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THE KERNEL OF AN HOMOMORPHISM
OF HARISH-CHANDRA

BY T. LEVASSEUR AND J. T. STAFFORD

ABSTRACT. - Let 0 be a reductive, complex Lie algebra, with adjoint group G, let G act on the ring of differential
operators ^(g) via the adjoint action and write r : Q —» ^(fl) for the differential of this action. A classic result of
Harish-Chandra shows that any invariant differential operator that kills 0(Q)0, the algebra of invariant functions
on 0, also kills all invariant distributions on a real form of g. In this paper we generalize this result by showing that

^(Q)r(Q)={e^/D(Q):e(0(Q)G)=0}.

This answers a question raised by Dixmier, by Wallach and by Schwarz.

Key words and phrases. Invariant differential operators, invariant distributions, semi-simple Lie algebras.

1. Introduction

Let G be a connected complex reductive algebraic group with Lie algebra 0. Fix a
Cartan subalgebra \} and let W be the Weyl group associated to (0, ()). Denote by 0(s)
and 'D(s) the algebras of polynomial functions and differential operators on Q. The group
G acts on Q by the adjoint action, and therefore has an induced action on 0{^) and 'D(^).
In [6], Harish-Chandra defines a homomorphism 8 : V^)0 —^ 'D{^))W and, by [14], 8 is
surjective. The significance of this result is illustrated by the fact that it allows one to give
relatively easy proofs of important theorems of Harish-Chandra (see [21]).

One would also like to understand the kernel of 8 and one aim of this paper is to
study this ideal. Set

J = [d e P(s) | V/ e 0(0)^ d(f) = 0}, and I = J H V^)0.

The differential of the adjoint action of G on s will be denoted by TQ (or simply r); thus,
T : Q —^ ^(fl) is a Lie algebra map. It is immediate that T(^) C J and the construction
of 8 ensures that Z = Ker<$. This leads to the natural question, raised in [4, 1.2], [21,
Section 4] and [19, Section 3]:

(+) Does J = V{Q)r(Q)7
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386 T. LEVASSEUR AND J. T. STAFFORD

In [4, Theorem 2.1], Dixmier shows that this is tme at the level of vector fields while,
in [21, Lemma 4.11, Wallach proves that I/^V^Q)0 H V^T^Q)) is torsion with respect
to the discriminant of Q.

The first main result of this paper answers question (f) in the affirmative:

THEOREM 1.1. - J = P(0)T(0). Hence I = V{Q)° H ̂ (^(s).

The analogue of this theorem for analytic differential operators also holds and follows
routinely from the stated, algebraic result (see Corollary 5.6). One reason why Dixmier
and Wallach raised Question (f) is that it has as an immediate corollary the following
fundamental result of Harish-Chandra [8, Theorem 5]: Fix a real form Qo of Q and
assume that 0 is an open, completely invariant subset of Qo. Write P'(^)^0 for the set of
distributions on f^ that are invariant under the action of the adjoint group C?o of QQ. Then
I = {d (E V^)0 : dV^)00 = 0}. The proof of Theorem 1.1, while very different from
Harish-Chandra's proof of [8, Theorem 5], is no easier.

In proving Theorem 1.1 we also provide some detailed information about the structure
of A/0 = 'D(fl)/P(^)T(0). In order to state the result, we need some notation. Identify
S(Q) with the constant coefficient differential operators on 0. Recall that a finitely
generated P(^()-module M is called Cohen-Macaulay if there exists p e N such that
Ext^^(.M,P(0)) = (0) for i / p. In this case, p is the projective homological
dimension of A4, and M. is homogeneous of Gelfand-Kirillov dimension 2 dim 3 — p
[1, Theorem 11.7.1, Theorem 11.7.8]. Observe that A/g is a right module over TD(^)°
and, hence, over S(Q)°. Thus, the next result, which provides the Lie algebra version of
[12, Theorem 3], makes sense.

THEOREM 1.2. - (i) The V(Q)-module A/g = P(0)/P(s)r(0) is Cohen-Macaulay of
projective dimension dim0 — rkfl.

(ii) A/g is a flat right S(Q)°-module.

In outline, the proofs of the above theorems are as follows. In Section 2 we study certain
(P(0), ^(f^^-bimodules. In Section 3 the results of Section 2 are combined with some
easy, known facts about A/g to show that Theorem 1.2 holds for the module N = T)(^)jJ
and that C = Ker(A/3 —^ N) is generated by its G-invariants. In Section 4 we provide an
inductive argument that reduces the problem to the case where C is supported on N(5),
the nilpotent cone of 0. As is shown in Section 5, it follows easily that C is of finite length.
Moreover, if C / 0, then some non-zero element of C is killed by a co-finite dimensional
ideal of S{Q)° and by a power of the augmentation ideal of S^)0 as well as by T(5). At
this stage one appeals to a result of Harish-Chandra (see Theorem 5.2 and the comments
thereafter) to show that such an element must be zero.

