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COMPOSITION OF SUBFACTORS:
NEW EXAMPLES OF INFINITE DEPTH SUBFACTORS

BY DIETMAR BISCH* AND UFFE HAAGERUP

ABSTRACT. - Let N C P and P C M be inclusions of Hi factors with finite Jones index. We study the composed
inclusion N C P C M by computing the fusion of N-P and P-M bimodules and determine various properties
of N C M in terms of the "small" inclusions. A nice class of such subfactors arises in the following way: let H
and K be two finite groups acting properly outerly on the hyperfinite II\ factor M and consider the inclusion
MH C M x K. We show that properties like irreducibility, finite depth, amenability and strong amenability (in
the sense of Popa) of M1^ C M x K can be expressed in terms of properties of the group G generated by H and
K in OutM. In particular, the inclusion is amenable iff M is hyperfinite and the group G is amenable. We obtain
many new examples of infinite depth subfactors (amenable and nonamenable ones), whose principal graphs have
subexponential and/or exponential growth and can be determined explicitly. Furthermore, we construct irreducible,
amenable subfactors of the hyperfinite II i factor which are not strongly amenable.

Key words and phrases. Jones' index, subfactors, principal graphs, amenability, entropy of groups.

1. Introduction

The standard invariant [Po4] or paragroup [Ocl] for an inclusion of Hi factors N C M
with finite Jones index is a grouplike object which encodes combinatorially information
about the position of the subfactor N in the ambient Hi factor M. If this object has
certain regularity properties, it will determine the subfactor uniquely up to conjugacy by
an automorphism of M. Such properties were introduced in [Ocl], [Po4], [Po5], [Po6], see
also [Po2], where it is shown that if the standard invariant of a subfactor of the hyperfinite
Hi factor R is "finite" (N C M hsis finite depth) or more generally "amenable" (N C M is
amenable in the sense of Popa), then it is a complete invariant for this subfactor. However,
direct computations of the standard invariant are practically impossible even for subfactors
given by an explicit construction. To illustrate this statement, let us point out that if the
subfactor is given by a crossed product with a finite group, then the standard invariant
combines and encodes the group and its representation theory in one single object, the
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330 D. BISCH AND U. HAAGERUP

canonical commuting square [Po2]. Thus the theory of finite groups and their representation
theory is part of the theory of "finite" standard invariants.

On the other hand one is in certain situations able to compute partial information
contained in this invariant, such as the principal graphs associated to N C M [GHJ],
explicitly. A class of examples of subfactors where this calculation can be carried out is
presented in this paper. The idea is simple: suppose we are given two inclusions of Hi
factors N C P and P C M. We study then the composed inclusion N C P C M, i.e.
the relative position of the two subfactors N , P in the Hi factor M such that P is an
intermediate subfactor of N C M. Let us recall that if TV C M has finite depth, then
the intermediate inclusions N C P and P C M also do [Bi21 and a similar statement
holds for amenable inclusions [Po5]. However, the converse does not hold, i.e. composing
two amenable inclusions may result in a nonamenable one (see example 6.6 below).
Furthermore, let us point out that intermediate subfactors of a given inclusion N C M can
be recognized abstractly by looking at appropriate projections in the first higher relative
commutant of TV C M [Bi2]. - This composition of subfactors can be expressed in terms
of bimodules associated to N C P C M and is then described as combining the two tensor
categories of bimodules associated to TV C P resp. P C M in various ways according to
the relative position of the subfactors N and P.

A particular class of such composed inclusions arises in the following way: let H and
K be finite groups with a properly outer action on the hyperfinite Hi factor R. Then we
compose the subfactor obtained by taking the fixed point algebra under the H action with
the one resulting from the crossed product by the K action, i.e. we study the group type
inclusion R11 C R C R xi K. The main theorem of this paper is the following

THEOREM. - Let H and K be finite groups acting properly outerly on the hyperfinite //i
factor R and let G be the group generated by H and K in the outer automorphism group
OutR = AutR/lntR. Then

a) R11 C R xi K has finite depth iff G is a finite group.
b) R11 C R xi K is amenable (in the sense of Popa) iff G is an amenable group.

c) Suppose the H x K acts freely on G and let p. = ^ ̂  6kh be a probability
{ 1 1 ' kEKh^H

measure on G. Then R11 C R x K is strongly amenable (in the sense of Popa) iff the
entropy of G -with respect to ^ ([Av], [KV]) is zero.

This theorem is a powerful tool to construct (strongly) amenable subfactors of the
hyperfinite Hi factor and it illustrates that the subfactor concepts of amenability and finite
depth are very natural.

Let us now give a more detailed description of the different sections in this paper. In
section 2 we fix the notation and recall the interpretation of the principal graphs associated
to an inclusion of Hi factors as fusion graphs for bimodules following Ocneanu [Oc2].

In section 3 we start the analysis of our composed inclusions N C P C M and give
a necessary and sufficient criterion for finite depth and irreduciblity of N c M in terms
of P-P bimodules.

The class of group type inclusions as defined above is studied in section 4. Let us point
out that since any countable discrete group has an outer action on the hyperfinite Hi factor
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COMPOSITION OF SUBFACTORS 331

R, we can associate to any given G = (H, K) a group type inclusion R11 C R xi K.
We get therefore a great variety of examples of subfactors by performing this simple
construction. - After giving a sufficient and necessary condition for the irreducibility
of R11 C R x K, we proceed with describing how the principal graphs (r,r') of this
inclusion can be calculated. If we denote as above by G the group generated by H and K
in OutR, it turns out that the computation of the vertices of these principal graphs amounts
to computing the H-H, H-K and K-K double cosets of G. The double cosets which
have maximal cardinality represent then irreducible bimodules, i.e. vertices of the principal
graphs, whereas the ones which have smaller cardinality represent reducible bimodules
which one can then decompose further. The edges of (T, F') are determined by calculating
the dimension of certain intertwiner spaces for bimodules, which can be done for our group
type inclusions by performing some lenghty, but simple calculations in G. This gives a
very explicit and efficient method to calculate the principal graphs of R11 C R x K.

We proceed with proving a formula, which allows us to compute the square norm of
the principal graphs of a group type inclusion as the spectral radius of a natural operator
associated to G. This theorem is based on some results describing how to compute norms
(in the sense of [GHJ] of infinite graphs. In the case where G is the free product of H
and K, we can give a general formula for the norm of F involving only \H\ and \K\.
This formula for ||r[|2 is then used to prove b) of the above theorem. We use here that an
inclusion of hyperfinite Hi factors is amenable iff the Jones index [M : N} is equal to the
square norm of the associated principal graph [Po5]. Next we study strong amenability of
R11 C R x K, i.e. amenability of the inclusion and factoriality of the algebras obtained
by taking the weak closure of the union of the higher relative commutants [Po4]. It turns
out that this property of our group type inclusion is equivalent to the asymptotic ergodicity
of the right random walk on G with respect to a natural probabitity measure ^ on G (see
[Av], [KV], [Bil]). This can be made precise by using the notion of entropy of G with
respect to ^ or equivalently by studying bounded fi-harmonic functions on G. Our result
can then be formulated in the following way: R11 C R xi K is strongly amenable iff all
bounded /^-harmonic functions on G are constant.

We would like to use our main theorem to give new examples of finite and infinite
depth subfactors. To this end we calculate in section 5 the entropy of random walks on
groups which are quotients of the free product of two finite groups. Our calculations are
based on the results in [Kal], [Ka4], [KV]. In particular we find amenable groups G of
this type such that the entropy of G with respect to any nondegenerate probability measure
on G with finite first moment is positive. Furthermore, we show that a certain quotient of
PSL(2^ Z), which has exponential growth, has zero entropy with respect to any symmetric
measure with finite second moment.

In section 6 we use the results of the previous sections to give a wide variety of new
examples of subfactors of the hyperfinite Hi factor. Let us summarize the type of examples
we construct in the following list

a) irreducible, amenable subfactors, which are not strongly amenable and whose principal
graphs have exponential growth;

b) an irreducible strongly amenable subfactor, whose principal graph has exponential
growth;
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332 D. BISCH AND U. HAAGERUP

c) new irreducible finite depth subf actors;
d) an irreducible, strongly amenable infinite depth subactor of small index (above 4)

whose principal graph has polynomial growth;
e) an irreducible nonamenable subfactor corresponding to the free product of ~B,^ and ^3.
In particular a) solves the problem [Po4, 5.4.2]. Note that our examples are the first

"exotic" irreducible (strongly) amenable infinite depth subfactors of R whose principal
graphs have all the possible growth properties. We compute the principal graphs of several
subfactors in the above collection [c), J), e)] and list them graphically below. Our examples
in case d) start at index 6. Prior to our work, Hiai constructed subfactors satisfying the
conditions in d) of index 8, 9 and some higher values [Hi].

Acknowledgements. - D.B. would like to acknowledge the support of Odense University,
the Danish operator algebras research grant and the SFB 288 at the FU Berlin through
which part of this research was made possible.

2. Preliminaries

In this section we fix the notation and recall some facts about the bimodule calculus
associated to an inclusion of Hi factors. Let N be a subfactor of the Hi factor M and
denote by r the unique normalized faithful trace on M. As usual we let L^^M) be the
Hilbert space obtained by completing M in the norm ||a;||2 = ^ / r ( x * x ) , x G M. Let
J : L^M) —> L^M) be the modular conjugation and denote by p the N-M Hilbert
bimodule N^^M^M with the action x ' £ , ' y = x J y * J { ^ ) , x G N , y e M and $ e ^(M).
The adjoint (or conjugate or contragredient) bimodule p is then just L^M) as M-N
Hilbert bimodule with the actions as above (exchanging N and M of course). As usual
we work with unitary equivalence classes of A-B bimodules. A, B € {N^M} (see [Co],
[Pol], [Ocl]).

Let N c M be an inclusion of Hi factors with finite Jones index [M : N] [Jol] and let

(1) N C M C Mi C M2 C . . . C U^iM^ = M^

be the associated Jones tower of Hi factors. The principal graphs [GHJ] (F, F7) of the
inclusion N c M are the principal parts of the (infinite) Bratteli diagrams of the following
inclusions of higher relative commutants:

(2) C = N ' H N C N ' H M C N ' n M C . . . resp.
(3) C = M' n M C M' n Mi C M' n M^ C ...

r and F7 are (possibly infinite) bipartite graphs with distinguished vertices * and *',
corresponding to the copy of C in the above inclusion sequences (2) resp. (3). The vertices
with even distance from * (resp. *') are denoted by Feven (resp. F^n) an(^ ^ose with odd
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COMPOSITION OF SUBFACTORS 333

distance by Fodd (resp. F^). If we denote by

(4) Ar=^. ^) resp.

(5) A.=L»,, •;')

the adjacency matrices of r, F', then

G = (G^)-yereven,^r^d (resp.C?7 = (G^)^r^,6er^J

is a 'Teven x Fodd"-matrix (resp. 'T^ x F^^-matrix). Note that G, G' are called the
standard matrices in [Po2].

Following Ocneanu's bimodule picture [Oc2], we can describe Fevers Fodd. r^n' ^odd
as sets of irreducible A-B bimodules, A, B G {A^,M}. Before we do this, let us fix
some notation:

DEFINITION 2.1. - Let A, B, (7 be IIifactors and let a ==A HB, /? =A ^B. 7 =B ^c
be A-B resp. B-C Hilbert bimodules.

a) We write 07 for the Hilbert bimodule AH-B^BB^C'
b) We denote by (a,/3) the dimension of the space of A-B intertwiners from the

bimodule A Up to the bimodule A^B-
The following result holds

PROPOSITION (Frobenius reciprocity) 2.2. - Let A, B, C be ll\ factors and let a =A HB,
(3 =a Kc and 7 ==A Lc be Hilbert bimodules. Then

{aM^^)-^^).

For a proof see [Oc2], [Su], [Ya]. Note that it is trivial to see that

{a/?^)^^)^/^).

If we let p =N ^(M)^ as above, then we get, due to the basic construction,
that [ppY =N L^Mk-^N, {ppYp =N L\Mk)M. (w)' =M ^(M^M and {pp^p =
ML'2(Mk)N (see for instance [Pol]). The higher relative commutants M'nMfc and N'nMk
become spaces of A-B intertwiners of the A-B bimodules L^M^), A, B € {7V,M}.
More precisely, one has [Oc2]:

N ' n M2fc+i = Hom^-N(N^2(Mfc)^),
N' n Mafc = HomAr-M(N^2(Mfc)M),

M1 n M2fc = HomM-M(M£2(Mfc)M),
M1 n M2fc+i = HomM-N(M£2(Mfc)^).
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334 D. BISCH AND U. HAAGERUP

This is due to the fact that N c Mk C A^+i, M c Mk C M^. etc. are basic
constmctions [Pi-Pol], which yields for instance that

HomN-N(NL\Mk)N) = N1 H (7V°PPy n B(L\Mk))
= N f ^ } (JkNJkV n B(L\Mk)) = N ' n A^+i,

where Jk is the modular conjugation on L^M^). Since Feven (resp. Fodd) labels the
simple summands of N ' n M^+i (resp. N1 n M^), we get the following description of
Feven and Fodd^

(6) Feven = set of (equivalence classes of) non-equivalent, irreducible
N-N-bimodules appearing in ^^(TV)^ (pp^', for some k > 1 and

(7) Fodd == set of (equivalence classes of) non-equivalent, irreducible
N-M-bimodules appearing in p =N L'2(N)M, {pp^P, for some k > 1.

Similarly, F^^ labels all nonequivalent irreducible M-M bimodules appearing in
M^^M^M, {ppY. for some k > 1 and F^ labels the nonequivalent irreducible
M-N bimodules appearing in p and ( p p ^ p , for some k > 1. From the definition of the
principal graphs one has then

(8) G^ = (^P, S), 7 G Feven, 6 C Fodd

and

(9) G^ = (Yp^ ̂  = (y, ^p)^ y e r^, 61 e r^.
The contragredient map (which is just J • J) 7 G Fodd ^ 7 G F^ gives a natural
identification of Fodd and F^ and induces a permutation on the even levels (see for
instance [Bi3] and [Ha] for more on this).

Recall that if F is a finite graph (equivalently F' is a finite graph), then we say that
N C M has finite depth [Ocl]. This is equivalent to the condition that there are only
finitely many nonequivalent irreducible A-B bimodules. A, B e [N, M} appearing in the
decomposition of (Bk^o^^Mk).

