branch of the box mapping from the induced sequence (<^)^i
has the property that no intermediate images of the domain of the branch enter the central
domain.

Proof. - The statement is verified by induction. By the definition, <^o is the first return
time to the fundamental inducing domain while <^i is derived from <^o through filling-in,
i.e. by taking the first landing map to the central domain. The central domain of <^ is
defined as the preimage of the 1-box extension of the domain of a monotone branch
of <^_i by the 0^!i1 and thus by the induction hypothesis has no intermediate images
entering itself. The same is true for all newly created long branches. They will be next
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subjected to the filling-in procedure which is defined as the first landing map to the new
central domain. This completes the proof. D

The next lemma essentially expresses the compactness of finite induced sequences.

LEMMA 11.2. - Let (f)n be a terminal real box mapping in the induced sequence ((^)^,
n < N. For any number S > 0, there exist integers M(k^ 8^ T]) and i < n so that if the
return time of the restrictive interval off is larger than M(fc, 8^ T]) then either

|B(^n)| . g
• |B/(^)| < ° or

• there exists 2 < i < n so that a((f)i) < S.

Proof. - Let ^(fc) be the subclass of T^ such that the depths of almost parabolic points
of period less than the return time of the restrictive interval are less than fc. We begin by
observing that ^(fe) is a bounded in the (72'1 norm, and thus normal in the C2 topology.
Indeed, all members of this family are in the form hf(z — 1/2)2. Diffeomorphisms hf are
of negative Schwarzian derivative and uniformly yy-extendible. It is a well known fact the
Schwarzian derivative of an e-extendible iterate of a one-dimensional map with finitely
many polynomial-type singularities is bounded from below uniformly in terms of e (see a
proof of a very similar estimate in [5].) Thus the normality follows.

Suppose the Lemma is false. Then the lengths of the central boxes -8^,1 < i < n, would
be larger than L{f)6\ where L(f) stands for the length of the fundamental inducing
interval. It is not a hard fact (see [7]) that L is bounded away from zero in terms of T]
only. Consider a limit g of maps from ^(k) which have increasing return times of the
restrictive intervals while the lengths of central boxes remain bounded away from 0. Now
one can easily see that g has a homterval, i.e. an interval on which all iterations of g
are monotone. We conclude that g must have a non-repelling, thus neutral cycle. We also
notice that g continues to expand cross-ratios, thus by [19] this neutral orbit is unique and
the critical point is in the immediate basin of one point, say p. Now carry out the inducing
process for g. The critical point and p will always stay together in the central branch, since
branches in the inducing construction are separated by preimages of the fixed point. Next,
Fact 11.1 says that for any branch, no intermediate images enter the central domain. From
this observation it follows that return times on the central branch in the inducing process
for g cannot jump over the period of p. Thus, after finitely many steps an induced map
is obtained which exhibits a close return (which must be parabolic, i.e. the image of the
real central branch does not cover the critical point). Now, if we take a map / from the
sequence which allegedly contradicts the claim of the lemma which is very close to g in
the C2 topology, the construction is conducted in the same way for /, since the course of
the construction only depends on where the critical value falls with the respect to the mesh
built up by finitely many preimages of the fixed point. The map / will show a parabolic
return, but will recover from it after a large number of inducing steps B. Since it takes a
long time for the critical value to escape the central domain, and this time can be made
arbitrarily large by choosing / close enough to g, we can obtain a map / with an arbitrary
long escaping time, contradiction. D
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An induced holomorphic box mapping

Without loss of generality, see Proposition 8 and Proposition 6, we may assume that all
characteristic ratios a(^,) are less than 1 - £o, £o > 0 is function of 77 only. Let S = \.
Then, by Lemma 11.2, there exists 1 < i < n so that the characteristic cross-ratio r(0,) is
less than 4/5. Proposition 8 follows by Proposition 6 with the usual substitution of x = -b
for a hyperbolic return and x = c for the parabolic one.

12. Analysis of hyperbolic close returns

In this section we prove that if <^, i < N , exhibits a hyperbolic close return (the escape
time E > 1) and has no a holomorphic box structure then after a bounded number of steps
A of the real inducing procedure we reach a uniform holomorphic box structure.

Assumptions and formulation of results

Consider the standarized picture (p for a type III box mapping (^ obtained from / € ̂
by the inducing construction. By Lemma 10.1 and Proposition 10.3, the characteristic ratio
a(y?) is less than 1 - £Q and £Q > 0 depends on T] only.