2. (P(fi), P(l))^)-bimodules

The aim of this section is to study (^(g), ^(f^^-bimodules satisfying the property
of the following definition. The importance of this condition is that, as will be shown in
the next section, it is satisfied by N. This will form the starting point of our proof of
Theorems 1.1 and 1.2. The Gelfand-Kirillov dimension of a module M will be denoted
by GKdimM.
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THE KERNEL OF AN HOMOMORPHISM OF HARISH-CHANDRA 387

DEFINITION 2.1. - Define a non-zero (V{g), V{^))w)-bimodule M to satisfy property (*)
ifM is a finitely generated left T>{o)-module with GKdim^(g)M < rkg + dim 5.

Before stating the main results of this section, we need some definitions. The Krull
dimension, in the sense of Rentschler and Gabriel, of a module M over a ring R will
be denoted by KdimM. The module M will be called GK-homogeneous (respectively
Krull-homogeneous) if GKdimM' = GKdimM (respectively KdimM' = KdimM) for all
non-zero submodules M' of M. A module M with Gelfand-Kirillov dimension is called
critical if GKdimM' < GKdimM, for all proper factor modules M' of M. More details
about these concepts can be found in [15, Chapters 6 & 8].

PROPOSITION 2.2. - Let M be a (P{^), T>(^))w)-bimodule that satisfies property (*). Then,
GKdim^(g)M = rkfl + dim^ and KdimM = rkg.

Proof. - Let CdimS' denote the maximal Krull dimension of a commutative, finitely
generated subring of a ring S. Clearly, CdimP^)^ > Cdim^t))^ = rkfl. As P^)^ is
simple [16, Theorem 2.15], the map ^(f))^ -^ End^(M) induced by the right action
of ^(t))^ on M is an injection. Thus, by [11, Proposition I.I], one obtains

rks < CdimD^ < CdimEnd^^M) < KdimM.

However, by [15, Corollary 8.5.6] and (*),

KdimM < GKdimM - dimg < rk0,

as required. D

COROLLARY 2.3. - Let M satisfy property (*). Then:

(i) As a left V(Q)-module, M is Krull and GK-homogeneous. Moreover, M has finite
length as a CP(fl), D^^^-bimodule.

(ii) As a left V(Q)-module, M is Cohen-Macaulay, with homological projective dimension
pdp^M = dims - rkfl.

Proof. - (i) If M is not GK-homogeneous, write T for the unique largest P({()-submodule
of M with GKdimT < GKdimM. Since T is mapped to itself by any P(fl)-endomorphism
of M, T is a (I>(s), P^^-bisubmodule of M. Thus, T satisfies (*). Thus, by
Proposition 2.2, GKdimT = rkfl + dim Q = GKdimM, a contradiction. Hence, M is
GK-homogeneous and, similarly, M is Krull-homogeneous.

Next, let M = Mo D Mi D • • • be any proper, descending chain of bisubmodules of M.
Then each M^/M,+i satisfies (*) and so Proposition 2.2 implies that

KdimM^/M^+i = rk^ = KdimM for each i.

By the definition of Krull dimension, this forces the chain to have finite length.
(ii) Let j(M) = min{j : Ext^^(M, P(s)) / 0}. By [1, Theorem IL5.15]

j(M) = GKdimP(0) - GKdim^^M = dim Q - rkfl.

Also Extip^M, T){Q)) / 0. Thus, if either assertion of part (ii) of the corollary is false,
there exists an integer s > dimfl - rkfl such that E = Extp^JM, P(s)) / 0. However,
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388 T. LEVASSEUR AND J. T. STAFFORD

E is naturally a ('D(I))1^ P(^))-bimodule, finitely generated as a right 2)(0)-module and,
by [1, Proposition 11.5.16],

GKdimp(g)£ < GKdimD(Q) - s < dims + rkfl.

This contradicts the left-hand analogue of Proposition 2.2. D

THEOREM 2.4. - L^ M be a (V(Q),/D(^))w)-bimodule, finitely generated as a left
V(Q)-module. Then, M is aflat right S^^-module.

Before proving this result we need some notation and a subsidiary lemma. Let
Ck == C[xi,... ,Xk} denote a polynomial ring in k variables and, for any non-zero linear
polynomial / C Ck, identify C k / ( f ) = C^-i. Define, inductively, ̂  to be the family
of torsion-free right C^-modules L such that L / L f G ^A—I. for all linear polynomials
o / / e Ck.