3. The relative position of two subfactors

Let N c P and P C M be inclusions of Hi factors with finite Jones index. We
study in this section the relative position of N and P in M, i.e. the composed inclusion
N C P C M. In [Bi2] we showed, that if N C M has finite depth, then the same is
true for the two small inclusions. The same result holds if "finite depth" is replaced by
"amenable" [Po5]. Furthermore, information on the graphs for N C M can be obtained
from those for TV c P and P C M and vice versa [Bi2]. Suppose now that we are
given two inclusions TV C P and P C M. Let a =N L^P)?, (3 =p L^M)^ and
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COMPOSITION OF SUBFACTORS 335

p =^ L^^M^M = ^ =N ^(P)? 0p pL2(M)M• As we have seen in section 2,
we need to decompose (pp)^, {ppY and {ppY p into irreducible bimodules to find the
graphs of N C M. Let N C M C Mi, N C P C Pi and P C^ M C Qi be the
Jones basic constructions, then aa =p L^Pi)?, aa =N L^P)^, /?/3 =p L^M)? and
^/3 =M ^(Oi)M. We calculate

{pp^ = a^aa^-^a = a/^aa/^-1^

(pp^ = paaWaa)^1? = ̂ (aa/^^aaA

{p^p^aWaa)^, ____

(W^^^aa^^a^lw)^.

This simple computation gives immediately the following result

PROPOSITION 3.1. - Let N C P and P C M be 7/i factors with finite depth. Then N C M
has finite depth iff {(|3{3aa)k == {pL2(M)p (g)p pL^Pi)?)0^ k ^ 1} contains at most
finitely many nonequivalent irreducible P-P bimodules.

Remark 3.2. - The result in [Wi] is an immediate consequence of this proposition: if
N C P and P C M have finite depth and K is a subfactor of M such that N C P C M and
N C K C M form a nondegenerate commuting square [Po4], then N C M has finite depth,
since the hypothesis implies that pL2{M)p (g)p pL^Pi)? =p L^Pi)? (g)p pL^M)?,
i.e. ((3paa)k =. (/^(aa^, fc ^ 1.

Note that A^ C P and P C M are extremal i f f N c M is extremal [Po4]. The
irreducibility of TV C M is described in the following

PROPOSITION 3.3. - Let N C P and P C M be irreducible 7/i factors with finite
Jones index. Then N C M is irreducible iff {H^ \ Hi irreducible P-P subbimodule of
aa} n {Kj | Kj irreducible P-P subbimodule of/3(3} = {pL2(P)p}.

Proof. - Let p == a/3 as above. Then TV' n M = C iff HomN-M^L2^)]^) == C
iff { p ^ p ) = l. But 1 = { p , p ) = {a(3,ap) = {aa,(3(3) = ̂ {H^Kj} by Frobenius

ij
reciprocity (Proposition 2.2). Note that pL^P)? is an irreducible subbimodule of aa
and (3J3, which appears with multiplicity 1 since N C P and P C M are irreducible.
The result follows. D

Note that by definition { p , p ) = dimJV' n M and hence dim TV' n M = (aa,/3/3).

4. Group type inclusions

We apply the bimodule techniques described in sections 2 and 3 to study inclusions
of the form

N = P H C P C P ^ K = M ,

where H and K are finite groups acting properly outerly on the Hi factor P. Observe
that P11 C P >i K is an extremal inclusion (as composition of two finite depth, hence in
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336 D. BISCH AND U. HAAGERUP

particular extremal inclusions) and that its Jones index is [PxK : P11} = \K\ \H\. Note also,
that the inclusion P1^ c P xi H is obtained from the basic construction for P11 c P x K,
i.e. is just the dual inclusion to the latter one (see for instance [Bi2]). Recall that if 0 is an
automorphism of P, then we can identify 9 mod Int P with the (unitary) equivalence classes
of the P-P bimodule ̂ (P) with the action x ' ^ ' y = x^0(y) = x J 6 ( y " ) J ^ ) , x, y G P and
^ G ^(P). We denote this bimodule by 0 or L2^). Note that the contragredient bimodule
L2((9) is equal to Z^-1) and L2^^) = L2(e^ 0p L^) ([Co], [Oc2]). As in section
3 we let a =pn L2(P)p, {3 =p 1?{P xi K)p^K such that p =pn L^P xi K)p^K = c^(3.
It is then well-known and easy to see that

aa =p I?{P x H ) p = (^L^h)
h(EH

and
(30 =p L\P x K)p = ©^(fc).

kCK

To simplify the notation we write h instead of L2^) etc., i.e. aa = ff^^i^ where

H = [e = ho,hi,...,hr} and (3/3 = (T)^ where K = [e = ko , k ^ , . . . ,ks}. The
.7=0

following corollary follows from propositions 3.1 and 3.3

COROLLARY 4.1. - (i) P11 C P x K is irreducible iff H H K = {e} in OutP.
(ii) P11 C P xi K has finite depth iff the group generated by H and K in OutP is

a finite group.
r s

Proof. - (i) (aa,0/3) = ̂ ^(hi.kj). Since (hi.kj) = 1 iff hi = ̂  mod Int P, we
i=0 j=0

get the result.
r s

(ii) By Proposition 3.1 we need to calculate {aa^Y = (V V hikjY. But all words
i=0 j=0

in the h^s and fc/s of length <, n appear in this expression, which implies the result. D
Observe that it follows from the above proof that (P^/ H P xi K ^ C{H D K) if H

and K act properly outerly on P.
The situation becomes even more interesting when G = ( H ^ K ) , the group generated

by H and K in OutP, is an infinite group. From the computations given below, it follows
that in this case P11 C P xi K has infinite principal graphs, i.e. the inclusion has infinite
depth. We will show below that in the case P = R, the hyperfinite Hi factor, the inclusion
P11 C P x K is amenable (in the sense of Popa [Po4]) iff G is amenable, and is strongly
amenable (in the sense of Popa) iff the entropy h(G^ p) of G with respect to a certain
distinguished probability measure p, on G vanishes. These results enable us then to construct
a variety of examples of irreducible (strongly) amenable subfactors of the hyperfinite Hi
factor R whose principal graphs have all possible growth properties. Let us also point out,
that any group G = (H, K), which is of course a quotient of the free product H * K, can
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be realized in OutR. In other words, given any G = H * K / ^ , we can construct an index
| H || K | -inclusion of hyperfinite factors R11 C R xi K, such that (^ K} = G in OutR. All
our computations below will not use hyperfiniteness, i.e. they are valid for an arbitrary Hi
factor P, which carries appropriate outer H and K actions.

We will determine the principal graphs (T, F') of our group type inclusion and compute
their ^-norm. Let p = aj3 as above, then (see section 3)

{ppY decomposes as aga^ g G G,
{ppYp decomposes as a^/5, g € G,

(pp)71 decomposes as /3<7/3, <7 € G,
{ppYp decomposes as f3ga^ g ^ G.

Clearly, all the bimodules on the right hand side appear for n big enough. If g, g1 E C?, let

m ^ , = number of times g can be written as hig'hj^ 0 < %, j< r,
777^ = number of times g can be written as kig'kj^ 0 < %, j < s^
m^^ = number of times g can be written as hig'kj^ 0 < i <, r, 0 < j < s.

Note that m11, = m^i , fn^g' = 'mK< g - These multiplicities are obtained as

r r

{aga.ag'a) = {g.aag'aa} = ̂  {g.hig'hj) = ̂  Sg^g'h, = ̂ ^
ij=0 ij=0

and similarly (^/^//3) = m^,, (ag^^ag^) = m^, ^ga^g'a) =_m^. We
determine now which of the bimodules aga, g € G (resp. a^/?, g E G, resp. /3^/?, g ^ G)
are distinct (L^. have no common subbimodules). Clearly, If and K act naturally by left
resp. right multiplication on H * K, which induces an action on G = H * AT/^. We show
that the orbits under this action provide a labeling of all the distinct bimodules of the
above form. More precisely, we have

PROPOSITION 4.2. - Consider the group type inclusion P11 C P x K and let G be the
group generated by H and K in OutP. Let H and K act by left resp. right multiplication
on G. Then we have:

(i) The double cosets H\G/n (1-^' the orbits of the H x H action (h, fa') • g = hgh' on
G) label the distinct P11-?11 bimodules of the form aga, g G G.

(ii) The double cosets H\G/K label the distinct P11 -P x K bimodules of the form agj3,
g G G.

(iii) The double cosets K\G/K label the distinct P xi K-P xi K bimodules of the form
W g ^ G.

Proof. - (i): Let g , g ' € G such that g ' ^ H g H . Then

{aga.ag'a) •= ̂ {high^g'} = m^g, = 0,
^j
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338 D. BISCH AND U. HAAGERUP

i.e. aga D ag'a = 0 (which means that they have no common subbimodules). Observe
that ah = a for all h € H. This holds since a and ah are irreducible P^-P bimodules
(since (ah, ah) = (a, a) = 1 (Proposition 2.2)) and (a/i, a) = {h, aa) = V (h, ft') =

/I'G^
^ (^/ = 1. Hence, if g1 G ff^ff, L^. gf = hgh\ then a^'a = ahgh'a == aga. If

h'CH
aga n a(/a 7^ 0 for some ^, </ G G, then

1 < (aga^ ag'a) == (^, aa(/aa)
T

= ̂ {g^ig'hj) =m^
ij=0

and therefore g ' e ff^ff. This completes the proof of (i).
(ii) and (iii) : The proof is as in (i) using k/3 = (3 for all k G K, which holds

since /?, k(3 are irreducible P-P xi K bimodules and (fc/3,/?) == <fc,/3/3) = V (fc,fc ' ) =
fc'c^

^ ^,^ = 1. D
fc'e^

Let us emphasize that the bimodules appearing in the above proposition are not
necessarily irreducible. However, if H x K acts freely on G, i.e. if

(10) higkj = g , some g G G, implies hi = kj == e

then {agft,ag(3) = ̂ ^(g.higkj) = 1 and ag(3 = ag'f3 iff g ' e H g K . Thus Fodd
z=0 j==0

(resp. r^) is labeled by the double cosets H\G/K (resp. K\G/n) m this case. Note
that H x H resp. K x K never act freely on G. In general, Feven and Fodd (resp. T^en
and r^) depend on the H and J^ actions on G, L^. the multiplicities m^ / , m^ ,
and rn^, and the representation theory of H and ^ (aa and J3/3 appear as P^-P^
and P xi AT-P x J^ bimodules for instance). Let us also remark, that in the special case
when G = H • K, we get with the above observation from Proposition 4.2 (ii) that Fodd
consists of one single point, which means that the associated inclusion has depth two and
is therefore by a well-known result obtained as a crossed product with a finite dimensional
Kac algebra (see for instance [Sz]).

A few further things about the principal graphs can be said in general. Since a and
/3 are irreducible bimodules, the bimodules ag, g(3, j3g and ga are also irreducible for
every g G G. The computation

/ '\ V^/ ^ '\ 1°^ if 9 1 H9t \{ag.ag)=^(g^g)=^ ^ J^J,J

shows that n\G labels the irreducible P^-P bimodules. Similarly, G / K labels the
irreducible P-P xi K bimodules, K\G the irreducible P xi K-P bimodules and G / n
labels the irreducible P-P11 bimodules. Using this interpretation of these cosets we have
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LEMMA 4.3. - Consider the formal 1-linear combinations of the sets G, H\G, G / H , K\G,
G / K , Feven, F^, ^odd and F^d- Then the following diagrams commute:
(i)

Z(G) ^ Z(G/x)
(11) L, i i L,

^GAG) R^ ^(Fodd)

(i')

(12)

(ii)

Z(G) -^ Z(G/x)
^ i I Li3

AK\G} -^ Z(F^J

Z(G) ^ z(c?/^)
(13) L, i [ L,

'y/' \ /^\ ^5. 'y/'p '\
^-(HY^) ——)> ^-^evenj

(ii')

Z(G) ^ I { G / H )
(14) ^ i i ^3

Z(^\G) ^ z(r^)
w/?^r^ Ro, (resp. Rp) denotes right multiplication by a (resp. / 3 ) and L^ (resp. L^ ) denotes
left multiplication by a (resp. j3).

Proof. - (i) La : I { G / K ) -^ 2(rodd) is defined as the linear extension of the map
which assigns gK to agf3, where the image is decomposed into irreducible P^-P xi K
bimodules. Since G / K labels the irreducible P-P xi K bimodules, this map is well-
defined. Similarly, R/3 : Z(ff\G) -^ Z(Fodd) is defined as the linear extension of the
map which assigns Hg to ag(3, where the image is again decomposed into irreducible
P^-P xi K bimodules. The map is again well-defined since H\G labels the irreducible
P^-P bimodules. The commutativity of the diagram in now trivial: on the basis of Z(G?)
we have LaR^g} == oig/3 = R^L^g}'

(ii) A similar argument as in (i) shows (ii). (i') and (ii') are then proven in the same
way. D

We prove next a formula that allows us to compute the norm of the principal graphs
of P11 C P xi K. We have

THEOREM 4.4. - Let (r,r) be the principal graphs of the group type inclusion
R11 C R xi K and let G = {H, K) be the group generated by H and K in OutR.
Set x = ̂  h, y = V k and consider x and y in the left (or right) regular representation

heH k^K
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of G. Then

(i5) ||^||2=||^/||2-r(^)=,^||^
In order to prove this theorem we need some results that allow us to compute the norms

of infinite graphs. Recall that a (possibly infinite) matrix A = (a^)fc,zej with nonnegative
entries aki € R"'" is called irreducible if for all %, j G I , there is an n G N, n = n(%,j) ,
such that (A^ij > 0. The following lemma is probably well-known to specialists

LEMMA 4.5. - Let A = (dki)k,i^i be a (possibly infinite) self-adjoint square matrix with
nonnegative entries such that A is irreducible and defines a bounded operator on I2 (I).
Then for all x =-- (x^i G l2^)-^^}, i.e. x / 0, x, > 0, we have

||A|| = lim HA^H*.
n—>oo

Proof. - Let A = J^ /^ XdE{X) be the spectral resolution of A. Note that each
y G l2^!)^ defines a Borel measure on the spectrum sp(A) of A via f^y(S) = (E(S)y\y),
S C sp{A) a Borel set. First we show that lim HA^H^ always exists. For this

n—>oo
consideration, we may assume \\x\\ = 1. Then using the Minkowski inequality we get

H A ^ H ^ ^ ( ( X^d^X))"
Vsp(A) /

[ / r 2^+1 \~r^ ( r ^7^TT^27^
< / A——d^(A) / 1^(A)

[\Jsp{A) } \Jsp{A) ) \

= HA^^H^T .1.