We define a collection of intermediate domains that arise while iterating step A of the
real inducing procedure.

DEFINITION 12.1. - Let B° =: B. Define inductively domains B1, 0 < %, by

B^1^:^-1^)

Fact 12.1.

The intersection of all intervals Q^i B' is equal to the interval [r, r'\, where r is a
repelling fixed point of^ and r ' is its preimage. In particular, both r, r ' € BE~1.

We normalize B1, by affine change of coordinates to (-1,1). Denote by ̂ , 1 < i < E,
an induced real box mapping obtained from (p by i inducing steps A.

PROPOSITION 9. - There exist constants EQ and K and an induced holomorphic box
mapping <1> so that if the escape time E > EQ then

• i < EQ and <I> is obtained from (pi by the general geometric construction.
• $ has a holomorphic box structure with the separation index larger then K.
The constants EQ and K depend only on the characteristic ratio a(y).
Without loss of generality we may assume that IB^/IB'I ^ 1/4. Indeed, since if not

then the characterictic cross-ratio r((/?i) is less than 4/5 and by Proposition 6 applied
with x = -b we have an induced holomorphic box mapping $ with the separation index
bounded by a positive number independent from /.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



480 J. GRACZYK AND G. SWI^TEK

Real geometry of hyperbolic close returns

The central branch ^ = h(x2). By the real Koebe Lemma, h has bounded distortion
on h~^{B'} D [O?!]. The bound depends solely on a((p). Observe that the derivative
of h restricted to [0,1] is less than a constant that depends again only on a((^). To
see this apply the Mean Value Theorem, i.e. find a point x G B1 so that the derivative
h\x) < 2|BO|/|B1|. We spread out this estimate obtained at x, by the bounded distortion
property of h, over [0,1].

The next Fact results from the following simple computation

^.J4"''^2'-2"'-
Fact 12.2.

The repelling fixed point r of ̂  is at a definite distance from the critical point 0.
Without loss of generality we may assume that both the preimage q' and the critical

value ^(0) are positive. Of course, |r| = Ir ' l . Denote the endpoint of B^ contained in R_
by di. We will show that the sequence 0,1 approaches q exponentially fast with the uniform
rate. In particular it will imply that the eigenvalue of r is uniformly greater than 1.

LEMMA 12.1. - For any a^ i > 2, the following inequality holds

^-^ ^ Poin(ai,a,_i,0y) h_^i .
\r — ai| |r — ai|

Proof. - Observe that

(42) • " a d = -^ Poin(ai, a,, r, 0)|r-ai| |ai|
which, by expanding cross-ratio property, is smaller than

—— Poin(ao, a,_i, r, ̂ (0)).
l^l

The assumption that the map (/) is not terminal, ^(0) > r', and algebra implies that

(43) Poin(ao,a,_i,r,^(0)) < ^—a^ ^ ~ aA

|r-ai| | r -a^_i |
Clearly, |a,| < |a^_i|. Combine (42) and (43) together and replace in the resulting
inequality |a^| by |a^_i|. The Lemma follows. D

LEMMA 12.2. - The ratio |ai|/|a2| is smaller than K < 1 and the bound K depends
on a((p) only.

Proof. - The diffeomorphism h identifies the triples

(|al|2,|a2^0)^(|ao|Jal|,^0))

and distortes distances only by a bounded amount. In our situation, |^(0)| < |ai| which
yields the claim of the Lemma. D
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Construction of $

From Lemmas 12.1 and 12.2 we infer that the cross-ratio Poin(ai, a^_i, 0, r') is smaller
than 1 - 6 and 6 > 0 depends only on a(^). Lemma 12.1 asserts that the sequence a^
tends to q uniformly fast. Therefore, after a bounded number of inducing Steps A the
characteristic cross-ratio r((^) < 2Poin(ao, a,, r, -a^) will become smaller than 1. If we
choose i carefully, i.e. i should not be too large, then r((pi) is bounded away from 1
in terms of o^) only.

The ranges of all monotone branches of a real box mapping (pi contain the interval
(a,,-a,). We fill-in all these monotone branches. As an outcome we obtain a type III
real box mapping with the real box structure B = (a^, -a^), B" = (a,_i, -a^-i) and B'
unchanged from the initial one. The proof of the existence of $ is completed by invoking
Proposition 6 with x chosen to be the endpoint of B" closer to the critical value.
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