LEMMA 2.5. - IfL e T^ then L is aflat right Ck-module.

Proof. - Suppose that L has weak homological dimension r. By [15, Proposition 7.1.13],
there exists a simple C^-module S such that Tor^Z^S') / 0. Let / G Annc^(S) be a
non-zero linear form. By [3, p. 347], there is a spectral sequence associated to the change
of rings A = Ck -^ T = Ck/fC^:

E2^ = Tor^Tor^L, F), S) ==^ Tor^(£, S).

Since / is a non zero divisor in both L and A it is easy to see that Tor^L, F) = 0 for p > 1.
Since Tor^(£,r) = L / f L , the spectral sequence therefore collapses to isomorphisms

Tor^L/fL^)^Tor^S).

By induction Tor^ ( L / f L , S) = (0) for m / 0, hence the result. D

Proof of Theorem 2.4. - Set R = ^(f))^ C A = P(()) and identify A with P(C^) in
such a way that 5'(f)) is identified with C^. Let £ == M ̂ p A, which we regard as a
(P(s), A)-bimodule. Since pA is finitely generated, T>(Q)L is finitely generated. Since A is
simple, this implies that LA and LQ are torsion-free (use [5, Lemma 7.1]). If / e Cf is a
non-zero linear polynomial, we may choose the generators of Ci such that / = xi. Hence,
/ centralizes the natural copy of P(C^~1) in P(C^). Consequently, L / L f is a finitely
generated left ^(^-module that is also a (V{^\ P(C^-l))-bimodule. Thus, L / L f is also
torsion-free as a right module over ^(C^"1) and Q-i. By induction, therefore, L e J^.

By Lemma 2.5, £ is a flat right 5'(())-module. Since S(t)) is a free S {^w -module, by
[15, Proposition 7.2.2], £ is a flat right ^(t^-module.

As a C[TV]-module, P(f)) decomposes as P(()) = ^(f))^ C £), where £^ is the direct
sum of the non-trivial TV-modules. This is clearly a /D(^))w-bimo(Me decomposition and
so, under the natural embedding, R = ̂ (l))^ is an .R-bimodule summand of A = T>(\}\
Thus, as a right JZ-module, and therefore as a right S (1)) ̂ -module, M is a summand
of L = M <^R A. Hence, by the last paragraph, M is a flat right S (1))^ -module; as
required. D
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3. Preliminary results on A/g

Let G, 0, f) and W be as in Section 1 and write n = dims and i = dimt). In this
section we make some preliminary observations, mostly well-known, about the ^(s)-
module A/^ = P(s)/P(0)r(5). Combined with the results of the last section, these show
that N = T ) { ^ ) I J satisfies condition (*) of Definition 2.1 and hence that Theorem 1.2
holds for N.

Let K be a nondegenerate invariant symmetric bilinear form on 0. As usual, we identify
S with 0* through K. If T^^fl denotes the cotangent bundle, then T*g = g x g * ^ 0 X 0
is a G-variety under the adjoint action. Throughout, P(fl) and its subspaces will be filtered
by degree of differential operators. The principal symbol gr(T(v)) <E gr(I>(fl)) = 0(r*0)
of the vector field r(^), for v G fl, will be denoted by cr^); hence cr(v)(rr, ̂ ) = /^(v, [^, rr])
for (:r,$) e fl x fl. Given a finitely generated ;P(s)-module M, we denote its
characteristic variety by ChM C T*g, its characteristic cycle by ChM and its support
by SuppM = TTg(ChM) C 5, as defined in [2]. Recall from [2, VI.1.17] that SuppM
is Zariski closed.

We denote the discriminant of 0 by c^, and write ^ = [x G s I ^(^) 7^ 0} to Ae
set of generic elements. Let ^x denote the centralizer of x e 0 and write N(s) for the
nilpotent cone of 0. Recall that the commuting variety of Q is

C(0) = {(rr,0 G T*0 | ad^ = [^^] = 0}.

It follows from [17] that €(0) is irreducible of dimension n + L Note that C(fl) is the set
of zeroes of the ideal a = (a(x)',x € s) C 0(T*0) = gr(P(fl)). Set b = gr(P(0)r(fl))
and denote by p the prime ideal defining C(fl); hence a C b and ^/a = p. Therefore

(3.1) ChA/g C C(s)

In fact, it is known that one has equality in (3.1). Since we have been unable to find
an appropriate reference for this assertion, we will give a proof using the results of the
last section:

LEMMA 3.1. - (i) Both N and N ' = P(0)/(P(0)r(0) + V(Q)I) satisfy condition (*) of
Definition 2.7. In particular, cKd-^N == ow^N' = rkfl + dim^.