Hence, the above limit exists. Next set

p(x) = max|supp(^)| = max{|t|, t e supp(^)}.
Clearly

||A^|| = ( f X^d^X)}2 < p(xr\\x\\
\Jsp{A) )

and if p{x) > 0, then we have for all c G (0,p(.r))

||A^|| >( f X^d^X)}2 > ^^{{X G sp{A) | |A| > c}).
\J\\\>c }

Note that by the definition of p{x\ {A G sp{A) \\\ > c} is not a /^-nullset. Hence

c< lim HA^H* < ^(a;)
n—>oo

and since this holds for all c G (0,/?(a:)), we have

(16) p(x)= lim HA^H^.
n-^-oo

This formula holds also if p(x) = 0.
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Let now 61, i G J, be the standard basis for I2 ( I ) and fix z, j G J. By irreducibility of A
there is an m E N and a constant c > 0 such that A^Si > c6j (entry wise inequality). Hence

A^'^Si > cAn8^ for all n G N

and using that the inner product on I2 ( I ) is increasing in both variables, we get that

1 IIAII771

HA^-H < -IK^H < ———HA^H, n G N.
c c

Thus p(5j) < p{6i). Hence, by symmetry, p(6i) is independent of % C I . Let p denote
their common value. Clearly p < ||A|[. Moreover, the supports of all the measures /^
are contained in [-p,p\. Since (^)iei 1s a tota! set ln ^(-O. Ae nullsets of the spectral
measure E are precisely the common nullsets for all the measures ̂ , i € -T. Hence

sp(A) = supp(£) C [-?,?},

which proves that p > r(A) == ||A|[. Altogether, we have shown that p(8i) == ||A[| for all
i G I . Finally, let a; be a general element in ^(J^^O}. Then there exists an i e I and
a constant c > 0 such that x > c6i. Hence

A^x > cA71^, for all n (E

and therefore

Urn HA^H^ > lim IIA71^!]* = ||A||.
n—>oo n—»-oo

The converse inequality is trivial. D

PROPOSITION 4.6. - Let Ji, 1'z, Js and I^ be four (possibly infinite) index sets, and let G, H,
K and L be matrices with nonnegative entries indexed by Ji x 1^, 1^ x 1^, I\ x 1^ and 1^ x 14
respectively. Assume that G, H, K and L define bounded operators between the l2^!^)-
spaces and that GL = KH and Lff* = G^X. If moreover the bipartite graphs FG and FH
associated to G and H are connected and K ^ 0 (equivalently L / 0), then \\G\\ == \\H\\.

Proof. - Set A = GtG and B = HH1^. By connectedness of TG and F^, A and 5 are
irreducible matrices. Moreover AK = J^B. Since K has a nonzero column, there is an
index k such that K6k > 0 (entrywise), K6k 7^ 0. Thus by Lemma 4.5 we have

||G||2 = ||A|| = lim HA^^II* = lim H^B^fcH*
n—>oo n—>oo

< lim ||B"^||^ = ||B|| = ||ff||2,
71—>00

i.e. \\G\\ <^ \\H\\. The converse inequality is obtained in the same way, using A^A = B^.
This completes the proof. D

Remark 4.7. - Note that we do not assume in the above proposition that K and L
define connected graphs. Note also that if all the involved matrices above were finite, a
Perron-Frobenius argument would give the result.

ANNALES SCIENTIFIQUES DE L'fiCOLE NORMALE SUPERIEURE



342 D. BISCH AND U. HAAGERUP
' /

We can now proceed with the proof of Theorem 4.4.

Proof of Theorem 4.4. - We have the following commutative diagrams

I(G/H) -^ Z(G) ^ I(G/K)
I Lc. [ Lc. [ L^

-7/-p \ -RQ; -n / \ /^i\ —/3 "y/m \
^(1-even) ——^ H^AG) ——^ ?(Fodd)

and

I(G/K) -^ 1(G) R^ I(G/n)
I Lc. I L^ [ L ^

-7/-p \ ^ ~n ( \ /^i\ ^5C '7/T' \^(iodd) ——> UnXG) ——> Z(Feven)

by transposing the diagram in Lemma 4.3 (ii) (resp (i)) and combining it with the one in
Lemma 4.3 (i) (resp. (ii)). Let A^A^B^B^C^, C^ and Cs be the matrices corresponding
to the linear maps of the first diagram, i.e.

I(G/n) -A- Z(G) B^ I(G/H)
I Cl I €2 [Cs

~DYP ^ ^-2 -n ( \ ^i\ B-2 -y /-p \
^(,-1-even; ——> ^ ( H ^ ) ——^ ^-(i odd).

By Frobenius reciprocity (Proposition 2.2), the matrices corresponding to the second
diagram are given by

I{G/K) ^ Z(G) -^ I{G/H)
I €3 i €2 i Ci

D* /»<
-,7/-p \ —2 -n ( \ ^\ A2 -7/-n \
^-(1-oddJ ——^ ^H^} ——> Z(reven).

Therefore

(B^)C^ = ̂ (BiAi) and (^Aa)'^ = Ci(BiAi)^

so that by Proposition 4.6 ||BiAi|| = ||B2A2||. Clearly, the adjacency matrix Ap of the
graph r is

_ ( 0 B^\
{(B^Y o ) 'Ar=

Hence
lirii^HB^ll^llBiAiii2

= \\A\B\B,A,\\
= r{A[B[B,A,) = r(AiAl^Bi).

But the matrix AiA^ is the matrix of the composed map from I{G) into I(G) given by
right multiplication by aa. Hence AiA^ is the matrix of right convolution by x = ̂  h.

hen
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Similarly, B[B^ is the matrix of right convolution by the measure y = ̂  k. Hence
k^K

A^A\B\B^ is the matrix of right convolution by y x , and therefore unitary equivalent to
the matrix given by left convolution by W = xy. Hence ||r||2 = r{xy). Note that
npn ^ i j p / j j holds always ([Po4], but it follows also from Proposition 4.6). D

Before we proceed with studying the amenability of R11 C R xi K, let us give a
corollary of Theorem 4.4.

COROLLARY 4.8. - Let R11 C R x K be a group type inclusion as above and let (T^F')
be the principal graphs. If the group G generated by H and K in OutR is the free product,
i.e. G = H * K, then

uni2 = in2 = (vi^T+^ixi-i)2.
Proof. - Let A be the left regular representation of G and set p = iy-[ ̂  ̂ ^

1 ' h^H

q == —— V^ A(fc). By Theorem 4.4 we have that
1^1 ^KkCK

||r||2 = ||rT = l^im^).
If the groups H and K are interchanged, then the principal graphs will be interchanged,
so it is sufficient to treat the case where \H\ < \K\. Since the projections p and q are free
in the sense of Voiculescu [Voi], the arguments of [ABH, pp. 10-18] go through: Set

a=r{p)=^ /?=r( , )=^

and

t^(^{l-a)(l-(3)-Va0)\ ^(v^F^O^I+V^)2'

Denote by po, qo the projections in M^C^t^t^})) given by po = (. ^j and

/ 1 - t Vt^\
9o = /̂F^2 t )'

By [ABH, Theorem 13] we have:
a) If |̂ | > \H\ > 2, then up to isomorphism

c\p, 9, i) - c e M2(C([ti,t2])) e c,
where p = 0 C po C 1 and q = 0 C go ^ 0-

fo) If |K| = [^1 > 2, then t2 = 1 and up to isomorphism

c*(p^i)=ceM2(C([ti,t2])),
where p = 0 C po and 9 = 0 C qo.
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c) If \K\ = \H\ = 2, then ti = 0, ^2 = 1 and up to isomorphism

C*(p^l)=M2(C([^])),
where p == po and q = QQ.

In all three cases we get

r(pg) = \\pqp\\ = 1 - t, = 1 - (^/(l - a)(l -/?) - ̂ /o/3)2

== a + /? - 2a/3 + 2^a/3(l - a)(l -/?).
Thus

II2 = ̂ (^) = ̂ (V^(l^)+ V^O"^)2

^-/3 . /^aV
/3 ^"^J

^v^^+vTHT^)2. a
We prove next that amenability of the inclusion R11 C R ^ K is equivalent to the
amenability of the group G = { H , K ) .

THEOREM 4.9. - Let P be a //i factor carrying an outer action of the finite groups H and
K. Denote the principal graphs of the inclusion P11 C P xi K by (r,r'). Then

\H\\K\ = [P Xl K : P11} = ||r||2 iff G = {H, K) C Out? is an amenable group.

In particular R11 c R X K is amenable (in the sense of Popa) iff G is an amenable
group in OutR.

Proof. - Note that the second statement follows from the first by Popa's characterization
of amenability ([Po4, 5.4], [Po5, Theorem 2.1]).
Define a measure ^ on G with supp/^ = [kh \ k e K, h G H} and weights
^(kh) == Then ^ is a non-symmetric probability measure on G whose support

generates all of G. As usual, ^ defines a Markov operator P^ : P(G) —> ^(C?) via

WW=^f(ts)^s)^ /e^G).

From the generalizations of Kesten's characterization of amenability of a group [Ke] given
by Derriennic-Guivarc'h ([DG], Theorem 1) and Berg-Christensen ([BC], Theorem 5), we
get that G is amenable iff the spectral radius r(P^) is equal to 1. Let p : G —^ ^{G}

r s

be the right regular representation of G and let x = Vp( / i , ) , y = Y p ( ^ ) , then we

have for all / e ^(G)

(xy)f = mK^'
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Thus

G is amenable iff r(P^) = 1
iff r{xy)= \H\\K\
iff W=\H\\K\

where the last equivalence follows from Theorem 4.4. D

Remark 4.10. - a) Note that R11 C R xi K will be in particular always amenable when
G has subexponential growth [KV].

b) Using Theorem 4.9 and Corollary 4.8 we also obtain the well-known result that a
group G = H^K is an amenable group if and only if |ff||A^| = (V\H\ - 1+ ̂ /\K\ - I)2,
which happens iff \H\ = \K\ == 2, i.e. H = jFC = ~i^. In other words, the infinite dihedral
group Zz * J.2 is the only amenable group which is a free product of two finite groups.

It is now natural to ask if strong amenability [Po4] of R11 C R x K can also be translated
into an appropriate growth condition on the group G. As in [Bil], [Po3] we will see that it
is the entropy of G with respect to a certain distinguished measure, which will describe the
ergodicity behaviour of the standard model [Po4] associated to the inclusion R11 C R>^ K.

Recall that if r is a principal graph of N C M and 7 € r denotes an irreducible
A-B-bimodule, A, B € {N, M}, we let

^7)-[^(B/:^(A)]^

where L^ (A) C R^{B}' is the inclusion defined by the bimodule 7 =A HB. L^ (resp. R^)
denotes the left (resp. right) action of A (resp. B) on the Hilbert space H. Equivalently,
^(7) is the square root of the index of a reduced subfactor corresponding to 7 (see (6),
(7)). If TV C M is extremal, we have that Ar$ = [M : N}^ and similarly for the other
principal graph r' (see for instance [Po4]). If N = P11 C M = P x K , then ^{aga) = \H\,
^{agl3) = |If[?[i<"|^ == ^{ftga) and ^{ftg{3} = \K\. As we have seen above, the bimodules
aga, ag{3, (3gl3 and J3ga may not be irreducible, but since the square root of the indices
of the irreducible components add up to ^{aga) (resp. $(o^/3), etc.), we see that ^ is
certainly a bounded eigenvector of Ar to the eigenvalue ( I f fUJ^I )^ (and similarly for Ar'
and its eigenvector $'). By ([Po4], Cor. 5.3.7]) we have that the strong amenability of
R11 C R x K is equivalent to the ergodicity of the principal graph r (which in this case
is equivalent to the ergodicity of r'). This in turn means by definition ([Po4, 1.4.2]) that
$ is up to a scalar multiple the unique ^-bounded eigenvector of Ar to the eigenvalue
(|I?[|Ar|)^. Before we come to the theorem relating strong amenability of R11 C R xi K to
certain growth properties of G, let us state for clarity of exposition the following immediate

LEMMA 4.11.- Let N C. M be an extremal inclusion ofll\ factors -with principal graph T.
Denote by Ar = ( ^ ^ ) the adjacency matrix of F and let ^ be the standard eigenvector\A U )
of local indices satisfying Ar$ == [M : N}^^. Then the following are equivalent

(i) Up to scalar multiples ^ is the unique (^-bounded eigenvector of Ap to the eigenvalue
[M : N}^ (i.e. r is ergodic).
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(ii) Up to scalar multiples $|reven ls tne unique ^|r ̂ ^-bounded eigenvector of AA* to
the eigenvalue [M : N].

(iii) Up to scalar multiples ^|rodd ls tne unique ^|r ̂ -bounded eigenvector of AtA to
the eigenvalue [M : N].

Proof. - Easy exercise. D
In order to state our main theorem on strong amenability of the inclusion R11 C R x K

we need to recall some facts on harmonic functions on groups.
Let G be a countable discrete group and v a probability measure on G. A function

/ G l°°(G) is called v-harmonic, if

f{s)=^f(sg)^g)^ for all. G G
g^G

(see for instance [Fu], [KV] or [Wo] for a review). As usual we denote by v the probability
measure defined by v(g} = u(g~1), g e G. Ergodicity properties of the right random walk
on G defined by the measure v are then expressed in terms of the entropy h(G, v} of G
with respect to v, which is defined as

h(G^)= lim ^-H(y^\
n—>oo U

where H{v} = - V^ v(g} In v(g) is the entropy of v and ̂ n denotes the n-th convolution
geG

power of the measure v (see [Av], [KV]). It is shown there that if H{^) < oo, then the
vanishing of h(G^ v) is equivalent to the triviality of the Poisson boundary r(G, v\ which
means that all bounded ^-harmonic functions on G are constant.

Let now G = (H^ K) be as in Theorem 4.9 and consider the measure ^ on G with
support {kh | k G K,h G H} and weigths ti(kh) = k € K, h 6 H (see proof

\H\\K\
of Theorem 4.4). IJL is then a finitely supported, non-symmetric (i.e. fi -^ IJL) probability
measure on G whose support generates all of G (such a measure is called nondegenerate).
The following lemma shows that we can replace ^ by a symmetric measure for entropy
considerations.

LEMMA 4.12. - Let fi = ^^ ^ ^ 6kh be the above probability measure on
I 1 1 ' kCKhCH

G = ( H , K ) . Then

h(G^ IJL} == h(G, /2) = h(G^ fi * ji) = h(G^ /2 * 11).

Proof. - Set /^i = _- ̂  8k and ^2 = Tjr\ ̂  6^ then p, = ̂  * ^2. Note that
1 1 fcex I ' hen

^i * f^i = A^ % = 1,2 and therefore /^ * jl = /^i * ̂ 2 * ̂ i? /^ * A6 = /^2 * /^i * ̂ 2- Thus

^n = (/^l * ̂ 2)*71 = (/^ * A)*^ = /^l * (A * ̂ )*(n-l\
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which implies ff(^*71) < H{{p. * /2)*(71-1)) + ff(^) ([KV, Proposition 1.1]) and hence
h{G^p) < h(G^^ /2) by definition of the entropy. Similarly, /i(G,/^) < fa (G, /2*^) .
Furthermore we have (p, * /2)*71 = /^n * /^i and (/2 * /^^ = ^2 * ̂ 'l(n- Thus

ff((^*/2)*n)<ff(^*n)+^(/.l)

^((A*^r)<Wn)+^2)

which gives h(G^fi * /2) < h(G^) and h(G^{i * ̂ ) < /i(G,/^), from which the lemma
follows. D

We can now state our main theorem on strong amenability of the inclusion R11 c R xi K.

THEOREM 4.13. - Let H and K be finite groups acting properly outerly on the hyperfinite
J/i factor R and let G be the group generated by H and K in OutjR. Suppose that the
action (/i, k) ' g = hgk of H x K on G is free ( ( 1 0 ) ) and let /x be the probability measure

given by ^ = V^ V^ 6kh' Then the following are equivalent
I N ' keKhCH

(i) R11 C R xi K is strongly amenable (in the sense [Po4]).
(ii) All bounded ^-harmonic functions on G are constant.

(iii) The entropy /i(G, p,) of G with respect to p, is zero.
(i') R1^ C R xi H is strongly amenable.

(if) All bounded fi-harmonic functions on G are constant.
(iif) fa(G^) = 0.
(iv) All bounded ji * fi (resp. fi * ^-harmonic functions on G are constant.

(iv') h{G,p, * /2) = 0 (resp. h(G,p, * ^) = 0).

Pwo/. - Let (r,r') be the principal graphs of N = R11 c R xi K = M. Since
Ji^ C R x H is just M C Mi from the basic construction N C M c Mi, we get
(i)^(i') from [Po4]. Observe that this also follows by repeating the proof below for r'
instead of F. Note that strong amenability of R11 C -R x K is equivalent to amenability
and ergodicity of r as mentioned above. The equivalences (ii) ̂  (iii), (ii') <^ (iii') and
(iv) ^ (iv') are classical results ([Av], [KV]). The equivalence (iii) ^ (iii') <^ (iv') is
shown in Lemma 4.12. Hence we are left with showing (i) <^ (ii).

Let Ar = ( ^ ) be the adjacency matrix of F, i.e. A is the standard matrix of\A U )
R" C R x K. From Lemma 4.3 we get the following commutative diagram (17)

R(G/^) R^ R(G) -^ R ( G / H ) R^ R(G) -^.. .
IL, J.L, IL, IL,

R(rodd) ^ K(H\G) R^ R(reven) ^ R(^\^) ^•••
i^. il/c. iL, iL,

R{G/K) R^ R(G) -^ R(G/^) -R^ R(G) -^••.
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..A R(G/^) -^ R(G)
i i^c. IL,

J^ o/-r ^ R0 0/" \^
• " — — ^ l^(iodd) ——^ THJf\G)

[ [^ ^ ^L,

..A R(G/,0 -^ R(G)

where as usual Tty, JLy, £^, 7 G {a,Q',/3,/3} denotes right resp. left multiplication by
7. As in the proof of Theorem 4.4 we regard these operators as matrices acting on the
appropriate spaces according to the commutative diagram (17).

(ii) ==> (i): Let 77 be a ^|rodd -bounded (and hence bounded) vector on Fodd satisfying

(18) A'AT] = \H\\K\r] or equivalently R^R-^T] = \H\\K\T].

Define / = L^R^r] G l^^G) and compute

Raaftftf = RftRftRaRaf

= R^RftRo,Ro,Lo,R^r]
= L^RpR^R^ ((17))
=\H\\K\L^=\H\\K\f.

Thus / satisfies

^-w^'^
i.e. f is a ^-harmonic function on G. Observe that since H x K acts freely on G, we have
that R^Lo, : R(G) —> R(Fodd) is surjective (see considerations before Lemma 4.3), and
hence L^R^ = {R^L^Y is injective. Thus, if F is not ergodic, i.e. AtAx = |ff||^|a; has
at least two linearly independent ^Ir^a "bonded solutions, icithen by lifting them up to G
via LaRft, we get two linearly independent ^-harmonic functions on G, i.e. fa(G,^) > 0.
This proves (ii) => (i).

(i) => (ii): Denote the space of bounded /^-harmonic functions on G by H°°(G^) and
suppose that there are nonconstant bounded ^-harmoncic functions on G. Then by ([Ka2],
3.3.1, Corollary 1) it follows that dimfi^G,^) = oo. Let / e H°°(G,ii) and average /
by H from the left, i.e. let f{g) = —— \^ f{hg), g e G. Then it is easy to check that

1 J^
/ G H°°(G^), i.e. f satisfies R^aftftf = \H\\K\f (since / does) or equivalently

(19) f\9) = Tr——— E E ̂ kh\ g € G.
1 " ' k^Kh^H

Observe that f(hg} = f{gk) = f(hgk), for all h e H, k e K and g G G. Since
dimH°°(G^) = oo, and H is a finite group, we get that the space of bounded y^-
harmonic functions on G, which are constant on H-K double cosets, is still infinite
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dimensional. Let / be such a function, i.e. f € l°°(G) with R^ftf = WW and

Laaf = \H\f (the latter follows from f(hg) = f(g), he H, g eG). Set

T] = R^RaRa^af = R^LaRo^Raf •>

which defines a bounded function on Fodd {see (17)). Then using (17) we get

^^R^Qll = R^RaRaR^R^RaRaLaf

= R^R^LaRftRftRaRc.f ((17))
= \H\\K\R^PaLaf = 1^11^1^

L6?. A^ = |ff||^. Suppose A and /2 are two such functions and assume
rj^R^R^fi = R^R^f2^^. Then, since we get from (17) that

LaR/sLaRaRa = RftRaRoiLiaLia-)

we have

Z/o;?7l = R^RaRaL'aL'aJl

= \H\R(3RaRafl

= ^a^2

= \H\RftRoiRoifi

Thus
h = ̂ ^^^^^A = î î ^^^^ = /2.

Hence, if /i(G,^) > 0, then the equation ^Ax = \H\\K\x has infinitely many linear
independent bounded (and hence $|r^d -bounded) solutions, which means that F is not
ergodic (Lemma 4.12). This completes the proof of %) ^ ii) and hence the proof of
the theorem. D

Remark 4.14. - a) If P is an arbitrary Hi factor with H and K actions as in the theorem,
then we actually prove above that the principal graphs (F, F) of P11 C P x K are ergodic
(i.e. the associated hyperfinite standard inclusion [Po4] consists of factors) if and only if
all bounded p, (resp. /2, resp. ^ * A. resp. fi * AO - harmonic functions on G are constant.

b) The proof of (i) => (ii) does not use the hypothesis that H x K acts freely on
G. Instead we use that the space of bounded /^-harmonic functions on G is either one
dimensional or infinite dimensional ([Ka2], [Fu]).

c) If h(G,fi) = 0, then G is automatically amenable ([Av], [KV]). The statement
h(G, ̂ ) = 0 <^ h(G, A) = 0, is a translation of the fact that for amenable inclusions N^ is
a factor iff M^ is a factor (see [Po4] for the notation), where N = R11 and M = JZ x AT.
This happens for the inclusion R11 C R ^ K precisely in the strongly amenable case.

d) It is shown in ([Po4], 1.4.2, Corollary) that if TV C M is extremal, then
Z ( N s t ) H Z(Mst) = C. If we let N = R11, M = R xi K be as above, then this
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results is a special case of ([Ka3], Theorem 3 and Theorem 4), where it is shown that
the (/^) jointly harmonic functions on G, i.e. f e l°°(G) with p,fp. = f, are just the
constants. This is obtained from the following commutative diagram

R(FLJ -^ K(^\G) ^ R(I^) ^ R(^\G) -R^...
^T ^T L^T i^r

R(G^) -^ R(G) R^ R(G/n) R^ R(G) -R^...
i^ i^ i^ U,

R(Fodd) -^ K(H\G) R^ R(reven) -^ R(^\G) -^ • • •

•••R(r^en) -^ K(^\G)
^T ^t

•-R(G\x) ^ R(C?)
i^ IL.

• • •R( rodd ) ^ R(^\G)
Problem. - The entropy /i(G, ̂ ) measures how far TV8* resp. M^ are from being factors

(see Remark 4.13 c)). Is there a formula relating the relative Connes-St0rmer entropy
^(M^IA^) to h(G^) as in ([Bil], Theorem 1.9)?

5. Entropy of random walks on groups

We would like to use Theorems 4.9 and 4.13 to construct examples of strongly amenable
and of amenable, but not strongly amenable subfactors of the hyperfinite Hi factor.
According to these we need to find groups G which are of the form H * K / ^ for two
finite groups H and K such that G is amenable, but h{G, p,) > 0 (then R11 c R x K is
amenable, but not strongly amenable) and/or such that G is amenable and h(G, p.) = 0
(then R11 c R x K is strongly amenable), where p, is as in Theorem 4.13. We are therefore
lead to analyze ergodicity properties of the right random walk, defined by a probability
measure on G, on various classes of groups G of the above form.

Let us recall some elementary facts about groups and fix some notation. Given a
group G, we let {G, G} denote its commutator subgroup, i.e. the subgroup generated by
{xyx~ly~l | x, y G G}. Note that the sequence M(GQ, A^(G),. . . , inductively defined by

M(G) = {G, G}, A^+i(G) = {7V,(G), N^G)}

is decreasing sequence of normal subgroups of G. TV^(G) is called the n-th commutator
subgroup of G and G is called solvable if A^(G) = {e} for some n € N. Note that
solvable groups are amenable (see for instance [G], Theorem 2.3.3).

Let G be a finitely generated group and S a symmetric set of generators of G. Using
S, one can define a length function on G via

(20) \9\s = mm{n | g = s^ ' " s^, Si G 5},
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if g / e and \e\s = 0 (e denotes the identity in G). If 5" is another finite symmetric set of
generators of G, then it is easy to see that there are positive constants a and b such that

(21) a\g\s < \g\s' < b\g\s. 9 ^ G .

We say that the probability measure [L on G has finite p-th moment, p € R"^ if

(22) ^ MX^) < °°
^eG

for some finite symmetric set of generators S (equivalently for all finite symmetric set of
generators by (21)). Recall also that a probability measure p, on G is called nondegenerate

00

if G = \J {supp^'

For our entropy calculations below the following groups play an important role ([KV],
[Kal], [Ka2], [Ka4]): let Gk denote the semi-direct product

(23) G^W^x^

where FQ^.T.^) is the abelian group of finitely supported functions from J^ -> ~JL^ and
where the action of J^ on Fo(^^2) is given by translation T^ i.e.

CTJ)Q/) = f{y -x\ f G ?^2), x,y G Z".

Observe that these groups are amenable, since they are solvable of lenght 2. We will need
the following result from ([Kal], Theorem 3.3, see also [KV], Proposition 6.4).

LEMMA 5.1. - Let Gk be the groups defined in (23). If k > 3 and if p. is a
probability measure on Gk with finite first moment for which the induced measure p
on Z^ = Gfc/Fo(Z^Z2) is nondegenerate and for which the subgroup generated by the
support of p, is non-abelian, then the entropy h{Gk,^) is strictly positive.

Proof. - The induced random walk (Z^) is transient since k > 3 (see for instance
[Sp], Theorems 8.1, 8.2). Then ([Kal], Theorem 3.3) yields the result. D

Using this result we can prove

LEMMA 5.2. - Let Ffc, 3 ^ k < oo, be the free group on k generators and let
Hk = Fk/N^Fk) be the quotient of Fj, by its second commutator subgroup. If [L is a
nondegenerate probability measure on Hk with finite first moment, then h{Hk,p) > 0.

Proof. - Let ^ i , . . . Zk be the standard generators of Z^ and define fo C Fo(Z^ ^2) by

, . f 1, if V = 0 1
^t 0, if y^VO}.;

It is easily seen that z^ • • • ,z^ fo form a set of k + 1 generators of G^. Let x^..., xj,
be the generators of Fk and let y i , . . . ,yk be their images in Hk = Fk/N^Fk) by the
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quotient map. Note that there is a unique homomorphismus (f) from Fk onto a subgroup
G^ of Gk such that

(f)(xi) = foz-i and (/)(xi) = Zi, 2 < % < k.

Observe that for i = 2 , . . . , k we have

(/o^(/o^i)-\-1 = fozzfo1^1

=/o-T^(/o)^0,

where we use additive notation for the group multiplication in FQ^^ 1^). In particular, C?^
is not abelian. Since the second commutator subgroup of Gk is trivial, the same holds for
G^. Therefore (/) can be factored through Hk = Fk/N^(Fk), i.e. there is a homomorphism
(po from Hk onto G^ such that

(24) (t>o(yi\= fo^i and 0o(^) = ^, 2<,i<k.

Let | • |j^ (resp. | • [c^ be the length function on Hk (resp. G^) given by the set of
generators { ^ / i , . . . , yk} (resp. {/o? ^1, • • • , ^fc}) and their inverses. Then by (24)

l^oWlc. <2|/i|^, fae f f f c .
Therefore, since [L has finite first moment on Hk, the image // of ^ on G^ given by

00

(f)o has also finite first moment. Since ^ is nondegenerate, we have Iksupp//)7 2 = G'^
n=i

which is a non-abelian subgroup of Gk as we have seen above. Moreover, the map
Gk —^ Gk/Fo^, ̂ 2) ^ ^-k is nondegenerate, because the image of /o^i. ̂ ,... , Z k under
the quotient map gives obviously the standard generators of J^. Hence, by Lemma 5.1,
we have that ^(G^,^/) > 0. Since (/^^ is the image of /^n, the n-th convolution power
of /^, by the map (J)Q, we have

o^r^oW) - E ^(fc)' for a11 h G H^
k^hKer{(f)o)

Hence we can calculate the entropy

^(W) = - E w^wro?))
S^k

=- ̂  ̂ wwr^w))
h€Hk

^- ̂  /X"(/l)ln^(/l)

hCHk

= HW
since (^)"(<^o(/t)) = ^ ^"(fc) ^ /^"(/i). Thus

kehKer((l>a)

h{Hk^)^h(Gk,p,')>0. D
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In the next proposition we determine a class of groups, which are quotients of the free
product of two finite groups, and have positive entropy with respect to a large class of
probability measures on these groups.