(ii) GKdimA/5 = dimC(s) and hence ChA^ == C(s).

Proof. - (i) By construction N and hence N ' are non-zero. Recall [14, Theorem 1]
that there exists an isomorphism 8 : V^)0/I -^ V(^))w. Under the embedding
V(Q)° ^ ^(fl), the left ideal J of ^(fl) becomes a right V(Q)° -module. Hence,
both N and N ' are right modules over V^)0/I ^ P^)^. Since both modules are
factors of P(0)/P(0)r(fl), it follows from (3.1) that

GKdimTV ^ GKdimTV' < dmiC(s) = rks + dims.

Thus, both modules satisfy (*) and so part (i) follows from Proposition 2.2.
(ii) This follows from part (i) and (3.1). D

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



390 T. LEVASSEUR AND J. T. STAFFORD

LEMMA 3.2. - (i) Let (x^) G C(fl). Set k = dim^ D ^ and denote by P(^)
the localisation of p at (x,^). Then P(^) contains a regular sequence of the form
{(r(vi),..., (r(vn-k)}, for some Vj G Q.

(ii) a^ = b^ = p^.

Pwo/. - (i) Let (A, m) be the local ring of T*0 at (x, ̂ ). If v G 0 it is easily seen that the
differential, da(v)(x, Q, ofa(v) at (a;, ^) is given by dcr(v)(^ ^)(a, 6) = ̂ , [6, rr]+[^ a]).
It follows that the subvector space of m/m2 = T^ ̂ ( r*fl) generated by the da(v)(r^ ^),
^ G 5, is of dimension n - k. Hence (i) follows from the fact that A is a regular local ring.

(ii) By Lemma 3.1 (ii), a C b C p. Assume that (x,^) G C(^) with x G 07. Since ^x is
a Cartan subalgebra of Q we obtain that Qx = Q" H ̂  is of dimension i. By the proof of
(i), the ideal generated by the a(^), i = 1 , . . . , n - I, is prime in A. Since p is prime of
height n - i, we can deduce B(^) = b(^) = P(a^)- Hence the result. D.

COROLLARY 3.3. - ChA/3 = [C(g)]. Moreover, A/g to (3 Mm'<^ submodule T with
GKdimT < rkfl + dimg such that ATg/T is a GK-critical module of Gelfand-Kirillov
dimension rkg + dimg.

Proof. - Set R = O(T*Q). From Lemma 3.2 we know that p^ = b^ = a^. Since
da (f: p it follows that pRp = bRp. Recall that the multiplicity ofA/g along C(Q) = V(p)
is defined to be

multv(p)A/^ = lengthy (gr(A^))p.
Since (gr^))? = I?p/pRp we have mult^p)./^ = 1. Therefore, by definition of the
characteristic cycle,

ChA/, = multv(p)A/,.[C(0)] = [€(5)].

In order to prove the second claim, note that Afg does have a unique submodule T,
maximal with respect to GKdimT < n + t. Moreover, M = Afg/T is GK-homogeneous
with GKdimM = n + L For any P(^)-module M we set Ch^M = ^;^multvM.[V],
the sum being taken over the irreducible components of ChM of dimension n + L
Consequently if M1 is a nonzero submodule of M then, by additivity of Ch^+^( ), one
obtains Ch^+^M/M7 = 0. Hence M is critical. D

Summarizing the results of this and the last section for the module N = V { Q ) / J , we
obtain the following result. As in Corollary 3.3, we write T for the largest submodule T
of A/g with GKdimT < GKdimA/g and we write C = Ker(Afg -^ N).

COROLLARY 3.4. - (i) If N ' = P(s)/(P(0)T(fl)+P(s)Z), then N ' = N = ATg/T.
Thus, C = T.

(ii) A/g = N <=^ A/g is GK-critical <^=^ A/g is GK-homogeneous.
(iii) As a left V{o}-module, N is Cohen-Macaulay with pdp. ^N = dim Q - rkQ.
(iv) As a right S^Q)0-module N is flat.
(v) N is a simple (P(fl), VW^Ybimodule.

Proof. - Lemma 3.1 and Corollary 2.3 imply that N and TV' are homogeneous left
P(0)-modules of Gelfand-Kirillov dimension rkg + dimQ. Hence, by Corollary 3.3,
N = N ' = A/5/T is GK-critical. Now apply Corollary 2.3 and Theorem 2.4. D
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4. Restriction to a reductive subalgebra

Recall that Theorem 1.1 asserts that C = Ker(A/0 —> TV) is zero. The aim of this section
is to give an inductive result that shows that, in order to prove this, one may assume that
C has finite length. Specifically, we prove that, if Theorem 1.1 holds for every proper,
reductive subalgebra of a semisimple Lie algebra 0, then C is supported on the nilpotent
cone N(0). It follows easily that C has finite length.