THEOREM 5.3. - Let G = H * K be the free product of two nontrivial finite groups H
and K and let N^(G) be the third commutator subgroup of G. If \H\\K\ > 6, then every
nondegenerate probability measure fi on G' •=- G/N^{G) with finite first moment satisfies
/i(G',AO > 0.

Proof. - Let N\(G} be the first commutator subgroup of G. Then N\(G) is
freely generated by {hkh^k-1 \ h € H\{e}, k G K\{e}}. Hence M(G) ^ F^ for
m = {\H\ - 1){\K\ - 1). Since \H\\K\ > 6, we have either (\H\ > 2 and \K\ > 4) or
(\H\ > 3 and \K\ > 3) or (\H\ ^ 4 and \K\ ^ 2). In all three cases we get m > 3. Set
G' == G/A^G). Since 7Vi(G) has finite index in G (namely index I^H^D, the image Go of
7Vi(G) under the quotient map TT : G —> G' is a subgroup of G' of finite index and satisfies
Go ^ A^i(G)/A^3(G) ^ Fm/N^Fm)' Let ji be a nondegenerate probability measure on
G' with finite first moment. By ([Kal], Lemmas 2.2, 2.3, see also Lemma 5.5 below) we
can find a nondegenerate probability measure ^o on Go with finite first moment, such that
the Poisson boundaries r(G7,^) and r(Go,^o) ^e isomorphic. Since ff(^), -H'(^o) < co
(both measures have finite first moment), we have in particular ([KV], Theorem 1.1)

/i(G^) > 0 i f f /i(Go^o) >0.

But by Lemma 5.2 we know that h(G^ ^o) > 0. Thus the proof is complete. D
In the following lemmas and propositions we treat the case when |ff||^| = 6. By

symmetry we may assume \H\ = 2 and \K\ = 3.

LEMMA 5.4. - Let F^ be the free group on two generators and let H^ = F'z/N'z(F^) be the
quotient of F^ by its second commutator subgroup. If ̂  is a symmetric probability measure
on H^ with finite second moment, then h(H^^p,) = 0.

Proof. - Let N^(F'z) denote the first commutator subgroup of F^. Since ^1(^2) ^
N'z{F'z), we have a surjective homomorphism p : H^ —> F ' z / N ^ ( F ^ ) = Z2. Moreover,
Ker(p) = N ^ ( F ' z ) / N ' z ( F ' z ) is abelian. Let x\, x^ be the generators of F^ and let y\, y^
be the generators of H-z obtained as the images of a;i, x^ by the quotient map F^ —^ H^.
Furthermore, let z\, z^ denote the generators of Z2. Then clearly p{yi) = Zi, i = 1,2.
Thus, if [ • \H^ (resp. | • \y) denote the length function on H^ (resp. Z2) associated to the
generators {y'i,^} (resp. {^1,^2}) and their inverses, then

IpWIz. < \h\H^

Hence, if ^ is a symmetric probability measure on H^ with finite second moment, then the
image p.' of fji under p is a symmetric probability measure on Z2 with finite second moment
and zero mean displacement since // is symmetric. Thus // is recurrent (see for instance
[Sp], Theorem 8.1 or [Wo], Theorem 4.4) and hence the subgroup Ker(p) is a recurrent
subgroup for ^. By ([Ka], Lemma 2.2) there is then a probability measure ^,0 on Ker(p)
which has the same Poisson boundary as ^ i.e. T{H^,^) ^ r(Kerp,^o). But since Kerp
is an abelian group, its Poisson boundary is trivial by the classical Choquet-Deny theorem
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[CD] and hence r(H^,fi) is trivial, which implies that h(H^,^) = 0 ([KV], Theorem 1.1,
note that H{ii) < oo since IJL has finite second moment). D
We will need the following extension of ([Kal], Lemma 2.3):

LEMMA 5.5. - Let G be a finitely generated group and let Go be a normal subgroup ofG
-with finite index. Then Go is finitely generated. Moreover, if p is a probability measure on
G with finite p-th moment (p G R^) and ^o is the measure on Go defined as the distribution
of the point where the ^-random walk starting at e returns to Go for the first time, then
l^o has also finite p-th moment.

Proof. - By ([Kal], Lemma 2.1), Go is finitely generated. For n e N, let 0^ be the
probability that the /^-random walk on G starting at e returns to Go after exactly n
steps. Denote ft be the image of p, on the quotient group A = G/Go. Then 6n is the
probability that the /Z-random walk starting at CA returns to CA after precisely n steps.
Since |G/Go| < oo, fl is recurrent, i.e.

(25) ^0n=l.

n=l

Moreover, from the theory of Markov chains on finite sets it follows (see Appendix),
that the probability distribution on N given by (<9n)^=i has finite q-th moment for any
q G R^ i.e.

00

(26) ^ nqe^ < oo for all q G R-^.
n=l

Let | • | and | • |o be the lenght functions on G resp. Go based on given symmetric finite
sets of generators of G resp. Go. Then by the proof of ([Kal], Lemma 2.1) there are
positive constants c and d such that

(27) c\h\ ̂  \h\o <: d\h\, h G Go.

For h G Go denote by po(h, n) the probability that the ^-random walk starting at e returns
to Go for the first time at h e Go and that this happens after precisely n steps. Then

00

^ lio(h, n) = p.o(h) and ^ ^(h, n) = 6^.
n=l heGo

Using (27) we have
oo / \

(28) ^ \h\Mh) < ̂ E E l^o(/^)
h^Go n=l \heGo )

Let TT : G —^ G/Go == A be the quotient map. For each a C A, let Ha be the corresponding
Go-coset in Go, i.e. Ha = Tr'^a). Since ^ has finite p-th moment and since A is finite,
there is a constant Cp > 0, such that

(2()) E ̂ ^9) < Cp ̂  ̂ )
9^Ha gCHa
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for all a G A. Next set
Pn = [g = {gi.... ̂ n) C G7 11 9192 ' ... • gi i Go for i = 1 , . . . ,n - 1

and g^g'2 • ... • gn G Go}

Qn={a= (a i , . . . , a^) € A" | 0102 • . . . • a, ̂  A for i = 1,... ,n - 1

and ai02 • . . . • o"n = ^l^
Then we have clearly

(30) Pn={g={gl^'•^n)^Gn\ (TT^l), . . . , 7r(^)) G Q.}-

Observe that

(31) On = Y^ ^o{h,n) = ̂  ^(^i) • ... • A^n)
/icGo ^ePr^

and

(32) ^ |fa|^o(^^)= S ̂ • • - • •^ l^^ i )* - - ' - ^ 7 1 )
/i€G'o 9^Prz

^ ^(bil+.-.+bnD^^i)---^^)
^eP.

Assume first that p >, 1. Then

(33) (bi| + . . . + 1^1)^ < rz^W + . . . + l^nF).

Moreover, by (29) and (30) we have for any fixed i that

/ \ / ^

Ei^i^)-^)- E E 1^1'^) H E ^-)
^CPr. a€Q^ ^z€^a, / JT^ Vj€-H'a^ ^

/ ^

^ ^ X^ ^ ^l)--^n)
a€Qn \5=(5i,---,5^)^je^

=Cp ̂  ̂ l)...^n)

^eP^

Hence, we get from (31), (32) and (33)

^ 1/lMW < C^n,

/iGGo

so that by (28) and (26)
00

^|^oW^^^n^<oo.
/i€Go n=l

Hence ^o has finite p-th moment on Go.
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If 0 < p < 1, we must replace (33) by

(bl|+...+bn|)p<bl|p+...bn|^
which gives as above

^ |/fcW < epdy^nOn < oo.
h€Go n=l

This completes the proof of the lemma. D
Note that if ^ is symmetric, then /^o is automatically symmetric too.
We can now determine the ergodicity behaviour of some classes of random walks on

certain amenable quotients of P5'Z/(2,Z).

THEOREM 5.6. - Let G = PSL(2^ Z) = Zs * ̂ 3. Then for every symmetric measure ^ on
G' = G/N^(G) with finite second moment one has that h(G^p,) = 0.

Proof. - The first commutator subgroup A/i(G) of G is isomorphic to F^. Let Go be
the image of N]_(G) in G' under the quotient map G —^ G ' . Then GQ has finite index
in G1 (namely 6) and

C?o ^ 7vi(G)/7v3(G) ̂  F2/AW).

Let p,Q be the symmetric measure on GQ associated to ^ as in ([Kal, Lemma 2.2]). By
Lemma 5.5, we know that /^o has finite second moment, and hence we get by Lemma 5.4
that /i(G'o,^o) = 0 and thus also fa(G',^) = 0 again by ([Kal, Lemma 2.2]). D

THEOREM 5.7. - Let G = PSL(2^ Z) = Zs * Zs. Then for every nonde generate probability
measure p, on G" == G/N^G) with finite first moment, one has that /i(G",^) > 0.

Proof. - Let G'o be the image of 7Vi(G) under the quotient map G ̂  G". Then G^ has
finite index in G" and G'Q ^ N^G)/N^{G) ̂  ^2/^3(^2). Let H = I^l^/N^ * Zs).
Since H is generated by two elements, there is a surjective homomorphism from F^
to H and since H has trivial third commutator subgroup, this homomorphism factors
through 7^3(^2). Hence, there is a surjective homomorphism p : G'Q —^ H. Let fi now
be a nondegenerate probability measure on G" with finite first moment and let ^o be the
corresponding probability measure on G^ as in ([Kal, Lemma 2.2], see also Lemma 5.5).
Then ^o is still nondegenerate and has also finite first moment ([Kal] or Lemma 5.5).
If | • G'Q denotes the length function on G^ associated to a given finite symmetric set of
generators S and | • \n is the length function on H associated to the set of generators
p ( S ) , then we have clearly

M\H<:\g\G', for g^ Go'.

Therefore, the image fio of ^o by p is a nondegenerate probability measure on H with
finite first moment and hence Theorem 5.3 implies that h{H,fto) > 0. However, as in the
proof of Lemma 5.2, one has that /^G^o) >. h(H,fio). Hence /i(Go',^o) > 0, which
implies that fa(G",^) > 0 (again by [Kal, Lemma 2.2]). D
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The following proposition shows that the groups studied in Theorems 5.3 and 5.6 have
exponential growth.

PROPOSITION 5.8. - Let H and K be two nontrivial finite groups such that \H\\K\ > 6
(i.e. H and K are not both equal to 1^) and set G = H * K. Then the quotient group
G = G/N^G) ofG by its third commutator subgroup has exponential growth.

Proof.- Note first that M(G) is isomorphic to the free group Fi onl = (\H\-1)(\K\-1)
generators and that I > 2. Hence the subgroup Go - N^G)/N^G) of G' is isomorphic
to Fi/N^Fi). By [KV, 6.1], the group Gk = Fo^,^) x ̂  has exponential growth
for all k > 1. Set k = I - 1 > 1. Then with the notation of the proof of Lemma 5.2,
we have that ^..., ̂ , /o is a set of ( = k + 1 generators for Gk. Hence there is a
surjective homomorphism ^ : Fi -^ G^ which factors through Fi/N^Fi) since the second
commutator subgroup of Gk is trivial. Note that Fi/N^Fi) is isomorphic to G'o. Hence
Gk is a quotient of Go, and thus the fact that Gk has exponential growth implies that G'o
has exponential growth. Since Go is a subgroup of G', we are done. D

Remark 5.9. - Let G = H ^ K be as in the Proposition 5.8. Then the group G/N^G) has
polynomial growth because iVi(G)/A^(G) is a normal subgroup of G/N^G) with finite
index. But this subgroup has polynomial growth since N^G)/N^G) ̂  Fi/N^(Fi) ^ 1
for I = (\H\ - 1)(\K\ - 1) as above.

Let us also point out that the groups G/Nk(G) which we have studied in the above
propositions are all amenable since they are solvable.

6. Examples

We construct explicitly various new examples of finite and infinite depth subfactors of the
hyperfinite Hi factor R with finite Jones index using the group type inclusions studied in
chapter 4. In particular, we obtain the first examples of irreducible amenable subfactors of
R, which are not strongly amenable, thus solving Problem 5.4.2 in [Po4]. The "smallest"
of our examples appear already in index 6. Furthermore, we construct (strongly) amenable,
irreducible subfactors of R whose principal graphs have subexponential (or polynomial)
and/or exponential growth and compute some of these principal graphs.

Since every group G == J.^ * Zs/^ (i.e. a quotient of PSL(2, Z)) produces an irreducible
group type inclusion R12 C R xi Zs, we get a large variety of distinct irreducible index 6
inclusions, whose principal graphs can be (in principle) determined explicitly according to
our results in section 4. However, since these principal graphs will be rather big in size,
it will be difficult to list them all graphically. In particular, a complete list of principal
graphs as in [Ha] seems out of reach for indices > 6.

Note that the "smallest" group type inclusions are obtained as R12 C R xi ?2, which
produces strongly amenable, irreducible index 4 inclusions with principal graphs Dn
(in the case G = {a,b\ a2 = b2 = (afc)"-2 = 1), the dihedral groups) and D^ (case
G = (a, b | a2 = b2 = 1), the infinite dihedral group) (see [GHJ], [Po4]).
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The next "bigger" group type inclusions are of the form R12 C R xi Zs, coming from
an outer action of G = (1^, Zs), a quotient of PSL(2, Z), on the hyperfinite Hi factor R.
Various such quotients are discussed in detail below.

We recall for the convenience of the reader the various notions of growth for the principal
graphs (r,r') of a group type inclusion N = R11 c M = R x K. To this end let kn
be the number of simple summands of the higher relative commutant N/ n Msn-i and
recall that the standard eigenvectors associated to (r,r') are bounded (see considerations
before Lemma 4.11). We say that F has polynomial growth if kn ~ O(^), some r > 1,
or equivalently if kn < en7', for some c G H^ and some r > 1. If r = 1, then r has
linear growth. T has subexponential growth (see [KV, Definition 1.2] or [Po4, 5.3.8]) if
limyi^oo kn^ = 1 and exponential growth if this limit is > 1.

Let us now give the announced examples of (strongly) amenable irreducible subfactors
of R.

Examples 6.1. - (irreducible, amenable subfactors ofR, which are not strongly amenable
and whose principal graphs have exponential growth).

Consider the amenable group G = Zs * l^/N^l^ * Zs) and let it act properly outerly on
the hyperfinite Hi factor R. The index 6 group type inclusion R12 c R x ^3 is irreducible
(Corollary 4.1), amenable (Theorem 4.9), but not strongly amenable by Theorem 5.7 and
Theorem 4.13. In particular the principal graph F has exponential growth by [Po4]. The
fact that r has exponential growth can also be obtained in the following way: the group
Zs * 1^/N^(J.'z * Za) is a quotient of G, and since this quotient has exponential growth by
Proposition 5.8, G itself must have exponential growth. Hence by Proposition 4.2 and the
considerations after Proposition 4.2, the graph r has exponential growth.

More examples are obtained in the following way: let G = H * K / N ^ ( H * K)
with nontrivial finite groups H and K, \H\\K\ > 6. Since G is amenable (solvable),
R11 C R xi K is an amenable inclusion (Theorem 4.9), but not strongly amenable
by Theorem 5.3 and Theorem 4.13. For instance G = 1^ * J.4/N^(1^ * 1^) resp.
G == Zs * ZB/A^ZS * Zs) give amenable, but not strongly amenable inclusions with
Jones index 8 resp. 9. In this way we get countably many irreducible, amenable subfactors
of R, which are not strongly amenable and whose principal graphs have exponential
growth by Propositions 5.8 and 4.2.

Example 6.2. - (irreducible strongly amenable subfactor of R, whose principal graph
has exponential growth).

Consider the amenable group G = 1^ * Zs/A^Zs * Zs) and the associated irreducible,
index 6 group type inclusion R12 c J?x Zs. Note that this inclusion is strongly amenable by
Theorem 4.13, using Theorem 5.6 and Lemma 4.12. The principal graphs have exponential
growth by Propositions 5.8 and 4.2 (see also considerations after Proposition 4.2).

Example 6.3. - (irreducible strongly amenable infinite depth subfactor of R whose
principal graphs have polynomial growth).

Let H and K be finite groups and set G = H ^ K / N ' z ( H ^ K ) . By remark 5.9, G is infinite
and has polynomial growth. Hence the associated index | H \\K\ -inclusion R11 c R x K
has infinite depth, and its principal graphs have polynomial growth, so in particular the
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inclusion is strongly amenable. In example 6.5 we will compute the principal graphs F
and r7 in the special case G = J.^ * ̂ 3/^2(^2 * Zs).

Next we will work out the principal graphs of group type inclusions associated to some
special quotients of PS'.L(2,Z). Consider the polyhedral groups

G^n=(^b\al=brn=(ab)n=l)

(see [Bu, p. 408], [CM, Chapter 6.4]). It is shown in ([CM, Chapters 4.3, 4.4 and 5.3])

that these groups are finite iff the number k = Imn ( - + — + — — 1 ) is a positive\l m n )
number, which happens for instance in the cases (^ ,m,n) € {(2 ,2 ,n) , (2,3,3), (2,3,4),
(2,3,5),n G N}. Observe that G2,2,n are the dihedral groups. The groups Gi^m.n with
2 < ? < m < n , - + — + — < 1 are Fuchsian groups and usually called the (Lm,n)-l m n
triangle groups. They have nice geometrical presentations in terms of rotations of hyperbolic
triangles with angles — and — [K] and have been studied extensively in the literature

/ m
(see for instance [M], [R] and references there).

Examples 6.4. - (irreducible finite depth subfactors of R based on the groups G2,3,n.
2 < n < 5).

We determine the principal graphs F and F' of the group type inclusions R12 c R x Za
corresponding to the finite groups C?2,3,2. ^2,3,3, C?2,3,4 and C?2,3,5. Observe that
G2,3,l = {1}.

a) Let G = €2,3,2 = (a, b \ a2 = b3 = (ab)2 = 1) and let H = {e, a} and K = {e, 6, b2}.
Then G ^ 83 via a -^ (12) and b -> (123). Moreover H H K = {e} and G = H K ,
so the associated inclusion R12 c R xi Zs is irreducible and has depth 2, because Fodd
consists of only one vertex by Proposition 4.2 ii). Hence the inclusion is isomorphic to
R C R xi L for some Kac algebra L of dimension 6 (see for instance [Sz]). Since Kac
algebras of dimension less than 8 come from either groups or group duals, the inclusion
must be isomorphic to one of the inclusions R C R xi Ze, -R C R xi 63 or R33 C R.

We compute next Feven and F^g^. The H x H cosets of G are {e, a} and {b, b2, ab, ab2}.
By Proposition 4.2 we have

aa = aaa^ aba = ab^a = aaba == aab^a.

Moreover
(ao:, aa) = m^g = 2, (abo:, abo;) = ̂ ^ == 1.

Hence abo: is irreducible and aa is the sum of two inequivalent bimodules (if aa contained
two equivalent bimodules, then (aa^aa) would be at least 4). In fact, the components
of aa can be identified with the elements of the dual group ^2 = {l^a'}. Hence by the
considerations after Proposition 4.2, we get that

Feven = {l.O'.O^o}
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^2 \ -and since a(3(a(3) = a(l + b + b^a = 1 + a' + 2aba, the graph r is given by

S^ a6a
=31

Fig. 1

The ^ x K cosets of G are {1,M2} and {o^a6,a&2}. Hence the vertices of F^
consist of the irreducible bimodules contained in {3f3 and /3a/3. Since the numbers

(̂  ̂ ) = m^ = 3, (/0aA ^a/3) = <, = 3

are strictly less ^han 4, neither /3/3 nor /3a/? can contain two equivalent irreducible
bimodules. Thus /3/3 and /3a(3 each split into three inequivalent irreducible bimodules, which
in the case of f3f3 can be identified with the elements fo the dual group Zs = {1, &', (&')2},
i.e.

p(3 ̂  1 + b' + (6')2, ^/? = (^a/3)i + C0a/?)2 + (^/3)3.

Therefore
r^n = {^b^^^w^w^w),}.

Since

(a/3)a/3 = /0(1 + a)/3 == 1 + b' + (6Q2 + (^)i + (^)2 + (^0/3)3,

we get that 1̂  is given by

le^. ^W),

Fig. 2

It follows from the form of F and F' that R12 c R x Zs is isomorphic to the crossed
product of R by the dual of a non-commutative group of order 6. Hence the inclusion
must be isomorphic to R53 c R.

b) Let G = (?2,3,3 = (a,b\a2 = b3 = (a&)3 = 1). Then G ^ A^ the
alternating group, via the isomorphism a -> (12) (34) (a product of two transpositions)
and b —^ (234) (a cyclic permutation of order 3). One checks that G ==
{l,a,b,b2,ab,ba,b2a,ab2,bab,b2ab,bab2,b2ab<2} and b'^ab2 = aba. We compute the
principal graphs (r,r7) of the associated group type inclusion R12 c R x 1^ i.e. the
group generated by 1^ and 1^ in OutR is just G. The first step consists of computing the
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vertices of F (resp. FQ. According to Proposition 4.2 we need to calculate the double cosets
H \ G / H , H\G/K and K\G/K with H = 1^ and ̂  = Zs. We compute first H \ G / H ' We
have that ff • 1 • H = {1, a}, HbH = {b, ab, ba, aba}, Hb2!! = {b2,ab2,b2a, ab2a = bob}
and Hbab2!! = {bab2,abab2 = b2ab,bab2a = b2ab,abab2a = bab2}, which determines
H \ G / H ' Applying Proposition 4.2 and using the notation of chapter 4 we obtain that aa,
aba, ab2^ and abab2^ are all the distinct R^-R12 bimodules appearing in (pp)71, n e N,
which are of the form ago, g € G. To calculate Feven, we need to decompose these
bimodules into irreducibles, i.e. we need to calculate the dimension of certain intertwiner
spaces, which is done using Frobenius reciprocity (Proposition 2.2):

{aa, aa} == {aa, aa) = (1 + a, 1 + a) = 2,

{aba, aba) = {b, aabaa) = {b, (1 + a)b(l + b + b2))

= (b, b) = {b, b + ab + ba + aba) = 1,

{ab2^ ab^a) == (b2, &2 + ab2 + fc'a + bob) = (b2, &2) = 1,

(aba^a, abab2^} = {bab2, bob2 + ̂ aft + ̂ ab + ba&2) = 2.

Note that we have in general that ago is irreducible iff the double cose^ HgH has
maximal cardinality (namely |ff|2). If we denote the dual group of ^2 by J.^ = {l,^},
then aa = 1 4- a', aba^a = bi + &2 decomposes into two inequivalent irreducible
bimodules bi, 62 (argue as in a)) and hence

Feven = {l, a', aba, Q;&2Q;, &i, 62}-

Next we compute H \ G / K ' We have that all H-K double cosets of G are given by
H « 1 • K = {1, a,6, a6, &2, a&2}, ff6aX = {&a, aba, bab, (ab)2 = b2a, bab2,abab2 = b2ab}.
Hence aft and abaft are all the distinct R^-R xi Zs bimodules appearing in (ppYp.
n G N, which are of the form agf3, g € G (Proposition 4.2). A computation as above (or
again maximality of the cardinality of the double cosets) shows that these two bimodules
are irreducible and thus

Fodd= [a ft, abaft}.

In the second step we compute the edges of F according to (8). First we calculate the
edges of 7 G Feven to aft € Fodd (recall that p = aft in (8)). Then

( l .a/W)=l,
{aaaft, aft} = {aa, aaftft} = (1 + a, (1 + a)(l + b + b2)} = 2,

{abaaft, aft} = {b(l + a), (1 + a)(l + b + b2))
= {b + ba, 1 + a + b + ab + b2 + ab2) = 1

and similarly ^aaft.aft} = 1. Note that the first two identities imply that

{a'aft,aft} = 1.

Finally one has

{abab2^, aft} = {bab2^ + a), (1 + a)(l + b + b2)) = 0.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



362 D. BISCH AND U. HAAGERUP

Hence we have precisely one single edge from 1, a', aba and ab^a to aft and no
edges from 61 or 62 to a/3. Next we compute the edges from 7 e Feven to a6a/3. Let
g = (1 + a)6a(l + 6 + 62) = ba + a6a + bab + fc^ + 6a62 + b2ab, then

(aaa/?, a6a/3) = (aa, aabaftft) = (1 + a, (1 + a)6a(l + b + 62)}
= ( l + a ^ } = 0 ,

(abaaft, abaft) = {b + 6a, ̂ ) = 1,
(ab2aaft, abaft) = (62 + fr2^) = 1,

(abab2aaft, abaft) = (bab2 + b2ab,g) = 2.

Hence, since F is connected, we have precisely one single edge from aba, ab^a, &i and
62 to abaft and no edges from 1 or a' to aa6/?. Thus F is given by the following graph

Oib^a

Fig. 3

Next we compute the principal graph V. Since F^ = Fodd, where ~ denotes the
contragredient map, we get that

^dd = {ft^ft^ba)-1^} = {ft^ftab2^}.
To obtain the even vertices of F we need to compute first K\G/ K - These double
cosets are given as K ' 1 ' K = {l,jb, b2} and KaK = {a, ba, ^a, ab, bab, b2ab,
ab2, bab2, b2ab2}. Hence ftft and ftaft are the distinct R x l^-R xi ^3 bimodules
appearing in (ppY, n G N, which are of the form ftgft, g G G. We check irreducibility:
denote by Zs = [ l ,b ' , (b ' } ' 2 } the dual group of ^3, then /?/? = 1 + b' + (67)2. Since
(ftaft, ftaft) = (a, (1 + b + &2)a(l + 6 + 62)} = 1, we have

^^-{l^^^)2^^}.
Next we compute the edges of F according to (9). First we calculate the edges of
7 G F^ to ft a. We have that

(AW ̂ } = </?A ̂ ^} = (1 + b + 62, (1 + b + 62)(1 + a)} = 3,
(Aa/^a, fta) = (a(l + 6 + 62), (1 + 6 + &2)(1 + a)} = 1.

Hence we have precisely one single edge from /?a/? to fta and three edges from ftft to /3a.
Now we compute the edges from the even vertices of F7 to ftab2^. We have

(ftftfta.ftab2^) =0,
(ftaft fta, ftab2^) = (a(l + b + 62), (1 + b + ft2)^! + a))

= (a + a6 + ab2,ab2 + &a62 + ^afc2 + 6a6 + b2ab + a6) = 2.
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Since F' is connected, we have therefore precisely one edge from 1, b' and (?/)2 to /3a
and no edges from 1, V and (6')2 to /Sab2^. Furthermore we have a double edge from
l3a/3 to ft ah2 a. Thus the principal graph T ' is given by

y

1 /?p /?a/? /^a

(6')2

Fig. 4

c) Let C7 == G?2,3,4 = (a, & | a2 = 63 = (a6)4 = 1) and consider the associated group
type inclusion as in a). Then G ^ 54, the symmetric group, via the isomorphism which
maps a —^ (12) and b —> (243). We have that G = { 1, a, 6, b2, ab, ba, bah, aha, ab2,
b2a, (a6)2, ab2a, b2ab^bab2, (6a)2, abab2, bab2a, ab2ab, b2aba, b2ab2, abab2a, bab2ab,
ab2aba, abab2ab}. Let H = Zs and K = Zs and let us compute the principal graphs of
the associated irreducible group type inclusion R12 C R xi Is. One checks that

^\G7^ = {H,HbH,Hb2H,HbabH,Hb2abH,Hbab2H,Hbab2abH},
H\G/K = {HK,HbaK,Hb2aK,Hbab2aK},
K\G/K = {K,KaK,KabaK,Kab2abaK}.

Hence aa, aba, ah2 a, ababa, ab2aba, abab^a and ababl2aba are all the distinct R^-R12

bimodules of the form aga, g G G (Proposition 4.2). To determine irreducibility one
computes

(aba^aba) = (ab2^, ab^a) = (ababa^ababa} == {ab2aba^ab2aba)

= {abab2 a ^ abab2 a) = 1

and aa = 1 + a7, where Zs = { l^a 7 } , (abab2aba^abab2aba) = 2, hence abab^aba =
ai + 02 with ai 7^ a2 irreducible bimodules (if ai = 03 we would get again a graph
with square norm > 6). Thus

Feven = {l? ^ /? afco;, ofo2^, ababa^ ab2aba^ abab2^^ ai, 02}.

By the above double coset computation we obtain next that a/3, abaf3, ab2a|3 and abab2a|3
are all the distinct R^-R x Zs bimodules of the form ag{3, g G G, which are all irreducible
since the action of H x K on G is free. Thus

Fodd = {a/3,aba|3,ab2a|3,abab2a|3}.
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A slightly lengthy, but simple computation of the edges as in a) yields the following
principal graph F

a7 aba abaft abab^a a\

ababa

1 ^ a^a ab^aft ab^aba abab2af3 "2

Fig. 5

Next we compute the principal graph F'. We know that

r^d = {^a^(6a)-la^(62a)-la^(6a62a)-la} = {fta.^a^aba^abab2^}.