Our first proof of this result used analytic P-modules. We would like to thank G. Schwarz
and M. Van den Bergh for pointing out that one could obtain a direct, algebraic proof using
Luna's slice theorem. It is the latter proof that we present here. We should emphasize that
the key result. Proposition 4.4, is implicit in [18] and its proof is merely part of the proof
of [18 Theorem 4.9]. Unexplained terminology can be found in [18].

Assume that G is an arbitrary reductive algebraic group and that X is an affine G-
variety. Set Q = Lie(G) and let rx : Q —^ ^(^0 be the Lie algebra homomorphism
induced by the G-action. Set

/C(X) = {d e P(X) : V/ G 0(X)^ d(f) = 0}.

Then V(X)rx(Q) C /C(X). Note that /C(fl) = J . Given a reductive subgroup M C G
and an affine M-variety V, define G x^^ Y = (G x Y)/M, under the M-action
m.(g^y) = (^m~ l,rm/). Recall Luna's slice theorem, as stated in [18, Theorem 1.14].

THEOREM 4.1. - Let X be a smooth affine algebraic G-variety. Let G.b C X be a
closed orbit, and denote by M = G6 the centralizer of b. Then M is reductive and
TbX = N Q Tfc(G.6) for an M-module N. Thus (N,M) is the slice representation at
the point b.

There is a locally closed smooth affine M-stable subvariety S C X containing b such
that U = G.S is an affine open subset ofX which satisfies:

(i) There exists an excellent surjective G-morphism (p : G xM S -» U.
(ii) There exists f G O^N^ with J(0) -^ 0, and an excellent surjective morphism

ip : S -» Nf, such that '0(&) = 0 and the induced G-morphism (f) : G XM S -» G xM Nf
is excellent.

LEMMA 4.2. - Let ^ : Z —> U be an excellent surjective G-morphism of smooth affine
G-varieties. Then, )C(Z) = 2)(Z)rz(fl) if and only if )C(U) •= V(U)ru(Q\

Proof. - Set A = 0(U) and B = 0(Z). Then B° is faithfully flat over A°. It follows
from the proof of [18, Corollary 4.4] that there is a natural identification B° 0^° T^(U) =
2)(Z), which induces identities 1 ^A° n/(fl) = ^(fl) and /C(Z) = B° ^AG )C(U).

If /C(Z) = V(Z)rz{Q), then combining these observations gives:

B° 0A^ V(U)ru(Q) = T>(Z)rz{Q) = /C(Z) = B° (^ W).

Therefore T>(U}ru{^} == ^(U) by faithful flatness. The other implication is similar. D

LEMMA 4.3. - Let M be a reductive subgroup of G and Y a smooth affine M-variety and
set Z = G ̂ M V. Assume that /C(V) = P(y)Ty(fl). Then JC(Z) = P(Z)Tz(fl).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



392 T. LEVASSEUR AND J. T. STAFFORD

Proof. - Set L = G x M and V = G x Y. Let L act on V by (gi,h).(g^,y) =
(9l92h~l,hy) for ^1,^2 € G, fa c M and 2/ e V. This induces actions of G and M
such that Z = V/M, and O^ = 0(G xM Y)G = 0^. Set m = Lie(M) and
Q = Lie(G). Under the natural identification V(V) = P(C?) 0c ^(T), note that Ty(m)
and Ty(m) differ only by elements of DerO(G) = O(G)TG(Q). We may write

P(V) = V(V)rv(Q) C 0(G) 0c V(Y).

Therefore /C(Y) = {d e 2)(V) : d^V^) = 0} = W^g) + /C', where

/c' = [e e O(G) 0c V(Y) : ̂ ©(Y)^ = o}.
Clearly 1C' = 0(G) 0c W) = (0(C?) 0c P(r))Ty(m). Hence,

]C(V) = V{V)(TG{Q) + Ty(m)) = P(V)(TG(0) + Ty(m)).

Now let Q e /C(^). As M acts freely on V, [18, Corollary 4.5(i)] provides a short
exact sequence:

0 — CWT^m^ —— P(V)^ -2^^(Z) — o

Set Q = 7(Qi) for some Qi e W)^ Since ry(m) kills 0(Z), the action of Qi on
0(Z) is the same as that of 7(Qi) = Q. Thus Qi kills ©(Z)^ = ^(V)1'. By the first
paragraph, and since M is reductive, this implies that

Q, G ̂ (^ = (P(VMs) + Wr^m))" = (V^TG^ + (^(^^(m))''.