Checking irreducibility of /?/3, /?a/?, Rabap and /?a&2a6a/3, which are all the distinct
R x ZS-.R xi ?3 bimodules of the form / 3 g / 3 , g e G', we get that

r^, = {l^^^^a^^aAai^s^a},

where Za = {l^'^fc')2} denotes the dual group of Zs and ai, 03 and as denote the
irreducible components of /3ab<2ab(3. Computing again the edges according to (9) as in a),
we obtain the following graph for F7

V /3aba a^

1 ^ ^a/K /abaft ftabWa a2r -v i
(b1)2 ftab^a ^

Fig. 6

d) Let G = G'2,3,5 = (a, 6 | a2 = &3 == (a6)5 = 1} and consider the associated irreducible
index 6 group type inclusion R12 C R x Is. Observe that G ̂  As, the alternating group,
via a —^ (12) (45) and b -^ (134) (this presentation of As goes back to Hamilton, 1856,
see [CM, page 137]). A rather lengthy and tedious computation as in a), b), which will
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be omitted here (and can be done as an exercise by the reader) yields the following
principal graphs:

Fig. 7

Fig. 8

Example 6.5. - (calculation of the principal graphs Y and V in the case G = C?2 3 6 =

Z2 * ?3/AW * Zs)).

We show first that (?2,3,6 = (a, & | a2 = b3 = (a6)6 == 1} is equal to 1^ * Zs/A^Zs * Zs).
Set G = Z2 * Zs = (a, b | a2 = 63 = 1} and let 7Vi(G), A^(G) be the first and the second
commutator subgroups of G. Then 7Vi(G) is the subgroup of G generated by x = abab2

and y == ab2a&. Hence N<z(G) is the smallest normal subgroup of G, which contains

xyx-1^1 = (ba)-^)"6^),

i.e. N^(G) is also the smallest subgroup of G containing (ab)6. Therefore G/N-^(G) can
be expressed in terms of generators and relations as

G/7V2(G) = {a^b \ a2 = b3 = (a6)6 = 1} = G2,3,6.

Set now G = G/N^G) = G^e and set a = ^(a), 6 = <^(&), where (j) \ G -> G/N^G)
denotes the quotient homomorphism. Then x = abab2 and y == ab2ab generate a normal
subgroup of G, namely the group

JV = 0(^i(G)) = ^Vi(G)/7V2(G) ^ F2/AW) ̂  Z2,
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5

with x and y as free abelian generators. It is well-known that G = T ^(a^A^G) (see
n=0

5

for instance [Ne]) and therefore G = T ̂ (ab^N and hence [G : N] = 6. Note that
n=0

since N is abelian, this implies that G has polynomial growth. Furthermore, G has the
structure of a (twisted) crossed product of N by Zg. Let us determine this structure:
we have that Ada(x) = axa~1 = bab2a = x~1, Ada(y) = aya~1 = b2aba = y~1,
Adb{x) = babab = x~ly and Adb{y) = bob2 a = x~1. Thus Adab(x) = xy~1 and

5

Adab(y) = x. Using G = ]J 7V(a&)71, we see that G ^ N x Ze, where IQ = (ab)
n=0

acts via Adab on N. Let us give a geometrical realization of this crossed product. Since

N = (x, y} ^ Z2, we can realize the lattice N in C as Z + ( - + i—} 1 with x = 1
V2 2 /

1 /Q

and ? /= : -+ z—. Ada is then a counterclockwise rotation by 180° and Adb one by 120°
Zi 2f

around 0. Ada6 becomes a clockwise rotation by 60° around 0. This geometrical realization
of N will be useful for the subsequent computations. - Next we will simplify the right
TV-coset decomposition of G. Since (ab)2y~lx = b2, (ab)3y~lx = a, {abYy^xy = b and
{ab^y^xy = ab2, we get that G can be written as a disjoint union

(34) G = N U aN U bN U abN U b2N U ab2N

Let us compute now the vertices of the principal graphs (F^F'). Clearly, 1^ x Zs (resp.
Z3 x 1.2) acts freely on G, so that Fodd (resp. F^) is labeled by the double cosets
Z2\G/z3 (resp. z3\G/^) (Proposition 4.2). If we write each element in G as a word
in a and b with positive powers, then it follows from (34) that the elememts in N are
precisely those words whose sum of powers in a (resp. b) equals Omod2 (resp. Omod3).
Now let g G G and consider the double coset Za^Zs, which all have cardinality 6 (since
Z2 x Zs acts freely). Clearly, there is precisely one element n G ^-29^-3 whose sum of
powers in a (and b) is equal 0 mod 2 (0 mod 3). Hence N forms a set of representatives
for z2\^/Z3 ^d we nave therefore

(35) Fodd = {cmA n G N}, F^d = {0na, n G N}.

Next, we determine the even vertices of F resp. F'. According to Proposition 4.2 we need
to analyze the double cosets j,^\G/^ and i^\G/^. A double coset l'zg^-2 (resp. l^gl^)
will represent an irreducible bimodule iff \L^gT^\ == 4 (resp. \T^g1^\ = 9). Clearly, if
g G {l ,a} (resp. g G {1,6,62}), then \J.2g^-2\ = 2 (resp. \l^g1^\ = 3). The corresponding
bimodule decomposes therefore into 2 (resp. 3) irreducible bimodules. We show that the
double cosets have maximal cardinality in all other cases.

LEMMA 6.5.1. - Let g G G, ^-29^-2 = {^5a (^ ̂ a?a(^} ̂ d suppose \IL^Q~!L^\ < 4. Then
g ^ {i^}.

Proof. - \J.2gJ-2\ < 4 implies that either g = aga or ag = ga, which are identical
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conditions. Let us use (34) and the geometrical realization of N to see that this condition

(36) g = aga= Ada(g)

implies indeed g G {l,a}. This is done by a case-by-case analysis. If g G N, then (36)
implies that g is invariant under a 180° rotation, which is only possible if g = 0 (note
that the identity of G is written additively as 0 when regarded in the abelian group N). If
g G aN, then g = ag1', for some g ' € N . Then (36) implies that g = g ' a , i.e. a g ' = g ' a
and hence g ' = 0 and therefore g = a by the above argument. If g G bN, then g = bg' for
some g1 € N and (36) implies bg' =. abg'a, i.e. g1 = b'^abg'a = y^Ada^) (this is a 180°
rotation and a translation by y~1). Clearly, no g ' G N satisfies this relation. If g G abN,
then g =- abg1 for some g1 G N and (36) implies abg' = bg'a, i.e. g ' ^ b2abgfa, which
is impossible by the previous argument. If g G b2N, then g = b2g/ for some g ' G N and
(36) implies g ' = bab2gfa = x^Ada^), which is again impossible. Finally, i f ^ G ab^N,
then g = ab'^g1 for some g ' ^ N and (36) implies that a&V = &Va which holds iff
g ' = bab2aagfa = x^Ada^), which is impossible as we have just seen. D

Thus, if {l,gi,i € 1} is a set of ^2 double coset representatives of G, then

Feven = {1, 0', 0^0, Z G I},

where o^a =- 1 + a ' , J^ = {1, a7}. A similar analysis has to be carried out for i^\G/^.

LEMMA 6.5.2. - Let g G G, 13^3 = {g,bg,b2g,gb,gb2,bgb, bgb2,b2gb,b2gb2} and
suppose IZa^Zsl < 9. Then g G {l,b,b2}.

Proof. - If I^Zsl < 9, then g = bgb or g = bgb2 or g = b2gb or g = 62^2, which
reduces to g = bgb-1 (iff g = bgb2 iff c/ = b2^) or ^ = ^b (iff g = fc^fc2). In particular
\J.^g1^\ = 3. We sketch the arguments, which are analagous to the ones used in the proof
of Lemma 6.5.1. Suppose first

(37) g^bgb-^Adb^g).

If g G N , then g = 0, since Ad6 is a 120° rotation. If g G a7V, g = ag1', ^/ G TV, then (37)
implies g1 = ahab^bg'b-1 = ^Ad&(^'), which is a rotation by 120° and a translation by
x. Observe however that this transformation has no fixed point in N . If g G bN, g = bg\
g ' G A^, then (37) implies that g ' = Adb(^), and hence g ' = 0 and thus ^ = b. If ^ G ab7V,
g = abg', g ' G N , then (37) implies that g ' = ̂ Adfc^'), which cannot be satisfied by
any element in N. If g G 62^, ^ = &V, ^/ G N , then (37) implies that (/ = Ad&(^),
L^. g ' = 0 and hence g = b2. Finally, if g G a^TV, ^ = ab2gf, g ' G A^, then (37) implies
gf = x-iyAdb^), which is again impossible in N. Now suppose

(38) g=bgb=b2Adb{g).

If g G A^, then (38) implies ^ G b2^, i.e. g G ^V H ^TV = 0, which is impossible ((34)).
If g e aN, g = ag\ g ' G N , then (38) implies g / = (ab)2^-1^) G (a&)2^ = 62^,
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which is impossible. If g G 6TV, g •= bg\ g ' G TV, then (38) implies g ' == bg'b, which
is impossible by the first argument. If g 6 abN, g = abg\ g ' G TV, then (38) implies
g / = 62a;(b-l^'6) G ^TV, which is impossible. If g G ^TV, g = &V, g ' G TV, then (38)
implies that g ' = bg'b, which cannot occur as seen above. Finally, if g G a^TV, g = ab^g',
g1 G TV, then (38) implies g ' = b2y~l(b~lgfb) G t^TV, which is again impossible. Thus
g = bgb cannot occur for any g G G and the lemma is proven. D

If we let {1,^-, j G J } be a set of representatives for the 1^ double cosets of G, then

r^^a^^^^^eJ},

where /3(3 = 1 + V + (^ /)2 as in section 6.3. This determines (not very explicitly) the
vertices of (T. F).

Next, we compute the edges for F. As usual we use the notation of chapter 4 and recall
that the computation of edges amounts to computing the dimensions of various intertwiner
spaces. Let cm/? G Fodd and consider

(39) (agaa/3^ an/3} =- (agf3^ an(3) + (aga(3^ an(3).

Note that ag(3 and aga(3 are irreducible bimodules (since Zs x 1^ acts freely on G)
and therefore {agaaf3, cm/3) = 0, 1 or 2. If g € {^, i € J} (hence ^ 7^ l,a), then
(agaa/3, anf3) == 0 or 1, since g and ^a cannot be contained in the same double coset
TL^ntL^ (easy exercise, as proof of Lemma 6.5.1). If g = 1, then (aaa(3,an(3) = 2 if
n = e (the identity of G) and 0 otherwise, since TV labels all distinct double cosets. Hence
1 resp. a! are connected by a single edge precisely to a(3. Furthermore, ag^a and anf3
are connected iff gi G H^nS,^ or ^a G J-^nJ.^. In this case they are connected by a single
edge. This determines F. However, in order to represent F graphically in an explicit way,
we need to do some more work.

The odd vertices of F are labeled by TV = Z + ( - +z— ) Z as shown above.
V2 2 )

Furthermore, we have just seen that each even vertex agio is connected by a single edge
to precisely two odd ones cmi/3 and an^(3, where gi or gia € l^rijJ.^, j = 1,2((39)).
The odd vertex a (3 is connected by a single edge precisely to the even vertices 1, a', aba
and ah2 a since (agiaa(3, a/3) = ((1 + a)^z(l + a), 1 + b + b2) = 28g^e + Sg^b + <^,b2.
All other odd vertices anf3, n G TV\{e}, are connected to precisely three even vertices
by a single edge. To see this, consider the composite map i^\G/^ -^ i^\G ̂  i^\G/^,
which maps J-'zgJ-2 —> T-iQ —> ^2^3- This map is clearly 3:1 and hence we have that
an(3 is connected (by a single edge as shown above) to those three vertices ag^a, ij G J,
j = 1,2,3, for which T-^gi^ = 1L^n1L^ 1 < j < 3. With this notation we have the
following local picture of F
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ag^a

cmi/? agio OLU^ ag^a anf^ ag^a

Fig. 9

To get a global picture of F, we use the labeling of Fodd by N = Z + ̂  + z-y j Z.

First we will find the structure of FT, i.e. we determine to which odd vertices a given
odd vertex an/3 is connected by going two steps on r. We compute

(anpapap, an {3} = {(1 + a)n(l + b + b2), n'(l + b + (^(l + a))
= (n + n6 + nb2 + an + an& + anb2, n1 + n'b + n'b2 + n'a

+ n'fta + n'^a)

= 3^n,n/ + (an,n'a) + {anb.n'ba} + (an&^n'^a)

= 3<^n/ + (ana,n') + {ana.n'bab^a) + (ana, nfb2aba)

= ^Sn^n' + ̂ ana-^n' + ̂ ana-1 ̂ a'-1 + ̂ ana-^n'y-1

where the third equality follows from (34). Thus cm/3 is connected on FT three times
to itself and by a single edge to the vertices aana~1^ aana^x? and aana^yP. The
position of these bimodules in the lattice N is indicated in the following figure (Fig. 10).
In order to realize T as a planar graph, where adjacent vertices are connected by edges,
we label each odd vertex twice, namely by the corresponding lattice point n G N and the
midpoint of the triangle with vertice ana"1, ana''1.!; and ana^y. Note that this midpoint

1 /Q
is obtained by reflecting n at the point . + %—. Using this labeling the graph FT is
given by the following figure (omitting self-connecting lines and modulo the identification
of points resulting from the doubling) (see Fig. 11).

Thus, by our calculations above (summarized in Figure 9), we can picture the principal
graph F (modulo the above identification) in the following way (see Fig. 12).

Next we determine the principal graph F'. Let l3na € T^, g € G, and consider

(40) {PgWoi, 0na) = (0ga, ftna) + {0gba, 0na) + (Pgb2^, 0na).
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/ / / / / / / /

Fig. 10

Fig. 11

Since l3ga, /3gba and ^gb^a are irreducible bimodules, we have {j3g^a^na) = 0,
1, 2 or 3. If g G [g'j, j G J } (hence g / 1,&,&2) , then one shows easily that
g, gb and gb2 are contained in three distinct double cosets of the form H^nS,^
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Fig. 12

n € N. Hence ^g^a^na) = 0 or 1 ((40)). If ^ = 1, then (0^a^na) =
(1 + 6 + b2, (1 + & + b2)^! + a)) = 3 if n = e and_ 0 otherwise. Hence 1 resp^ &'
resp. (?/)2 are connected by a single edge precisely to fta. Furthermore, {3g'^ and 0na
are connected iff ^ or ^b or ^62 <E Zsn^ and in this case they are connected by a
single edge. This determines the principal graph F', but to draw it explicitly some more
information is needed.