Since the actions of G and M commute, (P(y)TG(s))M = ^(^)MTG(s). Hence
Q = 7(0i) e 7(^(^)MTG(S)) = V(Z)^TG(Q)) = P(Z)Tz(s), as required. D

PROPOSITION 4.4. (Schwarz). - Let X be a smooth affine G-variety and G.b be a closed
orbit in X. Set M = Gb and let (N, M) be the slice representation at the point b. If
JC(N) = P(7V)T^(m) on an M-neighbourhood ofO in N, then )C(X) = V(X)rx(Q) on
a G-neighbourhood of b.

Proof. - The result follows from Lemma 4.3, Lemma 4.2 and Theorem 4.1. D
We now return to the situation where the semisimple group G acts on Q by the adjoint

representation. Recall the well known result (see, for example, [13, Section 3, Theorem 3]):

LEMMA 4.5. - Let S be a G-stable Zariski closed subset of Q. Assume that 0 is the unique
semisimple element ofQ contained in S. Then, S C N(fl).

THEOREM 4.6. - Let Q be a semisimple Lie algebra. Assume that /C(m) = P(m)Tnz(m)
for all proper reductive Lie subalgebras m of Q. Then SuppC C N(^) and so A/g = N
outside N(5).

Proof. - Let 0 7^ b e Q be a semisimple element, and set q = [b,Q], M = Gb

and m = Lie(M) = fl6. Thus M is reductive and q identifies with the tangent space
Tb(G.b) C TbQ = Q. Furthermore, fl = q C m and (m,M) is the slice representation
at the point b.

Therefore it follows from Proposition 4.4 that C = 0 on a neighbourhood of each
non-zero semisimple element of Q. Since C is a rational G-module, Supp£ is a Zariski
closed G-stable subset of Q. Thus, the result follows from Lemma 4.5. D
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5. Proof of Theorem 1.1

In this section we combine the earlier results of this paper to prove Theorem 1.1 for
a reductive Lie algebra Q. Together with Corollary 3.4, this also completes the proof of
Theorem 1.2. We begin with some preliminary results.

LEMMA 5.1. - Assume that Q is semisimple. Let M. be a finitely generated T){^)-module
such that

ChA^c(N(f l ) x f l * ) n C ( s ) .

Then M. is holonomic, and so, in particular, has finite length. Moreover, each element of
M. is killed by a power of S^(Q*)°.

Proof. - A proof is given in [12, Lemma 3.1] although, for sake of completeness,
we sketch it here. Denote by TT : 0 x 5 -» Q the projection onto the first factor. Let Z
be an irreducible component of (N(3) x 5) D €(0). Since G is connected, Z is G-stable
and therefore Y = 7r(Z) is a closed irreducible G-subvariety of N(fl). Thus Y is the
closure of a single nilpotent orbit, say G.u. Then dm^Tr'^n) D Z) < dimfl", which
yields dimZ < dim G.u + dim ̂  = dimfl. Since dmi(N(fl) x 3) Fl C(s) > dims is
obvious, we obtain that dim(N(fl) x 0) n C(fl) = dimfl. Hence M is holonomic, and
therefore has finite length.

By [13, Proposition 16], N(fl) is the set of zeros of ^(fl*)6' while, by hypothesis,
SuppM is a closed subset of N(0). Thus, each element of M is killed by some power
of S^)°. D

The proof of the next result uses analytic P-modules about which we need to make some
remarks. Let X be a smooth algebraic complex variety or a complex analytic manifold and
write 0^ for its structure sheaf. We denote by Vx the sheaf of differential operators on
X. The basic definitions and facts concerning Vx -modules can be found in [I], [2]. When
X is affine algebraic, the global section functor provides an equivalence of categories
between Vx -modules and /D{X)-modu\es [2, Proposition VII.9.1]. One can associate to
X a complex analytic manifold X^, and if T is a quasi-coherent Ox -module one defines
a quasi-coherent O^an-module by ^ran = O^an ^ox ^ ' The functor T —> ^an is exact
and faithful. If F is a coherent T>x -module, the sheaf ^an is naturally endowed with the
structure of a coherent P^arz-module.

THEOREM 5.2. - Let Q be a semi-simple Lie algebra. Let F be a left ideal of
V(Q) such that F D V{^}K + ^(flMs) 4- T ) ( z ) K ' , where K is an ideal of S^)0

containing a power of S^{Q*)0 and K ' is an ideal of finite codimension in S(Q)°. Then,
W = F.

Proof. - If V(Q)/F ^ 0, pick s e S{Q)° such that [s + F] / 0, but Ps = 0, for some
maximal ideal P of S{^)0. By its definition, T(fl) commutes with ^(fl)6', while S^)0

acts ad-nilpotently on T>{^). Thus, [s^-F} is still killed by r(s) and by a power of ^(fl*)6'.
In other words, replacing P(fl)/F by 2)(g)5, we may assume that K ' == P is a maximal
ideal of S(Q)°. As such, V{Q)/F is a homomorphic image of P(0)/(P(0)r(0) + P(s)P)
supported on N(g).
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By the remarks before the statement of the theorem, in order to prove that V(Q)/F = 0,
we may work with sheaves of analytic ^-modules. The theorem is now a special case
of [10, Theorem 6.7.2]. D

As is observed in [10], [10, Theorem 6.7.2] is an interpretation in terms of V-
modules of Harish-Chandra's famous result on the regularity of invariant eigendistributions
[8, Theorem 1]. Similarly, Theorem 5.2 is the interpretation of Harish-Chandra's theorem
on eigendistributions with nilpotent support [6, Theorem 5]. It is not difficult to prove
Theorem 5.2 by modifying the proof of [6, Theorem 5] as given, for example, in
[20, Chapter 5, Section 6].

LEMMA 5.3. - Set S = 0i 9 5 where 3 is the centre ofQ and fli is semisimple. Then, Ag
is GK-homogeneous if and only if J^f^ is GK-homogeneous.

Proof. - We identify P(0) = P(fli) 0c ^(a). Thus, given any P(si)-module M, then
GKdimp(g)P(3) 0c M = GKdinrp^M + GKdimP^). Since tensoring over C is exact,
one concludes that the P(^i)-module M is GK-homogeneous if and only if the same is
true for the P(9)-module ^(3) 0c M = V(^) 0p(^) M.

Since r(a) = 0, clearly r(Q) = r(0i) and so A/g = P(fl) ^D^) A/^. Now apply the
observations of the last paragraph. D

LEMMA 5.4. - Let x G P(fl) and p G S(Q)° be such that xp G V(Q)r(Q). Then
p^x G V(Q)r(Q), for some m > 1.

Proof. - If v e ^(5), write ad^(v) = pv — vp and set Xm = {<Qi&p}rn{x) for m > 0.
Since r(0) commutes elementwise with ^(fl)6', certainly V(Q)r(Q)p C V{^)r{^). Hence,
for any m > 0,

m m

xmp e Y^v^xp^ c ^P(s)T(sV=P(s)T(s).
1=0 1=0

In particular, for any % , j >_ 1,

p^_l = p^-l^•+J/-l^•-lp G p^- l^•+P(0)T(0).

Finally, as S{^) acts locally ad-nilpotently on P(s), certainly Xra = 0 ^ ^(0)^(5).
for some m > 1. By the last displayed equation, and induction, this implies that
p^x G P(0)r(s). D

We can now prove Theorem 1.1. By Corollary 3.4, this also completes the proof of
Theorem 1.2.

THEOREM 5.5. - Let Q be a reductive Lie algebra and set N = P(s)/ ' J , as in the
introduction. Then A/g = N.

Proof. - By Corollary 3.4 it suffices to prove that A/g is GK-critical. We prove this
result by induction on dimfl, with the case 0 = 0 being trivial. If Q is not semisimple,
and in particular if dimfl < 2, the result follows immediately from Lemma 5.3. Thus,
we may assume that Q is semisimple and that the result holds for every proper, reductive
subalgebra m of Q.

4e SERIE - TOME 29 - 1996 - N° 3



THE KERNEL OF AN HOMOMORPHISM OF HARISH-CHANDRA 395

Set C = Ker(A/5 -^ N). Then Ch£ C (N(fl) x 0*) n C(s), by Lemma 3.1 (ii) and
Theorem 4.6. Hence, by Lemma 5.1, C has finite length and so, by [15, Corollary 9.1.8],
Endp(g)(£) is a finite dimensional C-vector space. Now, £ is a right ^(s)6' -module and
hence is a right S {^)° -module. Since the image of S^)0 in Endp(g)(£) is necessarily
finite dimensional, C is killed on the right by an ideal K^ of finite codimension of S^)0.