(40) shows that each even vertex is connected by a single edge to precisely three odd
vertices. The odd vertex f3a is connected by a single edge precisely to 1, V, (V)2 and
/3a/3, since

^g'^a^a) = ( ( ! + & + ̂ .(l + b + b2), (1 + a)) = 3^.,e + <^.,a

All other odd vertices f3na, n e N\{e}, are connected by a single edge to precisely two
even vertices. To see this, consider as above the map i^\G/^ -^ i^\G -^ i^\G/i^ _which
maps I^gl^ -^ l^g -> ^3^2. This map is clearly 2:1 and hence we have that ftna is
connected (by a single edge as shown above) to those two vertices /3^/3, i = 1,2, ji G J,
for which Zsfc^ = ^3^^2, % = 1,2. Thus we have the following local picture of r'
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n2

M^3i ftnoi (3g^a
•-
ni ri3

Fig. 13

As in the calculation of r, we will determine first the structure of (r'^r'. To this end
we compute

(l3najaf3a, fSn'a} = ( ( ! + & + b2)^! + a), n\l 4- a)(l + b + b2))
= {n -\- na -\-bn -}- bna + 62n + b^na^ n' -\- n'b + n'62 + n' a

+n/a&+n'a62)

= 2^,^ + {bn.n'b} + {bna.n'ab} + <6Vn'&2) + {b^na.n'ab2}
= 2^,^ + <6n&2 ,n /) + {bnb2, n'abab2) + {b^nb^n'}

+ {b2nb,n/ab2ab)
= 2^^/ + ̂ bnb-^n7 + ̂ bnb-^n'a; + ̂ b-lnb,^ + Sb-l-nb.n'y^

where the third equality follows again from (34) (by taking inverses). Thus /3na,
n € 7V\{e}, is connected on (r^F' twice to itself and by a single edge to /36n6~la,
j3bnb~lx~la, /06^1n6a and /36~ln&^~la. Observe that /?a is connected on (F')^' four
times to itself and by a single edge to |^x~la and /3^-1Q;. The position of these vertices
on the lattice N is pictured in the following figure (see Fig. 14).

Thus, in order to realize F' as a planar graph where adjacent vertices are connected by
edges, we label each odd vertex three times, namely by the corresponding lattice point
n G N and the midpoints of the segments [67^6-l:^-l,&n6-l] and [b~lnby~l,b~lnb] as
indicated in figure 14. Note that these midpoints are obtained by rotating n € N by 120° and

1 /Q

240° around the point ~ . ~ i ~ ^ - ' Modulo the identification by this 120° rotation (twice),
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/__/____/.____/^____/,____/_,___^___/____/____,/.. - ,. ., /_____/____^

/ / / / / / /-/ / / / / /— — — — y . — — — — — — y . y . ^ ^ p — ^ ^ ^ ^ ^ ^

6n6-lt/'l

Fig. 14

Fig. 15
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we get the following graph for (T^F (omitting the self-connecting lines) (see Fig. 15)
where a generic part is given by

Fig. 16

Next we construct F' from (T^T7 and our calculations above (summarized in figure 13).
Let /3^i/3 and / S g ^ / S be the two even vertices connected (by a single edge necessarily) to
(3na (on F). Since the edge from /3na to /Sb^nba on (F^F has to go through precisely
one even vertex, one of the two even vertices above, call it /3^i/?, must be connected to
Pb^nba^ Similarly, there must be precisely one even vertex through which the edge from
(3na to ^bnb-^a (on (F^F) has to pass. Since {3na is connected to precisely the two
even vertices /3^/?, i = 1,2, this even vertex must be either f3g^ or ^2/9. We show
that it is necessarily /?^i/?.

LEMMA 6.5.3. - Let_/3na C F^, n / e, and denote by /3gi/3, i = 1,2, the two even
vertices connected to /3ncL Suppose that / 3 g ^ / 3 is also connected to /Sb'^-nba, then it is
necessarily connected to /?6n6-lQ/.

Proof. - We have seen above, that the multiplicities of all involved edges here is 1.
Thus our assumption reads

{{Sg^a^na) = (ftg^fta^b^nba) = 1

But

(^Wa^na) = (^^nffl + (^i/^na/3)
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and similarly

{Pg^a^b^nba) = ̂ g^^b-^nb^ + (pg^^b^nbap)

Note that

<^i/3, ftbnb-1^ = {g^ (1 + b + ^)n(l + 6 + b2)}
= (^i/^n/3) = {pg^^b^nb^.

Thus, if {pg^,0n(3)_ = 1 or (^g^^b^nbft} = 1, then (ftg^pa^bnb^a) =
{ISg^^bnb-1^ + (/3^l/3,/36n&-la^) > 1. In the other case, ^. {(3g^f3^na0) = 1
and {j^g-\_|^^|3b~lnba|3} = 1, we get that Za^iZs = ZanaZa == l^b^nbT.^, and hence
no G Zan^aZs. A simple case-by-case analysis shows that this is impossible. This proves
the lemma. D

A similar analysis for g^ shows that r' looks locally like

b-^nb

(ryr r

Fig. 17

Finally, taking into account the structure of F' around the vertex f3a (Fig. 13), we can
picture I" in the following way (modulo the identification by the above 120° rotation of
course) (see Fig. 18).
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" X ^ ^.K ^ ^ s ^^ ̂ ^ s s ^^

^^ ̂ Y ^x. ̂ S^ ̂ x. ̂ ^
Fig. 18

Note that (r,r') have trivially polynomial growth (since N ^ I2 labels the odd
vertices) and that the here discussed group type inclusion is therefore strongly amenable
(Theorem 4.13) (see also Remark 5.9).

Example 6.6. - (irreducible nonamenable infinite depth subfactor ofR corresponding to
the free product of two finite groups).

We compute the principal graphs of R12 c R x Zs in the case where the group G
generated by 1^ and Zs in OutR is just the free product, i.e. G = 1^ * Za = (a, b | a2 =
63 = 1) ^ PSL(2,1). Let Wa (resp. Wb) be all the nontrivial reduced words in the letters
a and &, which begin and end with a (resp. b or &2) and let Wa,b (resp. IV^J be all the
nontrivial reduced words in a, b which begin with a (resp. begin with b or 62) and end
with b or 62 (resp. end with a). Clearly, the H^-H^ double cosets of G are given by

^\G/^,={1^I^ geWbU{l}}
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and similarly

Zs\G/Z3 = {23^3, ^e^aU{l}} ,

^\G/z3 = {Z2^Z3, ^ew^u{i}} ,
ls\G/I, = {23^2, ^€^a,bU{l}}.

Let Z2 = {1^'} and Zs = {l,(/ ,(b')2} be the dual groups and use the notation of
chapter 4. We compute first the vertices of the principal graphs r resp. F, i.e. we check
which double cosets label irreducible bimodules. Let b^wb62 G W&, ei, 63 € {1,2}
and calculate {ab^wb^a.ab^wb^a) = {b^wb^, (1 + a^wb62^ + a)) = 1. Since
aa = 1 + a', we have therefore

Feven^ {l^O^ 9 ^ ̂ }-

Since Z2 x Za acts freely on G, we have that Fodd is labeled by ^\G/j.^ i.e.

rodd={^A ^ e W b , a U { l } } .

Similarly, we obtain

^^n={l^^(& /)^^A^^},
r^dd = {^a. ^ ^ w^ u {i}}.

Next we compute the edges of the principal graph r. If ag^a € Feven and ag^j3 e Fodd,
then the number of edges between these two vertices is given by

(41) (c^iaaA ag^} = {gi{l + a), (1 + a)^(l + b + &2)).

In particular, if gi = 1, this formula shows that aa = 1 + a' is connected only to
a (3 with multiplicity 2. Since F is connected we must therefore have precisely one
single edge from 1 resp. a' to a{3. Similarly, a/3 is connected precisely to 1, a',
aba and o^a ((41)) with a single edge. Next we show that aba resp. ab2^ are
connected precisely to abaa resp. o^aa with a single edge. To this end, let gi = b€,
e C {1,2}, g2 G W^a (in particular ^2 ^ 1). then {ag^aaf3, ag^} = 1 iff 92 = &^ since
{ag^aa/3, ag^P} = (b6 + ̂  ̂ 2 + ^2& + ̂ b2) = (&^, ̂ 2). This shows the claim. Now let
9i C Wb\{b,b2}, g2 C W^a, then (34) implies

{ag-^aa/3, ag^P) = <^i + gia, g^ + ̂ 2& + P2&2)

= {91^92} + (^i^2&) + {gi.92b2}
(42) = ̂ i,p20 + ̂ pi^b + ̂ l,92b2

(43) = ^10,^2 + ^lb,^2 + ^1^,52 •

Thus o^ia, ^i € Wb\{b,b2} is connected with a single edge precisely to ag^a(3 and
0^1^/3 with e € {1,2} such that g^ e W&,a ((42)). Similarly, a^/3, ^2 ^ ^b,a, is
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connected with a single edge precisely to ag^aa, ag^ba and ag^a ((43)). This gives
the following principal graph F

Fig. 19

We compute now the edges of F' in a similar manner. The number of edges from
0gi(3 G r^ to pg^a G F^d is obtained as

(44) (^i/^a, ̂ a) = (5i(l + b + &2), (1 + & + ̂ Wl + a)).

If ^i = 1, then / 3 / 3 = 1 + 6' + (V)2 ls connected precisely to /3a with multiplicity 3, hence,
by connectedness of F', we get that there is a single edge from 1 resp. b' resp. (b')2 to
f3a. Similarly, /3a is connected precisely to 1, &', (6')2 and /3a/3 by a single edge ((44)).
Using (44), we compute that {/3a/3/3a,/?^2^) = {a + a& + ab2^^ + ̂ ) = 1 iff ^2 = 1
or (72 ^ ^^ or ^2 = c^b2. In all other cases, we have (l3a(3/3a^j3g^a) = 0. Thus /3a/3 is
connected by a single edge precisely to /3a, /3a&o; and /Sab2^. Now let ^i G Wa\{a}
and g-z G Wa,fo, then (44) implies

{pg^Ppa, (3g^a) = (g^ + gib + ̂ i&2,52 + 92^)

= (^1^2^) + {gi,g2b) + {gi,92b2)
(45) — u 91,920- ' °9l,92b ' °9l,92b2
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(46) = °gia,92 + °9ib,g2 + oglb2,g2'

Thus /3^i/3, ^i € WaV^}. is connected by a single edge precisely to j3g^aa, /3g^ba and
Pgib2^ ((45)) and /3g^a, g^ e Wa,b, is connected by a single edge precisely to Pg^P and
iSg^a, where e G {1,2} such that ̂ e e Wa ((46)). Therefore F' is given as

abab^ap

ab^abap

Fig. 20

Note that ||r||2 = ||r||2 = 3 + 2y/2 < 6 by Corollary 4.8. In particular, R12 C R x Zs
is an irreducible, nonamenable index 6 inclusion, whose principal graphs have exponential
growth.

Examples 6.7. - (Nonamenable inclusions based on the Fuchsian groups G^s,^ ^ ̂  7).

By the remarks prior to example 6.4, the Fuchsian groups Gimn, ( 7 + — + - < 1 )' ' \ l m n )
can be realized as transformation groups of the hyperbolic plane f) such that ^)/G^m,n are
compact. In particular, G^m,n becomes a lattice in the group 50(1,2) of orientation
preserving isometries of ^3. Therefore Gi^m,n is nonamenable. Hence the inclusion
R12 C R x J-3 based on G = G^^n. is nonamenable for every n > 7. The computation of
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the corresponding principal graphs F and F' is lengthy, so we will only state the results
here. In analogy with Figure 12, F can be constructed from a tiling of the hyperbolic

27Tplane ^ with regular n-gons all having angles —, so that three n-gons will meet at
0

each vertex. One identifies the points in the hyperbolic plane modulo rotation of 180°
around the midpoint of a specified edge. Now Fodd consists of the vertices of the resulting
tiling of fi/J.2 and Feven consists of the midpoints of all the edges in this tiling with
the exception of the rotation point, which corresponds to two vertices of Feven (namely
1 and a') as in the case n == 6. The description of F' is analogous to Figure 18. One
identifies the points in the hyperbolic plane modulo a rotation of 120° around a specified
vertex of the original tiling of S). Then F^ consists of all the midpoints if the edges
of the resulting tiling of ^3/Zs and F^^ consists of the vertices of this tiling with the
exception of the rotation point, which corresponds to the three vertices of F^n (namely
1, 6' and (&7)2) as in the case n == 6.

7. Appendix

In the proof of Lemma 5.5 we used the following fact about Markov chains of finite
sets. Since we have been unable to find a specific reference in the literature, we include
here a proof.

PROPOSITION 7.1. - Let (5, P) be an irreducible Markov chain on a finite set of states S
with transition matrix P = (P(x^ y))x,yes- For x G 5, let 0n(x) denote the probability that
a path starting at x returns to x for the first time after exactly n steps. Then

(47) ^r^nCr) < oo
n=l

for all x € S and all p G R"^.

Proof. - Since irreducible Markov chains on finite sets are positively recurrent (see
[HPS, Section 2.4] and [Se, Definition 5.1]), we have

00 00

\^0n(x) = 1 and \^n0n{x) < oo.
n=l n=l

In particular, (47) holds for 0 < p < 1. To prove (47) for a general p € R"^, we will show
00

that the radius of convergence of the power series V ^ ^ n ^ ) is strictly greater than 1.
n=l

n1'This immediately implies (47), because — —>• 0 for n —^ oo when s > 1. Set

L{s,x) =Y^sn6^x), \s\ < 1, s (E S
n=l
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and
00

P{s,x,y) = ̂ ^P71^), H < 1, x,y G 5,
n=0

where P71 denotes the n-th power of the transition matrix P. Since for [ s\ < 1 we have

00 -

S.-P" = (1-.?)--^^cof(l-.?/
71=0 v '

by the cofactor formula for the inverse of a matrix, it follows that P ( s ^ x ^ y ) can be
extended to a meromorphic function on the complex plane for all x,y e S. By ([Se,
Lemma 5.3]) we have

^w) = i - L^r l s l < l •
00

Since V^ On(x) = 1, we have lim —L(s^x) == 1. Hence P ( s ^ x ^ x ) has a pole at s = 1.
•^—^ S—>1
n=l

Therefore
£(5, re) = 1 - ————r

P { s , x ^ x )

defines a meromorphic extension of L{s^x) with a removable singularity at s = 1. Let
/)(rr) e [1, oo] denote the radius of convergence of the power series defining L(s, x). Since
Q-n(x) > 0 for all n G N, we have that either p(x) == oo or p(x) is a singular point for the
meromorphic extension of L(s,x). This proves that p{x) > 1 for x G S. D
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