Recall from Corollary 3.4 (i) that J = P(0)r(s) + P(fl)Z. Thus, if C / 0, we may
pick x G Z such that a; ^ P(0)r(0). Thus, for any p ^ K^, one has a-p G Pd^r^).
By Lemma 5.4, pnx e P(s)r(0), for some n, and hence K ' x G P^r^) for some
ideal K ' of finite codimension in S^)0. Lemma 5.1, applied to the D(0)-submodule
(V(Q)x + T)(Q)r(Q))/V(Q)r(Q) of £, shows that Kx C V{^}r{^\ where K is a power
of ^(s*)^ Finally, as a; G I and Z commutes with r(s), certainly r(g).r € P(fl)r(0).

Thus, we have shown that F = [r G ^(0) : rrc G P(s)r(0)} satisfies the hypotheses of
Theorem 5.2. Thus, F = V{^} and x e V{^)r{^). Hence, TV = A/g, as required. D

We end the paper with several comments on extensions and applications of Theorem 5.5.
An interesting question is whether Theorem 5.5 holds at the graded level: Does

J H P(fl)m = P(0)m-iT(0) for all m, where P(s)m denotes the differential operators of
order <_ m? Both Dixmier [4] and Schwarz [19] raise their questions in this generality.
This is slightly weaker than another well-known problem: is the ideal of zeros of the
commuting variety generated by the obvious functions {a{x) : x G fl}? Equivalently, does
a = p in the notation of Section 3?

If V is a finite dimensional linear representation of G, one can ask again whether
Ker^lQ^ ^ V{V/G)) equals V^)0 H V{V)rv{Q) (see [19, Section 0]). For some
positive results, complementary to Theorem 5.5, the reader is referred to [18, Theorem 8.9].

Finally we make some comments on P^^), the ring of differential operators on g with
analytic coefficients. Recall from the introduction that we claimed that Theorem 5.5 had, as
an immediate consequence, Harish-Chandra5 s theorem [8, Theorem 5] that asserts that any
invariant differential operator that kills all invariant functions on Q also kills all invariant
distributions on ^o- Since Harish-Chandra's result is concerned with analytic differential
operators, this is only immediate if one has an analogue of Theorem 5.5 for P^^). As
the next corollary shows, this follows easily from Theorem 5.5. We remark, however, that
the stated algebraic version of Theorem 5.5 is useful for applications to the analytic theory
since it allows one to regard invariant distributions as modules over ^(^/Z^T^f))^
and hence to relate them to Weyl group representations. For example, by copying the
proof that [21, Theorem 5.4] implies [21, Theorem 5.3], one obtains another proof of
[7, Theorem 3]. We would like to thank Nolan Wallach for this observation.

In the next result we show how to extend Theorem 5.5 to the analytic case. We would
like to thank the referee for a significant simplification in the proof.

COROLLARY 5.6. - Let Q be a reductive Lie algebra and define a sheaf J1' of left ideals of
T>^ by ^(U) = [e G V^(U) | O^^)0) = 0} for any open set U C ^an. Then:

(i) T = 2V.r(s);
(ii) In particular, if U is a Stein open connected subset of^, then F(U) = V^arz (E/)r(0).

Proof. - (i) Let f be the sheaf defined by ^(£7) = {(9 e T)^(U} \ (9(0(0)^ = 0}.
Since P^anT^) C T C T, it suffices to prove that F = T)^r{^) and, in turn, it is
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enough to prove this locally. Fix p € Q and write R = T)^p C S = Vgarz ̂  and F = ^p.
Pick coordinates x\^... ̂ Xn on 5 and set 9i = |̂- as usual.

Fix m G N. Let d € S be a differential operator of order < m and write
d = EH^^ where a, G J3 = O^n,? and ^ = n^F- Let A,. . .J^ be
algebra generators of O(Q)°. Then d G F if and only if d(f) = 0 for all monomials
/ = /n •" /z< wlt!1 t < m- For ^y such /, ^(V) G A = OQ^. Thus we obtain a
system of linear equations {Ea^c^^ = ^} wlt^ ^c^ G ^ suc^ ^^ d e F if and only
^ Ea^^a,^ = 0 for all z.

Now, B is a flat A-module and so this system of equations has a solution in B if and
only if it is soluble in A. In other words, if d e F, then there exist Raj ^ A and vj e B
such that ]Ca^,j^a,z = 0» for all j , % , and a^ = ̂  -vj/Saj, for all a. By Theorem 5.5,
this implies that

^ - E ^^a € { ° ^ R 1 ^^(fl)'')= °}= ^(5)-
|a|<m

Moreover, d •= Y^jVjPj and so d 6 S'T(0), as required.
(ii) By part (i), T is a coherent Pgan-module. Since £7 is connected and Stein, Cartan's

Theorem B implies that ^{U) = H°{U, T^ = H°(?7, V^r(Q)) = V^(U}r{^) (see
[9, Theorem 7.4.3] and [1, Section V.2.9]). D
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